1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen 4 * {mikejc|engebret}@us.ibm.com 5 * 6 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> 7 * 8 * SMP scalability work: 9 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM 10 * 11 * Module name: htab.c 12 * 13 * Description: 14 * PowerPC Hashed Page Table functions 15 */ 16 17 #undef DEBUG 18 #undef DEBUG_LOW 19 20 #define pr_fmt(fmt) "hash-mmu: " fmt 21 #include <linux/spinlock.h> 22 #include <linux/errno.h> 23 #include <linux/sched/mm.h> 24 #include <linux/proc_fs.h> 25 #include <linux/stat.h> 26 #include <linux/sysctl.h> 27 #include <linux/export.h> 28 #include <linux/ctype.h> 29 #include <linux/cache.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/memblock.h> 33 #include <linux/context_tracking.h> 34 #include <linux/libfdt.h> 35 #include <linux/pkeys.h> 36 #include <linux/hugetlb.h> 37 #include <linux/cpu.h> 38 #include <linux/pgtable.h> 39 #include <linux/debugfs.h> 40 #include <linux/random.h> 41 #include <linux/elf-randomize.h> 42 #include <linux/of_fdt.h> 43 44 #include <asm/interrupt.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/mmu_context.h> 48 #include <asm/page.h> 49 #include <asm/types.h> 50 #include <linux/uaccess.h> 51 #include <asm/machdep.h> 52 #include <asm/io.h> 53 #include <asm/eeh.h> 54 #include <asm/tlb.h> 55 #include <asm/cacheflush.h> 56 #include <asm/cputable.h> 57 #include <asm/sections.h> 58 #include <asm/copro.h> 59 #include <asm/udbg.h> 60 #include <asm/code-patching.h> 61 #include <asm/fadump.h> 62 #include <asm/firmware.h> 63 #include <asm/tm.h> 64 #include <asm/trace.h> 65 #include <asm/ps3.h> 66 #include <asm/pte-walk.h> 67 #include <asm/asm-prototypes.h> 68 #include <asm/ultravisor.h> 69 70 #include <mm/mmu_decl.h> 71 72 #include "internal.h" 73 74 75 #ifdef DEBUG 76 #define DBG(fmt...) udbg_printf(fmt) 77 #else 78 #define DBG(fmt...) 79 #endif 80 81 #ifdef DEBUG_LOW 82 #define DBG_LOW(fmt...) udbg_printf(fmt) 83 #else 84 #define DBG_LOW(fmt...) 85 #endif 86 87 #define KB (1024) 88 #define MB (1024*KB) 89 #define GB (1024L*MB) 90 91 /* 92 * Note: pte --> Linux PTE 93 * HPTE --> PowerPC Hashed Page Table Entry 94 * 95 * Execution context: 96 * htab_initialize is called with the MMU off (of course), but 97 * the kernel has been copied down to zero so it can directly 98 * reference global data. At this point it is very difficult 99 * to print debug info. 100 * 101 */ 102 103 static unsigned long _SDR1; 104 105 u8 hpte_page_sizes[1 << LP_BITS]; 106 EXPORT_SYMBOL_GPL(hpte_page_sizes); 107 108 struct hash_pte *htab_address; 109 unsigned long htab_size_bytes; 110 unsigned long htab_hash_mask; 111 EXPORT_SYMBOL_GPL(htab_hash_mask); 112 int mmu_linear_psize = MMU_PAGE_4K; 113 EXPORT_SYMBOL_GPL(mmu_linear_psize); 114 int mmu_virtual_psize = MMU_PAGE_4K; 115 int mmu_vmalloc_psize = MMU_PAGE_4K; 116 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize); 117 int mmu_io_psize = MMU_PAGE_4K; 118 int mmu_kernel_ssize = MMU_SEGSIZE_256M; 119 EXPORT_SYMBOL_GPL(mmu_kernel_ssize); 120 int mmu_highuser_ssize = MMU_SEGSIZE_256M; 121 u16 mmu_slb_size = 64; 122 EXPORT_SYMBOL_GPL(mmu_slb_size); 123 #ifdef CONFIG_PPC_64K_PAGES 124 int mmu_ci_restrictions; 125 #endif 126 static u8 *linear_map_hash_slots; 127 static unsigned long linear_map_hash_count; 128 struct mmu_hash_ops mmu_hash_ops; 129 EXPORT_SYMBOL(mmu_hash_ops); 130 131 /* 132 * These are definitions of page sizes arrays to be used when none 133 * is provided by the firmware. 134 */ 135 136 /* 137 * Fallback (4k pages only) 138 */ 139 static struct mmu_psize_def mmu_psize_defaults[] = { 140 [MMU_PAGE_4K] = { 141 .shift = 12, 142 .sllp = 0, 143 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, 144 .avpnm = 0, 145 .tlbiel = 0, 146 }, 147 }; 148 149 /* 150 * POWER4, GPUL, POWER5 151 * 152 * Support for 16Mb large pages 153 */ 154 static struct mmu_psize_def mmu_psize_defaults_gp[] = { 155 [MMU_PAGE_4K] = { 156 .shift = 12, 157 .sllp = 0, 158 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, 159 .avpnm = 0, 160 .tlbiel = 1, 161 }, 162 [MMU_PAGE_16M] = { 163 .shift = 24, 164 .sllp = SLB_VSID_L, 165 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0, 166 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 }, 167 .avpnm = 0x1UL, 168 .tlbiel = 0, 169 }, 170 }; 171 172 static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is) 173 { 174 unsigned long rb; 175 176 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53)); 177 178 asm volatile("tlbiel %0" : : "r" (rb)); 179 } 180 181 /* 182 * tlbiel instruction for hash, set invalidation 183 * i.e., r=1 and is=01 or is=10 or is=11 184 */ 185 static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is, 186 unsigned int pid, 187 unsigned int ric, unsigned int prs) 188 { 189 unsigned long rb; 190 unsigned long rs; 191 unsigned int r = 0; /* hash format */ 192 193 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53)); 194 rs = ((unsigned long)pid << PPC_BITLSHIFT(31)); 195 196 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4) 197 : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r) 198 : "memory"); 199 } 200 201 202 static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is) 203 { 204 unsigned int set; 205 206 asm volatile("ptesync": : :"memory"); 207 208 for (set = 0; set < num_sets; set++) 209 tlbiel_hash_set_isa206(set, is); 210 211 ppc_after_tlbiel_barrier(); 212 } 213 214 static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is) 215 { 216 unsigned int set; 217 218 asm volatile("ptesync": : :"memory"); 219 220 /* 221 * Flush the partition table cache if this is HV mode. 222 */ 223 if (early_cpu_has_feature(CPU_FTR_HVMODE)) 224 tlbiel_hash_set_isa300(0, is, 0, 2, 0); 225 226 /* 227 * Now invalidate the process table cache. UPRT=0 HPT modes (what 228 * current hardware implements) do not use the process table, but 229 * add the flushes anyway. 230 * 231 * From ISA v3.0B p. 1078: 232 * The following forms are invalid. 233 * * PRS=1, R=0, and RIC!=2 (The only process-scoped 234 * HPT caching is of the Process Table.) 235 */ 236 tlbiel_hash_set_isa300(0, is, 0, 2, 1); 237 238 /* 239 * Then flush the sets of the TLB proper. Hash mode uses 240 * partition scoped TLB translations, which may be flushed 241 * in !HV mode. 242 */ 243 for (set = 0; set < num_sets; set++) 244 tlbiel_hash_set_isa300(set, is, 0, 0, 0); 245 246 ppc_after_tlbiel_barrier(); 247 248 asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory"); 249 } 250 251 void hash__tlbiel_all(unsigned int action) 252 { 253 unsigned int is; 254 255 switch (action) { 256 case TLB_INVAL_SCOPE_GLOBAL: 257 is = 3; 258 break; 259 case TLB_INVAL_SCOPE_LPID: 260 is = 2; 261 break; 262 default: 263 BUG(); 264 } 265 266 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) 267 tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is); 268 else if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) 269 tlbiel_all_isa206(POWER8_TLB_SETS, is); 270 else if (early_cpu_has_feature(CPU_FTR_ARCH_206)) 271 tlbiel_all_isa206(POWER7_TLB_SETS, is); 272 else 273 WARN(1, "%s called on pre-POWER7 CPU\n", __func__); 274 } 275 276 /* 277 * 'R' and 'C' update notes: 278 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will* 279 * create writeable HPTEs without C set, because the hcall H_PROTECT 280 * that we use in that case will not update C 281 * - The above is however not a problem, because we also don't do that 282 * fancy "no flush" variant of eviction and we use H_REMOVE which will 283 * do the right thing and thus we don't have the race I described earlier 284 * 285 * - Under bare metal, we do have the race, so we need R and C set 286 * - We make sure R is always set and never lost 287 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping 288 */ 289 unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags) 290 { 291 unsigned long rflags = 0; 292 293 /* _PAGE_EXEC -> NOEXEC */ 294 if ((pteflags & _PAGE_EXEC) == 0) 295 rflags |= HPTE_R_N; 296 /* 297 * PPP bits: 298 * Linux uses slb key 0 for kernel and 1 for user. 299 * kernel RW areas are mapped with PPP=0b000 300 * User area is mapped with PPP=0b010 for read/write 301 * or PPP=0b011 for read-only (including writeable but clean pages). 