1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  *
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16 
17 #undef DEBUG
18 #undef DEBUG_LOW
19 
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 
39 #include <asm/debugfs.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/page.h>
45 #include <asm/types.h>
46 #include <linux/uaccess.h>
47 #include <asm/machdep.h>
48 #include <asm/prom.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
63 #include <asm/pte-walk.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/ultravisor.h>
66 
67 #include <mm/mmu_decl.h>
68 
69 #ifdef DEBUG
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
74 
75 #ifdef DEBUG_LOW
76 #define DBG_LOW(fmt...) udbg_printf(fmt)
77 #else
78 #define DBG_LOW(fmt...)
79 #endif
80 
81 #define KB (1024)
82 #define MB (1024*KB)
83 #define GB (1024L*MB)
84 
85 /*
86  * Note:  pte   --> Linux PTE
87  *        HPTE  --> PowerPC Hashed Page Table Entry
88  *
89  * Execution context:
90  *   htab_initialize is called with the MMU off (of course), but
91  *   the kernel has been copied down to zero so it can directly
92  *   reference global data.  At this point it is very difficult
93  *   to print debug info.
94  *
95  */
96 
97 static unsigned long _SDR1;
98 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
99 EXPORT_SYMBOL_GPL(mmu_psize_defs);
100 
101 u8 hpte_page_sizes[1 << LP_BITS];
102 EXPORT_SYMBOL_GPL(hpte_page_sizes);
103 
104 struct hash_pte *htab_address;
105 unsigned long htab_size_bytes;
106 unsigned long htab_hash_mask;
107 EXPORT_SYMBOL_GPL(htab_hash_mask);
108 int mmu_linear_psize = MMU_PAGE_4K;
109 EXPORT_SYMBOL_GPL(mmu_linear_psize);
110 int mmu_virtual_psize = MMU_PAGE_4K;
111 int mmu_vmalloc_psize = MMU_PAGE_4K;
112 #ifdef CONFIG_SPARSEMEM_VMEMMAP
113 int mmu_vmemmap_psize = MMU_PAGE_4K;
114 #endif
115 int mmu_io_psize = MMU_PAGE_4K;
116 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
117 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
118 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
119 u16 mmu_slb_size = 64;
120 EXPORT_SYMBOL_GPL(mmu_slb_size);
121 #ifdef CONFIG_PPC_64K_PAGES
122 int mmu_ci_restrictions;
123 #endif
124 #ifdef CONFIG_DEBUG_PAGEALLOC
125 static u8 *linear_map_hash_slots;
126 static unsigned long linear_map_hash_count;
127 static DEFINE_SPINLOCK(linear_map_hash_lock);
128 #endif /* CONFIG_DEBUG_PAGEALLOC */
129 struct mmu_hash_ops mmu_hash_ops;
130 EXPORT_SYMBOL(mmu_hash_ops);
131 
132 /*
133  * These are definitions of page sizes arrays to be used when none
134  * is provided by the firmware.
135  */
136 
137 /*
138  * Fallback (4k pages only)
139  */
140 static struct mmu_psize_def mmu_psize_defaults[] = {
141 	[MMU_PAGE_4K] = {
142 		.shift	= 12,
143 		.sllp	= 0,
144 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
145 		.avpnm	= 0,
146 		.tlbiel = 0,
147 	},
148 };
149 
150 /*
151  * POWER4, GPUL, POWER5
152  *
153  * Support for 16Mb large pages
154  */
155 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
156 	[MMU_PAGE_4K] = {
157 		.shift	= 12,
158 		.sllp	= 0,
159 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
160 		.avpnm	= 0,
161 		.tlbiel = 1,
162 	},
163 	[MMU_PAGE_16M] = {
164 		.shift	= 24,
165 		.sllp	= SLB_VSID_L,
166 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
167 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
168 		.avpnm	= 0x1UL,
169 		.tlbiel = 0,
170 	},
171 };
172 
173 /*
174  * 'R' and 'C' update notes:
175  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
176  *     create writeable HPTEs without C set, because the hcall H_PROTECT
177  *     that we use in that case will not update C
178  *  - The above is however not a problem, because we also don't do that
179  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
180  *     do the right thing and thus we don't have the race I described earlier
181  *
182  *    - Under bare metal,  we do have the race, so we need R and C set
183  *    - We make sure R is always set and never lost
184  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
185  */
186 unsigned long htab_convert_pte_flags(unsigned long pteflags)
187 {
188 	unsigned long rflags = 0;
189 
190 	/* _PAGE_EXEC -> NOEXEC */
191 	if ((pteflags & _PAGE_EXEC) == 0)
192 		rflags |= HPTE_R_N;
193 	/*
194 	 * PPP bits:
195 	 * Linux uses slb key 0 for kernel and 1 for user.
196 	 * kernel RW areas are mapped with PPP=0b000
197 	 * User area is mapped with PPP=0b010 for read/write
198 	 * or PPP=0b011 for read-only (including writeable but clean pages).
199 	 */
200 	if (pteflags & _PAGE_PRIVILEGED) {
201 		/*
202 		 * Kernel read only mapped with ppp bits 0b110
203 		 */
204 		if (!(pteflags & _PAGE_WRITE)) {
205 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
206 				rflags |= (HPTE_R_PP0 | 0x2);
207 			else
208 				rflags |= 0x3;
209 		}
210 	} else {
211 		if (pteflags & _PAGE_RWX)
212 			rflags |= 0x2;
213 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
214 			rflags |= 0x1;
215 	}
216 	/*
217 	 * We can't allow hardware to update hpte bits. Hence always
218 	 * set 'R' bit and set 'C' if it is a write fault
219 	 */
220 	rflags |=  HPTE_R_R;
221 
222 	if (pteflags & _PAGE_DIRTY)
223 		rflags |= HPTE_R_C;
224 	/*
225 	 * Add in WIG bits
226 	 */
227 
228 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
229 		rflags |= HPTE_R_I;
230 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
231 		rflags |= (HPTE_R_I | HPTE_R_G);
232 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
233 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
234 	else
235 		/*
236 		 * Add memory coherence if cache inhibited is not set
237 		 */
238 		rflags |= HPTE_R_M;
239 
240 	rflags |= pte_to_hpte_pkey_bits(pteflags);
241 	return rflags;
242 }
243 
244 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
245 		      unsigned long pstart, unsigned long prot,
246 		      int psize, int ssize)
247 {
248 	unsigned long vaddr, paddr;
249 	unsigned int step, shift;
250 	int ret = 0;
251 
252 	shift = mmu_psize_defs[psize].shift;
253 	step = 1 << shift;
254 
255 	prot = htab_convert_pte_flags(prot);
256 
257 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
258 	    vstart, vend, pstart, prot, psize, ssize);
259 
260 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
261 	     vaddr += step, paddr += step) {
262 		unsigned long hash, hpteg;
263 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
264 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
265 		unsigned long tprot = prot;
266 		bool secondary_hash = false;
267 
268 		/*
269 		 * If we hit a bad address return error.
270 		 */
271 		if (!vsid)
272 			return -1;
273 		/* Make kernel text executable */
274 		if (overlaps_kernel_text(vaddr, vaddr + step))
275 			tprot &= ~HPTE_R_N;
276 
277 		/*
278 		 * If relocatable, check if it overlaps interrupt vectors that
279 		 * are copied down to real 0. For relocatable kernel
280 		 * (e.g. kdump case) we copy interrupt vectors down to real
281 		 * address 0. Mark that region as executable. This is
282 		 * because on p8 system with relocation on exception feature
283 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
284 		 * in order to execute the interrupt handlers in virtual
285 		 * mode the vector region need to be marked as executable.
286 		 */
287 		if ((PHYSICAL_START > MEMORY_START) &&
288 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
289 				tprot &= ~HPTE_R_N;
290 
291 		hash = hpt_hash(vpn, shift, ssize);
292 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
293 
294 		BUG_ON(!mmu_hash_ops.hpte_insert);
295 repeat:
296 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
297 					       HPTE_V_BOLTED, psize, psize,
298 					       ssize);
299 		if (ret == -1) {
300 			/*
301 			 * Try to to keep bolted entries in primary.
