1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  *
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16 
17 #undef DEBUG
18 #undef DEBUG_LOW
19 
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 
39 #include <asm/debugfs.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/page.h>
45 #include <asm/types.h>
46 #include <linux/uaccess.h>
47 #include <asm/machdep.h>
48 #include <asm/prom.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
63 #include <asm/pte-walk.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/ultravisor.h>
66 
67 #include <mm/mmu_decl.h>
68 
69 #ifdef DEBUG
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
74 
75 #ifdef DEBUG_LOW
76 #define DBG_LOW(fmt...) udbg_printf(fmt)
77 #else
78 #define DBG_LOW(fmt...)
79 #endif
80 
81 #define KB (1024)
82 #define MB (1024*KB)
83 #define GB (1024L*MB)
84 
85 /*
86  * Note:  pte   --> Linux PTE
87  *        HPTE  --> PowerPC Hashed Page Table Entry
88  *
89  * Execution context:
90  *   htab_initialize is called with the MMU off (of course), but
91  *   the kernel has been copied down to zero so it can directly
92  *   reference global data.  At this point it is very difficult
93  *   to print debug info.
94  *
95  */
96 
97 static unsigned long _SDR1;
98 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
99 EXPORT_SYMBOL_GPL(mmu_psize_defs);
100 
101 u8 hpte_page_sizes[1 << LP_BITS];
102 EXPORT_SYMBOL_GPL(hpte_page_sizes);
103 
104 struct hash_pte *htab_address;
105 unsigned long htab_size_bytes;
106 unsigned long htab_hash_mask;
107 EXPORT_SYMBOL_GPL(htab_hash_mask);
108 int mmu_linear_psize = MMU_PAGE_4K;
109 EXPORT_SYMBOL_GPL(mmu_linear_psize);
110 int mmu_virtual_psize = MMU_PAGE_4K;
111 int mmu_vmalloc_psize = MMU_PAGE_4K;
112 #ifdef CONFIG_SPARSEMEM_VMEMMAP
113 int mmu_vmemmap_psize = MMU_PAGE_4K;
114 #endif
115 int mmu_io_psize = MMU_PAGE_4K;
116 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
117 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
118 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
119 u16 mmu_slb_size = 64;
120 EXPORT_SYMBOL_GPL(mmu_slb_size);
121 #ifdef CONFIG_PPC_64K_PAGES
122 int mmu_ci_restrictions;
123 #endif
124 #ifdef CONFIG_DEBUG_PAGEALLOC
125 static u8 *linear_map_hash_slots;
126 static unsigned long linear_map_hash_count;
127 static DEFINE_SPINLOCK(linear_map_hash_lock);
128 #endif /* CONFIG_DEBUG_PAGEALLOC */
129 struct mmu_hash_ops mmu_hash_ops;
130 EXPORT_SYMBOL(mmu_hash_ops);
131 
132 /*
133  * These are definitions of page sizes arrays to be used when none
134  * is provided by the firmware.
135  */
136 
137 /*
138  * Fallback (4k pages only)
139  */
140 static struct mmu_psize_def mmu_psize_defaults[] = {
141 	[MMU_PAGE_4K] = {
142 		.shift	= 12,
143 		.sllp	= 0,
144 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
145 		.avpnm	= 0,
146 		.tlbiel = 0,
147 	},
148 };
149 
150 /*
151  * POWER4, GPUL, POWER5
152  *
153  * Support for 16Mb large pages
154  */
155 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
156 	[MMU_PAGE_4K] = {
157 		.shift	= 12,
158 		.sllp	= 0,
159 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
160 		.avpnm	= 0,
161 		.tlbiel = 1,
162 	},
163 	[MMU_PAGE_16M] = {
164 		.shift	= 24,
165 		.sllp	= SLB_VSID_L,
166 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
167 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
168 		.avpnm	= 0x1UL,
169 		.tlbiel = 0,
170 	},
171 };
172 
173 /*
174  * 'R' and 'C' update notes:
175  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
176  *     create writeable HPTEs without C set, because the hcall H_PROTECT
177  *     that we use in that case will not update C
178  *  - The above is however not a problem, because we also don't do that
179  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
180  *     do the right thing and thus we don't have the race I described earlier
181  *
182  *    - Under bare metal,  we do have the race, so we need R and C set
183  *    - We make sure R is always set and never lost
184  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
185  */
186 unsigned long htab_convert_pte_flags(unsigned long pteflags)
187 {
188 	unsigned long rflags = 0;
189 
190 	/* _PAGE_EXEC -> NOEXEC */
191 	if ((pteflags & _PAGE_EXEC) == 0)
192 		rflags |= HPTE_R_N;
193 	/*
194 	 * PPP bits:
195 	 * Linux uses slb key 0 for kernel and 1 for user.
196 	 * kernel RW areas are mapped with PPP=0b000
197 	 * User area is mapped with PPP=0b010 for read/write
198 	 * or PPP=0b011 for read-only (including writeable but clean pages).
199 	 */
200 	if (pteflags & _PAGE_PRIVILEGED) {
201 		/*
202 		 * Kernel read only mapped with ppp bits 0b110
203 		 */
204 		if (!(pteflags & _PAGE_WRITE)) {
205 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
206 				rflags |= (HPTE_R_PP0 | 0x2);
207 			else
208 				rflags |= 0x3;
209 		}
210 	} else {
211 		if (pteflags & _PAGE_RWX)
212 			rflags |= 0x2;
213 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
214 			rflags |= 0x1;
215 	}
216 	/*
217 	 * We can't allow hardware to update hpte bits. Hence always
218 	 * set 'R' bit and set 'C' if it is a write fault
219 	 */
220 	rflags |=  HPTE_R_R;
221 
222 	if (pteflags & _PAGE_DIRTY)
223 		rflags |= HPTE_R_C;
224 	/*
225 	 * Add in WIG bits
226 	 */
227 
228 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
229 		rflags |= HPTE_R_I;
230 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
231 		rflags |= (HPTE_R_I | HPTE_R_G);
232 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
233 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
234 	else
235 		/*
236 		 * Add memory coherence if cache inhibited is not set
237 		 */
238 		rflags |= HPTE_R_M;
239 
240 	rflags |= pte_to_hpte_pkey_bits(pteflags);
241 	return rflags;
242 }
243 
244 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
245 		      unsigned long pstart, unsigned long prot,
246 		      int psize, int ssize)
247 {
248 	unsigned long vaddr, paddr;
249 	unsigned int step, shift;
250 	int ret = 0;
251 
252 	shift = mmu_psize_defs[psize].shift;
253 	step = 1 << shift;
254 
255 	prot = htab_convert_pte_flags(prot);
256 
257 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
258 	    vstart, vend, pstart, prot, psize, ssize);
259 
260 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
261 	     vaddr += step, paddr += step) {
262 		unsigned long hash, hpteg;
263 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
264 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
265 		unsigned long tprot = prot;
266 
267 		/*
268 		 * If we hit a bad address return error.
269 		 */
270 		if (!vsid)
271 			return -1;
272 		/* Make kernel text executable */
273 		if (overlaps_kernel_text(vaddr, vaddr + step))
274 			tprot &= ~HPTE_R_N;
275 
276 		/*
277 		 * If relocatable, check if it overlaps interrupt vectors that
278 		 * are copied down to real 0. For relocatable kernel
279 		 * (e.g. kdump case) we copy interrupt vectors down to real
280 		 * address 0. Mark that region as executable. This is
281 		 * because on p8 system with relocation on exception feature
282 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
283 		 * in order to execute the interrupt handlers in virtual
284 		 * mode the vector region need to be marked as executable.
