xref: /openbmc/linux/arch/powerpc/mm/book3s64/hash_utils.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  *
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16 
17 #undef DEBUG
18 #undef DEBUG_LOW
19 
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 
39 #include <asm/debugfs.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/page.h>
45 #include <asm/types.h>
46 #include <linux/uaccess.h>
47 #include <asm/machdep.h>
48 #include <asm/prom.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
63 #include <asm/pte-walk.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/ultravisor.h>
66 
67 #include <mm/mmu_decl.h>
68 
69 #ifdef DEBUG
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
74 
75 #ifdef DEBUG_LOW
76 #define DBG_LOW(fmt...) udbg_printf(fmt)
77 #else
78 #define DBG_LOW(fmt...)
79 #endif
80 
81 #define KB (1024)
82 #define MB (1024*KB)
83 #define GB (1024L*MB)
84 
85 /*
86  * Note:  pte   --> Linux PTE
87  *        HPTE  --> PowerPC Hashed Page Table Entry
88  *
89  * Execution context:
90  *   htab_initialize is called with the MMU off (of course), but
91  *   the kernel has been copied down to zero so it can directly
92  *   reference global data.  At this point it is very difficult
93  *   to print debug info.
94  *
95  */
96 
97 static unsigned long _SDR1;
98 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
99 EXPORT_SYMBOL_GPL(mmu_psize_defs);
100 
101 u8 hpte_page_sizes[1 << LP_BITS];
102 EXPORT_SYMBOL_GPL(hpte_page_sizes);
103 
104 struct hash_pte *htab_address;
105 unsigned long htab_size_bytes;
106 unsigned long htab_hash_mask;
107 EXPORT_SYMBOL_GPL(htab_hash_mask);
108 int mmu_linear_psize = MMU_PAGE_4K;
109 EXPORT_SYMBOL_GPL(mmu_linear_psize);
110 int mmu_virtual_psize = MMU_PAGE_4K;
111 int mmu_vmalloc_psize = MMU_PAGE_4K;
112 #ifdef CONFIG_SPARSEMEM_VMEMMAP
113 int mmu_vmemmap_psize = MMU_PAGE_4K;
114 #endif
115 int mmu_io_psize = MMU_PAGE_4K;
116 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
117 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
118 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
119 u16 mmu_slb_size = 64;
120 EXPORT_SYMBOL_GPL(mmu_slb_size);
121 #ifdef CONFIG_PPC_64K_PAGES
122 int mmu_ci_restrictions;
123 #endif
124 #ifdef CONFIG_DEBUG_PAGEALLOC
125 static u8 *linear_map_hash_slots;
126 static unsigned long linear_map_hash_count;
127 static DEFINE_SPINLOCK(linear_map_hash_lock);
128 #endif /* CONFIG_DEBUG_PAGEALLOC */
129 struct mmu_hash_ops mmu_hash_ops;
130 EXPORT_SYMBOL(mmu_hash_ops);
131 
132 /*
133  * These are definitions of page sizes arrays to be used when none
134  * is provided by the firmware.
135  */
136 
137 /*
138  * Fallback (4k pages only)
139  */
140 static struct mmu_psize_def mmu_psize_defaults[] = {
141 	[MMU_PAGE_4K] = {
142 		.shift	= 12,
143 		.sllp	= 0,
144 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
145 		.avpnm	= 0,
146 		.tlbiel = 0,
147 	},
148 };
149 
150 /*
151  * POWER4, GPUL, POWER5
152  *
153  * Support for 16Mb large pages
154  */
155 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
156 	[MMU_PAGE_4K] = {
157 		.shift	= 12,
158 		.sllp	= 0,
159 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
160 		.avpnm	= 0,
161 		.tlbiel = 1,
162 	},
163 	[MMU_PAGE_16M] = {
164 		.shift	= 24,
165 		.sllp	= SLB_VSID_L,
166 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
167 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
168 		.avpnm	= 0x1UL,
169 		.tlbiel = 0,
170 	},
171 };
172 
173 /*
174  * 'R' and 'C' update notes:
175  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
176  *     create writeable HPTEs without C set, because the hcall H_PROTECT
177  *     that we use in that case will not update C
178  *  - The above is however not a problem, because we also don't do that
179  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
180  *     do the right thing and thus we don't have the race I described earlier
181  *
182  *    - Under bare metal,  we do have the race, so we need R and C set
183  *    - We make sure R is always set and never lost
184  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
185  */
186 unsigned long htab_convert_pte_flags(unsigned long pteflags)
187 {
188 	unsigned long rflags = 0;
189 
190 	/* _PAGE_EXEC -> NOEXEC */
191 	if ((pteflags & _PAGE_EXEC) == 0)
192 		rflags |= HPTE_R_N;
193 	/*
194 	 * PPP bits:
195 	 * Linux uses slb key 0 for kernel and 1 for user.
196 	 * kernel RW areas are mapped with PPP=0b000
197 	 * User area is mapped with PPP=0b010 for read/write
198 	 * or PPP=0b011 for read-only (including writeable but clean pages).
199 	 */
200 	if (pteflags & _PAGE_PRIVILEGED) {
201 		/*
202 		 * Kernel read only mapped with ppp bits 0b110
203 		 */
204 		if (!(pteflags & _PAGE_WRITE)) {
205 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
206 				rflags |= (HPTE_R_PP0 | 0x2);
207 			else
208 				rflags |= 0x3;
209 		}
210 	} else {
211 		if (pteflags & _PAGE_RWX)
212 			rflags |= 0x2;
213 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
214 			rflags |= 0x1;
215 	}
216 	/*
217 	 * We can't allow hardware to update hpte bits. Hence always
218 	 * set 'R' bit and set 'C' if it is a write fault
219 	 */
220 	rflags |=  HPTE_R_R;
221 
222 	if (pteflags & _PAGE_DIRTY)
223 		rflags |= HPTE_R_C;
224 	/*
225 	 * Add in WIG bits
226 	 */
227 
228 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
229 		rflags |= HPTE_R_I;
230 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
231 		rflags |= (HPTE_R_I | HPTE_R_G);
232 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
233 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
234 	else
235 		/*
236 		 * Add memory coherence if cache inhibited is not set
237 		 */
238 		rflags |= HPTE_R_M;
239 
240 	rflags |= pte_to_hpte_pkey_bits(pteflags);
241 	return rflags;
242 }
243 
244 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
245 		      unsigned long pstart, unsigned long prot,
246 		      int psize, int ssize)
247 {
248 	unsigned long vaddr, paddr;
249 	unsigned int step, shift;
250 	int ret = 0;
251 
252 	shift = mmu_psize_defs[psize].shift;
253 	step = 1 << shift;
254 
255 	prot = htab_convert_pte_flags(prot);
256 
257 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
258 	    vstart, vend, pstart, prot, psize, ssize);
259 
260 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
261 	     vaddr += step, paddr += step) {
262 		unsigned long hash, hpteg;
263 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
264 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
265 		unsigned long tprot = prot;
266 		bool secondary_hash = false;
267 
268 		/*
269 		 * If we hit a bad address return error.
270 		 */
271 		if (!vsid)
272 			return -1;
273 		/* Make kernel text executable */
274 		if (overlaps_kernel_text(vaddr, vaddr + step))
275 			tprot &= ~HPTE_R_N;
276 
277 		/*
278 		 * If relocatable, check if it overlaps interrupt vectors that
279 		 * are copied down to real 0. For relocatable kernel
280 		 * (e.g. kdump case) we copy interrupt vectors down to real
281 		 * address 0. Mark that region as executable. This is
282 		 * because on p8 system with relocation on exception feature
283 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
284 		 * in order to execute the interrupt handlers in virtual
285 		 * mode the vector region need to be marked as executable.