302 			 * Remove non bolted entries and try insert again
303 			 */
304 			ret = mmu_hash_ops.hpte_remove(hpteg);
305 			if (ret != -1)
306 				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
307 							       HPTE_V_BOLTED, psize, psize,
308 							       ssize);
309 			if (ret == -1 && !secondary_hash) {
310 				secondary_hash = true;
311 				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
312 				goto repeat;
313 			}
314 		}
315 
316 		if (ret < 0)
317 			break;
318 
319 		cond_resched();
320 #ifdef CONFIG_DEBUG_PAGEALLOC
321 		if (debug_pagealloc_enabled() &&
322 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
323 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
324 #endif /* CONFIG_DEBUG_PAGEALLOC */
325 	}
326 	return ret < 0 ? ret : 0;
327 }
328 
329 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
330 		      int psize, int ssize)
331 {
332 	unsigned long vaddr;
333 	unsigned int step, shift;
334 	int rc;
335 	int ret = 0;
336 
337 	shift = mmu_psize_defs[psize].shift;
338 	step = 1 << shift;
339 
340 	if (!mmu_hash_ops.hpte_removebolted)
341 		return -ENODEV;
342 
343 	for (vaddr = vstart; vaddr < vend; vaddr += step) {
344 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
345 		if (rc == -ENOENT) {
346 			ret = -ENOENT;
347 			continue;
348 		}
349 		if (rc < 0)
350 			return rc;
351 	}
352 
353 	return ret;
354 }
355 
356 static bool disable_1tb_segments = false;
357 
358 static int __init parse_disable_1tb_segments(char *p)
359 {
360 	disable_1tb_segments = true;
361 	return 0;
362 }
363 early_param("disable_1tb_segments", parse_disable_1tb_segments);
364 
365 static int __init htab_dt_scan_seg_sizes(unsigned long node,
366 					 const char *uname, int depth,
367 					 void *data)
368 {
369 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
370 	const __be32 *prop;
371 	int size = 0;
372 
373 	/* We are scanning "cpu" nodes only */
374 	if (type == NULL || strcmp(type, "cpu") != 0)
375 		return 0;
376 
377 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
378 	if (prop == NULL)
379 		return 0;
380 	for (; size >= 4; size -= 4, ++prop) {
381 		if (be32_to_cpu(prop[0]) == 40) {
382 			DBG("1T segment support detected\n");
383 
384 			if (disable_1tb_segments) {
385 				DBG("1T segments disabled by command line\n");
386 				break;
387 			}
388 
389 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
390 			return 1;
391 		}
392 	}
393 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
394 	return 0;
395 }
396 
397 static int __init get_idx_from_shift(unsigned int shift)
398 {
399 	int idx = -1;
400 
401 	switch (shift) {
402 	case 0xc:
403 		idx = MMU_PAGE_4K;
404 		break;
405 	case 0x10:
406 		idx = MMU_PAGE_64K;
407 		break;
408 	case 0x14:
409 		idx = MMU_PAGE_1M;
410 		break;
411 	case 0x18:
412 		idx = MMU_PAGE_16M;
413 		break;
414 	case 0x22:
415 		idx = MMU_PAGE_16G;
416 		break;
417 	}
418 	return idx;
419 }
420 
421 static int __init htab_dt_scan_page_sizes(unsigned long node,
422 					  const char *uname, int depth,
423 					  void *data)
424 {
425 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
426 	const __be32 *prop;
427 	int size = 0;
428 
429 	/* We are scanning "cpu" nodes only */
430 	if (type == NULL || strcmp(type, "cpu") != 0)
431 		return 0;
432 
433 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
434 	if (!prop)
435 		return 0;
436 
437 	pr_info("Page sizes from device-tree:\n");
438 	size /= 4;
439 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
440 	while(size > 0) {
441 		unsigned int base_shift = be32_to_cpu(prop[0]);
442 		unsigned int slbenc = be32_to_cpu(prop[1]);
443 		unsigned int lpnum = be32_to_cpu(prop[2]);
444 		struct mmu_psize_def *def;
445 		int idx, base_idx;
446 
447 		size -= 3; prop += 3;
448 		base_idx = get_idx_from_shift(base_shift);
449 		if (base_idx < 0) {
450 			/* skip the pte encoding also */
451 			prop += lpnum * 2; size -= lpnum * 2;
452 			continue;
453 		}
454 		def = &mmu_psize_defs[base_idx];
455 		if (base_idx == MMU_PAGE_16M)
456 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
457 
458 		def->shift = base_shift;
459 		if (base_shift <= 23)
460 			def->avpnm = 0;
461 		else
462 			def->avpnm = (1 << (base_shift - 23)) - 1;
463 		def->sllp = slbenc;
464 		/*
465 		 * We don't know for sure what's up with tlbiel, so
466 		 * for now we only set it for 4K and 64K pages
467 		 */
468 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
469 			def->tlbiel = 1;
470 		else
471 			def->tlbiel = 0;
472 
473 		while (size > 0 && lpnum) {
474 			unsigned int shift = be32_to_cpu(prop[0]);
475 			int penc  = be32_to_cpu(prop[1]);
476 
477 			prop += 2; size -= 2;
478 			lpnum--;
479 
480 			idx = get_idx_from_shift(shift);
481 			if (idx < 0)
482 				continue;
483 
484 			if (penc == -1)
485 				pr_err("Invalid penc for base_shift=%d "
486 				       "shift=%d\n", base_shift, shift);
487 
488 			def->penc[idx] = penc;
489 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
490 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
491 				base_shift, shift, def->sllp,
492 				def->avpnm, def->tlbiel, def->penc[idx]);
493 		}
494 	}
495 
496 	return 1;
497 }
498 
499 #ifdef CONFIG_HUGETLB_PAGE
500 /*
501  * Scan for 16G memory blocks that have been set aside for huge pages
502  * and reserve those blocks for 16G huge pages.
503  */
504 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
505 					const char *uname, int depth,
506 					void *data) {
507 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
508 	const __be64 *addr_prop;
509 	const __be32 *page_count_prop;
510 	unsigned int expected_pages;
511 	long unsigned int phys_addr;
512 	long unsigned int block_size;
513 
514 	/* We are scanning "memory" nodes only */
515 	if (type == NULL || strcmp(type, "memory") != 0)
516 		return 0;
517 
518 	/*
519 	 * This property is the log base 2 of the number of virtual pages that
520 	 * will represent this memory block.
521 	 */
522 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
523 	if (page_count_prop == NULL)
524 		return 0;
525 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
526 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
527 	if (addr_prop == NULL)
528 		return 0;
529 	phys_addr = be64_to_cpu(addr_prop[0]);
530 	block_size = be64_to_cpu(addr_prop[1]);
531 	if (block_size != (16 * GB))
532 		return 0;
533 	printk(KERN_INFO "Huge page(16GB) memory: "
534 			"addr = 0x%lX size = 0x%lX pages = %d\n",
535 			phys_addr, block_size, expected_pages);
536 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
537 		memblock_reserve(phys_addr, block_size * expected_pages);
538 		pseries_add_gpage(phys_addr, block_size, expected_pages);
539 	}
540 	return 0;
541 }
542 #endif /* CONFIG_HUGETLB_PAGE */
543 
544 static void mmu_psize_set_default_penc(void)
545 {
546 	int bpsize, apsize;
547 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
548 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
549 			mmu_psize_defs[bpsize].penc[apsize] = -1;
550 }
551 
552 #ifdef CONFIG_PPC_64K_PAGES
553 
554 static bool might_have_hea(void)
555 {
556 	/*
557 	 * The HEA ethernet adapter requires awareness of the
558 	 * GX bus. Without that awareness we can easily assume
559 	 * we will never see an HEA ethernet device.
