1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  *
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16 
17 #undef DEBUG
18 #undef DEBUG_LOW
19 
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 #include <linux/pgtable.h>
39 
40 #include <asm/debugfs.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/page.h>
45 #include <asm/types.h>
46 #include <linux/uaccess.h>
47 #include <asm/machdep.h>
48 #include <asm/prom.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
63 #include <asm/pte-walk.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/ultravisor.h>
66 
67 #include <mm/mmu_decl.h>
68 
69 #include "internal.h"
70 
71 
72 #ifdef DEBUG
73 #define DBG(fmt...) udbg_printf(fmt)
74 #else
75 #define DBG(fmt...)
76 #endif
77 
78 #ifdef DEBUG_LOW
79 #define DBG_LOW(fmt...) udbg_printf(fmt)
80 #else
81 #define DBG_LOW(fmt...)
82 #endif
83 
84 #define KB (1024)
85 #define MB (1024*KB)
86 #define GB (1024L*MB)
87 
88 /*
89  * Note:  pte   --> Linux PTE
90  *        HPTE  --> PowerPC Hashed Page Table Entry
91  *
92  * Execution context:
93  *   htab_initialize is called with the MMU off (of course), but
94  *   the kernel has been copied down to zero so it can directly
95  *   reference global data.  At this point it is very difficult
96  *   to print debug info.
97  *
98  */
99 
100 static unsigned long _SDR1;
101 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
102 EXPORT_SYMBOL_GPL(mmu_psize_defs);
103 
104 u8 hpte_page_sizes[1 << LP_BITS];
105 EXPORT_SYMBOL_GPL(hpte_page_sizes);
106 
107 struct hash_pte *htab_address;
108 unsigned long htab_size_bytes;
109 unsigned long htab_hash_mask;
110 EXPORT_SYMBOL_GPL(htab_hash_mask);
111 int mmu_linear_psize = MMU_PAGE_4K;
112 EXPORT_SYMBOL_GPL(mmu_linear_psize);
113 int mmu_virtual_psize = MMU_PAGE_4K;
114 int mmu_vmalloc_psize = MMU_PAGE_4K;
115 #ifdef CONFIG_SPARSEMEM_VMEMMAP
116 int mmu_vmemmap_psize = MMU_PAGE_4K;
117 #endif
118 int mmu_io_psize = MMU_PAGE_4K;
119 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
120 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
121 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
122 u16 mmu_slb_size = 64;
123 EXPORT_SYMBOL_GPL(mmu_slb_size);
124 #ifdef CONFIG_PPC_64K_PAGES
125 int mmu_ci_restrictions;
126 #endif
127 #ifdef CONFIG_DEBUG_PAGEALLOC
128 static u8 *linear_map_hash_slots;
129 static unsigned long linear_map_hash_count;
130 static DEFINE_SPINLOCK(linear_map_hash_lock);
131 #endif /* CONFIG_DEBUG_PAGEALLOC */
132 struct mmu_hash_ops mmu_hash_ops;
133 EXPORT_SYMBOL(mmu_hash_ops);
134 
135 /*
136  * These are definitions of page sizes arrays to be used when none
137  * is provided by the firmware.
138  */
139 
140 /*
141  * Fallback (4k pages only)
142  */
143 static struct mmu_psize_def mmu_psize_defaults[] = {
144 	[MMU_PAGE_4K] = {
145 		.shift	= 12,
146 		.sllp	= 0,
147 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
148 		.avpnm	= 0,
149 		.tlbiel = 0,
150 	},
151 };
152 
153 /*
154  * POWER4, GPUL, POWER5
155  *
156  * Support for 16Mb large pages
157  */
158 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
159 	[MMU_PAGE_4K] = {
160 		.shift	= 12,
161 		.sllp	= 0,
162 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
163 		.avpnm	= 0,
164 		.tlbiel = 1,
165 	},
166 	[MMU_PAGE_16M] = {
167 		.shift	= 24,
168 		.sllp	= SLB_VSID_L,
169 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
170 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
171 		.avpnm	= 0x1UL,
172 		.tlbiel = 0,
173 	},
174 };
175 
176 /*
177  * 'R' and 'C' update notes:
178  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
179  *     create writeable HPTEs without C set, because the hcall H_PROTECT
180  *     that we use in that case will not update C
181  *  - The above is however not a problem, because we also don't do that
182  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
183  *     do the right thing and thus we don't have the race I described earlier
184  *
185  *    - Under bare metal,  we do have the race, so we need R and C set
186  *    - We make sure R is always set and never lost
187  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
188  */
189 unsigned long htab_convert_pte_flags(unsigned long pteflags)
190 {
191 	unsigned long rflags = 0;
192 
193 	/* _PAGE_EXEC -> NOEXEC */
194 	if ((pteflags & _PAGE_EXEC) == 0)
195 		rflags |= HPTE_R_N;
196 	/*
197 	 * PPP bits:
198 	 * Linux uses slb key 0 for kernel and 1 for user.
199 	 * kernel RW areas are mapped with PPP=0b000
200 	 * User area is mapped with PPP=0b010 for read/write
201 	 * or PPP=0b011 for read-only (including writeable but clean pages).
202 	 */
203 	if (pteflags & _PAGE_PRIVILEGED) {
204 		/*
205 		 * Kernel read only mapped with ppp bits 0b110
206 		 */
207 		if (!(pteflags & _PAGE_WRITE)) {
208 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
209 				rflags |= (HPTE_R_PP0 | 0x2);
210 			else
211 				rflags |= 0x3;
212 		}
213 	} else {
214 		if (pteflags & _PAGE_RWX)
215 			rflags |= 0x2;
216 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
217 			rflags |= 0x1;
218 	}
219 	/*
220 	 * We can't allow hardware to update hpte bits. Hence always
221 	 * set 'R' bit and set 'C' if it is a write fault
222 	 */
223 	rflags |=  HPTE_R_R;
224 
225 	if (pteflags & _PAGE_DIRTY)
226 		rflags |= HPTE_R_C;
227 	/*
228 	 * Add in WIG bits
229 	 */
230 
231 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
232 		rflags |= HPTE_R_I;
233 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
234 		rflags |= (HPTE_R_I | HPTE_R_G);
235 	else
236 		/*
237 		 * Add memory coherence if cache inhibited is not set
238 		 */
239 		rflags |= HPTE_R_M;
240 
241 	rflags |= pte_to_hpte_pkey_bits(pteflags);
242 	return rflags;
243 }
244 
245 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
246 		      unsigned long pstart, unsigned long prot,
247 		      int psize, int ssize)
248 {
249 	unsigned long vaddr, paddr;
250 	unsigned int step, shift;
251 	int ret = 0;
252 
253 	shift = mmu_psize_defs[psize].shift;
254 	step = 1 << shift;
255 
256 	prot = htab_convert_pte_flags(prot);
257 
258 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
259 	    vstart, vend, pstart, prot, psize, ssize);
260 
261 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
262 	     vaddr += step, paddr += step) {
263 		unsigned long hash, hpteg;
264 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
265 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
266 		unsigned long tprot = prot;
267 		bool secondary_hash = false;
268 
269 		/*
270 		 * If we hit a bad address return error.
271 		 */
272 		if (!vsid)
273 			return -1;
274 		/* Make kernel text executable */
275 		if (overlaps_kernel_text(vaddr, vaddr + step))
276 			tprot &= ~HPTE_R_N;
277 
278 		/*
279 		 * If relocatable, check if it overlaps interrupt vectors that
280 		 * are copied down to real 0. For relocatable kernel
281 		 * (e.g. kdump case) we copy interrupt vectors down to real
282 		 * address 0. Mark that region as executable. This is
283 		 * because on p8 system with relocation on exception feature
284 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
285 		 * in order to execute the interrupt handlers in virtual
286 		 * mode the vector region need to be marked as executable.