285 		 */
286 		if ((PHYSICAL_START > MEMORY_START) &&
287 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
288 				tprot &= ~HPTE_R_N;
289 
290 		hash = hpt_hash(vpn, shift, ssize);
291 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
292 
293 		BUG_ON(!mmu_hash_ops.hpte_insert);
294 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
295 					       HPTE_V_BOLTED, psize, psize,
296 					       ssize);
297 
298 		if (ret < 0)
299 			break;
300 
301 #ifdef CONFIG_DEBUG_PAGEALLOC
302 		if (debug_pagealloc_enabled() &&
303 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
304 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
305 #endif /* CONFIG_DEBUG_PAGEALLOC */
306 	}
307 	return ret < 0 ? ret : 0;
308 }
309 
310 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
311 		      int psize, int ssize)
312 {
313 	unsigned long vaddr;
314 	unsigned int step, shift;
315 	int rc;
316 	int ret = 0;
317 
318 	shift = mmu_psize_defs[psize].shift;
319 	step = 1 << shift;
320 
321 	if (!mmu_hash_ops.hpte_removebolted)
322 		return -ENODEV;
323 
324 	for (vaddr = vstart; vaddr < vend; vaddr += step) {
325 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
326 		if (rc == -ENOENT) {
327 			ret = -ENOENT;
328 			continue;
329 		}
330 		if (rc < 0)
331 			return rc;
332 	}
333 
334 	return ret;
335 }
336 
337 static bool disable_1tb_segments = false;
338 
339 static int __init parse_disable_1tb_segments(char *p)
340 {
341 	disable_1tb_segments = true;
342 	return 0;
343 }
344 early_param("disable_1tb_segments", parse_disable_1tb_segments);
345 
346 static int __init htab_dt_scan_seg_sizes(unsigned long node,
347 					 const char *uname, int depth,
348 					 void *data)
349 {
350 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
351 	const __be32 *prop;
352 	int size = 0;
353 
354 	/* We are scanning "cpu" nodes only */
355 	if (type == NULL || strcmp(type, "cpu") != 0)
356 		return 0;
357 
358 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
359 	if (prop == NULL)
360 		return 0;
361 	for (; size >= 4; size -= 4, ++prop) {
362 		if (be32_to_cpu(prop[0]) == 40) {
363 			DBG("1T segment support detected\n");
364 
365 			if (disable_1tb_segments) {
366 				DBG("1T segments disabled by command line\n");
367 				break;
368 			}
369 
370 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
371 			return 1;
372 		}
373 	}
374 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
375 	return 0;
376 }
377 
378 static int __init get_idx_from_shift(unsigned int shift)
379 {
380 	int idx = -1;
381 
382 	switch (shift) {
383 	case 0xc:
384 		idx = MMU_PAGE_4K;
385 		break;
386 	case 0x10:
387 		idx = MMU_PAGE_64K;
388 		break;
389 	case 0x14:
390 		idx = MMU_PAGE_1M;
391 		break;
392 	case 0x18:
393 		idx = MMU_PAGE_16M;
394 		break;
395 	case 0x22:
396 		idx = MMU_PAGE_16G;
397 		break;
398 	}
399 	return idx;
400 }
401 
402 static int __init htab_dt_scan_page_sizes(unsigned long node,
403 					  const char *uname, int depth,
404 					  void *data)
405 {
406 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
407 	const __be32 *prop;
408 	int size = 0;
409 
410 	/* We are scanning "cpu" nodes only */
411 	if (type == NULL || strcmp(type, "cpu") != 0)
412 		return 0;
413 
414 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
415 	if (!prop)
416 		return 0;
417 
418 	pr_info("Page sizes from device-tree:\n");
419 	size /= 4;
420 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
421 	while(size > 0) {
422 		unsigned int base_shift = be32_to_cpu(prop[0]);
423 		unsigned int slbenc = be32_to_cpu(prop[1]);
424 		unsigned int lpnum = be32_to_cpu(prop[2]);
425 		struct mmu_psize_def *def;
426 		int idx, base_idx;
427 
428 		size -= 3; prop += 3;
429 		base_idx = get_idx_from_shift(base_shift);
430 		if (base_idx < 0) {
431 			/* skip the pte encoding also */
432 			prop += lpnum * 2; size -= lpnum * 2;
433 			continue;
434 		}
435 		def = &mmu_psize_defs[base_idx];
436 		if (base_idx == MMU_PAGE_16M)
437 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
438 
439 		def->shift = base_shift;
440 		if (base_shift <= 23)
441 			def->avpnm = 0;
442 		else
443 			def->avpnm = (1 << (base_shift - 23)) - 1;
444 		def->sllp = slbenc;
445 		/*
446 		 * We don't know for sure what's up with tlbiel, so
447 		 * for now we only set it for 4K and 64K pages
448 		 */
449 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
450 			def->tlbiel = 1;
451 		else
452 			def->tlbiel = 0;
453 
454 		while (size > 0 && lpnum) {
455 			unsigned int shift = be32_to_cpu(prop[0]);
456 			int penc  = be32_to_cpu(prop[1]);
457 
458 			prop += 2; size -= 2;
459 			lpnum--;
460 
461 			idx = get_idx_from_shift(shift);
462 			if (idx < 0)
463 				continue;
464 
465 			if (penc == -1)
466 				pr_err("Invalid penc for base_shift=%d "
467 				       "shift=%d\n", base_shift, shift);
468 
469 			def->penc[idx] = penc;
470 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
471 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
472 				base_shift, shift, def->sllp,
473 				def->avpnm, def->tlbiel, def->penc[idx]);
474 		}
475 	}
476 
477 	return 1;
478 }
479 
480 #ifdef CONFIG_HUGETLB_PAGE
481 /*
482  * Scan for 16G memory blocks that have been set aside for huge pages
483  * and reserve those blocks for 16G huge pages.
484  */
485 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
486 					const char *uname, int depth,
487 					void *data) {
488 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
489 	const __be64 *addr_prop;
490 	const __be32 *page_count_prop;
491 	unsigned int expected_pages;
492 	long unsigned int phys_addr;
493 	long unsigned int block_size;
494 
495 	/* We are scanning "memory" nodes only */
496 	if (type == NULL || strcmp(type, "memory") != 0)
497 		return 0;
498 
499 	/*
500 	 * This property is the log base 2 of the number of virtual pages that
501 	 * will represent this memory block.
502 	 */
503 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
504 	if (page_count_prop == NULL)
505 		return 0;
506 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
507 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
508 	if (addr_prop == NULL)
509 		return 0;
510 	phys_addr = be64_to_cpu(addr_prop[0]);
511 	block_size = be64_to_cpu(addr_prop[1]);
512 	if (block_size != (16 * GB))
513 		return 0;
514 	printk(KERN_INFO "Huge page(16GB) memory: "
515 			"addr = 0x%lX size = 0x%lX pages = %d\n",
516 			phys_addr, block_size, expected_pages);
517 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
518 		memblock_reserve(phys_addr, block_size * expected_pages);
519 		pseries_add_gpage(phys_addr, block_size, expected_pages);
520 	}
521 	return 0;
522 }
523 #endif /* CONFIG_HUGETLB_PAGE */
524 
525 static void mmu_psize_set_default_penc(void)
526 {
527 	int bpsize, apsize;
528 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
529 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
530 			mmu_psize_defs[bpsize].penc[apsize] = -1;
531 }
532 
533 #ifdef CONFIG_PPC_64K_PAGES
534 
535 static bool might_have_hea(void)
536 {
537 	/*
538 	 * The HEA ethernet adapter requires awareness of the
539 	 * GX bus. Without that awareness we can easily assume
540 	 * we will never see an HEA ethernet device.