560 	 */
561 #ifdef CONFIG_IBMEBUS
562 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
563 		firmware_has_feature(FW_FEATURE_SPLPAR);
564 #else
565 	return false;
566 #endif
567 }
568 
569 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
570 
571 static void __init htab_scan_page_sizes(void)
572 {
573 	int rc;
574 
575 	/* se the invalid penc to -1 */
576 	mmu_psize_set_default_penc();
577 
578 	/* Default to 4K pages only */
579 	memcpy(mmu_psize_defs, mmu_psize_defaults,
580 	       sizeof(mmu_psize_defaults));
581 
582 	/*
583 	 * Try to find the available page sizes in the device-tree
584 	 */
585 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
586 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
587 		/*
588 		 * Nothing in the device-tree, but the CPU supports 16M pages,
589 		 * so let's fallback on a known size list for 16M capable CPUs.
590 		 */
591 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
592 		       sizeof(mmu_psize_defaults_gp));
593 	}
594 
595 #ifdef CONFIG_HUGETLB_PAGE
596 	if (!hugetlb_disabled) {
597 		/* Reserve 16G huge page memory sections for huge pages */
598 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
599 	}
600 #endif /* CONFIG_HUGETLB_PAGE */
601 }
602 
603 /*
604  * Fill in the hpte_page_sizes[] array.
605  * We go through the mmu_psize_defs[] array looking for all the
606  * supported base/actual page size combinations.  Each combination
607  * has a unique pagesize encoding (penc) value in the low bits of
608  * the LP field of the HPTE.  For actual page sizes less than 1MB,
609  * some of the upper LP bits are used for RPN bits, meaning that
610  * we need to fill in several entries in hpte_page_sizes[].
611  *
612  * In diagrammatic form, with r = RPN bits and z = page size bits:
613  *        PTE LP     actual page size
614  *    rrrr rrrz		>=8KB
615  *    rrrr rrzz		>=16KB
616  *    rrrr rzzz		>=32KB
617  *    rrrr zzzz		>=64KB
618  *    ...
619  *
620  * The zzzz bits are implementation-specific but are chosen so that
621  * no encoding for a larger page size uses the same value in its
622  * low-order N bits as the encoding for the 2^(12+N) byte page size
623  * (if it exists).
624  */
625 static void init_hpte_page_sizes(void)
626 {
627 	long int ap, bp;
628 	long int shift, penc;
629 
630 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
631 		if (!mmu_psize_defs[bp].shift)
632 			continue;	/* not a supported page size */
633 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
634 			penc = mmu_psize_defs[bp].penc[ap];
635 			if (penc == -1 || !mmu_psize_defs[ap].shift)
636 				continue;
637 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
638 			if (shift <= 0)
639 				continue;	/* should never happen */
640 			/*
641 			 * For page sizes less than 1MB, this loop
642 			 * replicates the entry for all possible values
643 			 * of the rrrr bits.
644 			 */
645 			while (penc < (1 << LP_BITS)) {
646 				hpte_page_sizes[penc] = (ap << 4) | bp;
647 				penc += 1 << shift;
648 			}
649 		}
650 	}
651 }
652 
653 static void __init htab_init_page_sizes(void)
654 {
655 	init_hpte_page_sizes();
656 
657 	if (!debug_pagealloc_enabled()) {
658 		/*
659 		 * Pick a size for the linear mapping. Currently, we only
660 		 * support 16M, 1M and 4K which is the default
661 		 */
662 		if (mmu_psize_defs[MMU_PAGE_16M].shift)
663 			mmu_linear_psize = MMU_PAGE_16M;
664 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
665 			mmu_linear_psize = MMU_PAGE_1M;
666 	}
667 
668 #ifdef CONFIG_PPC_64K_PAGES
669 	/*
670 	 * Pick a size for the ordinary pages. Default is 4K, we support
671 	 * 64K for user mappings and vmalloc if supported by the processor.
672 	 * We only use 64k for ioremap if the processor
673 	 * (and firmware) support cache-inhibited large pages.
674 	 * If not, we use 4k and set mmu_ci_restrictions so that
675 	 * hash_page knows to switch processes that use cache-inhibited
676 	 * mappings to 4k pages.
677 	 */
678 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
679 		mmu_virtual_psize = MMU_PAGE_64K;
680 		mmu_vmalloc_psize = MMU_PAGE_64K;
681 		if (mmu_linear_psize == MMU_PAGE_4K)
682 			mmu_linear_psize = MMU_PAGE_64K;
683 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
684 			/*
685 			 * When running on pSeries using 64k pages for ioremap
686 			 * would stop us accessing the HEA ethernet. So if we
687 			 * have the chance of ever seeing one, stay at 4k.
688 			 */
689 			if (!might_have_hea())
690 				mmu_io_psize = MMU_PAGE_64K;
691 		} else
692 			mmu_ci_restrictions = 1;
693 	}
694 #endif /* CONFIG_PPC_64K_PAGES */
695 
696 #ifdef CONFIG_SPARSEMEM_VMEMMAP
697 	/*
698 	 * We try to use 16M pages for vmemmap if that is supported
699 	 * and we have at least 1G of RAM at boot
700 	 */
701 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
702 	    memblock_phys_mem_size() >= 0x40000000)
703 		mmu_vmemmap_psize = MMU_PAGE_16M;
704 	else
705 		mmu_vmemmap_psize = mmu_virtual_psize;
706 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
707 
708 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
709 	       "virtual = %d, io = %d"
710 #ifdef CONFIG_SPARSEMEM_VMEMMAP
711 	       ", vmemmap = %d"
712 #endif
713 	       "\n",
714 	       mmu_psize_defs[mmu_linear_psize].shift,
715 	       mmu_psize_defs[mmu_virtual_psize].shift,
716 	       mmu_psize_defs[mmu_io_psize].shift
717 #ifdef CONFIG_SPARSEMEM_VMEMMAP
718 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
719 #endif
720 	       );
721 }
722 
723 static int __init htab_dt_scan_pftsize(unsigned long node,
724 				       const char *uname, int depth,
725 				       void *data)
726 {
727 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
728 	const __be32 *prop;
729 
730 	/* We are scanning "cpu" nodes only */
731 	if (type == NULL || strcmp(type, "cpu") != 0)
732 		return 0;
733 
734 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
735 	if (prop != NULL) {
736 		/* pft_size[0] is the NUMA CEC cookie */
737 		ppc64_pft_size = be32_to_cpu(prop[1]);
738 		return 1;
739 	}
740 	return 0;
741 }
742 
743 unsigned htab_shift_for_mem_size(unsigned long mem_size)
744 {
745 	unsigned memshift = __ilog2(mem_size);
746 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
747 	unsigned pteg_shift;
748 
749 	/* round mem_size up to next power of 2 */
750 	if ((1UL << memshift) < mem_size)
751 		memshift += 1;
752 
753 	/* aim for 2 pages / pteg */
754 	pteg_shift = memshift - (pshift + 1);
755 
756 	/*
757 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
758 	 * size permitted by the architecture.