287 		 */
288 		if ((PHYSICAL_START > MEMORY_START) &&
289 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
290 				tprot &= ~HPTE_R_N;
291 
292 		hash = hpt_hash(vpn, shift, ssize);
293 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
294 
295 		BUG_ON(!mmu_hash_ops.hpte_insert);
296 repeat:
297 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
298 					       HPTE_V_BOLTED, psize, psize,
299 					       ssize);
300 		if (ret == -1) {
301 			/*
302 			 * Try to to keep bolted entries in primary.
303 			 * Remove non bolted entries and try insert again
304 			 */
305 			ret = mmu_hash_ops.hpte_remove(hpteg);
306 			if (ret != -1)
307 				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
308 							       HPTE_V_BOLTED, psize, psize,
309 							       ssize);
310 			if (ret == -1 && !secondary_hash) {
311 				secondary_hash = true;
312 				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
313 				goto repeat;
314 			}
315 		}
316 
317 		if (ret < 0)
318 			break;
319 
320 		cond_resched();
321 #ifdef CONFIG_DEBUG_PAGEALLOC
322 		if (debug_pagealloc_enabled() &&
323 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
324 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
325 #endif /* CONFIG_DEBUG_PAGEALLOC */
326 	}
327 	return ret < 0 ? ret : 0;
328 }
329 
330 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
331 		      int psize, int ssize)
332 {
333 	unsigned long vaddr;
334 	unsigned int step, shift;
335 	int rc;
336 	int ret = 0;
337 
338 	shift = mmu_psize_defs[psize].shift;
339 	step = 1 << shift;
340 
341 	if (!mmu_hash_ops.hpte_removebolted)
342 		return -ENODEV;
343 
344 	for (vaddr = vstart; vaddr < vend; vaddr += step) {
345 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
346 		if (rc == -ENOENT) {
347 			ret = -ENOENT;
348 			continue;
349 		}
350 		if (rc < 0)
351 			return rc;
352 	}
353 
354 	return ret;
355 }
356 
357 static bool disable_1tb_segments = false;
358 
359 static int __init parse_disable_1tb_segments(char *p)
360 {
361 	disable_1tb_segments = true;
362 	return 0;
363 }
364 early_param("disable_1tb_segments", parse_disable_1tb_segments);
365 
366 static int __init htab_dt_scan_seg_sizes(unsigned long node,
367 					 const char *uname, int depth,
368 					 void *data)
369 {
370 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
371 	const __be32 *prop;
372 	int size = 0;
373 
374 	/* We are scanning "cpu" nodes only */
375 	if (type == NULL || strcmp(type, "cpu") != 0)
376 		return 0;
377 
378 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
379 	if (prop == NULL)
380 		return 0;
381 	for (; size >= 4; size -= 4, ++prop) {
382 		if (be32_to_cpu(prop[0]) == 40) {
383 			DBG("1T segment support detected\n");
384 
385 			if (disable_1tb_segments) {
386 				DBG("1T segments disabled by command line\n");
387 				break;
388 			}
389 
390 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
391 			return 1;
392 		}
393 	}
394 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
395 	return 0;
396 }
397 
398 static int __init get_idx_from_shift(unsigned int shift)
399 {
400 	int idx = -1;
401 
402 	switch (shift) {
403 	case 0xc:
404 		idx = MMU_PAGE_4K;
405 		break;
406 	case 0x10:
407 		idx = MMU_PAGE_64K;
408 		break;
409 	case 0x14:
410 		idx = MMU_PAGE_1M;
411 		break;
412 	case 0x18:
413 		idx = MMU_PAGE_16M;
414 		break;
415 	case 0x22:
416 		idx = MMU_PAGE_16G;
417 		break;
418 	}
419 	return idx;
420 }
421 
422 static int __init htab_dt_scan_page_sizes(unsigned long node,
423 					  const char *uname, int depth,
424 					  void *data)
425 {
426 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
427 	const __be32 *prop;
428 	int size = 0;
429 
430 	/* We are scanning "cpu" nodes only */
431 	if (type == NULL || strcmp(type, "cpu") != 0)
432 		return 0;
433 
434 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
435 	if (!prop)
436 		return 0;
437 
438 	pr_info("Page sizes from device-tree:\n");
439 	size /= 4;
440 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
441 	while(size > 0) {
442 		unsigned int base_shift = be32_to_cpu(prop[0]);
443 		unsigned int slbenc = be32_to_cpu(prop[1]);
444 		unsigned int lpnum = be32_to_cpu(prop[2]);
445 		struct mmu_psize_def *def;
446 		int idx, base_idx;
447 
448 		size -= 3; prop += 3;
449 		base_idx = get_idx_from_shift(base_shift);
450 		if (base_idx < 0) {
451 			/* skip the pte encoding also */
452 			prop += lpnum * 2; size -= lpnum * 2;
453 			continue;
454 		}
455 		def = &mmu_psize_defs[base_idx];
456 		if (base_idx == MMU_PAGE_16M)
457 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
458 
459 		def->shift = base_shift;
460 		if (base_shift <= 23)
461 			def->avpnm = 0;
462 		else
463 			def->avpnm = (1 << (base_shift - 23)) - 1;
464 		def->sllp = slbenc;
465 		/*
466 		 * We don't know for sure what's up with tlbiel, so
467 		 * for now we only set it for 4K and 64K pages
468 		 */
469 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
470 			def->tlbiel = 1;
471 		else
472 			def->tlbiel = 0;
473 
474 		while (size > 0 && lpnum) {
475 			unsigned int shift = be32_to_cpu(prop[0]);
476 			int penc  = be32_to_cpu(prop[1]);
477 
478 			prop += 2; size -= 2;
479 			lpnum--;
480 
481 			idx = get_idx_from_shift(shift);
482 			if (idx < 0)
483 				continue;
484 
485 			if (penc == -1)
486 				pr_err("Invalid penc for base_shift=%d "
487 				       "shift=%d\n", base_shift, shift);
488 
489 			def->penc[idx] = penc;
490 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
491 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
492 				base_shift, shift, def->sllp,
493 				def->avpnm, def->tlbiel, def->penc[idx]);
494 		}
495 	}
496 
497 	return 1;
498 }
499 
500 #ifdef CONFIG_HUGETLB_PAGE
501 /*
502  * Scan for 16G memory blocks that have been set aside for huge pages
503  * and reserve those blocks for 16G huge pages.
504  */
505 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
506 					const char *uname, int depth,
507 					void *data) {
508 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
509 	const __be64 *addr_prop;
510 	const __be32 *page_count_prop;
511 	unsigned int expected_pages;
512 	long unsigned int phys_addr;
513 	long unsigned int block_size;
514 
515 	/* We are scanning "memory" nodes only */
516 	if (type == NULL || strcmp(type, "memory") != 0)
517 		return 0;
518 
519 	/*
520 	 * This property is the log base 2 of the number of virtual pages that
521 	 * will represent this memory block.
522 	 */
523 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
524 	if (page_count_prop == NULL)
525 		return 0;
526 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
527 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
528 	if (addr_prop == NULL)
529 		return 0;
530 	phys_addr = be64_to_cpu(addr_prop[0]);
531 	block_size = be64_to_cpu(addr_prop[1]);
532 	if (block_size != (16 * GB))
533 		return 0;
534 	printk(KERN_INFO "Huge page(16GB) memory: "
535 			"addr = 0x%lX size = 0x%lX pages = %d\n",
536 			phys_addr, block_size, expected_pages);
537 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
538 		memblock_reserve(phys_addr, block_size * expected_pages);
539 		pseries_add_gpage(phys_addr, block_size, expected_pages);
540 	}
541 	return 0;
542 }
543 #endif /* CONFIG_HUGETLB_PAGE */
544 
545 static void mmu_psize_set_default_penc(void)
546 {
547 	int bpsize, apsize;
548 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
549 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
550 			mmu_psize_defs[bpsize].penc[apsize] = -1;
551 }
552 
553 #ifdef CONFIG_PPC_64K_PAGES
554 
555 static bool might_have_hea(void)
556 {
557 	/*
558 	 * The HEA ethernet adapter requires awareness of the
559 	 * GX bus. Without that awareness we can easily assume
560 	 * we will never see an HEA ethernet device.