286 		 */
287 		if ((PHYSICAL_START > MEMORY_START) &&
288 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
289 				tprot &= ~HPTE_R_N;
290 
291 		hash = hpt_hash(vpn, shift, ssize);
292 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
293 
294 		BUG_ON(!mmu_hash_ops.hpte_insert);
295 repeat:
296 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
297 					       HPTE_V_BOLTED, psize, psize,
298 					       ssize);
299 		if (ret == -1) {
300 			/*
301 			 * Try to to keep bolted entries in primary.
302 			 * Remove non bolted entries and try insert again
303 			 */
304 			ret = mmu_hash_ops.hpte_remove(hpteg);
305 			if (ret != -1)
306 				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
307 							       HPTE_V_BOLTED, psize, psize,
308 							       ssize);
309 			if (ret == -1 && !secondary_hash) {
310 				secondary_hash = true;
311 				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
312 				goto repeat;
313 			}
314 		}
315 
316 		if (ret < 0)
317 			break;
318 
319 		cond_resched();
320 #ifdef CONFIG_DEBUG_PAGEALLOC
321 		if (debug_pagealloc_enabled() &&
322 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
323 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
324 #endif /* CONFIG_DEBUG_PAGEALLOC */
325 	}
326 	return ret < 0 ? ret : 0;
327 }
328 
329 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
330 		      int psize, int ssize)
331 {
332 	unsigned long vaddr;
333 	unsigned int step, shift;
334 	int rc;
335 	int ret = 0;
336 
337 	shift = mmu_psize_defs[psize].shift;
338 	step = 1 << shift;
339 
340 	if (!mmu_hash_ops.hpte_removebolted)
341 		return -ENODEV;
342 
343 	for (vaddr = vstart; vaddr < vend; vaddr += step) {
344 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
345 		if (rc == -ENOENT) {
346 			ret = -ENOENT;
347 			continue;
348 		}
349 		if (rc < 0)
350 			return rc;
351 	}
352 
353 	return ret;
354 }
355 
356 static bool disable_1tb_segments = false;
357 
358 static int __init parse_disable_1tb_segments(char *p)
359 {
360 	disable_1tb_segments = true;
361 	return 0;
362 }
363 early_param("disable_1tb_segments", parse_disable_1tb_segments);
364 
365 static int __init htab_dt_scan_seg_sizes(unsigned long node,
366 					 const char *uname, int depth,
367 					 void *data)
368 {
369 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
370 	const __be32 *prop;
371 	int size = 0;
372 
373 	/* We are scanning "cpu" nodes only */
374 	if (type == NULL || strcmp(type, "cpu") != 0)
375 		return 0;
376 
377 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
378 	if (prop == NULL)
379 		return 0;
380 	for (; size >= 4; size -= 4, ++prop) {
381 		if (be32_to_cpu(prop[0]) == 40) {
382 			DBG("1T segment support detected\n");
383 
384 			if (disable_1tb_segments) {
385 				DBG("1T segments disabled by command line\n");
386 				break;
387 			}
388 
389 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
390 			return 1;
391 		}
392 	}
393 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
394 	return 0;
395 }
396 
397 static int __init get_idx_from_shift(unsigned int shift)
398 {
399 	int idx = -1;
400 
401 	switch (shift) {
402 	case 0xc:
403 		idx = MMU_PAGE_4K;
404 		break;
405 	case 0x10:
406 		idx = MMU_PAGE_64K;
407 		break;
408 	case 0x14:
409 		idx = MMU_PAGE_1M;
410 		break;
411 	case 0x18:
412 		idx = MMU_PAGE_16M;
413 		break;
414 	case 0x22:
415 		idx = MMU_PAGE_16G;
416 		break;
417 	}
418 	return idx;
419 }
420 
421 static int __init htab_dt_scan_page_sizes(unsigned long node,
422 					  const char *uname, int depth,
423 					  void *data)
424 {
425 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
426 	const __be32 *prop;
427 	int size = 0;
428 
429 	/* We are scanning "cpu" nodes only */
430 	if (type == NULL || strcmp(type, "cpu") != 0)
431 		return 0;
432 
433 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
434 	if (!prop)
435 		return 0;
436 
437 	pr_info("Page sizes from device-tree:\n");
438 	size /= 4;
439 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
440 	while(size > 0) {
441 		unsigned int base_shift = be32_to_cpu(prop[0]);
442 		unsigned int slbenc = be32_to_cpu(prop[1]);
443 		unsigned int lpnum = be32_to_cpu(prop[2]);
444 		struct mmu_psize_def *def;
445 		int idx, base_idx;
446 
447 		size -= 3; prop += 3;
448 		base_idx = get_idx_from_shift(base_shift);
449 		if (base_idx < 0) {
450 			/* skip the pte encoding also */
451 			prop += lpnum * 2; size -= lpnum * 2;
452 			continue;
453 		}
454 		def = &mmu_psize_defs[base_idx];
455 		if (base_idx == MMU_PAGE_16M)
456 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
457 
458 		def->shift = base_shift;
459 		if (base_shift <= 23)
460 			def->avpnm = 0;
461 		else
462 			def->avpnm = (1 << (base_shift - 23)) - 1;
463 		def->sllp = slbenc;
464 		/*
465 		 * We don't know for sure what's up with tlbiel, so
466 		 * for now we only set it for 4K and 64K pages
467 		 */
468 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
469 			def->tlbiel = 1;
470 		else
471 			def->tlbiel = 0;
472 
473 		while (size > 0 && lpnum) {
474 			unsigned int shift = be32_to_cpu(prop[0]);
475 			int penc  = be32_to_cpu(prop[1]);
476 
477 			prop += 2; size -= 2;
478 			lpnum--;
479 
480 			idx = get_idx_from_shift(shift);
481 			if (idx < 0)
482 				continue;
483 
484 			if (penc == -1)
485 				pr_err("Invalid penc for base_shift=%d "
486 				       "shift=%d\n", base_shift, shift);
487 
488 			def->penc[idx] = penc;
489 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
490 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
491 				base_shift, shift, def->sllp,
492 				def->avpnm, def->tlbiel, def->penc[idx]);
493 		}
494 	}
495 
496 	return 1;
497 }
498 
499 #ifdef CONFIG_HUGETLB_PAGE
500 /*
501  * Scan for 16G memory blocks that have been set aside for huge pages
502  * and reserve those blocks for 16G huge pages.
503  */
504 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
505 					const char *uname, int depth,
506 					void *data) {
507 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
508 	const __be64 *addr_prop;
509 	const __be32 *page_count_prop;
510 	unsigned int expected_pages;
511 	long unsigned int phys_addr;
512 	long unsigned int block_size;
513 
514 	/* We are scanning "memory" nodes only */
515 	if (type == NULL || strcmp(type, "memory") != 0)
516 		return 0;
517 
518 	/*
519 	 * This property is the log base 2 of the number of virtual pages that
520 	 * will represent this memory block.
521 	 */
522 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
523 	if (page_count_prop == NULL)
524 		return 0;
525 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
526 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
527 	if (addr_prop == NULL)
528 		return 0;
529 	phys_addr = be64_to_cpu(addr_prop[0]);
530 	block_size = be64_to_cpu(addr_prop[1]);
531 	if (block_size != (16 * GB))
532 		return 0;
533 	printk(KERN_INFO "Huge page(16GB) memory: "
534 			"addr = 0x%lX size = 0x%lX pages = %d\n",
535 			phys_addr, block_size, expected_pages);
536 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
537 		memblock_reserve(phys_addr, block_size * expected_pages);
538 		pseries_add_gpage(phys_addr, block_size, expected_pages);
539 	}
540 	return 0;
541 }
542 #endif /* CONFIG_HUGETLB_PAGE */
543 
544 static void mmu_psize_set_default_penc(void)
545 {
546 	int bpsize, apsize;
547 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
548 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
549 			mmu_psize_defs[bpsize].penc[apsize] = -1;
550 }
551 
552 #ifdef CONFIG_PPC_64K_PAGES
553 
554 static bool might_have_hea(void)
555 {
556 	/*
557 	 * The HEA ethernet adapter requires awareness of the
558 	 * GX bus. Without that awareness we can easily assume
559 	 * we will never see an HEA ethernet device.