541 	 */
542 #ifdef CONFIG_IBMEBUS
543 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
544 		firmware_has_feature(FW_FEATURE_SPLPAR);
545 #else
546 	return false;
547 #endif
548 }
549 
550 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
551 
552 static void __init htab_scan_page_sizes(void)
553 {
554 	int rc;
555 
556 	/* se the invalid penc to -1 */
557 	mmu_psize_set_default_penc();
558 
559 	/* Default to 4K pages only */
560 	memcpy(mmu_psize_defs, mmu_psize_defaults,
561 	       sizeof(mmu_psize_defaults));
562 
563 	/*
564 	 * Try to find the available page sizes in the device-tree
565 	 */
566 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
567 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
568 		/*
569 		 * Nothing in the device-tree, but the CPU supports 16M pages,
570 		 * so let's fallback on a known size list for 16M capable CPUs.
571 		 */
572 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
573 		       sizeof(mmu_psize_defaults_gp));
574 	}
575 
576 #ifdef CONFIG_HUGETLB_PAGE
577 	if (!hugetlb_disabled) {
578 		/* Reserve 16G huge page memory sections for huge pages */
579 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
580 	}
581 #endif /* CONFIG_HUGETLB_PAGE */
582 }
583 
584 /*
585  * Fill in the hpte_page_sizes[] array.
586  * We go through the mmu_psize_defs[] array looking for all the
587  * supported base/actual page size combinations.  Each combination
588  * has a unique pagesize encoding (penc) value in the low bits of
589  * the LP field of the HPTE.  For actual page sizes less than 1MB,
590  * some of the upper LP bits are used for RPN bits, meaning that
591  * we need to fill in several entries in hpte_page_sizes[].
592  *
593  * In diagrammatic form, with r = RPN bits and z = page size bits:
594  *        PTE LP     actual page size
595  *    rrrr rrrz		>=8KB
596  *    rrrr rrzz		>=16KB
597  *    rrrr rzzz		>=32KB
598  *    rrrr zzzz		>=64KB
599  *    ...
600  *
601  * The zzzz bits are implementation-specific but are chosen so that
602  * no encoding for a larger page size uses the same value in its
603  * low-order N bits as the encoding for the 2^(12+N) byte page size
604  * (if it exists).
605  */
606 static void init_hpte_page_sizes(void)
607 {
608 	long int ap, bp;
609 	long int shift, penc;
610 
611 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
612 		if (!mmu_psize_defs[bp].shift)
613 			continue;	/* not a supported page size */
614 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
615 			penc = mmu_psize_defs[bp].penc[ap];
616 			if (penc == -1 || !mmu_psize_defs[ap].shift)
617 				continue;
618 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
619 			if (shift <= 0)
620 				continue;	/* should never happen */
621 			/*
622 			 * For page sizes less than 1MB, this loop
623 			 * replicates the entry for all possible values
624 			 * of the rrrr bits.
625 			 */
626 			while (penc < (1 << LP_BITS)) {
627 				hpte_page_sizes[penc] = (ap << 4) | bp;
628 				penc += 1 << shift;
629 			}
630 		}
631 	}
632 }
633 
634 static void __init htab_init_page_sizes(void)
635 {
636 	init_hpte_page_sizes();
637 
638 	if (!debug_pagealloc_enabled()) {
639 		/*
640 		 * Pick a size for the linear mapping. Currently, we only
641 		 * support 16M, 1M and 4K which is the default
642 		 */
643 		if (mmu_psize_defs[MMU_PAGE_16M].shift)
644 			mmu_linear_psize = MMU_PAGE_16M;
645 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
646 			mmu_linear_psize = MMU_PAGE_1M;
647 	}
648 
649 #ifdef CONFIG_PPC_64K_PAGES
650 	/*
651 	 * Pick a size for the ordinary pages. Default is 4K, we support
652 	 * 64K for user mappings and vmalloc if supported by the processor.
653 	 * We only use 64k for ioremap if the processor
654 	 * (and firmware) support cache-inhibited large pages.
655 	 * If not, we use 4k and set mmu_ci_restrictions so that
656 	 * hash_page knows to switch processes that use cache-inhibited
657 	 * mappings to 4k pages.
658 	 */
659 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
660 		mmu_virtual_psize = MMU_PAGE_64K;
661 		mmu_vmalloc_psize = MMU_PAGE_64K;
662 		if (mmu_linear_psize == MMU_PAGE_4K)
663 			mmu_linear_psize = MMU_PAGE_64K;
664 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
665 			/*
666 			 * When running on pSeries using 64k pages for ioremap
667 			 * would stop us accessing the HEA ethernet. So if we
668 			 * have the chance of ever seeing one, stay at 4k.
669 			 */
670 			if (!might_have_hea())
671 				mmu_io_psize = MMU_PAGE_64K;
672 		} else
673 			mmu_ci_restrictions = 1;
674 	}
675 #endif /* CONFIG_PPC_64K_PAGES */
676 
677 #ifdef CONFIG_SPARSEMEM_VMEMMAP
678 	/*
679 	 * We try to use 16M pages for vmemmap if that is supported
680 	 * and we have at least 1G of RAM at boot
681 	 */
682 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
683 	    memblock_phys_mem_size() >= 0x40000000)
684 		mmu_vmemmap_psize = MMU_PAGE_16M;
685 	else
686 		mmu_vmemmap_psize = mmu_virtual_psize;
687 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
688 
689 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
690 	       "virtual = %d, io = %d"
691 #ifdef CONFIG_SPARSEMEM_VMEMMAP
692 	       ", vmemmap = %d"
693 #endif
694 	       "\n",
695 	       mmu_psize_defs[mmu_linear_psize].shift,
696 	       mmu_psize_defs[mmu_virtual_psize].shift,
697 	       mmu_psize_defs[mmu_io_psize].shift
698 #ifdef CONFIG_SPARSEMEM_VMEMMAP
699 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
700 #endif
701 	       );
702 }
703 
704 static int __init htab_dt_scan_pftsize(unsigned long node,
705 				       const char *uname, int depth,
706 				       void *data)
707 {
708 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
709 	const __be32 *prop;
710 
711 	/* We are scanning "cpu" nodes only */
712 	if (type == NULL || strcmp(type, "cpu") != 0)
713 		return 0;
714 
715 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
716 	if (prop != NULL) {
717 		/* pft_size[0] is the NUMA CEC cookie */
718 		ppc64_pft_size = be32_to_cpu(prop[1]);
719 		return 1;
720 	}
721 	return 0;
722 }
723 
724 unsigned htab_shift_for_mem_size(unsigned long mem_size)
725 {
726 	unsigned memshift = __ilog2(mem_size);
727 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
728 	unsigned pteg_shift;
729 
730 	/* round mem_size up to next power of 2 */
731 	if ((1UL << memshift) < mem_size)
732 		memshift += 1;
733 
734 	/* aim for 2 pages / pteg */
735 	pteg_shift = memshift - (pshift + 1);
736 
737 	/*
738 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
739 	 * size permitted by the architecture.