759 	 */
760 	return max(pteg_shift + 7, 18U);
761 }
762 
763 static unsigned long __init htab_get_table_size(void)
764 {
765 	/*
766 	 * If hash size isn't already provided by the platform, we try to
767 	 * retrieve it from the device-tree. If it's not there neither, we
768 	 * calculate it now based on the total RAM size
769 	 */
770 	if (ppc64_pft_size == 0)
771 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
772 	if (ppc64_pft_size)
773 		return 1UL << ppc64_pft_size;
774 
775 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
776 }
777 
778 #ifdef CONFIG_MEMORY_HOTPLUG
779 int resize_hpt_for_hotplug(unsigned long new_mem_size)
780 {
781 	unsigned target_hpt_shift;
782 
783 	if (!mmu_hash_ops.resize_hpt)
784 		return 0;
785 
786 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
787 
788 	/*
789 	 * To avoid lots of HPT resizes if memory size is fluctuating
790 	 * across a boundary, we deliberately have some hysterisis
791 	 * here: we immediately increase the HPT size if the target
792 	 * shift exceeds the current shift, but we won't attempt to
793 	 * reduce unless the target shift is at least 2 below the
794 	 * current shift
795 	 */
796 	if (target_hpt_shift > ppc64_pft_size ||
797 	    target_hpt_shift < ppc64_pft_size - 1)
798 		return mmu_hash_ops.resize_hpt(target_hpt_shift);
799 
800 	return 0;
801 }
802 
803 int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
804 {
805 	int rc;
806 
807 	if (end >= H_VMALLOC_START) {
808 		pr_warn("Outside the supported range\n");
809 		return -1;
810 	}
811 
812 	rc = htab_bolt_mapping(start, end, __pa(start),
813 			       pgprot_val(PAGE_KERNEL), mmu_linear_psize,
814 			       mmu_kernel_ssize);
815 
816 	if (rc < 0) {
817 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
818 					      mmu_kernel_ssize);
819 		BUG_ON(rc2 && (rc2 != -ENOENT));
820 	}
821 	return rc;
822 }
823 
824 int hash__remove_section_mapping(unsigned long start, unsigned long end)
825 {
826 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
827 				     mmu_kernel_ssize);
828 	WARN_ON(rc < 0);
829 	return rc;
830 }
831 #endif /* CONFIG_MEMORY_HOTPLUG */
832 
833 static void __init hash_init_partition_table(phys_addr_t hash_table,
834 					     unsigned long htab_size)
835 {
836 	mmu_partition_table_init();
837 
838 	/*
839 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
840 	 * For now, UPRT is 0 and we have no segment table.
841 	 */
842 	htab_size =  __ilog2(htab_size) - 18;
843 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
844 	pr_info("Partition table %p\n", partition_tb);
845 }
846 
847 static void __init htab_initialize(void)
848 {
849 	unsigned long table;
850 	unsigned long pteg_count;
851 	unsigned long prot;
852 	unsigned long base = 0, size = 0;
853 	struct memblock_region *reg;
854 
855 	DBG(" -> htab_initialize()\n");
856 
857 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
858 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
859 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
860 		printk(KERN_INFO "Using 1TB segments\n");
861 	}
862 
863 	/*
864 	 * Calculate the required size of the htab.  We want the number of
865 	 * PTEGs to equal one half the number of real pages.
866 	 */
867 	htab_size_bytes = htab_get_table_size();
868 	pteg_count = htab_size_bytes >> 7;
869 
870 	htab_hash_mask = pteg_count - 1;
871 
872 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
873 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
874 		/* Using a hypervisor which owns the htab */
875 		htab_address = NULL;
876 		_SDR1 = 0;
877 #ifdef CONFIG_FA_DUMP
878 		/*
879 		 * If firmware assisted dump is active firmware preserves
880 		 * the contents of htab along with entire partition memory.
881 		 * Clear the htab if firmware assisted dump is active so
882 		 * that we dont end up using old mappings.
883 		 */
884 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
885 			mmu_hash_ops.hpte_clear_all();
886 #endif
887 	} else {
888 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
889 
890 #ifdef CONFIG_PPC_CELL
891 		/*
892 		 * Cell may require the hash table down low when using the
893 		 * Axon IOMMU in order to fit the dynamic region over it, see
894 		 * comments in cell/iommu.c
895 		 */
896 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
897 			limit = 0x80000000;
898 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
899 		}
900 #endif /* CONFIG_PPC_CELL */
901 
902 		table = memblock_phys_alloc_range(htab_size_bytes,
903 						  htab_size_bytes,
904 						  0, limit);
905 		if (!table)
906 			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
907 			      &htab_size_bytes, &limit);
908 
909 		DBG("Hash table allocated at %lx, size: %lx\n", table,
910 		    htab_size_bytes);
911 
912 		htab_address = __va(table);
913 
914 		/* htab absolute addr + encoded htabsize */
915 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
916 
917 		/* Initialize the HPT with no entries */
918 		memset((void *)table, 0, htab_size_bytes);
919 
920 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
921 			/* Set SDR1 */
922 			mtspr(SPRN_SDR1, _SDR1);
923 		else
924 			hash_init_partition_table(table, htab_size_bytes);
925 	}
926 
927 	prot = pgprot_val(PAGE_KERNEL);
928 
929 #ifdef CONFIG_DEBUG_PAGEALLOC
930 	if (debug_pagealloc_enabled()) {
931 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
932 		linear_map_hash_slots = memblock_alloc_try_nid(
933 				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
934 				ppc64_rma_size,	NUMA_NO_NODE);
935 		if (!linear_map_hash_slots)
936 			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
937 			      __func__, linear_map_hash_count, &ppc64_rma_size);
938 	}
939 #endif /* CONFIG_DEBUG_PAGEALLOC */
940 
941 	/* create bolted the linear mapping in the hash table */
942 	for_each_memblock(memory, reg) {
943 		base = (unsigned long)__va(reg->base);
944 		size = reg->size;
945 
946 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
947 		    base, size, prot);
948 
949 		if ((base + size) >= H_VMALLOC_START) {
950 			pr_warn("Outside the supported range\n");
951 			continue;
952 		}
953 
954 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
955 				prot, mmu_linear_psize, mmu_kernel_ssize));
956 	}
957 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
958 
959 	/*
960 	 * If we have a memory_limit and we've allocated TCEs then we need to
961 	 * explicitly map the TCE area at the top of RAM. We also cope with the
962 	 * case that the TCEs start below memory_limit.
963 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
964 	 * for either 4K or 16MB pages.
965 	 */
966 	if (tce_alloc_start) {
967 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
968 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
969 
970 		if (base + size >= tce_alloc_start)
971 			tce_alloc_start = base + size + 1;
972 
973 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
974 					 __pa(tce_alloc_start), prot,
975 					 mmu_linear_psize, mmu_kernel_ssize));
976 	}
977 
978 
979 	DBG(" <- htab_initialize()\n");
980 }
981 #undef KB
982 #undef MB
983 
984 void __init hash__early_init_devtree(void)
985 {
986 	/* Initialize segment sizes */
987 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
988 
989 	/* Initialize page sizes */
990 	htab_scan_page_sizes();
991 }
992 
993 static struct hash_mm_context init_hash_mm_context;
994 void __init hash__early_init_mmu(void)
995 {
996 #ifndef CONFIG_PPC_64K_PAGES
997 	/*
998 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
999 	 * do the following:
1000 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1001 	 *
1002 	 * Where the slot number is between 0-15, and values of 8-15 indicate
1003 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1004 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1005 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1006 	 * with a BUILD_BUG_ON().