560 	 */
561 #ifdef CONFIG_IBMEBUS
562 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
563 		firmware_has_feature(FW_FEATURE_SPLPAR);
564 #else
565 	return false;
566 #endif
567 }
568 
569 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
570 
571 static void __init htab_scan_page_sizes(void)
572 {
573 	int rc;
574 
575 	/* se the invalid penc to -1 */
576 	mmu_psize_set_default_penc();
577 
578 	/* Default to 4K pages only */
579 	memcpy(mmu_psize_defs, mmu_psize_defaults,
580 	       sizeof(mmu_psize_defaults));
581 
582 	/*
583 	 * Try to find the available page sizes in the device-tree
584 	 */
585 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
586 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
587 		/*
588 		 * Nothing in the device-tree, but the CPU supports 16M pages,
589 		 * so let's fallback on a known size list for 16M capable CPUs.
590 		 */
591 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
592 		       sizeof(mmu_psize_defaults_gp));
593 	}
594 
595 #ifdef CONFIG_HUGETLB_PAGE
596 	if (!hugetlb_disabled) {
597 		/* Reserve 16G huge page memory sections for huge pages */
598 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
599 	}
600 #endif /* CONFIG_HUGETLB_PAGE */
601 }
602 
603 /*
604  * Fill in the hpte_page_sizes[] array.
605  * We go through the mmu_psize_defs[] array looking for all the
606  * supported base/actual page size combinations.  Each combination
607  * has a unique pagesize encoding (penc) value in the low bits of
608  * the LP field of the HPTE.  For actual page sizes less than 1MB,
609  * some of the upper LP bits are used for RPN bits, meaning that
610  * we need to fill in several entries in hpte_page_sizes[].
611  *
612  * In diagrammatic form, with r = RPN bits and z = page size bits:
613  *        PTE LP     actual page size
614  *    rrrr rrrz		>=8KB
615  *    rrrr rrzz		>=16KB
616  *    rrrr rzzz		>=32KB
617  *    rrrr zzzz		>=64KB
618  *    ...
619  *
620  * The zzzz bits are implementation-specific but are chosen so that
621  * no encoding for a larger page size uses the same value in its
622  * low-order N bits as the encoding for the 2^(12+N) byte page size
623  * (if it exists).
624  */
625 static void init_hpte_page_sizes(void)
626 {
627 	long int ap, bp;
628 	long int shift, penc;
629 
630 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
631 		if (!mmu_psize_defs[bp].shift)
632 			continue;	/* not a supported page size */
633 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
634 			penc = mmu_psize_defs[bp].penc[ap];
635 			if (penc == -1 || !mmu_psize_defs[ap].shift)
636 				continue;
637 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
638 			if (shift <= 0)
639 				continue;	/* should never happen */
640 			/*
641 			 * For page sizes less than 1MB, this loop
642 			 * replicates the entry for all possible values
643 			 * of the rrrr bits.
644 			 */
645 			while (penc < (1 << LP_BITS)) {
646 				hpte_page_sizes[penc] = (ap << 4) | bp;
647 				penc += 1 << shift;
648 			}
649 		}
650 	}
651 }
652 
653 static void __init htab_init_page_sizes(void)
654 {
655 	bool aligned = true;
656 	init_hpte_page_sizes();
657 
658 	if (!debug_pagealloc_enabled()) {
659 		/*
660 		 * Pick a size for the linear mapping. Currently, we only
661 		 * support 16M, 1M and 4K which is the default
662 		 */
663 		if (IS_ENABLED(STRICT_KERNEL_RWX) &&
664 		    (unsigned long)_stext % 0x1000000) {
665 			if (mmu_psize_defs[MMU_PAGE_16M].shift)
666 				pr_warn("Kernel not 16M aligned, "
667 					"disabling 16M linear map alignment");
668 			aligned = false;
669 		}
670 
671 		if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
672 			mmu_linear_psize = MMU_PAGE_16M;
673 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
674 			mmu_linear_psize = MMU_PAGE_1M;
675 	}
676 
677 #ifdef CONFIG_PPC_64K_PAGES
678 	/*
679 	 * Pick a size for the ordinary pages. Default is 4K, we support
680 	 * 64K for user mappings and vmalloc if supported by the processor.
681 	 * We only use 64k for ioremap if the processor
682 	 * (and firmware) support cache-inhibited large pages.
683 	 * If not, we use 4k and set mmu_ci_restrictions so that
684 	 * hash_page knows to switch processes that use cache-inhibited
685 	 * mappings to 4k pages.
686 	 */
687 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
688 		mmu_virtual_psize = MMU_PAGE_64K;
689 		mmu_vmalloc_psize = MMU_PAGE_64K;
690 		if (mmu_linear_psize == MMU_PAGE_4K)
691 			mmu_linear_psize = MMU_PAGE_64K;
692 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
693 			/*
694 			 * When running on pSeries using 64k pages for ioremap
695 			 * would stop us accessing the HEA ethernet. So if we
696 			 * have the chance of ever seeing one, stay at 4k.
697 			 */
698 			if (!might_have_hea())
699 				mmu_io_psize = MMU_PAGE_64K;
700 		} else
701 			mmu_ci_restrictions = 1;
702 	}
703 #endif /* CONFIG_PPC_64K_PAGES */
704 
705 #ifdef CONFIG_SPARSEMEM_VMEMMAP
706 	/*
707 	 * We try to use 16M pages for vmemmap if that is supported
708 	 * and we have at least 1G of RAM at boot
709 	 */
710 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
711 	    memblock_phys_mem_size() >= 0x40000000)
712 		mmu_vmemmap_psize = MMU_PAGE_16M;
713 	else
714 		mmu_vmemmap_psize = mmu_virtual_psize;
715 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
716 
717 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
718 	       "virtual = %d, io = %d"
719 #ifdef CONFIG_SPARSEMEM_VMEMMAP
720 	       ", vmemmap = %d"
721 #endif
722 	       "\n",
723 	       mmu_psize_defs[mmu_linear_psize].shift,
724 	       mmu_psize_defs[mmu_virtual_psize].shift,
725 	       mmu_psize_defs[mmu_io_psize].shift
726 #ifdef CONFIG_SPARSEMEM_VMEMMAP
727 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
728 #endif
729 	       );
730 }
731 
732 static int __init htab_dt_scan_pftsize(unsigned long node,
733 				       const char *uname, int depth,
734 				       void *data)
735 {
736 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
737 	const __be32 *prop;
738 
739 	/* We are scanning "cpu" nodes only */
740 	if (type == NULL || strcmp(type, "cpu") != 0)
741 		return 0;
742 
743 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
744 	if (prop != NULL) {
745 		/* pft_size[0] is the NUMA CEC cookie */
746 		ppc64_pft_size = be32_to_cpu(prop[1]);
747 		return 1;
748 	}
749 	return 0;
750 }
751 
752 unsigned htab_shift_for_mem_size(unsigned long mem_size)
753 {
754 	unsigned memshift = __ilog2(mem_size);
755 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
756 	unsigned pteg_shift;
757 
758 	/* round mem_size up to next power of 2 */
759 	if ((1UL << memshift) < mem_size)
760 		memshift += 1;
761 
762 	/* aim for 2 pages / pteg */
763 	pteg_shift = memshift - (pshift + 1);
764 
765 	/*
766 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
767 	 * size permitted by the architecture.