740 	 */
741 	return max(pteg_shift + 7, 18U);
742 }
743 
744 static unsigned long __init htab_get_table_size(void)
745 {
746 	/*
747 	 * If hash size isn't already provided by the platform, we try to
748 	 * retrieve it from the device-tree. If it's not there neither, we
749 	 * calculate it now based on the total RAM size
750 	 */
751 	if (ppc64_pft_size == 0)
752 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
753 	if (ppc64_pft_size)
754 		return 1UL << ppc64_pft_size;
755 
756 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
757 }
758 
759 #ifdef CONFIG_MEMORY_HOTPLUG
760 int resize_hpt_for_hotplug(unsigned long new_mem_size)
761 {
762 	unsigned target_hpt_shift;
763 
764 	if (!mmu_hash_ops.resize_hpt)
765 		return 0;
766 
767 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
768 
769 	/*
770 	 * To avoid lots of HPT resizes if memory size is fluctuating
771 	 * across a boundary, we deliberately have some hysterisis
772 	 * here: we immediately increase the HPT size if the target
773 	 * shift exceeds the current shift, but we won't attempt to
774 	 * reduce unless the target shift is at least 2 below the
775 	 * current shift
776 	 */
777 	if (target_hpt_shift > ppc64_pft_size ||
778 	    target_hpt_shift < ppc64_pft_size - 1)
779 		return mmu_hash_ops.resize_hpt(target_hpt_shift);
780 
781 	return 0;
782 }
783 
784 int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
785 {
786 	int rc;
787 
788 	if (end >= H_VMALLOC_START) {
789 		pr_warn("Outside the supported range\n");
790 		return -1;
791 	}
792 
793 	rc = htab_bolt_mapping(start, end, __pa(start),
794 			       pgprot_val(PAGE_KERNEL), mmu_linear_psize,
795 			       mmu_kernel_ssize);
796 
797 	if (rc < 0) {
798 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
799 					      mmu_kernel_ssize);
800 		BUG_ON(rc2 && (rc2 != -ENOENT));
801 	}
802 	return rc;
803 }
804 
805 int hash__remove_section_mapping(unsigned long start, unsigned long end)
806 {
807 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
808 				     mmu_kernel_ssize);
809 	WARN_ON(rc < 0);
810 	return rc;
811 }
812 #endif /* CONFIG_MEMORY_HOTPLUG */
813 
814 static void __init hash_init_partition_table(phys_addr_t hash_table,
815 					     unsigned long htab_size)
816 {
817 	mmu_partition_table_init();
818 
819 	/*
820 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
821 	 * For now, UPRT is 0 and we have no segment table.
822 	 */
823 	htab_size =  __ilog2(htab_size) - 18;
824 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
825 	pr_info("Partition table %p\n", partition_tb);
826 }
827 
828 static void __init htab_initialize(void)
829 {
830 	unsigned long table;
831 	unsigned long pteg_count;
832 	unsigned long prot;
833 	unsigned long base = 0, size = 0;
834 	struct memblock_region *reg;
835 
836 	DBG(" -> htab_initialize()\n");
837 
838 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
839 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
840 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
841 		printk(KERN_INFO "Using 1TB segments\n");
842 	}
843 
844 	/*
845 	 * Calculate the required size of the htab.  We want the number of
846 	 * PTEGs to equal one half the number of real pages.
847 	 */
848 	htab_size_bytes = htab_get_table_size();
849 	pteg_count = htab_size_bytes >> 7;
850 
851 	htab_hash_mask = pteg_count - 1;
852 
853 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
854 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
855 		/* Using a hypervisor which owns the htab */
856 		htab_address = NULL;
857 		_SDR1 = 0;
858 #ifdef CONFIG_FA_DUMP
859 		/*
860 		 * If firmware assisted dump is active firmware preserves
861 		 * the contents of htab along with entire partition memory.
862 		 * Clear the htab if firmware assisted dump is active so
863 		 * that we dont end up using old mappings.
864 		 */
865 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
866 			mmu_hash_ops.hpte_clear_all();
867 #endif
868 	} else {
869 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
870 
871 #ifdef CONFIG_PPC_CELL
872 		/*
873 		 * Cell may require the hash table down low when using the
874 		 * Axon IOMMU in order to fit the dynamic region over it, see
875 		 * comments in cell/iommu.c
876 		 */
877 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
878 			limit = 0x80000000;
879 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
880 		}
881 #endif /* CONFIG_PPC_CELL */
882 
883 		table = memblock_phys_alloc_range(htab_size_bytes,
884 						  htab_size_bytes,
885 						  0, limit);
886 		if (!table)
887 			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
888 			      &htab_size_bytes, &limit);
889 
890 		DBG("Hash table allocated at %lx, size: %lx\n", table,
891 		    htab_size_bytes);
892 
893 		htab_address = __va(table);
894 
895 		/* htab absolute addr + encoded htabsize */
896 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
897 
898 		/* Initialize the HPT with no entries */
899 		memset((void *)table, 0, htab_size_bytes);
900 
901 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
902 			/* Set SDR1 */
903 			mtspr(SPRN_SDR1, _SDR1);
904 		else
905 			hash_init_partition_table(table, htab_size_bytes);
906 	}
907 
908 	prot = pgprot_val(PAGE_KERNEL);
909 
910 #ifdef CONFIG_DEBUG_PAGEALLOC
911 	if (debug_pagealloc_enabled()) {
912 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
913 		linear_map_hash_slots = memblock_alloc_try_nid(
914 				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
915 				ppc64_rma_size,	NUMA_NO_NODE);
916 		if (!linear_map_hash_slots)
917 			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
918 			      __func__, linear_map_hash_count, &ppc64_rma_size);
919 	}
920 #endif /* CONFIG_DEBUG_PAGEALLOC */
921 
922 	/* create bolted the linear mapping in the hash table */
923 	for_each_memblock(memory, reg) {
924 		base = (unsigned long)__va(reg->base);
925 		size = reg->size;
926 
927 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
928 		    base, size, prot);
929 
930 		if ((base + size) >= H_VMALLOC_START) {
931 			pr_warn("Outside the supported range\n");
932 			continue;
933 		}
934 
935 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
936 				prot, mmu_linear_psize, mmu_kernel_ssize));
937 	}
938 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
939 
940 	/*
941 	 * If we have a memory_limit and we've allocated TCEs then we need to
942 	 * explicitly map the TCE area at the top of RAM. We also cope with the
943 	 * case that the TCEs start below memory_limit.
944 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
945 	 * for either 4K or 16MB pages.
946 	 */
947 	if (tce_alloc_start) {
948 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
949 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
950 
951 		if (base + size >= tce_alloc_start)
952 			tce_alloc_start = base + size + 1;
953 
954 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
955 					 __pa(tce_alloc_start), prot,
956 					 mmu_linear_psize, mmu_kernel_ssize));
957 	}
958 
959 
960 	DBG(" <- htab_initialize()\n");
961 }
962 #undef KB
963 #undef MB
964 
965 void __init hash__early_init_devtree(void)
966 {
967 	/* Initialize segment sizes */
968 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
969 
970 	/* Initialize page sizes */
971 	htab_scan_page_sizes();
972 }
973 
974 static struct hash_mm_context init_hash_mm_context;
975 void __init hash__early_init_mmu(void)
976 {
977 #ifndef CONFIG_PPC_64K_PAGES
978 	/*
979 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
980 	 * do the following:
981 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
982 	 *
983 	 * Where the slot number is between 0-15, and values of 8-15 indicate
984 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
985 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
986 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
987 	 * with a BUILD_BUG_ON().
988 	 */
989 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
990 #endif /* CONFIG_PPC_64K_PAGES */
991 
992 	htab_init_page_sizes();
993 
994 	/*
995 	 * initialize page table size
996 	 */
997 	__pte_frag_nr = H_PTE_FRAG_NR;
998 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
999 	__pmd_frag_nr = H_PMD_FRAG_NR;
1000 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1001 
1002 	__pte_index_size = H_PTE_INDEX_SIZE;
1003 	__pmd_index_size = H_PMD_INDEX_SIZE;
1004 	__pud_index_size = H_PUD_INDEX_SIZE;
1005 	__pgd_index_size = H_PGD_INDEX_SIZE;
1006 	__pud_cache_index = H_PUD_CACHE_INDEX;
1007 	__pte_table_size = H_PTE_TABLE_SIZE;
1008 	__pmd_table_size = H_PMD_TABLE_SIZE;
1009 	__pud_table_size = H_PUD_TABLE_SIZE;
1010 	__pgd_table_size = H_PGD_TABLE_SIZE;
1011 	/*
1012 	 * 4k use hugepd format, so for hash set then to
1013 	 * zero
1014 	 */
1015 	__pmd_val_bits = HASH_PMD_VAL_BITS;
1016 	__pud_val_bits = HASH_PUD_VAL_BITS;
1017 	__pgd_val_bits = HASH_PGD_VAL_BITS;
1018 
1019 	__kernel_virt_start = H_KERN_VIRT_START;
1020 	__vmalloc_start = H_VMALLOC_START;
1021 	__vmalloc_end = H_VMALLOC_END;
1022 	__kernel_io_start = H_KERN_IO_START;
1023 	__kernel_io_end = H_KERN_IO_END;
1024 	vmemmap = (struct page *)H_VMEMMAP_START;
1025 	ioremap_bot = IOREMAP_BASE;
1026 
1027 #ifdef CONFIG_PCI
1028 	pci_io_base = ISA_IO_BASE;
1029 #endif
1030 
1031 	/* Select appropriate backend */
1032 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1033 		ps3_early_mm_init();
1034 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1035 		hpte_init_pseries();
1036 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1037 		hpte_init_native();
1038 
1039 	if (!mmu_hash_ops.hpte_insert)
1040 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1041 
1042 	/*
1043 	 * Initialize the MMU Hash table and create the linear mapping
1044 	 * of memory. Has to be done before SLB initialization as this is
1045 	 * currently where the page size encoding is obtained.