561 	 */
562 #ifdef CONFIG_IBMEBUS
563 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
564 		firmware_has_feature(FW_FEATURE_SPLPAR);
565 #else
566 	return false;
567 #endif
568 }
569 
570 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
571 
572 static void __init htab_scan_page_sizes(void)
573 {
574 	int rc;
575 
576 	/* se the invalid penc to -1 */
577 	mmu_psize_set_default_penc();
578 
579 	/* Default to 4K pages only */
580 	memcpy(mmu_psize_defs, mmu_psize_defaults,
581 	       sizeof(mmu_psize_defaults));
582 
583 	/*
584 	 * Try to find the available page sizes in the device-tree
585 	 */
586 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
587 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
588 		/*
589 		 * Nothing in the device-tree, but the CPU supports 16M pages,
590 		 * so let's fallback on a known size list for 16M capable CPUs.
591 		 */
592 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
593 		       sizeof(mmu_psize_defaults_gp));
594 	}
595 
596 #ifdef CONFIG_HUGETLB_PAGE
597 	if (!hugetlb_disabled && !early_radix_enabled() ) {
598 		/* Reserve 16G huge page memory sections for huge pages */
599 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
600 	}
601 #endif /* CONFIG_HUGETLB_PAGE */
602 }
603 
604 /*
605  * Fill in the hpte_page_sizes[] array.
606  * We go through the mmu_psize_defs[] array looking for all the
607  * supported base/actual page size combinations.  Each combination
608  * has a unique pagesize encoding (penc) value in the low bits of
609  * the LP field of the HPTE.  For actual page sizes less than 1MB,
610  * some of the upper LP bits are used for RPN bits, meaning that
611  * we need to fill in several entries in hpte_page_sizes[].
612  *
613  * In diagrammatic form, with r = RPN bits and z = page size bits:
614  *        PTE LP     actual page size
615  *    rrrr rrrz		>=8KB
616  *    rrrr rrzz		>=16KB
617  *    rrrr rzzz		>=32KB
618  *    rrrr zzzz		>=64KB
619  *    ...
620  *
621  * The zzzz bits are implementation-specific but are chosen so that
622  * no encoding for a larger page size uses the same value in its
623  * low-order N bits as the encoding for the 2^(12+N) byte page size
624  * (if it exists).
625  */
626 static void init_hpte_page_sizes(void)
627 {
628 	long int ap, bp;
629 	long int shift, penc;
630 
631 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
632 		if (!mmu_psize_defs[bp].shift)
633 			continue;	/* not a supported page size */
634 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
635 			penc = mmu_psize_defs[bp].penc[ap];
636 			if (penc == -1 || !mmu_psize_defs[ap].shift)
637 				continue;
638 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
639 			if (shift <= 0)
640 				continue;	/* should never happen */
641 			/*
642 			 * For page sizes less than 1MB, this loop
643 			 * replicates the entry for all possible values
644 			 * of the rrrr bits.
645 			 */
646 			while (penc < (1 << LP_BITS)) {
647 				hpte_page_sizes[penc] = (ap << 4) | bp;
648 				penc += 1 << shift;
649 			}
650 		}
651 	}
652 }
653 
654 static void __init htab_init_page_sizes(void)
655 {
656 	bool aligned = true;
657 	init_hpte_page_sizes();
658 
659 	if (!debug_pagealloc_enabled()) {
660 		/*
661 		 * Pick a size for the linear mapping. Currently, we only
662 		 * support 16M, 1M and 4K which is the default
663 		 */
664 		if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
665 		    (unsigned long)_stext % 0x1000000) {
666 			if (mmu_psize_defs[MMU_PAGE_16M].shift)
667 				pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
668 			aligned = false;
669 		}
670 
671 		if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
672 			mmu_linear_psize = MMU_PAGE_16M;
673 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
674 			mmu_linear_psize = MMU_PAGE_1M;
675 	}
676 
677 #ifdef CONFIG_PPC_64K_PAGES
678 	/*
679 	 * Pick a size for the ordinary pages. Default is 4K, we support
680 	 * 64K for user mappings and vmalloc if supported by the processor.
681 	 * We only use 64k for ioremap if the processor
682 	 * (and firmware) support cache-inhibited large pages.
683 	 * If not, we use 4k and set mmu_ci_restrictions so that
684 	 * hash_page knows to switch processes that use cache-inhibited
685 	 * mappings to 4k pages.
686 	 */
687 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
688 		mmu_virtual_psize = MMU_PAGE_64K;
689 		mmu_vmalloc_psize = MMU_PAGE_64K;
690 		if (mmu_linear_psize == MMU_PAGE_4K)
691 			mmu_linear_psize = MMU_PAGE_64K;
692 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
693 			/*
694 			 * When running on pSeries using 64k pages for ioremap
695 			 * would stop us accessing the HEA ethernet. So if we
696 			 * have the chance of ever seeing one, stay at 4k.
697 			 */
698 			if (!might_have_hea())
699 				mmu_io_psize = MMU_PAGE_64K;
700 		} else
701 			mmu_ci_restrictions = 1;
702 	}
703 #endif /* CONFIG_PPC_64K_PAGES */
704 
705 #ifdef CONFIG_SPARSEMEM_VMEMMAP
706 	/*
707 	 * We try to use 16M pages for vmemmap if that is supported
708 	 * and we have at least 1G of RAM at boot
709 	 */
710 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
711 	    memblock_phys_mem_size() >= 0x40000000)
712 		mmu_vmemmap_psize = MMU_PAGE_16M;
713 	else
714 		mmu_vmemmap_psize = mmu_virtual_psize;
715 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
716 
717 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
718 	       "virtual = %d, io = %d"
719 #ifdef CONFIG_SPARSEMEM_VMEMMAP
720 	       ", vmemmap = %d"
721 #endif
722 	       "\n",
723 	       mmu_psize_defs[mmu_linear_psize].shift,
724 	       mmu_psize_defs[mmu_virtual_psize].shift,
725 	       mmu_psize_defs[mmu_io_psize].shift
726 #ifdef CONFIG_SPARSEMEM_VMEMMAP
727 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
728 #endif
729 	       );
730 }
731 
732 static int __init htab_dt_scan_pftsize(unsigned long node,
733 				       const char *uname, int depth,
734 				       void *data)
735 {
736 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
737 	const __be32 *prop;
738 
739 	/* We are scanning "cpu" nodes only */
740 	if (type == NULL || strcmp(type, "cpu") != 0)
741 		return 0;
742 
743 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
744 	if (prop != NULL) {
745 		/* pft_size[0] is the NUMA CEC cookie */
746 		ppc64_pft_size = be32_to_cpu(prop[1]);
747 		return 1;
748 	}
749 	return 0;
750 }
751 
752 unsigned htab_shift_for_mem_size(unsigned long mem_size)
753 {
754 	unsigned memshift = __ilog2(mem_size);
755 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
756 	unsigned pteg_shift;
757 
758 	/* round mem_size up to next power of 2 */
759 	if ((1UL << memshift) < mem_size)
760 		memshift += 1;
761 
762 	/* aim for 2 pages / pteg */
763 	pteg_shift = memshift - (pshift + 1);
764 
765 	/*
766 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
767 	 * size permitted by the architecture.