768 	 */
769 	return max(pteg_shift + 7, 18U);
770 }
771 
772 static unsigned long __init htab_get_table_size(void)
773 {
774 	/*
775 	 * If hash size isn't already provided by the platform, we try to
776 	 * retrieve it from the device-tree. If it's not there neither, we
777 	 * calculate it now based on the total RAM size
778 	 */
779 	if (ppc64_pft_size == 0)
780 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
781 	if (ppc64_pft_size)
782 		return 1UL << ppc64_pft_size;
783 
784 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
785 }
786 
787 #ifdef CONFIG_MEMORY_HOTPLUG
788 int resize_hpt_for_hotplug(unsigned long new_mem_size)
789 {
790 	unsigned target_hpt_shift;
791 
792 	if (!mmu_hash_ops.resize_hpt)
793 		return 0;
794 
795 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
796 
797 	/*
798 	 * To avoid lots of HPT resizes if memory size is fluctuating
799 	 * across a boundary, we deliberately have some hysterisis
800 	 * here: we immediately increase the HPT size if the target
801 	 * shift exceeds the current shift, but we won't attempt to
802 	 * reduce unless the target shift is at least 2 below the
803 	 * current shift
804 	 */
805 	if (target_hpt_shift > ppc64_pft_size ||
806 	    target_hpt_shift < ppc64_pft_size - 1)
807 		return mmu_hash_ops.resize_hpt(target_hpt_shift);
808 
809 	return 0;
810 }
811 
812 int hash__create_section_mapping(unsigned long start, unsigned long end,
813 				 int nid, pgprot_t prot)
814 {
815 	int rc;
816 
817 	if (end >= H_VMALLOC_START) {
818 		pr_warn("Outside the supported range\n");
819 		return -1;
820 	}
821 
822 	rc = htab_bolt_mapping(start, end, __pa(start),
823 			       pgprot_val(prot), mmu_linear_psize,
824 			       mmu_kernel_ssize);
825 
826 	if (rc < 0) {
827 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
828 					      mmu_kernel_ssize);
829 		BUG_ON(rc2 && (rc2 != -ENOENT));
830 	}
831 	return rc;
832 }
833 
834 int hash__remove_section_mapping(unsigned long start, unsigned long end)
835 {
836 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
837 				     mmu_kernel_ssize);
838 	WARN_ON(rc < 0);
839 	return rc;
840 }
841 #endif /* CONFIG_MEMORY_HOTPLUG */
842 
843 static void __init hash_init_partition_table(phys_addr_t hash_table,
844 					     unsigned long htab_size)
845 {
846 	mmu_partition_table_init();
847 
848 	/*
849 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
850 	 * For now, UPRT is 0 and we have no segment table.
851 	 */
852 	htab_size =  __ilog2(htab_size) - 18;
853 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
854 	pr_info("Partition table %p\n", partition_tb);
855 }
856 
857 static void __init htab_initialize(void)
858 {
859 	unsigned long table;
860 	unsigned long pteg_count;
861 	unsigned long prot;
862 	unsigned long base = 0, size = 0;
863 	struct memblock_region *reg;
864 
865 	DBG(" -> htab_initialize()\n");
866 
867 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
868 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
869 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
870 		printk(KERN_INFO "Using 1TB segments\n");
871 	}
872 
873 	/*
874 	 * Calculate the required size of the htab.  We want the number of
875 	 * PTEGs to equal one half the number of real pages.
876 	 */
877 	htab_size_bytes = htab_get_table_size();
878 	pteg_count = htab_size_bytes >> 7;
879 
880 	htab_hash_mask = pteg_count - 1;
881 
882 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
883 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
884 		/* Using a hypervisor which owns the htab */
885 		htab_address = NULL;
886 		_SDR1 = 0;
887 #ifdef CONFIG_FA_DUMP
888 		/*
889 		 * If firmware assisted dump is active firmware preserves
890 		 * the contents of htab along with entire partition memory.
891 		 * Clear the htab if firmware assisted dump is active so
892 		 * that we dont end up using old mappings.
893 		 */
894 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
895 			mmu_hash_ops.hpte_clear_all();
896 #endif
897 	} else {
898 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
899 
900 #ifdef CONFIG_PPC_CELL
901 		/*
902 		 * Cell may require the hash table down low when using the
903 		 * Axon IOMMU in order to fit the dynamic region over it, see
904 		 * comments in cell/iommu.c
905 		 */
906 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
907 			limit = 0x80000000;
908 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
909 		}
910 #endif /* CONFIG_PPC_CELL */
911 
912 		table = memblock_phys_alloc_range(htab_size_bytes,
913 						  htab_size_bytes,
914 						  0, limit);
915 		if (!table)
916 			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
917 			      &htab_size_bytes, &limit);
918 
919 		DBG("Hash table allocated at %lx, size: %lx\n", table,
920 		    htab_size_bytes);
921 
922 		htab_address = __va(table);
923 
924 		/* htab absolute addr + encoded htabsize */
925 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
926 
927 		/* Initialize the HPT with no entries */
928 		memset((void *)table, 0, htab_size_bytes);
929 
930 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
931 			/* Set SDR1 */
932 			mtspr(SPRN_SDR1, _SDR1);
933 		else
934 			hash_init_partition_table(table, htab_size_bytes);
935 	}
936 
937 	prot = pgprot_val(PAGE_KERNEL);
938 
939 #ifdef CONFIG_DEBUG_PAGEALLOC
940 	if (debug_pagealloc_enabled()) {
941 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
942 		linear_map_hash_slots = memblock_alloc_try_nid(
943 				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
944 				ppc64_rma_size,	NUMA_NO_NODE);
945 		if (!linear_map_hash_slots)
946 			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
947 			      __func__, linear_map_hash_count, &ppc64_rma_size);
948 	}
949 #endif /* CONFIG_DEBUG_PAGEALLOC */
950 
951 	/* create bolted the linear mapping in the hash table */
952 	for_each_memblock(memory, reg) {
953 		base = (unsigned long)__va(reg->base);
954 		size = reg->size;
955 
956 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
957 		    base, size, prot);
958 
959 		if ((base + size) >= H_VMALLOC_START) {
960 			pr_warn("Outside the supported range\n");
961 			continue;
962 		}
963 
964 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
965 				prot, mmu_linear_psize, mmu_kernel_ssize));
966 	}
967 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
968 
969 	/*
970 	 * If we have a memory_limit and we've allocated TCEs then we need to
971 	 * explicitly map the TCE area at the top of RAM. We also cope with the
972 	 * case that the TCEs start below memory_limit.
973 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
974 	 * for either 4K or 16MB pages.
975 	 */
976 	if (tce_alloc_start) {
977 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
978 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
979 
980 		if (base + size >= tce_alloc_start)
981 			tce_alloc_start = base + size + 1;
982 
983 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
984 					 __pa(tce_alloc_start), prot,
985 					 mmu_linear_psize, mmu_kernel_ssize));
986 	}
987 
988 
989 	DBG(" <- htab_initialize()\n");
990 }
991 #undef KB
992 #undef MB
993 
994 void __init hash__early_init_devtree(void)
995 {
996 	/* Initialize segment sizes */
997 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
998 
999 	/* Initialize page sizes */
1000 	htab_scan_page_sizes();
1001 }
1002 
1003 static struct hash_mm_context init_hash_mm_context;
1004 void __init hash__early_init_mmu(void)
1005 {
1006 #ifndef CONFIG_PPC_64K_PAGES
1007 	/*
1008 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1009 	 * do the following:
1010 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1011 	 *
1012 	 * Where the slot number is between 0-15, and values of 8-15 indicate
1013 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1014 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1015 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1016 	 * with a BUILD_BUG_ON().