302 */ 303 if (pteflags & _PAGE_PRIVILEGED) { 304 /* 305 * Kernel read only mapped with ppp bits 0b110 306 */ 307 if (!(pteflags & _PAGE_WRITE)) { 308 if (mmu_has_feature(MMU_FTR_KERNEL_RO)) 309 rflags |= (HPTE_R_PP0 | 0x2); 310 else 311 rflags |= 0x3; 312 } 313 } else { 314 if (pteflags & _PAGE_RWX) 315 rflags |= 0x2; 316 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY))) 317 rflags |= 0x1; 318 } 319 /* 320 * We can't allow hardware to update hpte bits. Hence always 321 * set 'R' bit and set 'C' if it is a write fault 322 */ 323 rflags |= HPTE_R_R; 324 325 if (pteflags & _PAGE_DIRTY) 326 rflags |= HPTE_R_C; 327 /* 328 * Add in WIG bits 329 */ 330 331 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) 332 rflags |= HPTE_R_I; 333 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT) 334 rflags |= (HPTE_R_I | HPTE_R_G); 335 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO) 336 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M); 337 else 338 /* 339 * Add memory coherence if cache inhibited is not set 340 */ 341 rflags |= HPTE_R_M; 342 343 rflags |= pte_to_hpte_pkey_bits(pteflags, flags); 344 return rflags; 345 } 346 347 int htab_bolt_mapping(unsigned long vstart, unsigned long vend, 348 unsigned long pstart, unsigned long prot, 349 int psize, int ssize) 350 { 351 unsigned long vaddr, paddr; 352 unsigned int step, shift; 353 int ret = 0; 354 355 shift = mmu_psize_defs[psize].shift; 356 step = 1 << shift; 357 358 prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY); 359 360 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n", 361 vstart, vend, pstart, prot, psize, ssize); 362 363 /* Carefully map only the possible range */ 364 vaddr = ALIGN(vstart, step); 365 paddr = ALIGN(pstart, step); 366 vend = ALIGN_DOWN(vend, step); 367 368 for (; vaddr < vend; vaddr += step, paddr += step) { 369 unsigned long hash, hpteg; 370 unsigned long vsid = get_kernel_vsid(vaddr, ssize); 371 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize); 372 unsigned long tprot = prot; 373 bool secondary_hash = false; 374 375 /* 376 * If we hit a bad address return error. 377 */ 378 if (!vsid) 379 return -1; 380 /* Make kernel text executable */ 381 if (overlaps_kernel_text(vaddr, vaddr + step)) 382 tprot &= ~HPTE_R_N; 383 384 /* 385 * If relocatable, check if it overlaps interrupt vectors that 386 * are copied down to real 0. For relocatable kernel 387 * (e.g. kdump case) we copy interrupt vectors down to real 388 * address 0. Mark that region as executable. This is 389 * because on p8 system with relocation on exception feature 390 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence 391 * in order to execute the interrupt handlers in virtual 392 * mode the vector region need to be marked as executable. 393 */ 394 if ((PHYSICAL_START > MEMORY_START) && 395 overlaps_interrupt_vector_text(vaddr, vaddr + step)) 396 tprot &= ~HPTE_R_N; 397 398 hash = hpt_hash(vpn, shift, ssize); 399 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); 400 401 BUG_ON(!mmu_hash_ops.hpte_insert); 402 repeat: 403 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, 404 HPTE_V_BOLTED, psize, psize, 405 ssize); 406 if (ret == -1) { 407 /* 408 * Try to keep bolted entries in primary. 409 * Remove non bolted entries and try insert again 410 */ 411 ret = mmu_hash_ops.hpte_remove(hpteg); 412 if (ret != -1) 413 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, 414 HPTE_V_BOLTED, psize, psize, 415 ssize); 416 if (ret == -1 && !secondary_hash) { 417 secondary_hash = true; 418 hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP); 419 goto repeat; 420 } 421 } 422 423 if (ret < 0) 424 break; 425 426 cond_resched(); 427 if (debug_pagealloc_enabled_or_kfence() && 428 (paddr >> PAGE_SHIFT) < linear_map_hash_count) 429 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80; 430 } 431 return ret < 0 ? ret : 0; 432 } 433 434 int htab_remove_mapping(unsigned long vstart, unsigned long vend, 435 int psize, int ssize) 436 { 437 unsigned long vaddr, time_limit; 438 unsigned int step, shift; 439 int rc; 440 int ret = 0; 441 442 shift = mmu_psize_defs[psize].shift; 443 step = 1 << shift; 444 445 if (!mmu_hash_ops.hpte_removebolted) 446 return -ENODEV; 447 448 /* Unmap the full range specificied */ 449 vaddr = ALIGN_DOWN(vstart, step); 450 time_limit = jiffies + HZ; 451 452 for (;vaddr < vend; vaddr += step) { 453 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize); 454 455 /* 456 * For large number of mappings introduce a cond_resched() 457 * to prevent softlockup warnings. 458 */ 459 if (time_after(jiffies, time_limit)) { 460 cond_resched(); 461 time_limit = jiffies + HZ; 462 } 463 if (rc == -ENOENT) { 464 ret = -ENOENT; 465 continue; 466 } 467 if (rc < 0) 468 return rc; 469 } 470 471 return ret; 472 } 473 474 static bool disable_1tb_segments = false; 475 476 static int __init parse_disable_1tb_segments(char *p) 477 { 478 disable_1tb_segments = true; 479 return 0; 480 } 481 early_param("disable_1tb_segments", parse_disable_1tb_segments); 482 483 static int __init htab_dt_scan_seg_sizes(unsigned long node, 484 const char *uname, int depth, 485 void *data) 486 { 487 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 488 const __be32 *prop; 489 int size = 0; 490 491 /* We are scanning "cpu" nodes only */ 492 if (type == NULL || strcmp(type, "cpu") != 0) 493 return 0; 494 495 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size); 496 if (prop == NULL) 497 return 0; 498 for (; size >= 4; size -= 4, ++prop) { 499 if (be32_to_cpu(prop[0]) == 40) { 500 DBG("1T segment support detected\n"); 501 502 if (disable_1tb_segments) { 503 DBG("1T segments disabled by command line\n"); 504 break; 505 } 506 507 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT; 508 return 1; 509 } 510 } 511 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; 512 return 0; 513 } 514 515 static int __init get_idx_from_shift(unsigned int shift) 516 { 517 int idx = -1; 518 519 switch (shift) { 520 case 0xc: 521 idx = MMU_PAGE_4K; 522 break; 523 case 0x10: 524 idx = MMU_PAGE_64K; 525 break; 526 case 0x14: 527 idx = MMU_PAGE_1M; 528 break; 529 case 0x18: 530 idx = MMU_PAGE_16M; 531 break; 532 case 0x22: 533 idx = MMU_PAGE_16G; 534 break; 535 } 536 return idx; 537 } 538 539 static int __init htab_dt_scan_page_sizes(unsigned long node, 540 const char *uname, int depth, 541 void *data) 542 { 543 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 544 const __be32 *prop; 545 int size = 0; 546 547 /* We are scanning "cpu" nodes only */ 548 if (type == NULL || strcmp(type, "cpu") != 0) 549 return 0; 550 551 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size); 552 if (!prop) 553 return 0; 554 555 pr_info("Page sizes from device-tree:\n"); 556 size /= 4; 557 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE); 558 while(size > 0) { 559 unsigned int base_shift = be32_to_cpu(prop[0]); 560 unsigned int slbenc = be32_to_cpu(prop[1]); 561 unsigned int lpnum = be32_to_cpu(prop[2]); 562 struct mmu_psize_def *def; 563 int idx, base_idx; 564 565 size -= 3; prop += 3; 566 base_idx = get_idx_from_shift(base_shift); 567 if (base_idx < 0) { 568 /* skip the pte encoding also */ 569 prop += lpnum * 2; size -= lpnum * 2; 570 continue; 571 } 572 def = &mmu_psize_defs[base_idx]; 573 if (base_idx == MMU_PAGE_16M) 574 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE; 575 576 def->shift = base_shift; 577 if (base_shift <= 23) 578 def->avpnm = 0; 579 else 580 def->avpnm = (1 << (base_shift - 23)) - 1; 581 def->sllp = slbenc; 582 /* 583 * We don't know for sure what's up with tlbiel, so 584 * for now we only set it for 4K and 64K pages 585 */ 586 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K) 587 def->tlbiel = 1; 588 else 589 def->tlbiel = 0; 590 591 while (size > 0 && lpnum) { 592 unsigned int shift = be32_to_cpu(prop[0]); 593 int penc = be32_to_cpu(prop[1]); 594 595 prop += 2; size -= 2; 596 lpnum--; 597 598 idx = get_idx_from_shift(shift); 599 if (idx < 0) 600 continue; 601 602 if (penc == -1) 603 pr_err("Invalid penc for base_shift=%d " 604 "shift=%d\n", base_shift, shift); 605 606 def->penc[idx] = penc; 607 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx," 608 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n", 609 base_shift, shift, def->sllp, 610 def->avpnm, def->tlbiel, def->penc[idx]); 611 } 612 } 613 614 return 1; 615 } 616 617 #ifdef CONFIG_HUGETLB_PAGE 618 /* 619 * Scan for 16G memory blocks that have been set aside for huge pages 620 * and reserve those blocks for 16G huge pages. 