768 	 */
769 	return max(pteg_shift + 7, 18U);
770 }
771 
772 static unsigned long __init htab_get_table_size(void)
773 {
774 	/*
775 	 * If hash size isn't already provided by the platform, we try to
776 	 * retrieve it from the device-tree. If it's not there neither, we
777 	 * calculate it now based on the total RAM size
778 	 */
779 	if (ppc64_pft_size == 0)
780 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
781 	if (ppc64_pft_size)
782 		return 1UL << ppc64_pft_size;
783 
784 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
785 }
786 
787 #ifdef CONFIG_MEMORY_HOTPLUG
788 static int resize_hpt_for_hotplug(unsigned long new_mem_size)
789 {
790 	unsigned target_hpt_shift;
791 
792 	if (!mmu_hash_ops.resize_hpt)
793 		return 0;
794 
795 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
796 
797 	/*
798 	 * To avoid lots of HPT resizes if memory size is fluctuating
799 	 * across a boundary, we deliberately have some hysterisis
800 	 * here: we immediately increase the HPT size if the target
801 	 * shift exceeds the current shift, but we won't attempt to
802 	 * reduce unless the target shift is at least 2 below the
803 	 * current shift
804 	 */
805 	if (target_hpt_shift > ppc64_pft_size ||
806 	    target_hpt_shift < ppc64_pft_size - 1)
807 		return mmu_hash_ops.resize_hpt(target_hpt_shift);
808 
809 	return 0;
810 }
811 
812 int hash__create_section_mapping(unsigned long start, unsigned long end,
813 				 int nid, pgprot_t prot)
814 {
815 	int rc;
816 
817 	if (end >= H_VMALLOC_START) {
818 		pr_warn("Outside the supported range\n");
819 		return -1;
820 	}
821 
822 	resize_hpt_for_hotplug(memblock_phys_mem_size());
823 
824 	rc = htab_bolt_mapping(start, end, __pa(start),
825 			       pgprot_val(prot), mmu_linear_psize,
826 			       mmu_kernel_ssize);
827 
828 	if (rc < 0) {
829 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
830 					      mmu_kernel_ssize);
831 		BUG_ON(rc2 && (rc2 != -ENOENT));
832 	}
833 	return rc;
834 }
835 
836 int hash__remove_section_mapping(unsigned long start, unsigned long end)
837 {
838 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
839 				     mmu_kernel_ssize);
840 	WARN_ON(rc < 0);
841 
842 	if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
843 		pr_warn("Hash collision while resizing HPT\n");
844 
845 	return rc;
846 }
847 #endif /* CONFIG_MEMORY_HOTPLUG */
848 
849 static void __init hash_init_partition_table(phys_addr_t hash_table,
850 					     unsigned long htab_size)
851 {
852 	mmu_partition_table_init();
853 
854 	/*
855 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
856 	 * For now, UPRT is 0 and we have no segment table.
857 	 */
858 	htab_size =  __ilog2(htab_size) - 18;
859 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
860 	pr_info("Partition table %p\n", partition_tb);
861 }
862 
863 static void __init htab_initialize(void)
864 {
865 	unsigned long table;
866 	unsigned long pteg_count;
867 	unsigned long prot;
868 	unsigned long base = 0, size = 0;
869 	struct memblock_region *reg;
870 
871 	DBG(" -> htab_initialize()\n");
872 
873 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
874 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
875 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
876 		printk(KERN_INFO "Using 1TB segments\n");
877 	}
878 
879 	if (stress_slb_enabled)
880 		static_branch_enable(&stress_slb_key);
881 
882 	/*
883 	 * Calculate the required size of the htab.  We want the number of
884 	 * PTEGs to equal one half the number of real pages.
885 	 */
886 	htab_size_bytes = htab_get_table_size();
887 	pteg_count = htab_size_bytes >> 7;
888 
889 	htab_hash_mask = pteg_count - 1;
890 
891 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
892 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
893 		/* Using a hypervisor which owns the htab */
894 		htab_address = NULL;
895 		_SDR1 = 0;
896 #ifdef CONFIG_FA_DUMP
897 		/*
898 		 * If firmware assisted dump is active firmware preserves
899 		 * the contents of htab along with entire partition memory.
900 		 * Clear the htab if firmware assisted dump is active so
901 		 * that we dont end up using old mappings.
902 		 */
903 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
904 			mmu_hash_ops.hpte_clear_all();
905 #endif
906 	} else {
907 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
908 
909 #ifdef CONFIG_PPC_CELL
910 		/*
911 		 * Cell may require the hash table down low when using the
912 		 * Axon IOMMU in order to fit the dynamic region over it, see
913 		 * comments in cell/iommu.c
914 		 */
915 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
916 			limit = 0x80000000;
917 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
918 		}
919 #endif /* CONFIG_PPC_CELL */
920 
921 		table = memblock_phys_alloc_range(htab_size_bytes,
922 						  htab_size_bytes,
923 						  0, limit);
924 		if (!table)
925 			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
926 			      &htab_size_bytes, &limit);
927 
928 		DBG("Hash table allocated at %lx, size: %lx\n", table,
929 		    htab_size_bytes);
930 
931 		htab_address = __va(table);
932 
933 		/* htab absolute addr + encoded htabsize */
934 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
935 
936 		/* Initialize the HPT with no entries */
937 		memset((void *)table, 0, htab_size_bytes);
938 
939 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
940 			/* Set SDR1 */
941 			mtspr(SPRN_SDR1, _SDR1);
942 		else
943 			hash_init_partition_table(table, htab_size_bytes);
944 	}
945 
946 	prot = pgprot_val(PAGE_KERNEL);
947 
948 #ifdef CONFIG_DEBUG_PAGEALLOC
949 	if (debug_pagealloc_enabled()) {
950 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
951 		linear_map_hash_slots = memblock_alloc_try_nid(
952 				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
953 				ppc64_rma_size,	NUMA_NO_NODE);
954 		if (!linear_map_hash_slots)
955 			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
956 			      __func__, linear_map_hash_count, &ppc64_rma_size);
957 	}
958 #endif /* CONFIG_DEBUG_PAGEALLOC */
959 
960 	/* create bolted the linear mapping in the hash table */
961 	for_each_memblock(memory, reg) {
962 		base = (unsigned long)__va(reg->base);
963 		size = reg->size;
964 
965 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
966 		    base, size, prot);
967 
968 		if ((base + size) >= H_VMALLOC_START) {
969 			pr_warn("Outside the supported range\n");
970 			continue;
971 		}
972 
973 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
974 				prot, mmu_linear_psize, mmu_kernel_ssize));
975 	}
976 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
977 
978 	/*
979 	 * If we have a memory_limit and we've allocated TCEs then we need to
980 	 * explicitly map the TCE area at the top of RAM. We also cope with the
981 	 * case that the TCEs start below memory_limit.
982 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
983 	 * for either 4K or 16MB pages.
984 	 */
985 	if (tce_alloc_start) {
986 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
987 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
988 
989 		if (base + size >= tce_alloc_start)
990 			tce_alloc_start = base + size + 1;
991 
992 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
993 					 __pa(tce_alloc_start), prot,
994 					 mmu_linear_psize, mmu_kernel_ssize));
995 	}
996 
997 
998 	DBG(" <- htab_initialize()\n");
999 }
1000 #undef KB
1001 #undef MB
1002 
1003 void __init hash__early_init_devtree(void)
1004 {
1005 	/* Initialize segment sizes */
1006 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1007 
1008 	/* Initialize page sizes */
1009 	htab_scan_page_sizes();
1010 }
1011 
1012 static struct hash_mm_context init_hash_mm_context;
1013 void __init hash__early_init_mmu(void)
1014 {
1015 #ifndef CONFIG_PPC_64K_PAGES
1016 	/*
1017 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1018 	 * do the following:
1019 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1020 	 *
1021 	 * Where the slot number is between 0-15, and values of 8-15 indicate
1022 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1023 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1024 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1025 	 * with a BUILD_BUG_ON().