1017 	 */
1018 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1019 #endif /* CONFIG_PPC_64K_PAGES */
1020 
1021 	htab_init_page_sizes();
1022 
1023 	/*
1024 	 * initialize page table size
1025 	 */
1026 	__pte_frag_nr = H_PTE_FRAG_NR;
1027 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1028 	__pmd_frag_nr = H_PMD_FRAG_NR;
1029 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1030 
1031 	__pte_index_size = H_PTE_INDEX_SIZE;
1032 	__pmd_index_size = H_PMD_INDEX_SIZE;
1033 	__pud_index_size = H_PUD_INDEX_SIZE;
1034 	__pgd_index_size = H_PGD_INDEX_SIZE;
1035 	__pud_cache_index = H_PUD_CACHE_INDEX;
1036 	__pte_table_size = H_PTE_TABLE_SIZE;
1037 	__pmd_table_size = H_PMD_TABLE_SIZE;
1038 	__pud_table_size = H_PUD_TABLE_SIZE;
1039 	__pgd_table_size = H_PGD_TABLE_SIZE;
1040 	/*
1041 	 * 4k use hugepd format, so for hash set then to
1042 	 * zero
1043 	 */
1044 	__pmd_val_bits = HASH_PMD_VAL_BITS;
1045 	__pud_val_bits = HASH_PUD_VAL_BITS;
1046 	__pgd_val_bits = HASH_PGD_VAL_BITS;
1047 
1048 	__kernel_virt_start = H_KERN_VIRT_START;
1049 	__vmalloc_start = H_VMALLOC_START;
1050 	__vmalloc_end = H_VMALLOC_END;
1051 	__kernel_io_start = H_KERN_IO_START;
1052 	__kernel_io_end = H_KERN_IO_END;
1053 	vmemmap = (struct page *)H_VMEMMAP_START;
1054 	ioremap_bot = IOREMAP_BASE;
1055 
1056 #ifdef CONFIG_PCI
1057 	pci_io_base = ISA_IO_BASE;
1058 #endif
1059 
1060 	/* Select appropriate backend */
1061 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1062 		ps3_early_mm_init();
1063 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1064 		hpte_init_pseries();
1065 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1066 		hpte_init_native();
1067 
1068 	if (!mmu_hash_ops.hpte_insert)
1069 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1070 
1071 	/*
1072 	 * Initialize the MMU Hash table and create the linear mapping
1073 	 * of memory. Has to be done before SLB initialization as this is
1074 	 * currently where the page size encoding is obtained.
1075 	 */
1076 	htab_initialize();
1077 
1078 	init_mm.context.hash_context = &init_hash_mm_context;
1079 	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1080 
1081 	pr_info("Initializing hash mmu with SLB\n");
1082 	/* Initialize SLB management */
1083 	slb_initialize();
1084 
1085 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1086 			&& cpu_has_feature(CPU_FTR_HVMODE))
1087 		tlbiel_all();
1088 }
1089 
1090 #ifdef CONFIG_SMP
1091 void hash__early_init_mmu_secondary(void)
1092 {
1093 	/* Initialize hash table for that CPU */
1094 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1095 
1096 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1097 			mtspr(SPRN_SDR1, _SDR1);
1098 		else
1099 			set_ptcr_when_no_uv(__pa(partition_tb) |
1100 					    (PATB_SIZE_SHIFT - 12));
1101 	}
1102 	/* Initialize SLB */
1103 	slb_initialize();
1104 
1105 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1106 			&& cpu_has_feature(CPU_FTR_HVMODE))
1107 		tlbiel_all();
1108 }
1109 #endif /* CONFIG_SMP */
1110 
1111 /*
1112  * Called by asm hashtable.S for doing lazy icache flush
1113  */
1114 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1115 {
1116 	struct page *page;
1117 
1118 	if (!pfn_valid(pte_pfn(pte)))
1119 		return pp;
1120 
1121 	page = pte_page(pte);
1122 
1123 	/* page is dirty */
1124 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1125 		if (trap == 0x400) {
1126 			flush_dcache_icache_page(page);
1127 			set_bit(PG_arch_1, &page->flags);
1128 		} else
1129 			pp |= HPTE_R_N;
1130 	}
1131 	return pp;
1132 }
1133 
1134 #ifdef CONFIG_PPC_MM_SLICES
1135 static unsigned int get_paca_psize(unsigned long addr)
1136 {
1137 	unsigned char *psizes;
1138 	unsigned long index, mask_index;
1139 
1140 	if (addr < SLICE_LOW_TOP) {
1141 		psizes = get_paca()->mm_ctx_low_slices_psize;
1142 		index = GET_LOW_SLICE_INDEX(addr);
1143 	} else {
1144 		psizes = get_paca()->mm_ctx_high_slices_psize;
1145 		index = GET_HIGH_SLICE_INDEX(addr);
1146 	}
1147 	mask_index = index & 0x1;
1148 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1149 }
1150 
1151 #else
1152 unsigned int get_paca_psize(unsigned long addr)
1153 {
1154 	return get_paca()->mm_ctx_user_psize;
1155 }
1156 #endif
1157 
1158 /*
1159  * Demote a segment to using 4k pages.
1160  * For now this makes the whole process use 4k pages.
1161  */
1162 #ifdef CONFIG_PPC_64K_PAGES
1163 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1164 {
1165 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1166 		return;
1167 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1168 	copro_flush_all_slbs(mm);
1169 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1170 
1171 		copy_mm_to_paca(mm);
1172 		slb_flush_and_restore_bolted();
1173 	}
1174 }
1175 #endif /* CONFIG_PPC_64K_PAGES */
1176 
1177 #ifdef CONFIG_PPC_SUBPAGE_PROT
1178 /*
1179  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1180  * Userspace sets the subpage permissions using the subpage_prot system call.
1181  *
1182  * Result is 0: full permissions, _PAGE_RW: read-only,
1183  * _PAGE_RWX: no access.
1184  */
1185 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1186 {
1187 	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1188 	u32 spp = 0;
1189 	u32 **sbpm, *sbpp;
1190 
1191 	if (!spt)
1192 		return 0;
1193 
1194 	if (ea >= spt->maxaddr)
1195 		return 0;
1196 	if (ea < 0x100000000UL) {
1197 		/* addresses below 4GB use spt->low_prot */
1198 		sbpm = spt->low_prot;
1199 	} else {
1200 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1201 		if (!sbpm)
1202 			return 0;
1203 	}
1204 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1205 	if (!sbpp)
1206 		return 0;
1207 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1208 
1209 	/* extract 2-bit bitfield for this 4k subpage */
1210 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1211 
1212 	/*
1213 	 * 0 -> full premission
1214 	 * 1 -> Read only
1215 	 * 2 -> no access.
1216 	 * We return the flag that need to be cleared.
1217 	 */
1218 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1219 	return spp;
1220 }
1221 
1222 #else /* CONFIG_PPC_SUBPAGE_PROT */
1223 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1224 {
1225 	return 0;
1226 }
1227 #endif
1228 
1229 void hash_failure_debug(unsigned long ea, unsigned long access,
1230 			unsigned long vsid, unsigned long trap,
1231 			int ssize, int psize, int lpsize, unsigned long pte)
1232 {
1233 	if (!printk_ratelimit())
1234 		return;
1235 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1236 		ea, access, current->comm);
1237 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1238 		trap, vsid, ssize, psize, lpsize, pte);
1239 }
1240 
1241 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1242 			     int psize, bool user_region)
1243 {
1244 	if (user_region) {
1245 		if (psize != get_paca_psize(ea)) {
1246 			copy_mm_to_paca(mm);
1247 			slb_flush_and_restore_bolted();
1248 		}
1249 	} else if (get_paca()->vmalloc_sllp !=
1250 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1251 		get_paca()->vmalloc_sllp =
1252 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1253 		slb_vmalloc_update();
1254 	}
1255 }
1256 
1257 /*
1258  * Result code is:
1259  *  0 - handled
1260  *  1 - normal page fault
1261  * -1 - critical hash insertion error
1262  * -2 - access not permitted by subpage protection mechanism
1263  */
1264 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1265 		 unsigned long access, unsigned long trap,
1266 		 unsigned long flags)
1267 {
1268 	bool is_thp;
1269 	enum ctx_state prev_state = exception_enter();
1270 	pgd_t *pgdir;
1271 	unsigned long vsid;
1272 	pte_t *ptep;
1273 	unsigned hugeshift;
1274 	int rc, user_region = 0;
1275 	int psize, ssize;
1276 
1277 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1278 		ea, access, trap);
1279 	trace_hash_fault(ea, access, trap);
1280 
1281 	/* Get region & vsid */
1282 	switch (get_region_id(ea)) {
1283 	case USER_REGION_ID:
1284 		user_region = 1;
1285 		if (! mm) {
1286 			DBG_LOW(" user region with no mm !\n");
1287 			rc = 1;
1288 			goto bail;
1289 		}
1290 		psize = get_slice_psize(mm, ea);
1291 		ssize = user_segment_size(ea);
1292 		vsid = get_user_vsid(&mm->context, ea, ssize);
1293 		break;
1294 	case VMALLOC_REGION_ID:
1295 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1296 		psize = mmu_vmalloc_psize;
1297 		ssize = mmu_kernel_ssize;
1298 		break;
1299 
1300 	case IO_REGION_ID:
1301 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1302 		psize = mmu_io_psize;
1303 		ssize = mmu_kernel_ssize;
1304 		break;
1305 	default:
1306 		/*
1307 		 * Not a valid range
1308 		 * Send the problem up to do_page_fault()
1309 		 */
1310 		rc = 1;
1311 		goto bail;
1312 	}
1313 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1314 
1315 	/* Bad address. */
1316 	if (!vsid) {
1317 		DBG_LOW("Bad address!\n");
1318 		rc = 1;
1319 		goto bail;
1320 	}
1321 	/* Get pgdir */
1322 	pgdir = mm->pgd;
1323 	if (pgdir == NULL) {
1324 		rc = 1;
1325 		goto bail;
1326 	}
1327 
1328 	/* Check CPU locality */
1329 	if (user_region && mm_is_thread_local(mm))
1330 		flags |= HPTE_LOCAL_UPDATE;
1331 
1332 #ifndef CONFIG_PPC_64K_PAGES
1333 	/*
1334 	 * If we use 4K pages and our psize is not 4K, then we might
1335 	 * be hitting a special driver mapping, and need to align the
1336 	 * address before we fetch the PTE.