1046 	 */
1047 	htab_initialize();
1048 
1049 	init_mm.context.hash_context = &init_hash_mm_context;
1050 	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1051 
1052 	pr_info("Initializing hash mmu with SLB\n");
1053 	/* Initialize SLB management */
1054 	slb_initialize();
1055 
1056 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1057 			&& cpu_has_feature(CPU_FTR_HVMODE))
1058 		tlbiel_all();
1059 }
1060 
1061 #ifdef CONFIG_SMP
1062 void hash__early_init_mmu_secondary(void)
1063 {
1064 	/* Initialize hash table for that CPU */
1065 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1066 
1067 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1068 			mtspr(SPRN_SDR1, _SDR1);
1069 		else
1070 			set_ptcr_when_no_uv(__pa(partition_tb) |
1071 					    (PATB_SIZE_SHIFT - 12));
1072 	}
1073 	/* Initialize SLB */
1074 	slb_initialize();
1075 
1076 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1077 			&& cpu_has_feature(CPU_FTR_HVMODE))
1078 		tlbiel_all();
1079 }
1080 #endif /* CONFIG_SMP */
1081 
1082 /*
1083  * Called by asm hashtable.S for doing lazy icache flush
1084  */
1085 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1086 {
1087 	struct page *page;
1088 
1089 	if (!pfn_valid(pte_pfn(pte)))
1090 		return pp;
1091 
1092 	page = pte_page(pte);
1093 
1094 	/* page is dirty */
1095 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1096 		if (trap == 0x400) {
1097 			flush_dcache_icache_page(page);
1098 			set_bit(PG_arch_1, &page->flags);
1099 		} else
1100 			pp |= HPTE_R_N;
1101 	}
1102 	return pp;
1103 }
1104 
1105 #ifdef CONFIG_PPC_MM_SLICES
1106 static unsigned int get_paca_psize(unsigned long addr)
1107 {
1108 	unsigned char *psizes;
1109 	unsigned long index, mask_index;
1110 
1111 	if (addr < SLICE_LOW_TOP) {
1112 		psizes = get_paca()->mm_ctx_low_slices_psize;
1113 		index = GET_LOW_SLICE_INDEX(addr);
1114 	} else {
1115 		psizes = get_paca()->mm_ctx_high_slices_psize;
1116 		index = GET_HIGH_SLICE_INDEX(addr);
1117 	}
1118 	mask_index = index & 0x1;
1119 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1120 }
1121 
1122 #else
1123 unsigned int get_paca_psize(unsigned long addr)
1124 {
1125 	return get_paca()->mm_ctx_user_psize;
1126 }
1127 #endif
1128 
1129 /*
1130  * Demote a segment to using 4k pages.
1131  * For now this makes the whole process use 4k pages.
1132  */
1133 #ifdef CONFIG_PPC_64K_PAGES
1134 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1135 {
1136 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1137 		return;
1138 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1139 	copro_flush_all_slbs(mm);
1140 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1141 
1142 		copy_mm_to_paca(mm);
1143 		slb_flush_and_restore_bolted();
1144 	}
1145 }
1146 #endif /* CONFIG_PPC_64K_PAGES */
1147 
1148 #ifdef CONFIG_PPC_SUBPAGE_PROT
1149 /*
1150  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1151  * Userspace sets the subpage permissions using the subpage_prot system call.
1152  *
1153  * Result is 0: full permissions, _PAGE_RW: read-only,
1154  * _PAGE_RWX: no access.
1155  */
1156 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1157 {
1158 	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1159 	u32 spp = 0;
1160 	u32 **sbpm, *sbpp;
1161 
1162 	if (!spt)
1163 		return 0;
1164 
1165 	if (ea >= spt->maxaddr)
1166 		return 0;
1167 	if (ea < 0x100000000UL) {
1168 		/* addresses below 4GB use spt->low_prot */
1169 		sbpm = spt->low_prot;
1170 	} else {
1171 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1172 		if (!sbpm)
1173 			return 0;
1174 	}
1175 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1176 	if (!sbpp)
1177 		return 0;
1178 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1179 
1180 	/* extract 2-bit bitfield for this 4k subpage */
1181 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1182 
1183 	/*
1184 	 * 0 -> full premission
1185 	 * 1 -> Read only
1186 	 * 2 -> no access.
1187 	 * We return the flag that need to be cleared.
1188 	 */
1189 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1190 	return spp;
1191 }
1192 
1193 #else /* CONFIG_PPC_SUBPAGE_PROT */
1194 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1195 {
1196 	return 0;
1197 }
1198 #endif
1199 
1200 void hash_failure_debug(unsigned long ea, unsigned long access,
1201 			unsigned long vsid, unsigned long trap,
1202 			int ssize, int psize, int lpsize, unsigned long pte)
1203 {
1204 	if (!printk_ratelimit())
1205 		return;
1206 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1207 		ea, access, current->comm);
1208 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1209 		trap, vsid, ssize, psize, lpsize, pte);
1210 }
1211 
1212 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1213 			     int psize, bool user_region)
1214 {
1215 	if (user_region) {
1216 		if (psize != get_paca_psize(ea)) {
1217 			copy_mm_to_paca(mm);
1218 			slb_flush_and_restore_bolted();
1219 		}
1220 	} else if (get_paca()->vmalloc_sllp !=
1221 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1222 		get_paca()->vmalloc_sllp =
1223 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1224 		slb_vmalloc_update();
1225 	}
1226 }
1227 
1228 /*
1229  * Result code is:
1230  *  0 - handled
1231  *  1 - normal page fault
1232  * -1 - critical hash insertion error
1233  * -2 - access not permitted by subpage protection mechanism
1234  */
1235 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1236 		 unsigned long access, unsigned long trap,
1237 		 unsigned long flags)
1238 {
1239 	bool is_thp;
1240 	enum ctx_state prev_state = exception_enter();
1241 	pgd_t *pgdir;
1242 	unsigned long vsid;
1243 	pte_t *ptep;
1244 	unsigned hugeshift;
1245 	int rc, user_region = 0;
1246 	int psize, ssize;
1247 
1248 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1249 		ea, access, trap);
1250 	trace_hash_fault(ea, access, trap);
1251 
1252 	/* Get region & vsid */
1253 	switch (get_region_id(ea)) {
1254 	case USER_REGION_ID:
1255 		user_region = 1;
1256 		if (! mm) {
1257 			DBG_LOW(" user region with no mm !\n");
1258 			rc = 1;
1259 			goto bail;
1260 		}
1261 		psize = get_slice_psize(mm, ea);
1262 		ssize = user_segment_size(ea);
1263 		vsid = get_user_vsid(&mm->context, ea, ssize);
1264 		break;
1265 	case VMALLOC_REGION_ID:
1266 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1267 		psize = mmu_vmalloc_psize;
1268 		ssize = mmu_kernel_ssize;
1269 		break;
1270 
1271 	case IO_REGION_ID:
1272 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1273 		psize = mmu_io_psize;
1274 		ssize = mmu_kernel_ssize;
1275 		break;
1276 	default:
1277 		/*
1278 		 * Not a valid range
1279 		 * Send the problem up to do_page_fault()
1280 		 */
1281 		rc = 1;
1282 		goto bail;
1283 	}
1284 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1285 
1286 	/* Bad address. */
1287 	if (!vsid) {
1288 		DBG_LOW("Bad address!\n");
1289 		rc = 1;
1290 		goto bail;
1291 	}
1292 	/* Get pgdir */
1293 	pgdir = mm->pgd;
1294 	if (pgdir == NULL) {
1295 		rc = 1;
1296 		goto bail;
1297 	}
1298 
1299 	/* Check CPU locality */
1300 	if (user_region && mm_is_thread_local(mm))
1301 		flags |= HPTE_LOCAL_UPDATE;
1302 
1303 #ifndef CONFIG_PPC_64K_PAGES
1304 	/*
1305 	 * If we use 4K pages and our psize is not 4K, then we might
1306 	 * be hitting a special driver mapping, and need to align the
1307 	 * address before we fetch the PTE.