621 */ 622 static int __init htab_dt_scan_hugepage_blocks(unsigned long node, 623 const char *uname, int depth, 624 void *data) { 625 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 626 const __be64 *addr_prop; 627 const __be32 *page_count_prop; 628 unsigned int expected_pages; 629 long unsigned int phys_addr; 630 long unsigned int block_size; 631 632 /* We are scanning "memory" nodes only */ 633 if (type == NULL || strcmp(type, "memory") != 0) 634 return 0; 635 636 /* 637 * This property is the log base 2 of the number of virtual pages that 638 * will represent this memory block. 639 */ 640 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL); 641 if (page_count_prop == NULL) 642 return 0; 643 expected_pages = (1 << be32_to_cpu(page_count_prop[0])); 644 addr_prop = of_get_flat_dt_prop(node, "reg", NULL); 645 if (addr_prop == NULL) 646 return 0; 647 phys_addr = be64_to_cpu(addr_prop[0]); 648 block_size = be64_to_cpu(addr_prop[1]); 649 if (block_size != (16 * GB)) 650 return 0; 651 printk(KERN_INFO "Huge page(16GB) memory: " 652 "addr = 0x%lX size = 0x%lX pages = %d\n", 653 phys_addr, block_size, expected_pages); 654 if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) { 655 memblock_reserve(phys_addr, block_size * expected_pages); 656 pseries_add_gpage(phys_addr, block_size, expected_pages); 657 } 658 return 0; 659 } 660 #endif /* CONFIG_HUGETLB_PAGE */ 661 662 static void __init mmu_psize_set_default_penc(void) 663 { 664 int bpsize, apsize; 665 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) 666 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++) 667 mmu_psize_defs[bpsize].penc[apsize] = -1; 668 } 669 670 #ifdef CONFIG_PPC_64K_PAGES 671 672 static bool __init might_have_hea(void) 673 { 674 /* 675 * The HEA ethernet adapter requires awareness of the 676 * GX bus. Without that awareness we can easily assume 677 * we will never see an HEA ethernet device. 678 */ 679 #ifdef CONFIG_IBMEBUS 680 return !cpu_has_feature(CPU_FTR_ARCH_207S) && 681 firmware_has_feature(FW_FEATURE_SPLPAR); 682 #else 683 return false; 684 #endif 685 } 686 687 #endif /* #ifdef CONFIG_PPC_64K_PAGES */ 688 689 static void __init htab_scan_page_sizes(void) 690 { 691 int rc; 692 693 /* se the invalid penc to -1 */ 694 mmu_psize_set_default_penc(); 695 696 /* Default to 4K pages only */ 697 memcpy(mmu_psize_defs, mmu_psize_defaults, 698 sizeof(mmu_psize_defaults)); 699 700 /* 701 * Try to find the available page sizes in the device-tree 702 */ 703 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL); 704 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) { 705 /* 706 * Nothing in the device-tree, but the CPU supports 16M pages, 707 * so let's fallback on a known size list for 16M capable CPUs. 708 */ 709 memcpy(mmu_psize_defs, mmu_psize_defaults_gp, 710 sizeof(mmu_psize_defaults_gp)); 711 } 712 713 #ifdef CONFIG_HUGETLB_PAGE 714 if (!hugetlb_disabled && !early_radix_enabled() ) { 715 /* Reserve 16G huge page memory sections for huge pages */ 716 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL); 717 } 718 #endif /* CONFIG_HUGETLB_PAGE */ 719 } 720 721 /* 722 * Fill in the hpte_page_sizes[] array. 723 * We go through the mmu_psize_defs[] array looking for all the 724 * supported base/actual page size combinations. Each combination 725 * has a unique pagesize encoding (penc) value in the low bits of 726 * the LP field of the HPTE. For actual page sizes less than 1MB, 727 * some of the upper LP bits are used for RPN bits, meaning that 728 * we need to fill in several entries in hpte_page_sizes[]. 729 * 730 * In diagrammatic form, with r = RPN bits and z = page size bits: 731 * PTE LP actual page size 732 * rrrr rrrz >=8KB 733 * rrrr rrzz >=16KB 734 * rrrr rzzz >=32KB 735 * rrrr zzzz >=64KB 736 * ... 737 * 738 * The zzzz bits are implementation-specific but are chosen so that 739 * no encoding for a larger page size uses the same value in its 740 * low-order N bits as the encoding for the 2^(12+N) byte page size 741 * (if it exists). 742 */ 743 static void __init init_hpte_page_sizes(void) 744 { 745 long int ap, bp; 746 long int shift, penc; 747 748 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) { 749 if (!mmu_psize_defs[bp].shift) 750 continue; /* not a supported page size */ 751 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) { 752 penc = mmu_psize_defs[bp].penc[ap]; 753 if (penc == -1 || !mmu_psize_defs[ap].shift) 754 continue; 755 shift = mmu_psize_defs[ap].shift - LP_SHIFT; 756 if (shift <= 0) 757 continue; /* should never happen */ 758 /* 759 * For page sizes less than 1MB, this loop 760 * replicates the entry for all possible values 761 * of the rrrr bits. 762 */ 763 while (penc < (1 << LP_BITS)) { 764 hpte_page_sizes[penc] = (ap << 4) | bp; 765 penc += 1 << shift; 766 } 767 } 768 } 769 } 770 771 static void __init htab_init_page_sizes(void) 772 { 773 bool aligned = true; 774 init_hpte_page_sizes(); 775 776 if (!debug_pagealloc_enabled_or_kfence()) { 777 /* 778 * Pick a size for the linear mapping. Currently, we only 779 * support 16M, 1M and 4K which is the default 780 */ 781 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) && 782 (unsigned long)_stext % 0x1000000) { 783 if (mmu_psize_defs[MMU_PAGE_16M].shift) 784 pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n"); 785 aligned = false; 786 } 787 788 if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned) 789 mmu_linear_psize = MMU_PAGE_16M; 790 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 791 mmu_linear_psize = MMU_PAGE_1M; 792 } 793 794 #ifdef CONFIG_PPC_64K_PAGES 795 /* 796 * Pick a size for the ordinary pages. Default is 4K, we support 797 * 64K for user mappings and vmalloc if supported by the processor. 798 * We only use 64k for ioremap if the processor 799 * (and firmware) support cache-inhibited large pages. 800 * If not, we use 4k and set mmu_ci_restrictions so that 801 * hash_page knows to switch processes that use cache-inhibited 802 * mappings to 4k pages. 