1007 	 */
1008 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1009 #endif /* CONFIG_PPC_64K_PAGES */
1010 
1011 	htab_init_page_sizes();
1012 
1013 	/*
1014 	 * initialize page table size
1015 	 */
1016 	__pte_frag_nr = H_PTE_FRAG_NR;
1017 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1018 	__pmd_frag_nr = H_PMD_FRAG_NR;
1019 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1020 
1021 	__pte_index_size = H_PTE_INDEX_SIZE;
1022 	__pmd_index_size = H_PMD_INDEX_SIZE;
1023 	__pud_index_size = H_PUD_INDEX_SIZE;
1024 	__pgd_index_size = H_PGD_INDEX_SIZE;
1025 	__pud_cache_index = H_PUD_CACHE_INDEX;
1026 	__pte_table_size = H_PTE_TABLE_SIZE;
1027 	__pmd_table_size = H_PMD_TABLE_SIZE;
1028 	__pud_table_size = H_PUD_TABLE_SIZE;
1029 	__pgd_table_size = H_PGD_TABLE_SIZE;
1030 	/*
1031 	 * 4k use hugepd format, so for hash set then to
1032 	 * zero
1033 	 */
1034 	__pmd_val_bits = HASH_PMD_VAL_BITS;
1035 	__pud_val_bits = HASH_PUD_VAL_BITS;
1036 	__pgd_val_bits = HASH_PGD_VAL_BITS;
1037 
1038 	__kernel_virt_start = H_KERN_VIRT_START;
1039 	__vmalloc_start = H_VMALLOC_START;
1040 	__vmalloc_end = H_VMALLOC_END;
1041 	__kernel_io_start = H_KERN_IO_START;
1042 	__kernel_io_end = H_KERN_IO_END;
1043 	vmemmap = (struct page *)H_VMEMMAP_START;
1044 	ioremap_bot = IOREMAP_BASE;
1045 
1046 #ifdef CONFIG_PCI
1047 	pci_io_base = ISA_IO_BASE;
1048 #endif
1049 
1050 	/* Select appropriate backend */
1051 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1052 		ps3_early_mm_init();
1053 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1054 		hpte_init_pseries();
1055 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1056 		hpte_init_native();
1057 
1058 	if (!mmu_hash_ops.hpte_insert)
1059 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1060 
1061 	/*
1062 	 * Initialize the MMU Hash table and create the linear mapping
1063 	 * of memory. Has to be done before SLB initialization as this is
1064 	 * currently where the page size encoding is obtained.
1065 	 */
1066 	htab_initialize();
1067 
1068 	init_mm.context.hash_context = &init_hash_mm_context;
1069 	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1070 
1071 	pr_info("Initializing hash mmu with SLB\n");
1072 	/* Initialize SLB management */
1073 	slb_initialize();
1074 
1075 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1076 			&& cpu_has_feature(CPU_FTR_HVMODE))
1077 		tlbiel_all();
1078 }
1079 
1080 #ifdef CONFIG_SMP
1081 void hash__early_init_mmu_secondary(void)
1082 {
1083 	/* Initialize hash table for that CPU */
1084 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1085 
1086 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1087 			mtspr(SPRN_SDR1, _SDR1);
1088 		else
1089 			set_ptcr_when_no_uv(__pa(partition_tb) |
1090 					    (PATB_SIZE_SHIFT - 12));
1091 	}
1092 	/* Initialize SLB */
1093 	slb_initialize();
1094 
1095 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1096 			&& cpu_has_feature(CPU_FTR_HVMODE))
1097 		tlbiel_all();
1098 }
1099 #endif /* CONFIG_SMP */
1100 
1101 /*
1102  * Called by asm hashtable.S for doing lazy icache flush
1103  */
1104 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1105 {
1106 	struct page *page;
1107 
1108 	if (!pfn_valid(pte_pfn(pte)))
1109 		return pp;
1110 
1111 	page = pte_page(pte);
1112 
1113 	/* page is dirty */
1114 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1115 		if (trap == 0x400) {
1116 			flush_dcache_icache_page(page);
1117 			set_bit(PG_arch_1, &page->flags);
1118 		} else
1119 			pp |= HPTE_R_N;
1120 	}
1121 	return pp;
1122 }
1123 
1124 #ifdef CONFIG_PPC_MM_SLICES
1125 static unsigned int get_paca_psize(unsigned long addr)
1126 {
1127 	unsigned char *psizes;
1128 	unsigned long index, mask_index;
1129 
1130 	if (addr < SLICE_LOW_TOP) {
1131 		psizes = get_paca()->mm_ctx_low_slices_psize;
1132 		index = GET_LOW_SLICE_INDEX(addr);
1133 	} else {
1134 		psizes = get_paca()->mm_ctx_high_slices_psize;
1135 		index = GET_HIGH_SLICE_INDEX(addr);
1136 	}
1137 	mask_index = index & 0x1;
1138 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1139 }
1140 
1141 #else
1142 unsigned int get_paca_psize(unsigned long addr)
1143 {
1144 	return get_paca()->mm_ctx_user_psize;
1145 }
1146 #endif
1147 
1148 /*
1149  * Demote a segment to using 4k pages.
1150  * For now this makes the whole process use 4k pages.
1151  */
1152 #ifdef CONFIG_PPC_64K_PAGES
1153 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1154 {
1155 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1156 		return;
1157 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1158 	copro_flush_all_slbs(mm);
1159 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1160 
1161 		copy_mm_to_paca(mm);
1162 		slb_flush_and_restore_bolted();
1163 	}
1164 }
1165 #endif /* CONFIG_PPC_64K_PAGES */
1166 
1167 #ifdef CONFIG_PPC_SUBPAGE_PROT
1168 /*
1169  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1170  * Userspace sets the subpage permissions using the subpage_prot system call.
1171  *
1172  * Result is 0: full permissions, _PAGE_RW: read-only,
1173  * _PAGE_RWX: no access.
1174  */
1175 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1176 {
1177 	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1178 	u32 spp = 0;
1179 	u32 **sbpm, *sbpp;
1180 
1181 	if (!spt)
1182 		return 0;
1183 
1184 	if (ea >= spt->maxaddr)
1185 		return 0;
1186 	if (ea < 0x100000000UL) {
1187 		/* addresses below 4GB use spt->low_prot */
1188 		sbpm = spt->low_prot;
1189 	} else {
1190 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1191 		if (!sbpm)
1192 			return 0;
1193 	}
1194 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1195 	if (!sbpp)
1196 		return 0;
1197 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1198 
1199 	/* extract 2-bit bitfield for this 4k subpage */
1200 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1201 
1202 	/*
1203 	 * 0 -> full premission
1204 	 * 1 -> Read only
1205 	 * 2 -> no access.
1206 	 * We return the flag that need to be cleared.
1207 	 */
1208 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1209 	return spp;
1210 }
1211 
1212 #else /* CONFIG_PPC_SUBPAGE_PROT */
1213 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1214 {
1215 	return 0;
1216 }
1217 #endif
1218 
1219 void hash_failure_debug(unsigned long ea, unsigned long access,
1220 			unsigned long vsid, unsigned long trap,
1221 			int ssize, int psize, int lpsize, unsigned long pte)
1222 {
1223 	if (!printk_ratelimit())
1224 		return;
1225 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1226 		ea, access, current->comm);
1227 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1228 		trap, vsid, ssize, psize, lpsize, pte);
1229 }
1230 
1231 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1232 			     int psize, bool user_region)
1233 {
1234 	if (user_region) {
1235 		if (psize != get_paca_psize(ea)) {
1236 			copy_mm_to_paca(mm);
1237 			slb_flush_and_restore_bolted();
1238 		}
1239 	} else if (get_paca()->vmalloc_sllp !=
1240 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1241 		get_paca()->vmalloc_sllp =
1242 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1243 		slb_vmalloc_update();
1244 	}
1245 }
1246 
1247 /*
1248  * Result code is:
1249  *  0 - handled
1250  *  1 - normal page fault
1251  * -1 - critical hash insertion error
1252  * -2 - access not permitted by subpage protection mechanism
1253  */
1254 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1255 		 unsigned long access, unsigned long trap,
1256 		 unsigned long flags)
1257 {
1258 	bool is_thp;
1259 	enum ctx_state prev_state = exception_enter();
1260 	pgd_t *pgdir;
1261 	unsigned long vsid;
1262 	pte_t *ptep;
1263 	unsigned hugeshift;
1264 	int rc, user_region = 0;
1265 	int psize, ssize;
1266 
1267 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1268 		ea, access, trap);
1269 	trace_hash_fault(ea, access, trap);
1270 
1271 	/* Get region & vsid */
1272 	switch (get_region_id(ea)) {
1273 	case USER_REGION_ID:
1274 		user_region = 1;
1275 		if (! mm) {
1276 			DBG_LOW(" user region with no mm !\n");
1277 			rc = 1;
1278 			goto bail;
1279 		}
1280 		psize = get_slice_psize(mm, ea);
1281 		ssize = user_segment_size(ea);
1282 		vsid = get_user_vsid(&mm->context, ea, ssize);
1283 		break;
1284 	case VMALLOC_REGION_ID:
1285 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1286 		psize = mmu_vmalloc_psize;
1287 		ssize = mmu_kernel_ssize;
1288 		break;
1289 
1290 	case IO_REGION_ID:
1291 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1292 		psize = mmu_io_psize;
1293 		ssize = mmu_kernel_ssize;
1294 		break;
1295 	default:
1296 		/*
1297 		 * Not a valid range
1298 		 * Send the problem up to do_page_fault()
1299 		 */
1300 		rc = 1;
1301 		goto bail;
1302 	}
1303 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1304 
1305 	/* Bad address. */
1306 	if (!vsid) {
1307 		DBG_LOW("Bad address!\n");
1308 		rc = 1;
1309 		goto bail;
1310 	}
1311 	/* Get pgdir */
1312 	pgdir = mm->pgd;
1313 	if (pgdir == NULL) {
1314 		rc = 1;
1315 		goto bail;
1316 	}
1317 
1318 	/* Check CPU locality */
1319 	if (user_region && mm_is_thread_local(mm))
1320 		flags |= HPTE_LOCAL_UPDATE;
1321 
1322 #ifndef CONFIG_PPC_64K_PAGES
1323 	/*
1324 	 * If we use 4K pages and our psize is not 4K, then we might
1325 	 * be hitting a special driver mapping, and need to align the
1326 	 * address before we fetch the PTE.