1308 	 *
1309 	 * It could also be a hugepage mapping, in which case this is
1310 	 * not necessary, but it's not harmful, either.
1311 	 */
1312 	if (psize != MMU_PAGE_4K)
1313 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1314 #endif /* CONFIG_PPC_64K_PAGES */
1315 
1316 	/* Get PTE and page size from page tables */
1317 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1318 	if (ptep == NULL || !pte_present(*ptep)) {
1319 		DBG_LOW(" no PTE !\n");
1320 		rc = 1;
1321 		goto bail;
1322 	}
1323 
1324 	/* Add _PAGE_PRESENT to the required access perm */
1325 	access |= _PAGE_PRESENT;
1326 
1327 	/*
1328 	 * Pre-check access permissions (will be re-checked atomically
1329 	 * in __hash_page_XX but this pre-check is a fast path
1330 	 */
1331 	if (!check_pte_access(access, pte_val(*ptep))) {
1332 		DBG_LOW(" no access !\n");
1333 		rc = 1;
1334 		goto bail;
1335 	}
1336 
1337 	if (hugeshift) {
1338 		if (is_thp)
1339 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1340 					     trap, flags, ssize, psize);
1341 #ifdef CONFIG_HUGETLB_PAGE
1342 		else
1343 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1344 					      flags, ssize, hugeshift, psize);
1345 #else
1346 		else {
1347 			/*
1348 			 * if we have hugeshift, and is not transhuge with
1349 			 * hugetlb disabled, something is really wrong.
1350 			 */
1351 			rc = 1;
1352 			WARN_ON(1);
1353 		}
1354 #endif
1355 		if (current->mm == mm)
1356 			check_paca_psize(ea, mm, psize, user_region);
1357 
1358 		goto bail;
1359 	}
1360 
1361 #ifndef CONFIG_PPC_64K_PAGES
1362 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1363 #else
1364 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1365 		pte_val(*(ptep + PTRS_PER_PTE)));
1366 #endif
1367 	/* Do actual hashing */
1368 #ifdef CONFIG_PPC_64K_PAGES
1369 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1370 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1371 		demote_segment_4k(mm, ea);
1372 		psize = MMU_PAGE_4K;
1373 	}
1374 
1375 	/*
1376 	 * If this PTE is non-cacheable and we have restrictions on
1377 	 * using non cacheable large pages, then we switch to 4k
1378 	 */
1379 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1380 		if (user_region) {
1381 			demote_segment_4k(mm, ea);
1382 			psize = MMU_PAGE_4K;
1383 		} else if (ea < VMALLOC_END) {
1384 			/*
1385 			 * some driver did a non-cacheable mapping
1386 			 * in vmalloc space, so switch vmalloc
1387 			 * to 4k pages
1388 			 */
1389 			printk(KERN_ALERT "Reducing vmalloc segment "
1390 			       "to 4kB pages because of "
1391 			       "non-cacheable mapping\n");
1392 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1393 			copro_flush_all_slbs(mm);
1394 		}
1395 	}
1396 
1397 #endif /* CONFIG_PPC_64K_PAGES */
1398 
1399 	if (current->mm == mm)
1400 		check_paca_psize(ea, mm, psize, user_region);
1401 
1402 #ifdef CONFIG_PPC_64K_PAGES
1403 	if (psize == MMU_PAGE_64K)
1404 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1405 				     flags, ssize);
1406 	else
1407 #endif /* CONFIG_PPC_64K_PAGES */
1408 	{
1409 		int spp = subpage_protection(mm, ea);
1410 		if (access & spp)
1411 			rc = -2;
1412 		else
1413 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1414 					    flags, ssize, spp);
1415 	}
1416 
1417 	/*
1418 	 * Dump some info in case of hash insertion failure, they should
1419 	 * never happen so it is really useful to know if/when they do
1420 	 */
1421 	if (rc == -1)
1422 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1423 				   psize, pte_val(*ptep));
1424 #ifndef CONFIG_PPC_64K_PAGES
1425 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1426 #else
1427 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1428 		pte_val(*(ptep + PTRS_PER_PTE)));
1429 #endif
1430 	DBG_LOW(" -> rc=%d\n", rc);
1431 
1432 bail:
1433 	exception_exit(prev_state);
1434 	return rc;
1435 }
1436 EXPORT_SYMBOL_GPL(hash_page_mm);
1437 
1438 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1439 	      unsigned long dsisr)
1440 {
1441 	unsigned long flags = 0;
1442 	struct mm_struct *mm = current->mm;
1443 
1444 	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1445 	    (get_region_id(ea) == IO_REGION_ID))
1446 		mm = &init_mm;
1447 
1448 	if (dsisr & DSISR_NOHPTE)
1449 		flags |= HPTE_NOHPTE_UPDATE;
1450 
1451 	return hash_page_mm(mm, ea, access, trap, flags);
1452 }
1453 EXPORT_SYMBOL_GPL(hash_page);
1454 
1455 int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr,
1456 		unsigned long msr)
1457 {
1458 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1459 	unsigned long flags = 0;
1460 	struct mm_struct *mm = current->mm;
1461 	unsigned int region_id = get_region_id(ea);
1462 
1463 	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1464 		mm = &init_mm;
1465 
1466 	if (dsisr & DSISR_NOHPTE)
1467 		flags |= HPTE_NOHPTE_UPDATE;
1468 
1469 	if (dsisr & DSISR_ISSTORE)
1470 		access |= _PAGE_WRITE;
1471 	/*
1472 	 * We set _PAGE_PRIVILEGED only when
1473 	 * kernel mode access kernel space.
1474 	 *
1475 	 * _PAGE_PRIVILEGED is NOT set
1476 	 * 1) when kernel mode access user space
1477 	 * 2) user space access kernel space.
1478 	 */
1479 	access |= _PAGE_PRIVILEGED;
1480 	if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1481 		access &= ~_PAGE_PRIVILEGED;
1482 
1483 	if (trap == 0x400)
1484 		access |= _PAGE_EXEC;
1485 
1486 	return hash_page_mm(mm, ea, access, trap, flags);
1487 }
1488 
1489 #ifdef CONFIG_PPC_MM_SLICES
1490 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1491 {
1492 	int psize = get_slice_psize(mm, ea);
1493 
1494 	/* We only prefault standard pages for now */
1495 	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1496 		return false;
1497 
1498 	/*
1499 	 * Don't prefault if subpage protection is enabled for the EA.