1337 	 *
1338 	 * It could also be a hugepage mapping, in which case this is
1339 	 * not necessary, but it's not harmful, either.
1340 	 */
1341 	if (psize != MMU_PAGE_4K)
1342 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1343 #endif /* CONFIG_PPC_64K_PAGES */
1344 
1345 	/* Get PTE and page size from page tables */
1346 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1347 	if (ptep == NULL || !pte_present(*ptep)) {
1348 		DBG_LOW(" no PTE !\n");
1349 		rc = 1;
1350 		goto bail;
1351 	}
1352 
1353 	/* Add _PAGE_PRESENT to the required access perm */
1354 	access |= _PAGE_PRESENT;
1355 
1356 	/*
1357 	 * Pre-check access permissions (will be re-checked atomically
1358 	 * in __hash_page_XX but this pre-check is a fast path
1359 	 */
1360 	if (!check_pte_access(access, pte_val(*ptep))) {
1361 		DBG_LOW(" no access !\n");
1362 		rc = 1;
1363 		goto bail;
1364 	}
1365 
1366 	if (hugeshift) {
1367 		if (is_thp)
1368 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1369 					     trap, flags, ssize, psize);
1370 #ifdef CONFIG_HUGETLB_PAGE
1371 		else
1372 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1373 					      flags, ssize, hugeshift, psize);
1374 #else
1375 		else {
1376 			/*
1377 			 * if we have hugeshift, and is not transhuge with
1378 			 * hugetlb disabled, something is really wrong.
1379 			 */
1380 			rc = 1;
1381 			WARN_ON(1);
1382 		}
1383 #endif
1384 		if (current->mm == mm)
1385 			check_paca_psize(ea, mm, psize, user_region);
1386 
1387 		goto bail;
1388 	}
1389 
1390 #ifndef CONFIG_PPC_64K_PAGES
1391 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1392 #else
1393 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1394 		pte_val(*(ptep + PTRS_PER_PTE)));
1395 #endif
1396 	/* Do actual hashing */
1397 #ifdef CONFIG_PPC_64K_PAGES
1398 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1399 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1400 		demote_segment_4k(mm, ea);
1401 		psize = MMU_PAGE_4K;
1402 	}
1403 
1404 	/*
1405 	 * If this PTE is non-cacheable and we have restrictions on
1406 	 * using non cacheable large pages, then we switch to 4k
1407 	 */
1408 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1409 		if (user_region) {
1410 			demote_segment_4k(mm, ea);
1411 			psize = MMU_PAGE_4K;
1412 		} else if (ea < VMALLOC_END) {
1413 			/*
1414 			 * some driver did a non-cacheable mapping
1415 			 * in vmalloc space, so switch vmalloc
1416 			 * to 4k pages
1417 			 */
1418 			printk(KERN_ALERT "Reducing vmalloc segment "
1419 			       "to 4kB pages because of "
1420 			       "non-cacheable mapping\n");
1421 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1422 			copro_flush_all_slbs(mm);
1423 		}
1424 	}
1425 
1426 #endif /* CONFIG_PPC_64K_PAGES */
1427 
1428 	if (current->mm == mm)
1429 		check_paca_psize(ea, mm, psize, user_region);
1430 
1431 #ifdef CONFIG_PPC_64K_PAGES
1432 	if (psize == MMU_PAGE_64K)
1433 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1434 				     flags, ssize);
1435 	else
1436 #endif /* CONFIG_PPC_64K_PAGES */
1437 	{
1438 		int spp = subpage_protection(mm, ea);
1439 		if (access & spp)
1440 			rc = -2;
1441 		else
1442 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1443 					    flags, ssize, spp);
1444 	}
1445 
1446 	/*
1447 	 * Dump some info in case of hash insertion failure, they should
1448 	 * never happen so it is really useful to know if/when they do
1449 	 */
1450 	if (rc == -1)
1451 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1452 				   psize, pte_val(*ptep));
1453 #ifndef CONFIG_PPC_64K_PAGES
1454 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1455 #else
1456 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1457 		pte_val(*(ptep + PTRS_PER_PTE)));
1458 #endif
1459 	DBG_LOW(" -> rc=%d\n", rc);
1460 
1461 bail:
1462 	exception_exit(prev_state);
1463 	return rc;
1464 }
1465 EXPORT_SYMBOL_GPL(hash_page_mm);
1466 
1467 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1468 	      unsigned long dsisr)
1469 {
1470 	unsigned long flags = 0;
1471 	struct mm_struct *mm = current->mm;
1472 
1473 	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1474 	    (get_region_id(ea) == IO_REGION_ID))
1475 		mm = &init_mm;
1476 
1477 	if (dsisr & DSISR_NOHPTE)
1478 		flags |= HPTE_NOHPTE_UPDATE;
1479 
1480 	return hash_page_mm(mm, ea, access, trap, flags);
1481 }
1482 EXPORT_SYMBOL_GPL(hash_page);
1483 
1484 int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr,
1485 		unsigned long msr)
1486 {
1487 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1488 	unsigned long flags = 0;
1489 	struct mm_struct *mm = current->mm;
1490 	unsigned int region_id = get_region_id(ea);
1491 
1492 	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1493 		mm = &init_mm;
1494 
1495 	if (dsisr & DSISR_NOHPTE)
1496 		flags |= HPTE_NOHPTE_UPDATE;
1497 
1498 	if (dsisr & DSISR_ISSTORE)
1499 		access |= _PAGE_WRITE;
1500 	/*
1501 	 * We set _PAGE_PRIVILEGED only when
1502 	 * kernel mode access kernel space.
1503 	 *
1504 	 * _PAGE_PRIVILEGED is NOT set
1505 	 * 1) when kernel mode access user space
1506 	 * 2) user space access kernel space.
1507 	 */
1508 	access |= _PAGE_PRIVILEGED;
1509 	if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1510 		access &= ~_PAGE_PRIVILEGED;
1511 
1512 	if (trap == 0x400)
1513 		access |= _PAGE_EXEC;
1514 
1515 	return hash_page_mm(mm, ea, access, trap, flags);
1516 }
1517 
1518 #ifdef CONFIG_PPC_MM_SLICES
1519 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1520 {
1521 	int psize = get_slice_psize(mm, ea);
1522 
1523 	/* We only prefault standard pages for now */
1524 	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1525 		return false;
1526 
1527 	/*
1528 	 * Don't prefault if subpage protection is enabled for the EA.