1026 	 */
1027 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1028 #endif /* CONFIG_PPC_64K_PAGES */
1029 
1030 	htab_init_page_sizes();
1031 
1032 	/*
1033 	 * initialize page table size
1034 	 */
1035 	__pte_frag_nr = H_PTE_FRAG_NR;
1036 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1037 	__pmd_frag_nr = H_PMD_FRAG_NR;
1038 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1039 
1040 	__pte_index_size = H_PTE_INDEX_SIZE;
1041 	__pmd_index_size = H_PMD_INDEX_SIZE;
1042 	__pud_index_size = H_PUD_INDEX_SIZE;
1043 	__pgd_index_size = H_PGD_INDEX_SIZE;
1044 	__pud_cache_index = H_PUD_CACHE_INDEX;
1045 	__pte_table_size = H_PTE_TABLE_SIZE;
1046 	__pmd_table_size = H_PMD_TABLE_SIZE;
1047 	__pud_table_size = H_PUD_TABLE_SIZE;
1048 	__pgd_table_size = H_PGD_TABLE_SIZE;
1049 	/*
1050 	 * 4k use hugepd format, so for hash set then to
1051 	 * zero
1052 	 */
1053 	__pmd_val_bits = HASH_PMD_VAL_BITS;
1054 	__pud_val_bits = HASH_PUD_VAL_BITS;
1055 	__pgd_val_bits = HASH_PGD_VAL_BITS;
1056 
1057 	__kernel_virt_start = H_KERN_VIRT_START;
1058 	__vmalloc_start = H_VMALLOC_START;
1059 	__vmalloc_end = H_VMALLOC_END;
1060 	__kernel_io_start = H_KERN_IO_START;
1061 	__kernel_io_end = H_KERN_IO_END;
1062 	vmemmap = (struct page *)H_VMEMMAP_START;
1063 	ioremap_bot = IOREMAP_BASE;
1064 
1065 #ifdef CONFIG_PCI
1066 	pci_io_base = ISA_IO_BASE;
1067 #endif
1068 
1069 	/* Select appropriate backend */
1070 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1071 		ps3_early_mm_init();
1072 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1073 		hpte_init_pseries();
1074 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1075 		hpte_init_native();
1076 
1077 	if (!mmu_hash_ops.hpte_insert)
1078 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1079 
1080 	/*
1081 	 * Initialize the MMU Hash table and create the linear mapping
1082 	 * of memory. Has to be done before SLB initialization as this is
1083 	 * currently where the page size encoding is obtained.
1084 	 */
1085 	htab_initialize();
1086 
1087 	init_mm.context.hash_context = &init_hash_mm_context;
1088 	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1089 
1090 	pr_info("Initializing hash mmu with SLB\n");
1091 	/* Initialize SLB management */
1092 	slb_initialize();
1093 
1094 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1095 			&& cpu_has_feature(CPU_FTR_HVMODE))
1096 		tlbiel_all();
1097 }
1098 
1099 #ifdef CONFIG_SMP
1100 void hash__early_init_mmu_secondary(void)
1101 {
1102 	/* Initialize hash table for that CPU */
1103 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1104 
1105 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1106 			mtspr(SPRN_SDR1, _SDR1);
1107 		else
1108 			set_ptcr_when_no_uv(__pa(partition_tb) |
1109 					    (PATB_SIZE_SHIFT - 12));
1110 	}
1111 	/* Initialize SLB */
1112 	slb_initialize();
1113 
1114 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1115 			&& cpu_has_feature(CPU_FTR_HVMODE))
1116 		tlbiel_all();
1117 
1118 	if (IS_ENABLED(CONFIG_PPC_MEM_KEYS) && mmu_has_feature(MMU_FTR_PKEY))
1119 		mtspr(SPRN_UAMOR, default_uamor);
1120 }
1121 #endif /* CONFIG_SMP */
1122 
1123 /*
1124  * Called by asm hashtable.S for doing lazy icache flush
1125  */
1126 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1127 {
1128 	struct page *page;
1129 
1130 	if (!pfn_valid(pte_pfn(pte)))
1131 		return pp;
1132 
1133 	page = pte_page(pte);
1134 
1135 	/* page is dirty */
1136 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1137 		if (trap == 0x400) {
1138 			flush_dcache_icache_page(page);
1139 			set_bit(PG_arch_1, &page->flags);
1140 		} else
1141 			pp |= HPTE_R_N;
1142 	}
1143 	return pp;
1144 }
1145 
1146 #ifdef CONFIG_PPC_MM_SLICES
1147 static unsigned int get_paca_psize(unsigned long addr)
1148 {
1149 	unsigned char *psizes;
1150 	unsigned long index, mask_index;
1151 
1152 	if (addr < SLICE_LOW_TOP) {
1153 		psizes = get_paca()->mm_ctx_low_slices_psize;
1154 		index = GET_LOW_SLICE_INDEX(addr);
1155 	} else {
1156 		psizes = get_paca()->mm_ctx_high_slices_psize;
1157 		index = GET_HIGH_SLICE_INDEX(addr);
1158 	}
1159 	mask_index = index & 0x1;
1160 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1161 }
1162 
1163 #else
1164 unsigned int get_paca_psize(unsigned long addr)
1165 {
1166 	return get_paca()->mm_ctx_user_psize;
1167 }
1168 #endif
1169 
1170 /*
1171  * Demote a segment to using 4k pages.
1172  * For now this makes the whole process use 4k pages.
1173  */
1174 #ifdef CONFIG_PPC_64K_PAGES
1175 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1176 {
1177 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1178 		return;
1179 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1180 	copro_flush_all_slbs(mm);
1181 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1182 
1183 		copy_mm_to_paca(mm);
1184 		slb_flush_and_restore_bolted();
1185 	}
1186 }
1187 #endif /* CONFIG_PPC_64K_PAGES */
1188 
1189 #ifdef CONFIG_PPC_SUBPAGE_PROT
1190 /*
1191  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1192  * Userspace sets the subpage permissions using the subpage_prot system call.
1193  *
1194  * Result is 0: full permissions, _PAGE_RW: read-only,
1195  * _PAGE_RWX: no access.
1196  */
1197 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1198 {
1199 	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1200 	u32 spp = 0;
1201 	u32 **sbpm, *sbpp;
1202 
1203 	if (!spt)
1204 		return 0;
1205 
1206 	if (ea >= spt->maxaddr)
1207 		return 0;
1208 	if (ea < 0x100000000UL) {
1209 		/* addresses below 4GB use spt->low_prot */
1210 		sbpm = spt->low_prot;
1211 	} else {
1212 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1213 		if (!sbpm)
1214 			return 0;
1215 	}
1216 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1217 	if (!sbpp)
1218 		return 0;
1219 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1220 
1221 	/* extract 2-bit bitfield for this 4k subpage */
1222 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1223 
1224 	/*
1225 	 * 0 -> full premission
1226 	 * 1 -> Read only
1227 	 * 2 -> no access.
1228 	 * We return the flag that need to be cleared.