803 */ 804 if (mmu_psize_defs[MMU_PAGE_64K].shift) { 805 mmu_virtual_psize = MMU_PAGE_64K; 806 mmu_vmalloc_psize = MMU_PAGE_64K; 807 if (mmu_linear_psize == MMU_PAGE_4K) 808 mmu_linear_psize = MMU_PAGE_64K; 809 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) { 810 /* 811 * When running on pSeries using 64k pages for ioremap 812 * would stop us accessing the HEA ethernet. So if we 813 * have the chance of ever seeing one, stay at 4k. 814 */ 815 if (!might_have_hea()) 816 mmu_io_psize = MMU_PAGE_64K; 817 } else 818 mmu_ci_restrictions = 1; 819 } 820 #endif /* CONFIG_PPC_64K_PAGES */ 821 822 #ifdef CONFIG_SPARSEMEM_VMEMMAP 823 /* 824 * We try to use 16M pages for vmemmap if that is supported 825 * and we have at least 1G of RAM at boot 826 */ 827 if (mmu_psize_defs[MMU_PAGE_16M].shift && 828 memblock_phys_mem_size() >= 0x40000000) 829 mmu_vmemmap_psize = MMU_PAGE_16M; 830 else 831 mmu_vmemmap_psize = mmu_virtual_psize; 832 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 833 834 printk(KERN_DEBUG "Page orders: linear mapping = %d, " 835 "virtual = %d, io = %d" 836 #ifdef CONFIG_SPARSEMEM_VMEMMAP 837 ", vmemmap = %d" 838 #endif 839 "\n", 840 mmu_psize_defs[mmu_linear_psize].shift, 841 mmu_psize_defs[mmu_virtual_psize].shift, 842 mmu_psize_defs[mmu_io_psize].shift 843 #ifdef CONFIG_SPARSEMEM_VMEMMAP 844 ,mmu_psize_defs[mmu_vmemmap_psize].shift 845 #endif 846 ); 847 } 848 849 static int __init htab_dt_scan_pftsize(unsigned long node, 850 const char *uname, int depth, 851 void *data) 852 { 853 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 854 const __be32 *prop; 855 856 /* We are scanning "cpu" nodes only */ 857 if (type == NULL || strcmp(type, "cpu") != 0) 858 return 0; 859 860 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL); 861 if (prop != NULL) { 862 /* pft_size[0] is the NUMA CEC cookie */ 863 ppc64_pft_size = be32_to_cpu(prop[1]); 864 return 1; 865 } 866 return 0; 867 } 868 869 unsigned htab_shift_for_mem_size(unsigned long mem_size) 870 { 871 unsigned memshift = __ilog2(mem_size); 872 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift; 873 unsigned pteg_shift; 874 875 /* round mem_size up to next power of 2 */ 876 if ((1UL << memshift) < mem_size) 877 memshift += 1; 878 879 /* aim for 2 pages / pteg */ 880 pteg_shift = memshift - (pshift + 1); 881 882 /* 883 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab 884 * size permitted by the architecture. 885 */ 886 return max(pteg_shift + 7, 18U); 887 } 888 889 static unsigned long __init htab_get_table_size(void) 890 { 891 /* 892 * If hash size isn't already provided by the platform, we try to 893 * retrieve it from the device-tree. If it's not there neither, we 894 * calculate it now based on the total RAM size 895 */ 896 if (ppc64_pft_size == 0) 897 of_scan_flat_dt(htab_dt_scan_pftsize, NULL); 898 if (ppc64_pft_size) 899 return 1UL << ppc64_pft_size; 900 901 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size()); 902 } 903 904 #ifdef CONFIG_MEMORY_HOTPLUG 905 static int resize_hpt_for_hotplug(unsigned long new_mem_size) 906 { 907 unsigned target_hpt_shift; 908 909 if (!mmu_hash_ops.resize_hpt) 910 return 0; 911 912 target_hpt_shift = htab_shift_for_mem_size(new_mem_size); 913 914 /* 915 * To avoid lots of HPT resizes if memory size is fluctuating 916 * across a boundary, we deliberately have some hysterisis 917 * here: we immediately increase the HPT size if the target 918 * shift exceeds the current shift, but we won't attempt to 919 * reduce unless the target shift is at least 2 below the 920 * current shift 921 */ 922 if (target_hpt_shift > ppc64_pft_size || 923 target_hpt_shift < ppc64_pft_size - 1) 924 return mmu_hash_ops.resize_hpt(target_hpt_shift); 925 926 return 0; 927 } 928 929 int hash__create_section_mapping(unsigned long start, unsigned long end, 930 int nid, pgprot_t prot) 931 { 932 int rc; 933 934 if (end >= H_VMALLOC_START) { 935 pr_warn("Outside the supported range\n"); 936 return -1; 937 } 938 939 resize_hpt_for_hotplug(memblock_phys_mem_size()); 940 941 rc = htab_bolt_mapping(start, end, __pa(start), 942 pgprot_val(prot), mmu_linear_psize, 943 mmu_kernel_ssize); 944 945 if (rc < 0) { 946 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize, 947 mmu_kernel_ssize); 948 BUG_ON(rc2 && (rc2 != -ENOENT)); 949 } 950 return rc; 951 } 952 953 int hash__remove_section_mapping(unsigned long start, unsigned long end) 954 { 955 int rc = htab_remove_mapping(start, end, mmu_linear_psize, 956 mmu_kernel_ssize); 957 958 if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC) 959 pr_warn("Hash collision while resizing HPT\n"); 960 961 return rc; 962 } 963 #endif /* CONFIG_MEMORY_HOTPLUG */ 964 965 static void __init hash_init_partition_table(phys_addr_t hash_table, 966 unsigned long htab_size) 967 { 968 mmu_partition_table_init(); 969 970 /* 971 * PS field (VRMA page size) is not used for LPID 0, hence set to 0. 972 * For now, UPRT is 0 and we have no segment table. 973 */ 974 htab_size = __ilog2(htab_size) - 18; 975 mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false); 976 pr_info("Partition table %p\n", partition_tb); 977 } 978 979 static void __init htab_initialize(void) 980 { 981 unsigned long table; 982 unsigned long pteg_count; 983 unsigned long prot; 984 phys_addr_t base = 0, size = 0, end; 985 u64 i; 986 987 DBG(" -> htab_initialize()\n"); 988 989 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { 990 mmu_kernel_ssize = MMU_SEGSIZE_1T; 991 mmu_highuser_ssize = MMU_SEGSIZE_1T; 992 printk(KERN_INFO "Using 1TB segments\n"); 993 } 994 995 if (stress_slb_enabled) 996 static_branch_enable(&stress_slb_key); 997 998 /* 999 * Calculate the required size of the htab. We want the number of 1000 * PTEGs to equal one half the number of real pages. 1001 */ 1002 htab_size_bytes = htab_get_table_size(); 1003 pteg_count = htab_size_bytes >> 7; 1004 1005 htab_hash_mask = pteg_count - 1; 1006 1007 if (firmware_has_feature(FW_FEATURE_LPAR) || 1008 firmware_has_feature(FW_FEATURE_PS3_LV1)) { 1009 /* Using a hypervisor which owns the htab */ 1010 htab_address = NULL; 1011 _SDR1 = 0; 1012 #ifdef CONFIG_FA_DUMP 1013 /* 1014 * If firmware assisted dump is active firmware preserves 1015 * the contents of htab along with entire partition memory. 1016 * Clear the htab if firmware assisted dump is active so 1017 * that we dont end up using old mappings. 1018 */ 1019 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all) 1020 mmu_hash_ops.hpte_clear_all(); 1021 #endif 1022 } else { 1023 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE; 1024 1025 #ifdef CONFIG_PPC_CELL 1026 /* 1027 * Cell may require the hash table down low when using the 1028 * Axon IOMMU in order to fit the dynamic region over it, see 1029 * comments in cell/iommu.c 1030 */ 1031 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) { 1032 limit = 0x80000000; 1033 pr_info("Hash table forced below 2G for Axon IOMMU\n"); 1034 } 1035 #endif /* CONFIG_PPC_CELL */ 1036 1037 table = memblock_phys_alloc_range(htab_size_bytes, 1038 htab_size_bytes, 1039 0, limit); 1040 if (!table) 1041 panic("ERROR: Failed to allocate %pa bytes below %pa\n", 1042 &htab_size_bytes, &limit); 1043 1044 DBG("Hash table allocated at %lx, size: %lx\n", table, 1045 htab_size_bytes); 1046 1047 htab_address = __va(table); 1048 1049 /* htab absolute addr + encoded htabsize */ 1050 _SDR1 = table + __ilog2(htab_size_bytes) - 18; 1051 1052 /* Initialize the HPT with no entries */ 1053 memset((void *)table, 0, htab_size_bytes); 1054 1055 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1056 /* Set SDR1 */ 1057 mtspr(SPRN_SDR1, _SDR1); 1058 else 1059 hash_init_partition_table(table, htab_size_bytes); 1060 } 1061 1062 prot = pgprot_val(PAGE_KERNEL); 1063 1064 if (debug_pagealloc_enabled_or_kfence()) { 1065 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT; 1066 linear_map_hash_slots = memblock_alloc_try_nid( 1067 linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT, 1068 ppc64_rma_size, NUMA_NO_NODE); 1069 if (!linear_map_hash_slots) 1070 panic("%s: Failed to allocate %lu bytes max_addr=%pa\n", 1071 __func__, linear_map_hash_count, &ppc64_rma_size); 1072 } 1073 1074 /* create bolted the linear mapping in the hash table */ 1075 for_each_mem_range(i, &base, &end) { 1076 size = end - base; 1077 base = (unsigned long)__va(base); 1078 1079 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n", 1080 base, size, prot); 1081 1082 if ((base + size) >= H_VMALLOC_START) { 1083 pr_warn("Outside the supported range\n"); 1084 continue; 1085 } 1086 1087 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), 1088 prot, mmu_linear_psize, mmu_kernel_ssize)); 1089 } 1090 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); 1091 1092 /* 1093 * If we have a memory_limit and we've allocated TCEs then we need to 1094 * explicitly map the TCE area at the top of RAM. We also cope with the 1095 * case that the TCEs start below memory_limit. 1096 * tce_alloc_start/end are 16MB aligned so the mapping should work 1097 * for either 4K or 16MB pages. 