1529 	 */
1530 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1531 		return false;
1532 
1533 	return true;
1534 }
1535 #else
1536 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1537 {
1538 	return true;
1539 }
1540 #endif
1541 
1542 static void hash_preload(struct mm_struct *mm, unsigned long ea,
1543 			 bool is_exec, unsigned long trap)
1544 {
1545 	int hugepage_shift;
1546 	unsigned long vsid;
1547 	pgd_t *pgdir;
1548 	pte_t *ptep;
1549 	unsigned long flags;
1550 	int rc, ssize, update_flags = 0;
1551 	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1552 
1553 	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1554 
1555 	if (!should_hash_preload(mm, ea))
1556 		return;
1557 
1558 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1559 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1560 
1561 	/* Get Linux PTE if available */
1562 	pgdir = mm->pgd;
1563 	if (pgdir == NULL)
1564 		return;
1565 
1566 	/* Get VSID */
1567 	ssize = user_segment_size(ea);
1568 	vsid = get_user_vsid(&mm->context, ea, ssize);
1569 	if (!vsid)
1570 		return;
1571 	/*
1572 	 * Hash doesn't like irqs. Walking linux page table with irq disabled
1573 	 * saves us from holding multiple locks.
1574 	 */
1575 	local_irq_save(flags);
1576 
1577 	/*
1578 	 * THP pages use update_mmu_cache_pmd. We don't do
1579 	 * hash preload there. Hence can ignore THP here
1580 	 */
1581 	ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1582 	if (!ptep)
1583 		goto out_exit;
1584 
1585 	WARN_ON(hugepage_shift);
1586 #ifdef CONFIG_PPC_64K_PAGES
1587 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1588 	 * a 64K kernel), then we don't preload, hash_page() will take
1589 	 * care of it once we actually try to access the page.
1590 	 * That way we don't have to duplicate all of the logic for segment
1591 	 * page size demotion here
1592 	 */
1593 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1594 		goto out_exit;
1595 #endif /* CONFIG_PPC_64K_PAGES */
1596 
1597 	/* Is that local to this CPU ? */
1598 	if (mm_is_thread_local(mm))
1599 		update_flags |= HPTE_LOCAL_UPDATE;
1600 
1601 	/* Hash it in */
1602 #ifdef CONFIG_PPC_64K_PAGES
1603 	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1604 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1605 				     update_flags, ssize);
1606 	else
1607 #endif /* CONFIG_PPC_64K_PAGES */
1608 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1609 				    ssize, subpage_protection(mm, ea));
1610 
1611 	/* Dump some info in case of hash insertion failure, they should
1612 	 * never happen so it is really useful to know if/when they do
1613 	 */
1614 	if (rc == -1)
1615 		hash_failure_debug(ea, access, vsid, trap, ssize,
1616 				   mm_ctx_user_psize(&mm->context),
1617 				   mm_ctx_user_psize(&mm->context),
1618 				   pte_val(*ptep));
1619 out_exit:
1620 	local_irq_restore(flags);
1621 }
1622 
1623 /*
1624  * This is called at the end of handling a user page fault, when the
1625  * fault has been handled by updating a PTE in the linux page tables.
1626  * We use it to preload an HPTE into the hash table corresponding to
1627  * the updated linux PTE.
1628  *
1629  * This must always be called with the pte lock held.
1630  */
1631 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1632 		      pte_t *ptep)
1633 {
1634 	/*
1635 	 * We don't need to worry about _PAGE_PRESENT here because we are
1636 	 * called with either mm->page_table_lock held or ptl lock held
1637 	 */
1638 	unsigned long trap;
1639 	bool is_exec;
1640 
1641 	if (radix_enabled()) {
1642 		prefetch((void *)address);
1643 		return;
1644 	}
1645 
1646 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1647 	if (!pte_young(*ptep) || address >= TASK_SIZE)
1648 		return;
1649 
1650 	/*
1651 	 * We try to figure out if we are coming from an instruction
1652 	 * access fault and pass that down to __hash_page so we avoid
1653 	 * double-faulting on execution of fresh text. We have to test
1654 	 * for regs NULL since init will get here first thing at boot.
1655 	 *
1656 	 * We also avoid filling the hash if not coming from a fault.
1657 	 */
1658 
1659 	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1660 	switch (trap) {
1661 	case 0x300:
1662 		is_exec = false;
1663 		break;
1664 	case 0x400:
1665 		is_exec = true;
1666 		break;
1667 	default:
1668 		return;
1669 	}
1670 
1671 	hash_preload(vma->vm_mm, address, is_exec, trap);
1672 }
1673 
1674 #ifdef CONFIG_PPC_MEM_KEYS
1675 /*
1676  * Return the protection key associated with the given address and the
1677  * mm_struct.
1678  */
1679 u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1680 {
1681 	pte_t *ptep;
1682 	u16 pkey = 0;
1683 	unsigned long flags;
1684 
1685 	if (!mm || !mm->pgd)
1686 		return 0;
1687 
1688 	local_irq_save(flags);
1689 	ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1690 	if (ptep)
1691 		pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1692 	local_irq_restore(flags);
1693 
1694 	return pkey;
1695 }
1696 #endif /* CONFIG_PPC_MEM_KEYS */
1697 
1698 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1699 static inline void tm_flush_hash_page(int local)
1700 {
1701 	/*
1702 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1703 	 * page back to a block device w/PIO could pick up transactional data
1704 	 * (bad!) so we force an abort here. Before the sync the page will be
1705 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1706 	 * kernel uses a page from userspace without unmapping it first, it may
1707 	 * see the speculated version.
1708 	 */
1709 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1710 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1711 		tm_enable();
1712 		tm_abort(TM_CAUSE_TLBI);
1713 	}
1714 }
1715 #else
1716 static inline void tm_flush_hash_page(int local)
1717 {
1718 }
1719 #endif
1720 
1721 /*
1722  * Return the global hash slot, corresponding to the given PTE, which contains
1723  * the HPTE.
1724  */
1725 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1726 		int ssize, real_pte_t rpte, unsigned int subpg_index)
1727 {
1728 	unsigned long hash, gslot, hidx;
1729 
1730 	hash = hpt_hash(vpn, shift, ssize);
1731 	hidx = __rpte_to_hidx(rpte, subpg_index);
1732 	if (hidx & _PTEIDX_SECONDARY)
1733 		hash = ~hash;
1734 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1735 	gslot += hidx & _PTEIDX_GROUP_IX;
1736 	return gslot;
1737 }
1738 
1739 /*
1740  * WARNING: This is called from hash_low_64.S, if you change this prototype,
1741  *          do not forget to update the assembly call site !
1742  */
1743 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1744 		     unsigned long flags)
1745 {
1746 	unsigned long index, shift, gslot;
1747 	int local = flags & HPTE_LOCAL_UPDATE;
1748 
1749 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1750 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1751 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1752 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1753 		/*
1754 		 * We use same base page size and actual psize, because we don't
1755 		 * use these functions for hugepage
1756 		 */
1757 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1758 					     ssize, local);
1759 	} pte_iterate_hashed_end();
1760 
1761 	tm_flush_hash_page(local);
1762 }
1763 
1764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1765 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1766 			 pmd_t *pmdp, unsigned int psize, int ssize,
1767 			 unsigned long flags)
1768 {
1769 	int i, max_hpte_count, valid;
1770 	unsigned long s_addr;
1771 	unsigned char *hpte_slot_array;
1772 	unsigned long hidx, shift, vpn, hash, slot;
1773 	int local = flags & HPTE_LOCAL_UPDATE;
1774 
1775 	s_addr = addr & HPAGE_PMD_MASK;
1776 	hpte_slot_array = get_hpte_slot_array(pmdp);
1777 	/*
1778 	 * IF we try to do a HUGE PTE update after a withdraw is done.