1229 	 */
1230 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1231 	return spp;
1232 }
1233 
1234 #else /* CONFIG_PPC_SUBPAGE_PROT */
1235 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1236 {
1237 	return 0;
1238 }
1239 #endif
1240 
1241 void hash_failure_debug(unsigned long ea, unsigned long access,
1242 			unsigned long vsid, unsigned long trap,
1243 			int ssize, int psize, int lpsize, unsigned long pte)
1244 {
1245 	if (!printk_ratelimit())
1246 		return;
1247 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1248 		ea, access, current->comm);
1249 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1250 		trap, vsid, ssize, psize, lpsize, pte);
1251 }
1252 
1253 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1254 			     int psize, bool user_region)
1255 {
1256 	if (user_region) {
1257 		if (psize != get_paca_psize(ea)) {
1258 			copy_mm_to_paca(mm);
1259 			slb_flush_and_restore_bolted();
1260 		}
1261 	} else if (get_paca()->vmalloc_sllp !=
1262 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1263 		get_paca()->vmalloc_sllp =
1264 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1265 		slb_vmalloc_update();
1266 	}
1267 }
1268 
1269 /*
1270  * Result code is:
1271  *  0 - handled
1272  *  1 - normal page fault
1273  * -1 - critical hash insertion error
1274  * -2 - access not permitted by subpage protection mechanism
1275  */
1276 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1277 		 unsigned long access, unsigned long trap,
1278 		 unsigned long flags)
1279 {
1280 	bool is_thp;
1281 	enum ctx_state prev_state = exception_enter();
1282 	pgd_t *pgdir;
1283 	unsigned long vsid;
1284 	pte_t *ptep;
1285 	unsigned hugeshift;
1286 	int rc, user_region = 0;
1287 	int psize, ssize;
1288 
1289 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1290 		ea, access, trap);
1291 	trace_hash_fault(ea, access, trap);
1292 
1293 	/* Get region & vsid */
1294 	switch (get_region_id(ea)) {
1295 	case USER_REGION_ID:
1296 		user_region = 1;
1297 		if (! mm) {
1298 			DBG_LOW(" user region with no mm !\n");
1299 			rc = 1;
1300 			goto bail;
1301 		}
1302 		psize = get_slice_psize(mm, ea);
1303 		ssize = user_segment_size(ea);
1304 		vsid = get_user_vsid(&mm->context, ea, ssize);
1305 		break;
1306 	case VMALLOC_REGION_ID:
1307 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1308 		psize = mmu_vmalloc_psize;
1309 		ssize = mmu_kernel_ssize;
1310 		break;
1311 
1312 	case IO_REGION_ID:
1313 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1314 		psize = mmu_io_psize;
1315 		ssize = mmu_kernel_ssize;
1316 		break;
1317 	default:
1318 		/*
1319 		 * Not a valid range
1320 		 * Send the problem up to do_page_fault()
1321 		 */
1322 		rc = 1;
1323 		goto bail;
1324 	}
1325 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1326 
1327 	/* Bad address. */
1328 	if (!vsid) {
1329 		DBG_LOW("Bad address!\n");
1330 		rc = 1;
1331 		goto bail;
1332 	}
1333 	/* Get pgdir */
1334 	pgdir = mm->pgd;
1335 	if (pgdir == NULL) {
1336 		rc = 1;
1337 		goto bail;
1338 	}
1339 
1340 	/* Check CPU locality */
1341 	if (user_region && mm_is_thread_local(mm))
1342 		flags |= HPTE_LOCAL_UPDATE;
1343 
1344 #ifndef CONFIG_PPC_64K_PAGES
1345 	/*
1346 	 * If we use 4K pages and our psize is not 4K, then we might
1347 	 * be hitting a special driver mapping, and need to align the
1348 	 * address before we fetch the PTE.
1349 	 *
1350 	 * It could also be a hugepage mapping, in which case this is
1351 	 * not necessary, but it's not harmful, either.
1352 	 */
1353 	if (psize != MMU_PAGE_4K)
1354 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1355 #endif /* CONFIG_PPC_64K_PAGES */
1356 
1357 	/* Get PTE and page size from page tables */
1358 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1359 	if (ptep == NULL || !pte_present(*ptep)) {
1360 		DBG_LOW(" no PTE !\n");
1361 		rc = 1;
1362 		goto bail;
1363 	}
1364 
1365 	/*
1366 	 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1367 	 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1368 	 *
1369 	 * We can safely use the return pte address in rest of the function
1370 	 * because we do set H_PAGE_BUSY which prevents further updates to pte
1371 	 * from generic code.
1372 	 */
1373 	access |= _PAGE_PRESENT | _PAGE_PTE;
1374 
1375 	/*
1376 	 * Pre-check access permissions (will be re-checked atomically
1377 	 * in __hash_page_XX but this pre-check is a fast path
1378 	 */
1379 	if (!check_pte_access(access, pte_val(*ptep))) {
1380 		DBG_LOW(" no access !\n");
1381 		rc = 1;
1382 		goto bail;
1383 	}
1384 
1385 	if (hugeshift) {
1386 		if (is_thp)
1387 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1388 					     trap, flags, ssize, psize);
1389 #ifdef CONFIG_HUGETLB_PAGE
1390 		else
1391 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1392 					      flags, ssize, hugeshift, psize);
1393 #else
1394 		else {
1395 			/*
1396 			 * if we have hugeshift, and is not transhuge with
1397 			 * hugetlb disabled, something is really wrong.
1398 			 */
1399 			rc = 1;
1400 			WARN_ON(1);
1401 		}
1402 #endif
1403 		if (current->mm == mm)
1404 			check_paca_psize(ea, mm, psize, user_region);
1405 
1406 		goto bail;
1407 	}
1408 
1409 #ifndef CONFIG_PPC_64K_PAGES
1410 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1411 #else
1412 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1413 		pte_val(*(ptep + PTRS_PER_PTE)));
1414 #endif
1415 	/* Do actual hashing */
1416 #ifdef CONFIG_PPC_64K_PAGES
1417 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1418 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1419 		demote_segment_4k(mm, ea);
1420 		psize = MMU_PAGE_4K;
1421 	}
1422 
1423 	/*
1424 	 * If this PTE is non-cacheable and we have restrictions on
1425 	 * using non cacheable large pages, then we switch to 4k
1426 	 */
1427 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1428 		if (user_region) {
1429 			demote_segment_4k(mm, ea);
1430 			psize = MMU_PAGE_4K;
1431 		} else if (ea < VMALLOC_END) {
1432 			/*
1433 			 * some driver did a non-cacheable mapping
1434 			 * in vmalloc space, so switch vmalloc
1435 			 * to 4k pages
1436 			 */
1437 			printk(KERN_ALERT "Reducing vmalloc segment "
1438 			       "to 4kB pages because of "
1439 			       "non-cacheable mapping\n");
1440 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1441 			copro_flush_all_slbs(mm);
1442 		}
1443 	}
1444 
1445 #endif /* CONFIG_PPC_64K_PAGES */
1446 
1447 	if (current->mm == mm)
1448 		check_paca_psize(ea, mm, psize, user_region);
1449 
1450 #ifdef CONFIG_PPC_64K_PAGES
1451 	if (psize == MMU_PAGE_64K)
1452 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1453 				     flags, ssize);
1454 	else
1455 #endif /* CONFIG_PPC_64K_PAGES */
1456 	{
1457 		int spp = subpage_protection(mm, ea);
1458 		if (access & spp)
1459 			rc = -2;
1460 		else
1461 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1462 					    flags, ssize, spp);
1463 	}
1464 
1465 	/*
1466 	 * Dump some info in case of hash insertion failure, they should
1467 	 * never happen so it is really useful to know if/when they do
1468 	 */
1469 	if (rc == -1)
1470 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1471 				   psize, pte_val(*ptep));
1472 #ifndef CONFIG_PPC_64K_PAGES
1473 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1474 #else
1475 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1476 		pte_val(*(ptep + PTRS_PER_PTE)));
1477 #endif
1478 	DBG_LOW(" -> rc=%d\n", rc);
1479 
1480 bail:
1481 	exception_exit(prev_state);
1482 	return rc;
1483 }
1484 EXPORT_SYMBOL_GPL(hash_page_mm);
1485 
1486 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1487 	      unsigned long dsisr)
1488 {
1489 	unsigned long flags = 0;
1490 	struct mm_struct *mm = current->mm;
1491 
1492 	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1493 	    (get_region_id(ea) == IO_REGION_ID))
1494 		mm = &init_mm;
1495 
1496 	if (dsisr & DSISR_NOHPTE)
1497 		flags |= HPTE_NOHPTE_UPDATE;
1498 
1499 	return hash_page_mm(mm, ea, access, trap, flags);
1500 }
1501 EXPORT_SYMBOL_GPL(hash_page);
1502 
1503 int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr,
1504 		unsigned long msr)
1505 {
1506 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1507 	unsigned long flags = 0;
1508 	struct mm_struct *mm = current->mm;
1509 	unsigned int region_id = get_region_id(ea);
1510 
1511 	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1512 		mm = &init_mm;
1513 
1514 	if (dsisr & DSISR_NOHPTE)
1515 		flags |= HPTE_NOHPTE_UPDATE;
1516 
1517 	if (dsisr & DSISR_ISSTORE)
1518 		access |= _PAGE_WRITE;
1519 	/*
1520 	 * We set _PAGE_PRIVILEGED only when
1521 	 * kernel mode access kernel space.
1522 	 *
1523 	 * _PAGE_PRIVILEGED is NOT set
1524 	 * 1) when kernel mode access user space
1525 	 * 2) user space access kernel space.