1098 */ 1099 if (tce_alloc_start) { 1100 tce_alloc_start = (unsigned long)__va(tce_alloc_start); 1101 tce_alloc_end = (unsigned long)__va(tce_alloc_end); 1102 1103 if (base + size >= tce_alloc_start) 1104 tce_alloc_start = base + size + 1; 1105 1106 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, 1107 __pa(tce_alloc_start), prot, 1108 mmu_linear_psize, mmu_kernel_ssize)); 1109 } 1110 1111 1112 DBG(" <- htab_initialize()\n"); 1113 } 1114 #undef KB 1115 #undef MB 1116 1117 void __init hash__early_init_devtree(void) 1118 { 1119 /* Initialize segment sizes */ 1120 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL); 1121 1122 /* Initialize page sizes */ 1123 htab_scan_page_sizes(); 1124 } 1125 1126 static struct hash_mm_context init_hash_mm_context; 1127 void __init hash__early_init_mmu(void) 1128 { 1129 #ifndef CONFIG_PPC_64K_PAGES 1130 /* 1131 * We have code in __hash_page_4K() and elsewhere, which assumes it can 1132 * do the following: 1133 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX); 1134 * 1135 * Where the slot number is between 0-15, and values of 8-15 indicate 1136 * the secondary bucket. For that code to work H_PAGE_F_SECOND and 1137 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and 1138 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here 1139 * with a BUILD_BUG_ON(). 1140 */ 1141 BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3))); 1142 #endif /* CONFIG_PPC_64K_PAGES */ 1143 1144 htab_init_page_sizes(); 1145 1146 /* 1147 * initialize page table size 1148 */ 1149 __pte_frag_nr = H_PTE_FRAG_NR; 1150 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT; 1151 __pmd_frag_nr = H_PMD_FRAG_NR; 1152 __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT; 1153 1154 __pte_index_size = H_PTE_INDEX_SIZE; 1155 __pmd_index_size = H_PMD_INDEX_SIZE; 1156 __pud_index_size = H_PUD_INDEX_SIZE; 1157 __pgd_index_size = H_PGD_INDEX_SIZE; 1158 __pud_cache_index = H_PUD_CACHE_INDEX; 1159 __pte_table_size = H_PTE_TABLE_SIZE; 1160 __pmd_table_size = H_PMD_TABLE_SIZE; 1161 __pud_table_size = H_PUD_TABLE_SIZE; 1162 __pgd_table_size = H_PGD_TABLE_SIZE; 1163 /* 1164 * 4k use hugepd format, so for hash set then to 1165 * zero 1166 */ 1167 __pmd_val_bits = HASH_PMD_VAL_BITS; 1168 __pud_val_bits = HASH_PUD_VAL_BITS; 1169 __pgd_val_bits = HASH_PGD_VAL_BITS; 1170 1171 __kernel_virt_start = H_KERN_VIRT_START; 1172 __vmalloc_start = H_VMALLOC_START; 1173 __vmalloc_end = H_VMALLOC_END; 1174 __kernel_io_start = H_KERN_IO_START; 1175 __kernel_io_end = H_KERN_IO_END; 1176 vmemmap = (struct page *)H_VMEMMAP_START; 1177 ioremap_bot = IOREMAP_BASE; 1178 1179 #ifdef CONFIG_PCI 1180 pci_io_base = ISA_IO_BASE; 1181 #endif 1182 1183 /* Select appropriate backend */ 1184 if (firmware_has_feature(FW_FEATURE_PS3_LV1)) 1185 ps3_early_mm_init(); 1186 else if (firmware_has_feature(FW_FEATURE_LPAR)) 1187 hpte_init_pseries(); 1188 else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE)) 1189 hpte_init_native(); 1190 1191 if (!mmu_hash_ops.hpte_insert) 1192 panic("hash__early_init_mmu: No MMU hash ops defined!\n"); 1193 1194 /* 1195 * Initialize the MMU Hash table and create the linear mapping 1196 * of memory. Has to be done before SLB initialization as this is 1197 * currently where the page size encoding is obtained. 1198 */ 1199 htab_initialize(); 1200 1201 init_mm.context.hash_context = &init_hash_mm_context; 1202 mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT); 1203 1204 pr_info("Initializing hash mmu with SLB\n"); 1205 /* Initialize SLB management */ 1206 slb_initialize(); 1207 1208 if (cpu_has_feature(CPU_FTR_ARCH_206) 1209 && cpu_has_feature(CPU_FTR_HVMODE)) 1210 tlbiel_all(); 1211 } 1212 1213 #ifdef CONFIG_SMP 1214 void hash__early_init_mmu_secondary(void) 1215 { 1216 /* Initialize hash table for that CPU */ 1217 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 1218 1219 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1220 mtspr(SPRN_SDR1, _SDR1); 1221 else 1222 set_ptcr_when_no_uv(__pa(partition_tb) | 1223 (PATB_SIZE_SHIFT - 12)); 1224 } 1225 /* Initialize SLB */ 1226 slb_initialize(); 1227 1228 if (cpu_has_feature(CPU_FTR_ARCH_206) 1229 && cpu_has_feature(CPU_FTR_HVMODE)) 1230 tlbiel_all(); 1231 1232 #ifdef CONFIG_PPC_MEM_KEYS 1233 if (mmu_has_feature(MMU_FTR_PKEY)) 1234 mtspr(SPRN_UAMOR, default_uamor); 1235 #endif 1236 } 1237 #endif /* CONFIG_SMP */ 1238 1239 /* 1240 * Called by asm hashtable.S for doing lazy icache flush 1241 */ 1242 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) 1243 { 1244 struct page *page; 1245 1246 if (!pfn_valid(pte_pfn(pte))) 1247 return pp; 1248 1249 page = pte_page(pte); 1250 1251 /* page is dirty */ 1252 if (!test_bit(PG_dcache_clean, &page->flags) && !PageReserved(page)) { 1253 if (trap == INTERRUPT_INST_STORAGE) { 1254 flush_dcache_icache_page(page); 1255 set_bit(PG_dcache_clean, &page->flags); 1256 } else 1257 pp |= HPTE_R_N; 1258 } 1259 return pp; 1260 } 1261 1262 static unsigned int get_paca_psize(unsigned long addr) 1263 { 1264 unsigned char *psizes; 1265 unsigned long index, mask_index; 1266 1267 if (addr < SLICE_LOW_TOP) { 1268 psizes = get_paca()->mm_ctx_low_slices_psize; 1269 index = GET_LOW_SLICE_INDEX(addr); 1270 } else { 1271 psizes = get_paca()->mm_ctx_high_slices_psize; 1272 index = GET_HIGH_SLICE_INDEX(addr); 1273 } 1274 mask_index = index & 0x1; 1275 return (psizes[index >> 1] >> (mask_index * 4)) & 0xF; 1276 } 1277 1278 1279 /* 1280 * Demote a segment to using 4k pages. 1281 * For now this makes the whole process use 4k pages. 1282 */ 1283 #ifdef CONFIG_PPC_64K_PAGES 1284 void demote_segment_4k(struct mm_struct *mm, unsigned long addr) 1285 { 1286 if (get_slice_psize(mm, addr) == MMU_PAGE_4K) 1287 return; 1288 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K); 1289 copro_flush_all_slbs(mm); 1290 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) { 1291 1292 copy_mm_to_paca(mm); 1293 slb_flush_and_restore_bolted(); 1294 } 1295 } 1296 #endif /* CONFIG_PPC_64K_PAGES */ 1297 1298 #ifdef CONFIG_PPC_SUBPAGE_PROT 1299 /* 1300 * This looks up a 2-bit protection code for a 4k subpage of a 64k page. 1301 * Userspace sets the subpage permissions using the subpage_prot system call. 1302 * 1303 * Result is 0: full permissions, _PAGE_RW: read-only, 1304 * _PAGE_RWX: no access. 1305 */ 1306 static int subpage_protection(struct mm_struct *mm, unsigned long ea) 1307 { 1308 struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context); 1309 u32 spp = 0; 1310 u32 **sbpm, *sbpp; 1311 1312 if (!spt) 1313 return 0; 1314 1315 if (ea >= spt->maxaddr) 1316 return 0; 1317 if (ea < 0x100000000UL) { 1318 /* addresses below 4GB use spt->low_prot */ 1319 sbpm = spt->low_prot; 1320 } else { 1321 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT]; 1322 if (!sbpm) 1323 return 0; 1324 } 1325 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)]; 1326 if (!sbpp) 1327 return 0; 1328 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)]; 1329 1330 /* extract 2-bit bitfield for this 4k subpage */ 1331 spp >>= 30 - 2 * ((ea >> 12) & 0xf); 1332 1333 /* 1334 * 0 -> full permission 1335 * 1 -> Read only 1336 * 2 -> no access. 1337 * We return the flag that need to be cleared. 