1779 	 * we will find the below NULL. This happens when we do
1780 	 * split_huge_pmd
1781 	 */
1782 	if (!hpte_slot_array)
1783 		return;
1784 
1785 	if (mmu_hash_ops.hugepage_invalidate) {
1786 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1787 						 psize, ssize, local);
1788 		goto tm_abort;
1789 	}
1790 	/*
1791 	 * No bluk hpte removal support, invalidate each entry
1792 	 */
1793 	shift = mmu_psize_defs[psize].shift;
1794 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1795 	for (i = 0; i < max_hpte_count; i++) {
1796 		/*
1797 		 * 8 bits per each hpte entries
1798 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1799 		 */
1800 		valid = hpte_valid(hpte_slot_array, i);
1801 		if (!valid)
1802 			continue;
1803 		hidx =  hpte_hash_index(hpte_slot_array, i);
1804 
1805 		/* get the vpn */
1806 		addr = s_addr + (i * (1ul << shift));
1807 		vpn = hpt_vpn(addr, vsid, ssize);
1808 		hash = hpt_hash(vpn, shift, ssize);
1809 		if (hidx & _PTEIDX_SECONDARY)
1810 			hash = ~hash;
1811 
1812 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1813 		slot += hidx & _PTEIDX_GROUP_IX;
1814 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1815 					     MMU_PAGE_16M, ssize, local);
1816 	}
1817 tm_abort:
1818 	tm_flush_hash_page(local);
1819 }
1820 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1821 
1822 void flush_hash_range(unsigned long number, int local)
1823 {
1824 	if (mmu_hash_ops.flush_hash_range)
1825 		mmu_hash_ops.flush_hash_range(number, local);
1826 	else {
1827 		int i;
1828 		struct ppc64_tlb_batch *batch =
1829 			this_cpu_ptr(&ppc64_tlb_batch);
1830 
1831 		for (i = 0; i < number; i++)
1832 			flush_hash_page(batch->vpn[i], batch->pte[i],
1833 					batch->psize, batch->ssize, local);
1834 	}
1835 }
1836 
1837 /*
1838  * low_hash_fault is called when we the low level hash code failed
1839  * to instert a PTE due to an hypervisor error
1840  */
1841 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1842 {
1843 	enum ctx_state prev_state = exception_enter();
1844 
1845 	if (user_mode(regs)) {
1846 #ifdef CONFIG_PPC_SUBPAGE_PROT
1847 		if (rc == -2)
1848 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1849 		else
1850 #endif
1851 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1852 	} else
1853 		bad_page_fault(regs, address, SIGBUS);
1854 
1855 	exception_exit(prev_state);
1856 }
1857 
1858 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1859 			   unsigned long pa, unsigned long rflags,
1860 			   unsigned long vflags, int psize, int ssize)
1861 {
1862 	unsigned long hpte_group;
1863 	long slot;
1864 
1865 repeat:
1866 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1867 
1868 	/* Insert into the hash table, primary slot */
1869 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1870 					psize, psize, ssize);
1871 
1872 	/* Primary is full, try the secondary */
1873 	if (unlikely(slot == -1)) {
1874 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1875 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1876 						vflags | HPTE_V_SECONDARY,
1877 						psize, psize, ssize);
1878 		if (slot == -1) {
1879 			if (mftb() & 0x1)
1880 				hpte_group = (hash & htab_hash_mask) *
1881 						HPTES_PER_GROUP;
1882 
1883 			mmu_hash_ops.hpte_remove(hpte_group);
1884 			goto repeat;
1885 		}
1886 	}
1887 
1888 	return slot;
1889 }
1890 
1891 #ifdef CONFIG_DEBUG_PAGEALLOC
1892 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1893 {
1894 	unsigned long hash;
1895 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1896 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1897 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1898 	long ret;
1899 
1900 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1901 
1902 	/* Don't create HPTE entries for bad address */
1903 	if (!vsid)
1904 		return;
1905 
1906 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1907 				    HPTE_V_BOLTED,
1908 				    mmu_linear_psize, mmu_kernel_ssize);
1909 
1910 	BUG_ON (ret < 0);
1911 	spin_lock(&linear_map_hash_lock);
1912 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1913 	linear_map_hash_slots[lmi] = ret | 0x80;
1914 	spin_unlock(&linear_map_hash_lock);
1915 }
1916 
1917 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1918 {
1919 	unsigned long hash, hidx, slot;
1920 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1921 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1922 
1923 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1924 	spin_lock(&linear_map_hash_lock);
1925 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1926 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1927 	linear_map_hash_slots[lmi] = 0;
1928 	spin_unlock(&linear_map_hash_lock);
1929 	if (hidx & _PTEIDX_SECONDARY)
1930 		hash = ~hash;
1931 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1932 	slot += hidx & _PTEIDX_GROUP_IX;
1933 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1934 				     mmu_linear_psize,
1935 				     mmu_kernel_ssize, 0);
1936 }
1937 
1938 void __kernel_map_pages(struct page *page, int numpages, int enable)
1939 {
1940 	unsigned long flags, vaddr, lmi;
1941 	int i;
1942 
1943 	local_irq_save(flags);
1944 	for (i = 0; i < numpages; i++, page++) {
1945 		vaddr = (unsigned long)page_address(page);
1946 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1947 		if (lmi >= linear_map_hash_count)
1948 			continue;
1949 		if (enable)
1950 			kernel_map_linear_page(vaddr, lmi);
1951 		else
1952 			kernel_unmap_linear_page(vaddr, lmi);
1953 	}
1954 	local_irq_restore(flags);
1955 }
1956 #endif /* CONFIG_DEBUG_PAGEALLOC */
1957 
1958 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1959 				phys_addr_t first_memblock_size)
1960 {
1961 	/*
1962 	 * We don't currently support the first MEMBLOCK not mapping 0
1963 	 * physical on those processors
1964 	 */
1965 	BUG_ON(first_memblock_base != 0);
1966 
1967 	/*
1968 	 * On virtualized systems the first entry is our RMA region aka VRMA,
1969 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
1970 	 * on real mode access.
1971 	 *
1972 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
1973 	 * to avoid some funky things such as RTAS bugs etc...
1974 	 *
1975 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
1976 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1977 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1978 	 * for virtual real mode addressing and so it doesn't make sense to
1979 	 * have an area larger than 1TB as it can't be addressed.
1980 	 */
1981 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1982 		ppc64_rma_size = first_memblock_size;
1983 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1984 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1985 		else
1986 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
1987 					       1UL << SID_SHIFT_1T);
1988 
1989 		/* Finally limit subsequent allocations */
1990 		memblock_set_current_limit(ppc64_rma_size);
1991 	} else {
1992 		ppc64_rma_size = ULONG_MAX;
1993 	}
1994 }
1995 
1996 #ifdef CONFIG_DEBUG_FS
1997 
1998 static int hpt_order_get(void *data, u64 *val)
1999 {
2000 	*val = ppc64_pft_size;
2001 	return 0;
2002 }
2003 
2004 static int hpt_order_set(void *data, u64 val)
2005 {
2006 	int ret;
2007 
2008 	if (!mmu_hash_ops.resize_hpt)
2009 		return -ENODEV;
2010 
2011 	cpus_read_lock();
2012 	ret = mmu_hash_ops.resize_hpt(val);
2013 	cpus_read_unlock();
2014 
2015 	return ret;
2016 }
2017 
2018 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2019 
2020 static int __init hash64_debugfs(void)
2021 {
2022 	debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root, NULL,
2023 			    &fops_hpt_order);
2024 	return 0;
2025 }
2026 machine_device_initcall(pseries, hash64_debugfs);
2027 #endif /* CONFIG_DEBUG_FS */
2028 
2029 void __init print_system_hash_info(void)
2030 {
2031 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2032 
2033 	if (htab_hash_mask)
2034 		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2035 }
2036