1500 	 */
1501 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1502 		return false;
1503 
1504 	return true;
1505 }
1506 #else
1507 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1508 {
1509 	return true;
1510 }
1511 #endif
1512 
1513 static void hash_preload(struct mm_struct *mm, unsigned long ea,
1514 			 bool is_exec, unsigned long trap)
1515 {
1516 	int hugepage_shift;
1517 	unsigned long vsid;
1518 	pgd_t *pgdir;
1519 	pte_t *ptep;
1520 	unsigned long flags;
1521 	int rc, ssize, update_flags = 0;
1522 	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1523 
1524 	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1525 
1526 	if (!should_hash_preload(mm, ea))
1527 		return;
1528 
1529 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1530 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1531 
1532 	/* Get Linux PTE if available */
1533 	pgdir = mm->pgd;
1534 	if (pgdir == NULL)
1535 		return;
1536 
1537 	/* Get VSID */
1538 	ssize = user_segment_size(ea);
1539 	vsid = get_user_vsid(&mm->context, ea, ssize);
1540 	if (!vsid)
1541 		return;
1542 	/*
1543 	 * Hash doesn't like irqs. Walking linux page table with irq disabled
1544 	 * saves us from holding multiple locks.
1545 	 */
1546 	local_irq_save(flags);
1547 
1548 	/*
1549 	 * THP pages use update_mmu_cache_pmd. We don't do
1550 	 * hash preload there. Hence can ignore THP here
1551 	 */
1552 	ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1553 	if (!ptep)
1554 		goto out_exit;
1555 
1556 	WARN_ON(hugepage_shift);
1557 #ifdef CONFIG_PPC_64K_PAGES
1558 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1559 	 * a 64K kernel), then we don't preload, hash_page() will take
1560 	 * care of it once we actually try to access the page.
1561 	 * That way we don't have to duplicate all of the logic for segment
1562 	 * page size demotion here
1563 	 */
1564 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1565 		goto out_exit;
1566 #endif /* CONFIG_PPC_64K_PAGES */
1567 
1568 	/* Is that local to this CPU ? */
1569 	if (mm_is_thread_local(mm))
1570 		update_flags |= HPTE_LOCAL_UPDATE;
1571 
1572 	/* Hash it in */
1573 #ifdef CONFIG_PPC_64K_PAGES
1574 	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1575 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1576 				     update_flags, ssize);
1577 	else
1578 #endif /* CONFIG_PPC_64K_PAGES */
1579 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1580 				    ssize, subpage_protection(mm, ea));
1581 
1582 	/* Dump some info in case of hash insertion failure, they should
1583 	 * never happen so it is really useful to know if/when they do
1584 	 */
1585 	if (rc == -1)
1586 		hash_failure_debug(ea, access, vsid, trap, ssize,
1587 				   mm_ctx_user_psize(&mm->context),
1588 				   mm_ctx_user_psize(&mm->context),
1589 				   pte_val(*ptep));
1590 out_exit:
1591 	local_irq_restore(flags);
1592 }
1593 
1594 /*
1595  * This is called at the end of handling a user page fault, when the
1596  * fault has been handled by updating a PTE in the linux page tables.
1597  * We use it to preload an HPTE into the hash table corresponding to
1598  * the updated linux PTE.
1599  *
1600  * This must always be called with the pte lock held.
1601  */
1602 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1603 		      pte_t *ptep)
1604 {
1605 	/*
1606 	 * We don't need to worry about _PAGE_PRESENT here because we are
1607 	 * called with either mm->page_table_lock held or ptl lock held
1608 	 */
1609 	unsigned long trap;
1610 	bool is_exec;
1611 
1612 	if (radix_enabled()) {
1613 		prefetch((void *)address);
1614 		return;
1615 	}
1616 
1617 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1618 	if (!pte_young(*ptep) || address >= TASK_SIZE)
1619 		return;
1620 
1621 	/*
1622 	 * We try to figure out if we are coming from an instruction
1623 	 * access fault and pass that down to __hash_page so we avoid
1624 	 * double-faulting on execution of fresh text. We have to test
1625 	 * for regs NULL since init will get here first thing at boot.
1626 	 *
1627 	 * We also avoid filling the hash if not coming from a fault.
1628 	 */
1629 
1630 	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1631 	switch (trap) {
1632 	case 0x300:
1633 		is_exec = false;
1634 		break;
1635 	case 0x400:
1636 		is_exec = true;
1637 		break;
1638 	default:
1639 		return;
1640 	}
1641 
1642 	hash_preload(vma->vm_mm, address, is_exec, trap);
1643 }
1644 
1645 #ifdef CONFIG_PPC_MEM_KEYS
1646 /*
1647  * Return the protection key associated with the given address and the
1648  * mm_struct.
1649  */
1650 u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1651 {
1652 	pte_t *ptep;
1653 	u16 pkey = 0;
1654 	unsigned long flags;
1655 
1656 	if (!mm || !mm->pgd)
1657 		return 0;
1658 
1659 	local_irq_save(flags);
1660 	ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1661 	if (ptep)
1662 		pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1663 	local_irq_restore(flags);
1664 
1665 	return pkey;
1666 }
1667 #endif /* CONFIG_PPC_MEM_KEYS */
1668 
1669 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1670 static inline void tm_flush_hash_page(int local)
1671 {
1672 	/*
1673 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1674 	 * page back to a block device w/PIO could pick up transactional data
1675 	 * (bad!) so we force an abort here. Before the sync the page will be
1676 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1677 	 * kernel uses a page from userspace without unmapping it first, it may
1678 	 * see the speculated version.
1679 	 */
1680 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1681 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1682 		tm_enable();
1683 		tm_abort(TM_CAUSE_TLBI);
1684 	}
1685 }
1686 #else
1687 static inline void tm_flush_hash_page(int local)
1688 {
1689 }
1690 #endif
1691 
1692 /*
1693  * Return the global hash slot, corresponding to the given PTE, which contains
1694  * the HPTE.
1695  */
1696 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1697 		int ssize, real_pte_t rpte, unsigned int subpg_index)
1698 {
1699 	unsigned long hash, gslot, hidx;
1700 
1701 	hash = hpt_hash(vpn, shift, ssize);
1702 	hidx = __rpte_to_hidx(rpte, subpg_index);
1703 	if (hidx & _PTEIDX_SECONDARY)
1704 		hash = ~hash;
1705 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1706 	gslot += hidx & _PTEIDX_GROUP_IX;
1707 	return gslot;
1708 }
1709 
1710 /*
1711  * WARNING: This is called from hash_low_64.S, if you change this prototype,
1712  *          do not forget to update the assembly call site !
1713  */
1714 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1715 		     unsigned long flags)
1716 {
1717 	unsigned long index, shift, gslot;
1718 	int local = flags & HPTE_LOCAL_UPDATE;
1719 
1720 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1721 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1722 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1723 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1724 		/*
1725 		 * We use same base page size and actual psize, because we don't
1726 		 * use these functions for hugepage
1727 		 */
1728 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1729 					     ssize, local);
1730 	} pte_iterate_hashed_end();
1731 
1732 	tm_flush_hash_page(local);
1733 }
1734 
1735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1736 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1737 			 pmd_t *pmdp, unsigned int psize, int ssize,
1738 			 unsigned long flags)
1739 {
1740 	int i, max_hpte_count, valid;
1741 	unsigned long s_addr;
1742 	unsigned char *hpte_slot_array;
1743 	unsigned long hidx, shift, vpn, hash, slot;
1744 	int local = flags & HPTE_LOCAL_UPDATE;
1745 
1746 	s_addr = addr & HPAGE_PMD_MASK;
1747 	hpte_slot_array = get_hpte_slot_array(pmdp);
1748 	/*
1749 	 * IF we try to do a HUGE PTE update after a withdraw is done.