1327 	 *
1328 	 * It could also be a hugepage mapping, in which case this is
1329 	 * not necessary, but it's not harmful, either.
1330 	 */
1331 	if (psize != MMU_PAGE_4K)
1332 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1333 #endif /* CONFIG_PPC_64K_PAGES */
1334 
1335 	/* Get PTE and page size from page tables */
1336 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1337 	if (ptep == NULL || !pte_present(*ptep)) {
1338 		DBG_LOW(" no PTE !\n");
1339 		rc = 1;
1340 		goto bail;
1341 	}
1342 
1343 	/* Add _PAGE_PRESENT to the required access perm */
1344 	access |= _PAGE_PRESENT;
1345 
1346 	/*
1347 	 * Pre-check access permissions (will be re-checked atomically
1348 	 * in __hash_page_XX but this pre-check is a fast path
1349 	 */
1350 	if (!check_pte_access(access, pte_val(*ptep))) {
1351 		DBG_LOW(" no access !\n");
1352 		rc = 1;
1353 		goto bail;
1354 	}
1355 
1356 	if (hugeshift) {
1357 		if (is_thp)
1358 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1359 					     trap, flags, ssize, psize);
1360 #ifdef CONFIG_HUGETLB_PAGE
1361 		else
1362 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1363 					      flags, ssize, hugeshift, psize);
1364 #else
1365 		else {
1366 			/*
1367 			 * if we have hugeshift, and is not transhuge with
1368 			 * hugetlb disabled, something is really wrong.
1369 			 */
1370 			rc = 1;
1371 			WARN_ON(1);
1372 		}
1373 #endif
1374 		if (current->mm == mm)
1375 			check_paca_psize(ea, mm, psize, user_region);
1376 
1377 		goto bail;
1378 	}
1379 
1380 #ifndef CONFIG_PPC_64K_PAGES
1381 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1382 #else
1383 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1384 		pte_val(*(ptep + PTRS_PER_PTE)));
1385 #endif
1386 	/* Do actual hashing */
1387 #ifdef CONFIG_PPC_64K_PAGES
1388 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1389 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1390 		demote_segment_4k(mm, ea);
1391 		psize = MMU_PAGE_4K;
1392 	}
1393 
1394 	/*
1395 	 * If this PTE is non-cacheable and we have restrictions on
1396 	 * using non cacheable large pages, then we switch to 4k
1397 	 */
1398 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1399 		if (user_region) {
1400 			demote_segment_4k(mm, ea);
1401 			psize = MMU_PAGE_4K;
1402 		} else if (ea < VMALLOC_END) {
1403 			/*
1404 			 * some driver did a non-cacheable mapping
1405 			 * in vmalloc space, so switch vmalloc
1406 			 * to 4k pages
1407 			 */
1408 			printk(KERN_ALERT "Reducing vmalloc segment "
1409 			       "to 4kB pages because of "
1410 			       "non-cacheable mapping\n");
1411 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1412 			copro_flush_all_slbs(mm);
1413 		}
1414 	}
1415 
1416 #endif /* CONFIG_PPC_64K_PAGES */
1417 
1418 	if (current->mm == mm)
1419 		check_paca_psize(ea, mm, psize, user_region);
1420 
1421 #ifdef CONFIG_PPC_64K_PAGES
1422 	if (psize == MMU_PAGE_64K)
1423 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1424 				     flags, ssize);
1425 	else
1426 #endif /* CONFIG_PPC_64K_PAGES */
1427 	{
1428 		int spp = subpage_protection(mm, ea);
1429 		if (access & spp)
1430 			rc = -2;
1431 		else
1432 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1433 					    flags, ssize, spp);
1434 	}
1435 
1436 	/*
1437 	 * Dump some info in case of hash insertion failure, they should
1438 	 * never happen so it is really useful to know if/when they do
1439 	 */
1440 	if (rc == -1)
1441 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1442 				   psize, pte_val(*ptep));
1443 #ifndef CONFIG_PPC_64K_PAGES
1444 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1445 #else
1446 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1447 		pte_val(*(ptep + PTRS_PER_PTE)));
1448 #endif
1449 	DBG_LOW(" -> rc=%d\n", rc);
1450 
1451 bail:
1452 	exception_exit(prev_state);
1453 	return rc;
1454 }
1455 EXPORT_SYMBOL_GPL(hash_page_mm);
1456 
1457 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1458 	      unsigned long dsisr)
1459 {
1460 	unsigned long flags = 0;
1461 	struct mm_struct *mm = current->mm;
1462 
1463 	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1464 	    (get_region_id(ea) == IO_REGION_ID))
1465 		mm = &init_mm;
1466 
1467 	if (dsisr & DSISR_NOHPTE)
1468 		flags |= HPTE_NOHPTE_UPDATE;
1469 
1470 	return hash_page_mm(mm, ea, access, trap, flags);
1471 }
1472 EXPORT_SYMBOL_GPL(hash_page);
1473 
1474 int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr,
1475 		unsigned long msr)
1476 {
1477 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1478 	unsigned long flags = 0;
1479 	struct mm_struct *mm = current->mm;
1480 	unsigned int region_id = get_region_id(ea);
1481 
1482 	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1483 		mm = &init_mm;
1484 
1485 	if (dsisr & DSISR_NOHPTE)
1486 		flags |= HPTE_NOHPTE_UPDATE;
1487 
1488 	if (dsisr & DSISR_ISSTORE)
1489 		access |= _PAGE_WRITE;
1490 	/*
1491 	 * We set _PAGE_PRIVILEGED only when
1492 	 * kernel mode access kernel space.
1493 	 *
1494 	 * _PAGE_PRIVILEGED is NOT set
1495 	 * 1) when kernel mode access user space
1496 	 * 2) user space access kernel space.
1497 	 */
1498 	access |= _PAGE_PRIVILEGED;
1499 	if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1500 		access &= ~_PAGE_PRIVILEGED;
1501 
1502 	if (trap == 0x400)
1503 		access |= _PAGE_EXEC;
1504 
1505 	return hash_page_mm(mm, ea, access, trap, flags);
1506 }
1507 
1508 #ifdef CONFIG_PPC_MM_SLICES
1509 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1510 {
1511 	int psize = get_slice_psize(mm, ea);
1512 
1513 	/* We only prefault standard pages for now */
1514 	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1515 		return false;
1516 
1517 	/*
1518 	 * Don't prefault if subpage protection is enabled for the EA.