1526 	 */
1527 	access |= _PAGE_PRIVILEGED;
1528 	if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1529 		access &= ~_PAGE_PRIVILEGED;
1530 
1531 	if (trap == 0x400)
1532 		access |= _PAGE_EXEC;
1533 
1534 	return hash_page_mm(mm, ea, access, trap, flags);
1535 }
1536 
1537 #ifdef CONFIG_PPC_MM_SLICES
1538 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1539 {
1540 	int psize = get_slice_psize(mm, ea);
1541 
1542 	/* We only prefault standard pages for now */
1543 	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1544 		return false;
1545 
1546 	/*
1547 	 * Don't prefault if subpage protection is enabled for the EA.
1548 	 */
1549 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1550 		return false;
1551 
1552 	return true;
1553 }
1554 #else
1555 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1556 {
1557 	return true;
1558 }
1559 #endif
1560 
1561 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1562 			 bool is_exec, unsigned long trap)
1563 {
1564 	unsigned long vsid;
1565 	pgd_t *pgdir;
1566 	int rc, ssize, update_flags = 0;
1567 	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1568 	unsigned long flags;
1569 
1570 	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1571 
1572 	if (!should_hash_preload(mm, ea))
1573 		return;
1574 
1575 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1576 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1577 
1578 	/* Get Linux PTE if available */
1579 	pgdir = mm->pgd;
1580 	if (pgdir == NULL)
1581 		return;
1582 
1583 	/* Get VSID */
1584 	ssize = user_segment_size(ea);
1585 	vsid = get_user_vsid(&mm->context, ea, ssize);
1586 	if (!vsid)
1587 		return;
1588 
1589 #ifdef CONFIG_PPC_64K_PAGES
1590 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1591 	 * a 64K kernel), then we don't preload, hash_page() will take
1592 	 * care of it once we actually try to access the page.
1593 	 * That way we don't have to duplicate all of the logic for segment
1594 	 * page size demotion here
1595 	 * Called with  PTL held, hence can be sure the value won't change in
1596 	 * between.
1597 	 */
1598 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1599 		return;
1600 #endif /* CONFIG_PPC_64K_PAGES */
1601 
1602 	/*
1603 	 * __hash_page_* must run with interrupts off, as it sets the
1604 	 * H_PAGE_BUSY bit. It's possible for perf interrupts to hit at any
1605 	 * time and may take a hash fault reading the user stack, see
1606 	 * read_user_stack_slow() in the powerpc/perf code.
1607 	 *
1608 	 * If that takes a hash fault on the same page as we lock here, it
1609 	 * will bail out when seeing H_PAGE_BUSY set, and retry the access
1610 	 * leading to an infinite loop.
1611 	 *
1612 	 * Disabling interrupts here does not prevent perf interrupts, but it
1613 	 * will prevent them taking hash faults (see the NMI test in
1614 	 * do_hash_page), then read_user_stack's copy_from_user_nofault will
1615 	 * fail and perf will fall back to read_user_stack_slow(), which
1616 	 * walks the Linux page tables.
1617 	 *
1618 	 * Interrupts must also be off for the duration of the
1619 	 * mm_is_thread_local test and update, to prevent preempt running the
1620 	 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1621 	 */
1622 	local_irq_save(flags);
1623 
1624 	/* Is that local to this CPU ? */
1625 	if (mm_is_thread_local(mm))
1626 		update_flags |= HPTE_LOCAL_UPDATE;
1627 
1628 	/* Hash it in */
1629 #ifdef CONFIG_PPC_64K_PAGES
1630 	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1631 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1632 				     update_flags, ssize);
1633 	else
1634 #endif /* CONFIG_PPC_64K_PAGES */
1635 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1636 				    ssize, subpage_protection(mm, ea));
1637 
1638 	/* Dump some info in case of hash insertion failure, they should
1639 	 * never happen so it is really useful to know if/when they do
1640 	 */
1641 	if (rc == -1)
1642 		hash_failure_debug(ea, access, vsid, trap, ssize,
1643 				   mm_ctx_user_psize(&mm->context),
1644 				   mm_ctx_user_psize(&mm->context),
1645 				   pte_val(*ptep));
1646 
1647 	local_irq_restore(flags);
1648 }
1649 
1650 /*
1651  * This is called at the end of handling a user page fault, when the
1652  * fault has been handled by updating a PTE in the linux page tables.
1653  * We use it to preload an HPTE into the hash table corresponding to
1654  * the updated linux PTE.
1655  *
1656  * This must always be called with the pte lock held.
1657  */
1658 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1659 		      pte_t *ptep)
1660 {
1661 	/*
1662 	 * We don't need to worry about _PAGE_PRESENT here because we are
1663 	 * called with either mm->page_table_lock held or ptl lock held
1664 	 */
1665 	unsigned long trap;
1666 	bool is_exec;
1667 
1668 	if (radix_enabled())
1669 		return;
1670 
1671 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1672 	if (!pte_young(*ptep) || address >= TASK_SIZE)
1673 		return;
1674 
1675 	/*
1676 	 * We try to figure out if we are coming from an instruction
1677 	 * access fault and pass that down to __hash_page so we avoid
1678 	 * double-faulting on execution of fresh text. We have to test
1679 	 * for regs NULL since init will get here first thing at boot.
1680 	 *
1681 	 * We also avoid filling the hash if not coming from a fault.
1682 	 */
1683 
1684 	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1685 	switch (trap) {
1686 	case 0x300:
1687 		is_exec = false;
1688 		break;
1689 	case 0x400:
1690 		is_exec = true;
1691 		break;
1692 	default:
1693 		return;
1694 	}
1695 
1696 	hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1697 }
1698 
1699 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1700 static inline void tm_flush_hash_page(int local)
1701 {
1702 	/*
1703 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1704 	 * page back to a block device w/PIO could pick up transactional data
1705 	 * (bad!) so we force an abort here. Before the sync the page will be
1706 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1707 	 * kernel uses a page from userspace without unmapping it first, it may
1708 	 * see the speculated version.
1709 	 */
1710 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1711 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1712 		tm_enable();
1713 		tm_abort(TM_CAUSE_TLBI);
1714 	}
1715 }
1716 #else
1717 static inline void tm_flush_hash_page(int local)
1718 {
1719 }
1720 #endif
1721 
1722 /*
1723  * Return the global hash slot, corresponding to the given PTE, which contains
1724  * the HPTE.
1725  */
1726 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1727 		int ssize, real_pte_t rpte, unsigned int subpg_index)
1728 {
1729 	unsigned long hash, gslot, hidx;
1730 
1731 	hash = hpt_hash(vpn, shift, ssize);
1732 	hidx = __rpte_to_hidx(rpte, subpg_index);
1733 	if (hidx & _PTEIDX_SECONDARY)
1734 		hash = ~hash;
1735 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1736 	gslot += hidx & _PTEIDX_GROUP_IX;
1737 	return gslot;
1738 }
1739 
1740 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1741 		     unsigned long flags)
1742 {
1743 	unsigned long index, shift, gslot;
1744 	int local = flags & HPTE_LOCAL_UPDATE;
1745 
1746 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1747 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1748 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1749 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1750 		/*
1751 		 * We use same base page size and actual psize, because we don't
1752 		 * use these functions for hugepage
1753 		 */
1754 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1755 					     ssize, local);
1756 	} pte_iterate_hashed_end();
1757 
1758 	tm_flush_hash_page(local);
1759 }
1760 
1761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1762 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1763 			 pmd_t *pmdp, unsigned int psize, int ssize,
1764 			 unsigned long flags)
1765 {
1766 	int i, max_hpte_count, valid;
1767 	unsigned long s_addr;
1768 	unsigned char *hpte_slot_array;
1769 	unsigned long hidx, shift, vpn, hash, slot;
1770 	int local = flags & HPTE_LOCAL_UPDATE;
1771 
1772 	s_addr = addr & HPAGE_PMD_MASK;
1773 	hpte_slot_array = get_hpte_slot_array(pmdp);
1774 	/*
1775 	 * IF we try to do a HUGE PTE update after a withdraw is done.