1338 */ 1339 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0); 1340 return spp; 1341 } 1342 1343 #else /* CONFIG_PPC_SUBPAGE_PROT */ 1344 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea) 1345 { 1346 return 0; 1347 } 1348 #endif 1349 1350 void hash_failure_debug(unsigned long ea, unsigned long access, 1351 unsigned long vsid, unsigned long trap, 1352 int ssize, int psize, int lpsize, unsigned long pte) 1353 { 1354 if (!printk_ratelimit()) 1355 return; 1356 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n", 1357 ea, access, current->comm); 1358 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n", 1359 trap, vsid, ssize, psize, lpsize, pte); 1360 } 1361 1362 static void check_paca_psize(unsigned long ea, struct mm_struct *mm, 1363 int psize, bool user_region) 1364 { 1365 if (user_region) { 1366 if (psize != get_paca_psize(ea)) { 1367 copy_mm_to_paca(mm); 1368 slb_flush_and_restore_bolted(); 1369 } 1370 } else if (get_paca()->vmalloc_sllp != 1371 mmu_psize_defs[mmu_vmalloc_psize].sllp) { 1372 get_paca()->vmalloc_sllp = 1373 mmu_psize_defs[mmu_vmalloc_psize].sllp; 1374 slb_vmalloc_update(); 1375 } 1376 } 1377 1378 /* 1379 * Result code is: 1380 * 0 - handled 1381 * 1 - normal page fault 1382 * -1 - critical hash insertion error 1383 * -2 - access not permitted by subpage protection mechanism 1384 */ 1385 int hash_page_mm(struct mm_struct *mm, unsigned long ea, 1386 unsigned long access, unsigned long trap, 1387 unsigned long flags) 1388 { 1389 bool is_thp; 1390 pgd_t *pgdir; 1391 unsigned long vsid; 1392 pte_t *ptep; 1393 unsigned hugeshift; 1394 int rc, user_region = 0; 1395 int psize, ssize; 1396 1397 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n", 1398 ea, access, trap); 1399 trace_hash_fault(ea, access, trap); 1400 1401 /* Get region & vsid */ 1402 switch (get_region_id(ea)) { 1403 case USER_REGION_ID: 1404 user_region = 1; 1405 if (! mm) { 1406 DBG_LOW(" user region with no mm !\n"); 1407 rc = 1; 1408 goto bail; 1409 } 1410 psize = get_slice_psize(mm, ea); 1411 ssize = user_segment_size(ea); 1412 vsid = get_user_vsid(&mm->context, ea, ssize); 1413 break; 1414 case VMALLOC_REGION_ID: 1415 vsid = get_kernel_vsid(ea, mmu_kernel_ssize); 1416 psize = mmu_vmalloc_psize; 1417 ssize = mmu_kernel_ssize; 1418 flags |= HPTE_USE_KERNEL_KEY; 1419 break; 1420 1421 case IO_REGION_ID: 1422 vsid = get_kernel_vsid(ea, mmu_kernel_ssize); 1423 psize = mmu_io_psize; 1424 ssize = mmu_kernel_ssize; 1425 flags |= HPTE_USE_KERNEL_KEY; 1426 break; 1427 default: 1428 /* 1429 * Not a valid range 1430 * Send the problem up to do_page_fault() 1431 */ 1432 rc = 1; 1433 goto bail; 1434 } 1435 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid); 1436 1437 /* Bad address. */ 1438 if (!vsid) { 1439 DBG_LOW("Bad address!\n"); 1440 rc = 1; 1441 goto bail; 1442 } 1443 /* Get pgdir */ 1444 pgdir = mm->pgd; 1445 if (pgdir == NULL) { 1446 rc = 1; 1447 goto bail; 1448 } 1449 1450 /* Check CPU locality */ 1451 if (user_region && mm_is_thread_local(mm)) 1452 flags |= HPTE_LOCAL_UPDATE; 1453 1454 #ifndef CONFIG_PPC_64K_PAGES 1455 /* 1456 * If we use 4K pages and our psize is not 4K, then we might 1457 * be hitting a special driver mapping, and need to align the 1458 * address before we fetch the PTE. 1459 * 1460 * It could also be a hugepage mapping, in which case this is 1461 * not necessary, but it's not harmful, either. 1462 */ 1463 if (psize != MMU_PAGE_4K) 1464 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1); 1465 #endif /* CONFIG_PPC_64K_PAGES */ 1466 1467 /* Get PTE and page size from page tables */ 1468 ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift); 1469 if (ptep == NULL || !pte_present(*ptep)) { 1470 DBG_LOW(" no PTE !\n"); 1471 rc = 1; 1472 goto bail; 1473 } 1474 1475 /* 1476 * Add _PAGE_PRESENT to the required access perm. If there are parallel 1477 * updates to the pte that can possibly clear _PAGE_PTE, catch that too. 1478 * 1479 * We can safely use the return pte address in rest of the function 1480 * because we do set H_PAGE_BUSY which prevents further updates to pte 1481 * from generic code. 1482 */ 1483 access |= _PAGE_PRESENT | _PAGE_PTE; 1484 1485 /* 1486 * Pre-check access permissions (will be re-checked atomically 1487 * in __hash_page_XX but this pre-check is a fast path 1488 */ 1489 if (!check_pte_access(access, pte_val(*ptep))) { 1490 DBG_LOW(" no access !\n"); 1491 rc = 1; 1492 goto bail; 1493 } 1494 1495 if (hugeshift) { 1496 if (is_thp) 1497 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep, 1498 trap, flags, ssize, psize); 1499 #ifdef CONFIG_HUGETLB_PAGE 1500 else 1501 rc = __hash_page_huge(ea, access, vsid, ptep, trap, 1502 flags, ssize, hugeshift, psize); 1503 #else 1504 else { 1505 /* 1506 * if we have hugeshift, and is not transhuge with 1507 * hugetlb disabled, something is really wrong. 1508 */ 1509 rc = 1; 1510 WARN_ON(1); 1511 } 1512 #endif 1513 if (current->mm == mm) 1514 check_paca_psize(ea, mm, psize, user_region); 1515 1516 goto bail; 1517 } 1518 1519 #ifndef CONFIG_PPC_64K_PAGES 1520 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep)); 1521 #else 1522 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep), 1523 pte_val(*(ptep + PTRS_PER_PTE))); 1524 #endif 1525 /* Do actual hashing */ 1526 #ifdef CONFIG_PPC_64K_PAGES 1527 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */ 1528 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) { 1529 demote_segment_4k(mm, ea); 1530 psize = MMU_PAGE_4K; 1531 } 1532 1533 /* 1534 * If this PTE is non-cacheable and we have restrictions on 1535 * using non cacheable large pages, then we switch to 4k 1536 */ 1537 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) { 1538 if (user_region) { 1539 demote_segment_4k(mm, ea); 1540 psize = MMU_PAGE_4K; 1541 } else if (ea < VMALLOC_END) { 1542 /* 1543 * some driver did a non-cacheable mapping 1544 * in vmalloc space, so switch vmalloc 1545 * to 4k pages 1546 */ 1547 printk(KERN_ALERT "Reducing vmalloc segment " 1548 "to 4kB pages because of " 1549 "non-cacheable mapping\n"); 1550 psize = mmu_vmalloc_psize = MMU_PAGE_4K; 1551 copro_flush_all_slbs(mm); 1552 } 1553 } 1554 1555 #endif /* CONFIG_PPC_64K_PAGES */ 1556 1557 if (current->mm == mm) 1558 check_paca_psize(ea, mm, psize, user_region); 1559 1560 #ifdef CONFIG_PPC_64K_PAGES 1561 if (psize == MMU_PAGE_64K) 1562 rc = __hash_page_64K(ea, access, vsid, ptep, trap, 1563 flags, ssize); 1564 else 1565 #endif /* CONFIG_PPC_64K_PAGES */ 1566 { 1567 int spp = subpage_protection(mm, ea); 1568 if (access & spp) 1569 rc = -2; 1570 else 1571 rc = __hash_page_4K(ea, access, vsid, ptep, trap, 1572 flags, ssize, spp); 1573 } 1574 1575 /* 1576 * Dump some info in case of hash insertion failure, they should 1577 * never happen so it is really useful to know if/when they do 1578 */ 1579 if (rc == -1) 1580 hash_failure_debug(ea, access, vsid, trap, ssize, psize, 1581 psize, pte_val(*ptep)); 1582 #ifndef CONFIG_PPC_64K_PAGES 1583 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep)); 1584 #else 1585 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep), 1586 pte_val(*(ptep + PTRS_PER_PTE))); 1587 #endif 1588 DBG_LOW(" -> rc=%d\n", rc); 1589 1590 bail: 1591 return rc; 1592 } 1593 EXPORT_SYMBOL_GPL(hash_page_mm); 1594 1595 int hash_page(unsigned long ea, unsigned long access, unsigned long trap, 1596 unsigned long dsisr) 1597 { 1598 unsigned long flags = 0; 1599 struct mm_struct *mm = current->mm; 1600 1601 if ((get_region_id(ea) == VMALLOC_REGION_ID) || 1602 (get_region_id(ea) == IO_REGION_ID)) 1603 mm = &init_mm; 1604 1605 if (dsisr & DSISR_NOHPTE) 1606 flags |= HPTE_NOHPTE_UPDATE; 1607 1608 return hash_page_mm(mm, ea, access, trap, flags); 1609 } 1610 EXPORT_SYMBOL_GPL(hash_page); 1611 1612 DEFINE_INTERRUPT_HANDLER(do_hash_fault) 1613 { 1614 unsigned long ea = regs->dar; 1615 unsigned long dsisr = regs->dsisr; 1616 unsigned long access = _PAGE_PRESENT | _PAGE_READ; 1617 unsigned long flags = 0; 1618 struct mm_struct *mm; 1619 unsigned int region_id; 1620 long err; 1621 1622 if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) { 1623 hash__do_page_fault(regs); 1624 return; 1625 } 1626 1627 region_id = get_region_id(ea); 1628 if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID)) 1629 mm = &init_mm; 1630 else 1631 mm = current->mm; 1632 1633 if (dsisr & DSISR_NOHPTE) 1634 flags |= HPTE_NOHPTE_UPDATE; 1635 1636 if (dsisr & DSISR_ISSTORE) 1637 access |= _PAGE_WRITE; 1638 /* 1639 * We set _PAGE_PRIVILEGED only when 1640 * kernel mode access kernel space. 1641 * 1642 * _PAGE_PRIVILEGED is NOT set 1643 * 1) when kernel mode access user space 1644 * 2) user space access kernel space. 