1519 	 */
1520 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1521 		return false;
1522 
1523 	return true;
1524 }
1525 #else
1526 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1527 {
1528 	return true;
1529 }
1530 #endif
1531 
1532 static void hash_preload(struct mm_struct *mm, unsigned long ea,
1533 			 bool is_exec, unsigned long trap)
1534 {
1535 	int hugepage_shift;
1536 	unsigned long vsid;
1537 	pgd_t *pgdir;
1538 	pte_t *ptep;
1539 	unsigned long flags;
1540 	int rc, ssize, update_flags = 0;
1541 	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1542 
1543 	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1544 
1545 	if (!should_hash_preload(mm, ea))
1546 		return;
1547 
1548 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1549 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1550 
1551 	/* Get Linux PTE if available */
1552 	pgdir = mm->pgd;
1553 	if (pgdir == NULL)
1554 		return;
1555 
1556 	/* Get VSID */
1557 	ssize = user_segment_size(ea);
1558 	vsid = get_user_vsid(&mm->context, ea, ssize);
1559 	if (!vsid)
1560 		return;
1561 	/*
1562 	 * Hash doesn't like irqs. Walking linux page table with irq disabled
1563 	 * saves us from holding multiple locks.
1564 	 */
1565 	local_irq_save(flags);
1566 
1567 	/*
1568 	 * THP pages use update_mmu_cache_pmd. We don't do
1569 	 * hash preload there. Hence can ignore THP here
1570 	 */
1571 	ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1572 	if (!ptep)
1573 		goto out_exit;
1574 
1575 	WARN_ON(hugepage_shift);
1576 #ifdef CONFIG_PPC_64K_PAGES
1577 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1578 	 * a 64K kernel), then we don't preload, hash_page() will take
1579 	 * care of it once we actually try to access the page.
1580 	 * That way we don't have to duplicate all of the logic for segment
1581 	 * page size demotion here
1582 	 */
1583 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1584 		goto out_exit;
1585 #endif /* CONFIG_PPC_64K_PAGES */
1586 
1587 	/* Is that local to this CPU ? */
1588 	if (mm_is_thread_local(mm))
1589 		update_flags |= HPTE_LOCAL_UPDATE;
1590 
1591 	/* Hash it in */
1592 #ifdef CONFIG_PPC_64K_PAGES
1593 	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1594 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1595 				     update_flags, ssize);
1596 	else
1597 #endif /* CONFIG_PPC_64K_PAGES */
1598 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1599 				    ssize, subpage_protection(mm, ea));
1600 
1601 	/* Dump some info in case of hash insertion failure, they should
1602 	 * never happen so it is really useful to know if/when they do
1603 	 */
1604 	if (rc == -1)
1605 		hash_failure_debug(ea, access, vsid, trap, ssize,
1606 				   mm_ctx_user_psize(&mm->context),
1607 				   mm_ctx_user_psize(&mm->context),
1608 				   pte_val(*ptep));
1609 out_exit:
1610 	local_irq_restore(flags);
1611 }
1612 
1613 /*
1614  * This is called at the end of handling a user page fault, when the
1615  * fault has been handled by updating a PTE in the linux page tables.
1616  * We use it to preload an HPTE into the hash table corresponding to
1617  * the updated linux PTE.
1618  *
1619  * This must always be called with the pte lock held.
1620  */
1621 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1622 		      pte_t *ptep)
1623 {
1624 	/*
1625 	 * We don't need to worry about _PAGE_PRESENT here because we are
1626 	 * called with either mm->page_table_lock held or ptl lock held
1627 	 */
1628 	unsigned long trap;
1629 	bool is_exec;
1630 
1631 	if (radix_enabled()) {
1632 		prefetch((void *)address);
1633 		return;
1634 	}
1635 
1636 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1637 	if (!pte_young(*ptep) || address >= TASK_SIZE)
1638 		return;
1639 
1640 	/*
1641 	 * We try to figure out if we are coming from an instruction
1642 	 * access fault and pass that down to __hash_page so we avoid
1643 	 * double-faulting on execution of fresh text. We have to test
1644 	 * for regs NULL since init will get here first thing at boot.
1645 	 *
1646 	 * We also avoid filling the hash if not coming from a fault.
1647 	 */
1648 
1649 	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1650 	switch (trap) {
1651 	case 0x300:
1652 		is_exec = false;
1653 		break;
1654 	case 0x400:
1655 		is_exec = true;
1656 		break;
1657 	default:
1658 		return;
1659 	}
1660 
1661 	hash_preload(vma->vm_mm, address, is_exec, trap);
1662 }
1663 
1664 #ifdef CONFIG_PPC_MEM_KEYS
1665 /*
1666  * Return the protection key associated with the given address and the
1667  * mm_struct.
1668  */
1669 u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1670 {
1671 	pte_t *ptep;
1672 	u16 pkey = 0;
1673 	unsigned long flags;
1674 
1675 	if (!mm || !mm->pgd)
1676 		return 0;
1677 
1678 	local_irq_save(flags);
1679 	ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1680 	if (ptep)
1681 		pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1682 	local_irq_restore(flags);
1683 
1684 	return pkey;
1685 }
1686 #endif /* CONFIG_PPC_MEM_KEYS */
1687 
1688 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1689 static inline void tm_flush_hash_page(int local)
1690 {
1691 	/*
1692 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1693 	 * page back to a block device w/PIO could pick up transactional data
1694 	 * (bad!) so we force an abort here. Before the sync the page will be
1695 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1696 	 * kernel uses a page from userspace without unmapping it first, it may
1697 	 * see the speculated version.
1698 	 */
1699 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1700 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1701 		tm_enable();
1702 		tm_abort(TM_CAUSE_TLBI);
1703 	}
1704 }
1705 #else
1706 static inline void tm_flush_hash_page(int local)
1707 {
1708 }
1709 #endif
1710 
1711 /*
1712  * Return the global hash slot, corresponding to the given PTE, which contains
1713  * the HPTE.
1714  */
1715 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1716 		int ssize, real_pte_t rpte, unsigned int subpg_index)
1717 {
1718 	unsigned long hash, gslot, hidx;
1719 
1720 	hash = hpt_hash(vpn, shift, ssize);
1721 	hidx = __rpte_to_hidx(rpte, subpg_index);
1722 	if (hidx & _PTEIDX_SECONDARY)
1723 		hash = ~hash;
1724 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1725 	gslot += hidx & _PTEIDX_GROUP_IX;
1726 	return gslot;
1727 }
1728 
1729 /*
1730  * WARNING: This is called from hash_low_64.S, if you change this prototype,
1731  *          do not forget to update the assembly call site !
1732  */
1733 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1734 		     unsigned long flags)
1735 {
1736 	unsigned long index, shift, gslot;
1737 	int local = flags & HPTE_LOCAL_UPDATE;
1738 
1739 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1740 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1741 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1742 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1743 		/*
1744 		 * We use same base page size and actual psize, because we don't
1745 		 * use these functions for hugepage
1746 		 */
1747 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1748 					     ssize, local);
1749 	} pte_iterate_hashed_end();
1750 
1751 	tm_flush_hash_page(local);
1752 }
1753 
1754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1755 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1756 			 pmd_t *pmdp, unsigned int psize, int ssize,
1757 			 unsigned long flags)
1758 {
1759 	int i, max_hpte_count, valid;
1760 	unsigned long s_addr;
1761 	unsigned char *hpte_slot_array;
1762 	unsigned long hidx, shift, vpn, hash, slot;
1763 	int local = flags & HPTE_LOCAL_UPDATE;
1764 
1765 	s_addr = addr & HPAGE_PMD_MASK;
1766 	hpte_slot_array = get_hpte_slot_array(pmdp);
1767 	/*
1768 	 * IF we try to do a HUGE PTE update after a withdraw is done.