1750 	 * we will find the below NULL. This happens when we do
1751 	 * split_huge_pmd
1752 	 */
1753 	if (!hpte_slot_array)
1754 		return;
1755 
1756 	if (mmu_hash_ops.hugepage_invalidate) {
1757 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1758 						 psize, ssize, local);
1759 		goto tm_abort;
1760 	}
1761 	/*
1762 	 * No bluk hpte removal support, invalidate each entry
1763 	 */
1764 	shift = mmu_psize_defs[psize].shift;
1765 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1766 	for (i = 0; i < max_hpte_count; i++) {
1767 		/*
1768 		 * 8 bits per each hpte entries
1769 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1770 		 */
1771 		valid = hpte_valid(hpte_slot_array, i);
1772 		if (!valid)
1773 			continue;
1774 		hidx =  hpte_hash_index(hpte_slot_array, i);
1775 
1776 		/* get the vpn */
1777 		addr = s_addr + (i * (1ul << shift));
1778 		vpn = hpt_vpn(addr, vsid, ssize);
1779 		hash = hpt_hash(vpn, shift, ssize);
1780 		if (hidx & _PTEIDX_SECONDARY)
1781 			hash = ~hash;
1782 
1783 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1784 		slot += hidx & _PTEIDX_GROUP_IX;
1785 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1786 					     MMU_PAGE_16M, ssize, local);
1787 	}
1788 tm_abort:
1789 	tm_flush_hash_page(local);
1790 }
1791 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1792 
1793 void flush_hash_range(unsigned long number, int local)
1794 {
1795 	if (mmu_hash_ops.flush_hash_range)
1796 		mmu_hash_ops.flush_hash_range(number, local);
1797 	else {
1798 		int i;
1799 		struct ppc64_tlb_batch *batch =
1800 			this_cpu_ptr(&ppc64_tlb_batch);
1801 
1802 		for (i = 0; i < number; i++)
1803 			flush_hash_page(batch->vpn[i], batch->pte[i],
1804 					batch->psize, batch->ssize, local);
1805 	}
1806 }
1807 
1808 /*
1809  * low_hash_fault is called when we the low level hash code failed
1810  * to instert a PTE due to an hypervisor error
1811  */
1812 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1813 {
1814 	enum ctx_state prev_state = exception_enter();
1815 
1816 	if (user_mode(regs)) {
1817 #ifdef CONFIG_PPC_SUBPAGE_PROT
1818 		if (rc == -2)
1819 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1820 		else
1821 #endif
1822 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1823 	} else
1824 		bad_page_fault(regs, address, SIGBUS);
1825 
1826 	exception_exit(prev_state);
1827 }
1828 
1829 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1830 			   unsigned long pa, unsigned long rflags,
1831 			   unsigned long vflags, int psize, int ssize)
1832 {
1833 	unsigned long hpte_group;
1834 	long slot;
1835 
1836 repeat:
1837 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1838 
1839 	/* Insert into the hash table, primary slot */
1840 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1841 					psize, psize, ssize);
1842 
1843 	/* Primary is full, try the secondary */
1844 	if (unlikely(slot == -1)) {
1845 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1846 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1847 						vflags | HPTE_V_SECONDARY,
1848 						psize, psize, ssize);
1849 		if (slot == -1) {
1850 			if (mftb() & 0x1)
1851 				hpte_group = (hash & htab_hash_mask) *
1852 						HPTES_PER_GROUP;
1853 
1854 			mmu_hash_ops.hpte_remove(hpte_group);
1855 			goto repeat;
1856 		}
1857 	}
1858 
1859 	return slot;
1860 }
1861 
1862 #ifdef CONFIG_DEBUG_PAGEALLOC
1863 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1864 {
1865 	unsigned long hash;
1866 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1867 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1868 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1869 	long ret;
1870 
1871 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1872 
1873 	/* Don't create HPTE entries for bad address */
1874 	if (!vsid)
1875 		return;
1876 
1877 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1878 				    HPTE_V_BOLTED,
1879 				    mmu_linear_psize, mmu_kernel_ssize);
1880 
1881 	BUG_ON (ret < 0);
1882 	spin_lock(&linear_map_hash_lock);
1883 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1884 	linear_map_hash_slots[lmi] = ret | 0x80;
1885 	spin_unlock(&linear_map_hash_lock);
1886 }
1887 
1888 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1889 {
1890 	unsigned long hash, hidx, slot;
1891 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1892 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1893 
1894 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1895 	spin_lock(&linear_map_hash_lock);
1896 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1897 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1898 	linear_map_hash_slots[lmi] = 0;
1899 	spin_unlock(&linear_map_hash_lock);
1900 	if (hidx & _PTEIDX_SECONDARY)
1901 		hash = ~hash;
1902 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1903 	slot += hidx & _PTEIDX_GROUP_IX;
1904 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1905 				     mmu_linear_psize,
1906 				     mmu_kernel_ssize, 0);
1907 }
1908 
1909 void __kernel_map_pages(struct page *page, int numpages, int enable)
1910 {
1911 	unsigned long flags, vaddr, lmi;
1912 	int i;
1913 
1914 	local_irq_save(flags);
1915 	for (i = 0; i < numpages; i++, page++) {
1916 		vaddr = (unsigned long)page_address(page);
1917 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1918 		if (lmi >= linear_map_hash_count)
1919 			continue;
1920 		if (enable)
1921 			kernel_map_linear_page(vaddr, lmi);
1922 		else
1923 			kernel_unmap_linear_page(vaddr, lmi);
1924 	}
1925 	local_irq_restore(flags);
1926 }
1927 #endif /* CONFIG_DEBUG_PAGEALLOC */
1928 
1929 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1930 				phys_addr_t first_memblock_size)
1931 {
1932 	/*
1933 	 * We don't currently support the first MEMBLOCK not mapping 0
1934 	 * physical on those processors
1935 	 */
1936 	BUG_ON(first_memblock_base != 0);
1937 
1938 	/*
1939 	 * On virtualized systems the first entry is our RMA region aka VRMA,
1940 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
1941 	 * on real mode access.
1942 	 *
1943 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
1944 	 * to avoid some funky things such as RTAS bugs etc...
1945 	 *
1946 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
1947 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1948 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1949 	 * for virtual real mode addressing and so it doesn't make sense to
1950 	 * have an area larger than 1TB as it can't be addressed.
1951 	 */
1952 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1953 		ppc64_rma_size = first_memblock_size;
1954 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1955 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1956 		else
1957 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
1958 					       1UL << SID_SHIFT_1T);
1959 
1960 		/* Finally limit subsequent allocations */
1961 		memblock_set_current_limit(ppc64_rma_size);
1962 	} else {
1963 		ppc64_rma_size = ULONG_MAX;
1964 	}
1965 }
1966 
1967 #ifdef CONFIG_DEBUG_FS
1968 
1969 static int hpt_order_get(void *data, u64 *val)
1970 {
1971 	*val = ppc64_pft_size;
1972 	return 0;
1973 }
1974 
1975 static int hpt_order_set(void *data, u64 val)
1976 {
1977 	int ret;
1978 
1979 	if (!mmu_hash_ops.resize_hpt)
1980 		return -ENODEV;
1981 
1982 	cpus_read_lock();
1983 	ret = mmu_hash_ops.resize_hpt(val);
1984 	cpus_read_unlock();
1985 
1986 	return ret;
1987 }
1988 
1989 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1990 
1991 static int __init hash64_debugfs(void)
1992 {
1993 	if (!debugfs_create_file_unsafe("hpt_order", 0600, powerpc_debugfs_root,
1994 					NULL, &fops_hpt_order)) {
1995 		pr_err("lpar: unable to create hpt_order debugsfs file\n");
1996 	}
1997 
1998 	return 0;
1999 }
2000 machine_device_initcall(pseries, hash64_debugfs);
2001 #endif /* CONFIG_DEBUG_FS */
2002 
2003 void __init print_system_hash_info(void)
2004 {
2005 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2006 
2007 	if (htab_hash_mask)
2008 		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2009 }
2010