1776 	 * we will find the below NULL. This happens when we do
1777 	 * split_huge_pmd
1778 	 */
1779 	if (!hpte_slot_array)
1780 		return;
1781 
1782 	if (mmu_hash_ops.hugepage_invalidate) {
1783 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1784 						 psize, ssize, local);
1785 		goto tm_abort;
1786 	}
1787 	/*
1788 	 * No bluk hpte removal support, invalidate each entry
1789 	 */
1790 	shift = mmu_psize_defs[psize].shift;
1791 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1792 	for (i = 0; i < max_hpte_count; i++) {
1793 		/*
1794 		 * 8 bits per each hpte entries
1795 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1796 		 */
1797 		valid = hpte_valid(hpte_slot_array, i);
1798 		if (!valid)
1799 			continue;
1800 		hidx =  hpte_hash_index(hpte_slot_array, i);
1801 
1802 		/* get the vpn */
1803 		addr = s_addr + (i * (1ul << shift));
1804 		vpn = hpt_vpn(addr, vsid, ssize);
1805 		hash = hpt_hash(vpn, shift, ssize);
1806 		if (hidx & _PTEIDX_SECONDARY)
1807 			hash = ~hash;
1808 
1809 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1810 		slot += hidx & _PTEIDX_GROUP_IX;
1811 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1812 					     MMU_PAGE_16M, ssize, local);
1813 	}
1814 tm_abort:
1815 	tm_flush_hash_page(local);
1816 }
1817 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1818 
1819 void flush_hash_range(unsigned long number, int local)
1820 {
1821 	if (mmu_hash_ops.flush_hash_range)
1822 		mmu_hash_ops.flush_hash_range(number, local);
1823 	else {
1824 		int i;
1825 		struct ppc64_tlb_batch *batch =
1826 			this_cpu_ptr(&ppc64_tlb_batch);
1827 
1828 		for (i = 0; i < number; i++)
1829 			flush_hash_page(batch->vpn[i], batch->pte[i],
1830 					batch->psize, batch->ssize, local);
1831 	}
1832 }
1833 
1834 /*
1835  * low_hash_fault is called when we the low level hash code failed
1836  * to instert a PTE due to an hypervisor error
1837  */
1838 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1839 {
1840 	enum ctx_state prev_state = exception_enter();
1841 
1842 	if (user_mode(regs)) {
1843 #ifdef CONFIG_PPC_SUBPAGE_PROT
1844 		if (rc == -2)
1845 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1846 		else
1847 #endif
1848 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1849 	} else
1850 		bad_page_fault(regs, address, SIGBUS);
1851 
1852 	exception_exit(prev_state);
1853 }
1854 
1855 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1856 			   unsigned long pa, unsigned long rflags,
1857 			   unsigned long vflags, int psize, int ssize)
1858 {
1859 	unsigned long hpte_group;
1860 	long slot;
1861 
1862 repeat:
1863 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1864 
1865 	/* Insert into the hash table, primary slot */
1866 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1867 					psize, psize, ssize);
1868 
1869 	/* Primary is full, try the secondary */
1870 	if (unlikely(slot == -1)) {
1871 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1872 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1873 						vflags | HPTE_V_SECONDARY,
1874 						psize, psize, ssize);
1875 		if (slot == -1) {
1876 			if (mftb() & 0x1)
1877 				hpte_group = (hash & htab_hash_mask) *
1878 						HPTES_PER_GROUP;
1879 
1880 			mmu_hash_ops.hpte_remove(hpte_group);
1881 			goto repeat;
1882 		}
1883 	}
1884 
1885 	return slot;
1886 }
1887 
1888 #ifdef CONFIG_DEBUG_PAGEALLOC
1889 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1890 {
1891 	unsigned long hash;
1892 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1893 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1894 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1895 	long ret;
1896 
1897 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1898 
1899 	/* Don't create HPTE entries for bad address */
1900 	if (!vsid)
1901 		return;
1902 
1903 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1904 				    HPTE_V_BOLTED,
1905 				    mmu_linear_psize, mmu_kernel_ssize);
1906 
1907 	BUG_ON (ret < 0);
1908 	spin_lock(&linear_map_hash_lock);
1909 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1910 	linear_map_hash_slots[lmi] = ret | 0x80;
1911 	spin_unlock(&linear_map_hash_lock);
1912 }
1913 
1914 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1915 {
1916 	unsigned long hash, hidx, slot;
1917 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1918 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1919 
1920 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1921 	spin_lock(&linear_map_hash_lock);
1922 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1923 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1924 	linear_map_hash_slots[lmi] = 0;
1925 	spin_unlock(&linear_map_hash_lock);
1926 	if (hidx & _PTEIDX_SECONDARY)
1927 		hash = ~hash;
1928 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1929 	slot += hidx & _PTEIDX_GROUP_IX;
1930 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1931 				     mmu_linear_psize,
1932 				     mmu_kernel_ssize, 0);
1933 }
1934 
1935 void __kernel_map_pages(struct page *page, int numpages, int enable)
1936 {
1937 	unsigned long flags, vaddr, lmi;
1938 	int i;
1939 
1940 	local_irq_save(flags);
1941 	for (i = 0; i < numpages; i++, page++) {
1942 		vaddr = (unsigned long)page_address(page);
1943 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1944 		if (lmi >= linear_map_hash_count)
1945 			continue;
1946 		if (enable)
1947 			kernel_map_linear_page(vaddr, lmi);
1948 		else
1949 			kernel_unmap_linear_page(vaddr, lmi);
1950 	}
1951 	local_irq_restore(flags);
1952 }
1953 #endif /* CONFIG_DEBUG_PAGEALLOC */
1954 
1955 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1956 				phys_addr_t first_memblock_size)
1957 {
1958 	/*
1959 	 * We don't currently support the first MEMBLOCK not mapping 0
1960 	 * physical on those processors
1961 	 */
1962 	BUG_ON(first_memblock_base != 0);
1963 
1964 	/*
1965 	 * On virtualized systems the first entry is our RMA region aka VRMA,
1966 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
1967 	 * on real mode access.
1968 	 *
1969 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
1970 	 * to avoid some funky things such as RTAS bugs etc...
1971 	 *
1972 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
1973 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1974 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1975 	 * for virtual real mode addressing and so it doesn't make sense to
1976 	 * have an area larger than 1TB as it can't be addressed.
1977 	 */
1978 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1979 		ppc64_rma_size = first_memblock_size;
1980 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1981 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1982 		else
1983 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
1984 					       1UL << SID_SHIFT_1T);
1985 
1986 		/* Finally limit subsequent allocations */
1987 		memblock_set_current_limit(ppc64_rma_size);
1988 	} else {
1989 		ppc64_rma_size = ULONG_MAX;
1990 	}
1991 }
1992 
1993 #ifdef CONFIG_DEBUG_FS
1994 
1995 static int hpt_order_get(void *data, u64 *val)
1996 {
1997 	*val = ppc64_pft_size;
1998 	return 0;
1999 }
2000 
2001 static int hpt_order_set(void *data, u64 val)
2002 {
2003 	int ret;
2004 
2005 	if (!mmu_hash_ops.resize_hpt)
2006 		return -ENODEV;
2007 
2008 	cpus_read_lock();
2009 	ret = mmu_hash_ops.resize_hpt(val);
2010 	cpus_read_unlock();
2011 
2012 	return ret;
2013 }
2014 
2015 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2016 
2017 static int __init hash64_debugfs(void)
2018 {
2019 	debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root, NULL,
2020 			    &fops_hpt_order);
2021 	return 0;
2022 }
2023 machine_device_initcall(pseries, hash64_debugfs);
2024 #endif /* CONFIG_DEBUG_FS */
2025 
2026 void __init print_system_hash_info(void)
2027 {
2028 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2029 
2030 	if (htab_hash_mask)
2031 		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2032 }
2033