1769 	 * we will find the below NULL. This happens when we do
1770 	 * split_huge_pmd
1771 	 */
1772 	if (!hpte_slot_array)
1773 		return;
1774 
1775 	if (mmu_hash_ops.hugepage_invalidate) {
1776 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1777 						 psize, ssize, local);
1778 		goto tm_abort;
1779 	}
1780 	/*
1781 	 * No bluk hpte removal support, invalidate each entry
1782 	 */
1783 	shift = mmu_psize_defs[psize].shift;
1784 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1785 	for (i = 0; i < max_hpte_count; i++) {
1786 		/*
1787 		 * 8 bits per each hpte entries
1788 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1789 		 */
1790 		valid = hpte_valid(hpte_slot_array, i);
1791 		if (!valid)
1792 			continue;
1793 		hidx =  hpte_hash_index(hpte_slot_array, i);
1794 
1795 		/* get the vpn */
1796 		addr = s_addr + (i * (1ul << shift));
1797 		vpn = hpt_vpn(addr, vsid, ssize);
1798 		hash = hpt_hash(vpn, shift, ssize);
1799 		if (hidx & _PTEIDX_SECONDARY)
1800 			hash = ~hash;
1801 
1802 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1803 		slot += hidx & _PTEIDX_GROUP_IX;
1804 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1805 					     MMU_PAGE_16M, ssize, local);
1806 	}
1807 tm_abort:
1808 	tm_flush_hash_page(local);
1809 }
1810 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1811 
1812 void flush_hash_range(unsigned long number, int local)
1813 {
1814 	if (mmu_hash_ops.flush_hash_range)
1815 		mmu_hash_ops.flush_hash_range(number, local);
1816 	else {
1817 		int i;
1818 		struct ppc64_tlb_batch *batch =
1819 			this_cpu_ptr(&ppc64_tlb_batch);
1820 
1821 		for (i = 0; i < number; i++)
1822 			flush_hash_page(batch->vpn[i], batch->pte[i],
1823 					batch->psize, batch->ssize, local);
1824 	}
1825 }
1826 
1827 /*
1828  * low_hash_fault is called when we the low level hash code failed
1829  * to instert a PTE due to an hypervisor error
1830  */
1831 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1832 {
1833 	enum ctx_state prev_state = exception_enter();
1834 
1835 	if (user_mode(regs)) {
1836 #ifdef CONFIG_PPC_SUBPAGE_PROT
1837 		if (rc == -2)
1838 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1839 		else
1840 #endif
1841 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1842 	} else
1843 		bad_page_fault(regs, address, SIGBUS);
1844 
1845 	exception_exit(prev_state);
1846 }
1847 
1848 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1849 			   unsigned long pa, unsigned long rflags,
1850 			   unsigned long vflags, int psize, int ssize)
1851 {
1852 	unsigned long hpte_group;
1853 	long slot;
1854 
1855 repeat:
1856 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1857 
1858 	/* Insert into the hash table, primary slot */
1859 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1860 					psize, psize, ssize);
1861 
1862 	/* Primary is full, try the secondary */
1863 	if (unlikely(slot == -1)) {
1864 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1865 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1866 						vflags | HPTE_V_SECONDARY,
1867 						psize, psize, ssize);
1868 		if (slot == -1) {
1869 			if (mftb() & 0x1)
1870 				hpte_group = (hash & htab_hash_mask) *
1871 						HPTES_PER_GROUP;
1872 
1873 			mmu_hash_ops.hpte_remove(hpte_group);
1874 			goto repeat;
1875 		}
1876 	}
1877 
1878 	return slot;
1879 }
1880 
1881 #ifdef CONFIG_DEBUG_PAGEALLOC
1882 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1883 {
1884 	unsigned long hash;
1885 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1886 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1887 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1888 	long ret;
1889 
1890 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1891 
1892 	/* Don't create HPTE entries for bad address */
1893 	if (!vsid)
1894 		return;
1895 
1896 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1897 				    HPTE_V_BOLTED,
1898 				    mmu_linear_psize, mmu_kernel_ssize);
1899 
1900 	BUG_ON (ret < 0);
1901 	spin_lock(&linear_map_hash_lock);
1902 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1903 	linear_map_hash_slots[lmi] = ret | 0x80;
1904 	spin_unlock(&linear_map_hash_lock);
1905 }
1906 
1907 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1908 {
1909 	unsigned long hash, hidx, slot;
1910 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1911 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1912 
1913 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1914 	spin_lock(&linear_map_hash_lock);
1915 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1916 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1917 	linear_map_hash_slots[lmi] = 0;
1918 	spin_unlock(&linear_map_hash_lock);
1919 	if (hidx & _PTEIDX_SECONDARY)
1920 		hash = ~hash;
1921 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1922 	slot += hidx & _PTEIDX_GROUP_IX;
1923 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1924 				     mmu_linear_psize,
1925 				     mmu_kernel_ssize, 0);
1926 }
1927 
1928 void __kernel_map_pages(struct page *page, int numpages, int enable)
1929 {
1930 	unsigned long flags, vaddr, lmi;
1931 	int i;
1932 
1933 	local_irq_save(flags);
1934 	for (i = 0; i < numpages; i++, page++) {
1935 		vaddr = (unsigned long)page_address(page);
1936 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1937 		if (lmi >= linear_map_hash_count)
1938 			continue;
1939 		if (enable)
1940 			kernel_map_linear_page(vaddr, lmi);
1941 		else
1942 			kernel_unmap_linear_page(vaddr, lmi);
1943 	}
1944 	local_irq_restore(flags);
1945 }
1946 #endif /* CONFIG_DEBUG_PAGEALLOC */
1947 
1948 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1949 				phys_addr_t first_memblock_size)
1950 {
1951 	/*
1952 	 * We don't currently support the first MEMBLOCK not mapping 0
1953 	 * physical on those processors
1954 	 */
1955 	BUG_ON(first_memblock_base != 0);
1956 
1957 	/*
1958 	 * On virtualized systems the first entry is our RMA region aka VRMA,
1959 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
1960 	 * on real mode access.
1961 	 *
1962 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
1963 	 * to avoid some funky things such as RTAS bugs etc...
1964 	 *
1965 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
1966 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1967 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1968 	 * for virtual real mode addressing and so it doesn't make sense to
1969 	 * have an area larger than 1TB as it can't be addressed.
1970 	 */
1971 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1972 		ppc64_rma_size = first_memblock_size;
1973 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1974 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1975 		else
1976 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
1977 					       1UL << SID_SHIFT_1T);
1978 
1979 		/* Finally limit subsequent allocations */
1980 		memblock_set_current_limit(ppc64_rma_size);
1981 	} else {
1982 		ppc64_rma_size = ULONG_MAX;
1983 	}
1984 }
1985 
1986 #ifdef CONFIG_DEBUG_FS
1987 
1988 static int hpt_order_get(void *data, u64 *val)
1989 {
1990 	*val = ppc64_pft_size;
1991 	return 0;
1992 }
1993 
1994 static int hpt_order_set(void *data, u64 val)
1995 {
1996 	int ret;
1997 
1998 	if (!mmu_hash_ops.resize_hpt)
1999 		return -ENODEV;
2000 
2001 	cpus_read_lock();
2002 	ret = mmu_hash_ops.resize_hpt(val);
2003 	cpus_read_unlock();
2004 
2005 	return ret;
2006 }
2007 
2008 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2009 
2010 static int __init hash64_debugfs(void)
2011 {
2012 	if (!debugfs_create_file_unsafe("hpt_order", 0600, powerpc_debugfs_root,
2013 					NULL, &fops_hpt_order)) {
2014 		pr_err("lpar: unable to create hpt_order debugsfs file\n");
2015 	}
2016 
2017 	return 0;
2018 }
2019 machine_device_initcall(pseries, hash64_debugfs);
2020 #endif /* CONFIG_DEBUG_FS */
2021 
2022 void __init print_system_hash_info(void)
2023 {
2024 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2025 
2026 	if (htab_hash_mask)
2027 		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2028 }
2029