1645 */ 1646 access |= _PAGE_PRIVILEGED; 1647 if (user_mode(regs) || (region_id == USER_REGION_ID)) 1648 access &= ~_PAGE_PRIVILEGED; 1649 1650 if (TRAP(regs) == INTERRUPT_INST_STORAGE) 1651 access |= _PAGE_EXEC; 1652 1653 err = hash_page_mm(mm, ea, access, TRAP(regs), flags); 1654 if (unlikely(err < 0)) { 1655 // failed to insert a hash PTE due to an hypervisor error 1656 if (user_mode(regs)) { 1657 if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2) 1658 _exception(SIGSEGV, regs, SEGV_ACCERR, ea); 1659 else 1660 _exception(SIGBUS, regs, BUS_ADRERR, ea); 1661 } else { 1662 bad_page_fault(regs, SIGBUS); 1663 } 1664 err = 0; 1665 1666 } else if (err) { 1667 hash__do_page_fault(regs); 1668 } 1669 } 1670 1671 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea) 1672 { 1673 int psize = get_slice_psize(mm, ea); 1674 1675 /* We only prefault standard pages for now */ 1676 if (unlikely(psize != mm_ctx_user_psize(&mm->context))) 1677 return false; 1678 1679 /* 1680 * Don't prefault if subpage protection is enabled for the EA. 1681 */ 1682 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea))) 1683 return false; 1684 1685 return true; 1686 } 1687 1688 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea, 1689 bool is_exec, unsigned long trap) 1690 { 1691 unsigned long vsid; 1692 pgd_t *pgdir; 1693 int rc, ssize, update_flags = 0; 1694 unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0); 1695 unsigned long flags; 1696 1697 BUG_ON(get_region_id(ea) != USER_REGION_ID); 1698 1699 if (!should_hash_preload(mm, ea)) 1700 return; 1701 1702 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx," 1703 " trap=%lx\n", mm, mm->pgd, ea, access, trap); 1704 1705 /* Get Linux PTE if available */ 1706 pgdir = mm->pgd; 1707 if (pgdir == NULL) 1708 return; 1709 1710 /* Get VSID */ 1711 ssize = user_segment_size(ea); 1712 vsid = get_user_vsid(&mm->context, ea, ssize); 1713 if (!vsid) 1714 return; 1715 1716 #ifdef CONFIG_PPC_64K_PAGES 1717 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on 1718 * a 64K kernel), then we don't preload, hash_page() will take 1719 * care of it once we actually try to access the page. 1720 * That way we don't have to duplicate all of the logic for segment 1721 * page size demotion here 1722 * Called with PTL held, hence can be sure the value won't change in 1723 * between. 1724 */ 1725 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep)) 1726 return; 1727 #endif /* CONFIG_PPC_64K_PAGES */ 1728 1729 /* 1730 * __hash_page_* must run with interrupts off, including PMI interrupts 1731 * off, as it sets the H_PAGE_BUSY bit. 1732 * 1733 * It's otherwise possible for perf interrupts to hit at any time and 1734 * may take a hash fault reading the user stack, which could take a 1735 * hash miss and deadlock on the same H_PAGE_BUSY bit. 1736 * 1737 * Interrupts must also be off for the duration of the 1738 * mm_is_thread_local test and update, to prevent preempt running the 1739 * mm on another CPU (XXX: this may be racy vs kthread_use_mm). 1740 */ 1741 powerpc_local_irq_pmu_save(flags); 1742 1743 /* Is that local to this CPU ? */ 1744 if (mm_is_thread_local(mm)) 1745 update_flags |= HPTE_LOCAL_UPDATE; 1746 1747 /* Hash it in */ 1748 #ifdef CONFIG_PPC_64K_PAGES 1749 if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K) 1750 rc = __hash_page_64K(ea, access, vsid, ptep, trap, 1751 update_flags, ssize); 1752 else 1753 #endif /* CONFIG_PPC_64K_PAGES */ 1754 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags, 1755 ssize, subpage_protection(mm, ea)); 1756 1757 /* Dump some info in case of hash insertion failure, they should 1758 * never happen so it is really useful to know if/when they do 1759 */ 1760 if (rc == -1) 1761 hash_failure_debug(ea, access, vsid, trap, ssize, 1762 mm_ctx_user_psize(&mm->context), 1763 mm_ctx_user_psize(&mm->context), 1764 pte_val(*ptep)); 1765 1766 powerpc_local_irq_pmu_restore(flags); 1767 } 1768 1769 /* 1770 * This is called at the end of handling a user page fault, when the 1771 * fault has been handled by updating a PTE in the linux page tables. 1772 * We use it to preload an HPTE into the hash table corresponding to 1773 * the updated linux PTE. 1774 * 1775 * This must always be called with the pte lock held. 1776 */ 1777 void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address, 1778 pte_t *ptep) 1779 { 1780 /* 1781 * We don't need to worry about _PAGE_PRESENT here because we are 1782 * called with either mm->page_table_lock held or ptl lock held 1783 */ 1784 unsigned long trap; 1785 bool is_exec; 1786 1787 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ 1788 if (!pte_young(*ptep) || address >= TASK_SIZE) 1789 return; 1790 1791 /* 1792 * We try to figure out if we are coming from an instruction 1793 * access fault and pass that down to __hash_page so we avoid 1794 * double-faulting on execution of fresh text. We have to test 1795 * for regs NULL since init will get here first thing at boot. 1796 * 1797 * We also avoid filling the hash if not coming from a fault. 1798 */ 1799 1800 trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL; 1801 switch (trap) { 1802 case 0x300: 1803 is_exec = false; 1804 break; 1805 case 0x400: 1806 is_exec = true; 1807 break; 1808 default: 1809 return; 1810 } 1811 1812 hash_preload(vma->vm_mm, ptep, address, is_exec, trap); 1813 } 1814 1815 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1816 static inline void tm_flush_hash_page(int local) 1817 { 1818 /* 1819 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a 1820 * page back to a block device w/PIO could pick up transactional data 1821 * (bad!) so we force an abort here. Before the sync the page will be 1822 * made read-only, which will flush_hash_page. BIG ISSUE here: if the 1823 * kernel uses a page from userspace without unmapping it first, it may 1824 * see the speculated version. 1825 */ 1826 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 1827 MSR_TM_ACTIVE(current->thread.regs->msr)) { 1828 tm_enable(); 1829 tm_abort(TM_CAUSE_TLBI); 1830 } 1831 } 1832 #else 1833 static inline void tm_flush_hash_page(int local) 1834 { 1835 } 1836 #endif 1837 1838 /* 1839 * Return the global hash slot, corresponding to the given PTE, which contains 1840 * the HPTE. 1841 */ 1842 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift, 1843 int ssize, real_pte_t rpte, unsigned int subpg_index) 1844 { 1845 unsigned long hash, gslot, hidx; 1846 1847 hash = hpt_hash(vpn, shift, ssize); 1848 hidx = __rpte_to_hidx(rpte, subpg_index); 1849 if (hidx & _PTEIDX_SECONDARY) 1850 hash = ~hash; 1851 gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1852 gslot += hidx & _PTEIDX_GROUP_IX; 1853 return gslot; 1854 } 1855 1856 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize, 1857 unsigned long flags) 1858 { 1859 unsigned long index, shift, gslot; 1860 int local = flags & HPTE_LOCAL_UPDATE; 1861 1862 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn); 1863 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { 1864 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index); 1865 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot); 1866 /* 1867 * We use same base page size and actual psize, because we don't 1868 * use these functions for hugepage 1869 */ 1870 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize, 1871 ssize, local); 1872 } pte_iterate_hashed_end(); 1873 1874 tm_flush_hash_page(local); 1875 } 1876 1877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1878 void flush_hash_hugepage(unsigned long vsid, unsigned long addr, 1879 pmd_t *pmdp, unsigned int psize, int ssize, 1880 unsigned long flags) 1881 { 1882 int i, max_hpte_count, valid; 1883 unsigned long s_addr; 1884 unsigned char *hpte_slot_array; 1885 unsigned long hidx, shift, vpn, hash, slot; 1886 int local = flags & HPTE_LOCAL_UPDATE; 1887 1888 s_addr = addr & HPAGE_PMD_MASK; 1889 hpte_slot_array = get_hpte_slot_array(pmdp); 1890 /* 1891 * IF we try to do a HUGE PTE update after a withdraw is done. 1892 * we will find the below NULL. This happens when we do 1893 * split_huge_pmd 1894 */ 1895 if (!hpte_slot_array) 1896 return; 1897 1898 if (mmu_hash_ops.hugepage_invalidate) { 1899 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array, 1900 psize, ssize, local); 1901 goto tm_abort; 1902 } 1903 /* 1904 * No bluk hpte removal support, invalidate each entry 1905 */ 1906 shift = mmu_psize_defs[psize].shift; 1907 max_hpte_count = HPAGE_PMD_SIZE >> shift; 1908 for (i = 0; i < max_hpte_count; i++) { 1909 /* 1910 * 8 bits per each hpte entries 1911 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit] 1912 */ 1913 valid = hpte_valid(hpte_slot_array, i); 1914 if (!valid) 1915 continue; 1916 hidx = hpte_hash_index(hpte_slot_array, i); 1917 1918 /* get the vpn */ 1919 addr = s_addr + (i * (1ul << shift)); 1920 vpn = hpt_vpn(addr, vsid, ssize); 1921 hash = hpt_hash(vpn, shift, ssize); 1922 if (hidx & _PTEIDX_SECONDARY) 1923 hash = ~hash; 1924 1925 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1926 slot += hidx & _PTEIDX_GROUP_IX; 1927 mmu_hash_ops.hpte_invalidate(slot, vpn, psize, 1928 MMU_PAGE_16M, ssize, local); 1929 } 1930 tm_abort: 1931 tm_flush_hash_page(local); 1932 } 1933 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1934 1935 void flush_hash_range(unsigned long number, int local) 1936 { 1937 if (mmu_hash_ops.flush_hash_range) 1938 mmu_hash_ops.flush_hash_range(number, local); 1939 else { 1940 int i; 1941 struct ppc64_tlb_batch *batch = 1942 this_cpu_ptr(&ppc64_tlb_batch); 1943 1944 for (i = 0; i < number; i++) 1945 flush_hash_page(batch->vpn[i], batch->pte[i], 1946 batch->psize, batch->ssize, local); 1947 } 1948 } 1949 1950 long hpte_insert_repeating(unsigned long hash, unsigned long vpn, 1951 unsigned long pa, unsigned long rflags, 1952 unsigned long vflags, int psize, int ssize) 1953 { 1954 unsigned long hpte_group; 1955 long slot; 1956 1957 repeat: 1958 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; 1959 1960 /* Insert into the hash table, primary slot */ 1961 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags, 1962 psize, psize, ssize); 1963 1964 /* Primary is full, try the secondary */ 1965 if (unlikely(slot == -1)) { 1966 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; 1967 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, 1968 vflags | HPTE_V_SECONDARY, 1969 psize, psize, ssize); 1970 if (slot == -1) { 1971 if (mftb() & 0x1) 1972 hpte_group = (hash & htab_hash_mask) * 1973 HPTES_PER_GROUP; 1974 1975 mmu_hash_ops.hpte_remove(hpte_group); 1976 goto repeat; 1977 } 1978 } 1979 1980 return slot; 1981 } 1982 1983 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE) 1984 static DEFINE_RAW_SPINLOCK(linear_map_hash_lock); 1985 1986 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi) 1987 { 1988 unsigned long hash; 1989 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); 1990 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); 1991 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY); 1992 long ret; 1993 1994 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); 1995 1996 /* Don't create HPTE entries for bad address */ 1997 if (!vsid) 1998 return; 1999 2000 if (linear_map_hash_slots[lmi] & 0x80) 2001 return; 2002 2003 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode, 2004 HPTE_V_BOLTED, 2005 mmu_linear_psize, mmu_kernel_ssize); 2006 2007 BUG_ON (ret < 0); 2008 raw_spin_lock(&linear_map_hash_lock); 2009 BUG_ON(linear_map_hash_slots[lmi] & 0x80); 2010 linear_map_hash_slots[lmi] = ret | 0x80; 2011 raw_spin_unlock(&linear_map_hash_lock); 2012 } 2013 2014 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi) 2015 { 2016 unsigned long hash, hidx, slot; 2017 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); 2018 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); 2019 2020 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); 2021 raw_spin_lock(&linear_map_hash_lock); 2022 if (!(linear_map_hash_slots[lmi] & 0x80)) { 2023 raw_spin_unlock(&linear_map_hash_lock); 2024 return; 2025 } 2026 hidx = linear_map_hash_slots[lmi] & 0x7f; 2027 linear_map_hash_slots[lmi] = 0; 2028 raw_spin_unlock(&linear_map_hash_lock); 2029 if (hidx & _PTEIDX_SECONDARY) 2030 hash = ~hash; 2031 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; 2032 slot += hidx & _PTEIDX_GROUP_IX; 2033 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize, 2034 mmu_linear_psize, 2035 mmu_kernel_ssize, 0); 2036 } 2037 2038 void hash__kernel_map_pages(struct page *page, int numpages, int enable) 2039 { 2040 unsigned long flags, vaddr, lmi; 2041 int i; 2042 2043 local_irq_save(flags); 2044 for (i = 0; i < numpages; i++, page++) { 2045 vaddr = (unsigned long)page_address(page); 2046 lmi = __pa(vaddr) >> PAGE_SHIFT; 2047 if (lmi >= linear_map_hash_count) 2048 continue; 2049 if (enable) 2050 kernel_map_linear_page(vaddr, lmi); 2051 else 2052 kernel_unmap_linear_page(vaddr, lmi); 2053 } 2054 local_irq_restore(flags); 2055 } 2056 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_KFENCE */ 2057 2058 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base, 2059 phys_addr_t first_memblock_size) 2060 { 2061 /* 2062 * We don't currently support the first MEMBLOCK not mapping 0 2063 * physical on those processors 2064 */ 2065 BUG_ON(first_memblock_base != 0); 2066 2067 /* 2068 * On virtualized systems the first entry is our RMA region aka VRMA, 2069 * non-virtualized 64-bit hash MMU systems don't have a limitation 2070 * on real mode access. 2071 * 2072 * For guests on platforms before POWER9, we clamp the it limit to 1G 2073 * to avoid some funky things such as RTAS bugs etc... 2074 * 2075 * On POWER9 we limit to 1TB in case the host erroneously told us that 2076 * the RMA was >1TB. Effective address bits 0:23 are treated as zero 2077 * (meaning the access is aliased to zero i.e. addr = addr % 1TB) 2078 * for virtual real mode addressing and so it doesn't make sense to 2079 * have an area larger than 1TB as it can't be addressed. 2080 */ 2081 if (!early_cpu_has_feature(CPU_FTR_HVMODE)) { 2082 ppc64_rma_size = first_memblock_size; 2083 if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) 2084 ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000); 2085 else 2086 ppc64_rma_size = min_t(u64, ppc64_rma_size, 2087 1UL << SID_SHIFT_1T); 2088 2089 /* Finally limit subsequent allocations */ 2090 memblock_set_current_limit(ppc64_rma_size); 2091 } else { 2092 ppc64_rma_size = ULONG_MAX; 2093 } 2094 } 2095 2096 #ifdef CONFIG_DEBUG_FS 2097 2098 static int hpt_order_get(void *data, u64 *val) 2099 { 2100 *val = ppc64_pft_size; 2101 return 0; 2102 } 2103 2104 static int hpt_order_set(void *data, u64 val) 2105 { 2106 int ret; 2107 2108 if (!mmu_hash_ops.resize_hpt) 2109 return -ENODEV; 2110 2111 cpus_read_lock(); 2112 ret = mmu_hash_ops.resize_hpt(val); 2113 cpus_read_unlock(); 2114 2115 return ret; 2116 } 2117 2118 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n"); 2119 2120 static int __init hash64_debugfs(void) 2121 { 2122 debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL, 2123 &fops_hpt_order); 2124 return 0; 2125 } 2126 machine_device_initcall(pseries, hash64_debugfs); 2127 #endif /* CONFIG_DEBUG_FS */ 2128 2129 void __init print_system_hash_info(void) 2130 { 2131 pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size); 2132 2133 if (htab_hash_mask) 2134 pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask); 2135 } 2136 2137 unsigned long arch_randomize_brk(struct mm_struct *mm) 2138 { 2139 /* 2140 * If we are using 1TB segments and we are allowed to randomise 2141 * the heap, we can put it above 1TB so it is backed by a 1TB 2142 * segment. Otherwise the heap will be in the bottom 1TB 2143 * which always uses 256MB segments and this may result in a 2144 * performance penalty. 2145 */ 2146 if (is_32bit_task()) 2147 return randomize_page(mm->brk, SZ_32M); 2148 else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T) 2149 return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G); 2150 else 2151 return randomize_page(mm->brk, SZ_1G); 2152 } 2153