1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * This file contains the routines for flushing entries from the
4  * TLB and MMU hash table.
5  *
6  *  Derived from arch/ppc64/mm/init.c:
7  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8  *
9  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
11  *    Copyright (C) 1996 Paul Mackerras
12  *
13  *  Derived from "arch/i386/mm/init.c"
14  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
15  *
16  *  Dave Engebretsen <engebret@us.ibm.com>
17  *      Rework for PPC64 port.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/percpu.h>
23 #include <linux/hardirq.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlbflush.h>
26 #include <asm/tlb.h>
27 #include <asm/bug.h>
28 #include <asm/pte-walk.h>
29 
30 
31 #include <trace/events/thp.h>
32 
33 DEFINE_PER_CPU(struct ppc64_tlb_batch, ppc64_tlb_batch);
34 
35 /*
36  * A linux PTE was changed and the corresponding hash table entry
37  * neesd to be flushed. This function will either perform the flush
38  * immediately or will batch it up if the current CPU has an active
39  * batch on it.
40  */
41 void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
42 		     pte_t *ptep, unsigned long pte, int huge)
43 {
44 	unsigned long vpn;
45 	struct ppc64_tlb_batch *batch = &get_cpu_var(ppc64_tlb_batch);
46 	unsigned long vsid;
47 	unsigned int psize;
48 	int ssize;
49 	real_pte_t rpte;
50 	int i, offset;
51 
52 	i = batch->index;
53 
54 	/*
55 	 * Get page size (maybe move back to caller).
56 	 *
57 	 * NOTE: when using special 64K mappings in 4K environment like
58 	 * for SPEs, we obtain the page size from the slice, which thus
59 	 * must still exist (and thus the VMA not reused) at the time
60 	 * of this call
61 	 */
62 	if (huge) {
63 #ifdef CONFIG_HUGETLB_PAGE
64 		psize = get_slice_psize(mm, addr);
65 		/* Mask the address for the correct page size */
66 		addr &= ~((1UL << mmu_psize_defs[psize].shift) - 1);
67 		if (unlikely(psize == MMU_PAGE_16G))
68 			offset = PTRS_PER_PUD;
69 		else
70 			offset = PTRS_PER_PMD;
71 #else
72 		BUG();
73 		psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */
74 #endif
75 	} else {
76 		psize = pte_pagesize_index(mm, addr, pte);
77 		/*
78 		 * Mask the address for the standard page size.  If we
79 		 * have a 64k page kernel, but the hardware does not
80 		 * support 64k pages, this might be different from the
81 		 * hardware page size encoded in the slice table.
82 		 */
83 		addr &= PAGE_MASK;
84 		offset = PTRS_PER_PTE;
85 	}
86 
87 
88 	/* Build full vaddr */
89 	if (!is_kernel_addr(addr)) {
90 		ssize = user_segment_size(addr);
91 		vsid = get_user_vsid(&mm->context, addr, ssize);
92 	} else {
93 		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
94 		ssize = mmu_kernel_ssize;
95 	}
96 	WARN_ON(vsid == 0);
97 	vpn = hpt_vpn(addr, vsid, ssize);
98 	rpte = __real_pte(__pte(pte), ptep, offset);
99 
100 	/*
101 	 * Check if we have an active batch on this CPU. If not, just
102 	 * flush now and return.
103 	 */
104 	if (!batch->active) {
105 		flush_hash_page(vpn, rpte, psize, ssize, mm_is_thread_local(mm));
106 		put_cpu_var(ppc64_tlb_batch);
107 		return;
108 	}
109 
110 	/*
111 	 * This can happen when we are in the middle of a TLB batch and
112 	 * we encounter memory pressure (eg copy_page_range when it tries
113 	 * to allocate a new pte). If we have to reclaim memory and end
114 	 * up scanning and resetting referenced bits then our batch context
115 	 * will change mid stream.
116 	 *
117 	 * We also need to ensure only one page size is present in a given
118 	 * batch
119 	 */
120 	if (i != 0 && (mm != batch->mm || batch->psize != psize ||
121 		       batch->ssize != ssize)) {
122 		__flush_tlb_pending(batch);
123 		i = 0;
124 	}
125 	if (i == 0) {
126 		batch->mm = mm;
127 		batch->psize = psize;
128 		batch->ssize = ssize;
129 	}
130 	batch->pte[i] = rpte;
131 	batch->vpn[i] = vpn;
132 	batch->index = ++i;
133 	if (i >= PPC64_TLB_BATCH_NR)
134 		__flush_tlb_pending(batch);
135 	put_cpu_var(ppc64_tlb_batch);
136 }
137 
138 /*
139  * This function is called when terminating an mmu batch or when a batch
140  * is full. It will perform the flush of all the entries currently stored
141  * in a batch.
142  *
143  * Must be called from within some kind of spinlock/non-preempt region...
144  */
145 void __flush_tlb_pending(struct ppc64_tlb_batch *batch)
146 {
147 	int i, local;
148 
149 	i = batch->index;
150 	local = mm_is_thread_local(batch->mm);
151 	if (i == 1)
152 		flush_hash_page(batch->vpn[0], batch->pte[0],
153 				batch->psize, batch->ssize, local);
154 	else
155 		flush_hash_range(i, local);
156 	batch->index = 0;
157 }
158 
159 void hash__tlb_flush(struct mmu_gather *tlb)
160 {
161 	struct ppc64_tlb_batch *tlbbatch = &get_cpu_var(ppc64_tlb_batch);
162 
163 	/*
164 	 * If there's a TLB batch pending, then we must flush it because the
165 	 * pages are going to be freed and we really don't want to have a CPU
166 	 * access a freed page because it has a stale TLB
167 	 */
168 	if (tlbbatch->index)
169 		__flush_tlb_pending(tlbbatch);
170 
171 	put_cpu_var(ppc64_tlb_batch);
172 }
173 
174 /**
175  * __flush_hash_table_range - Flush all HPTEs for a given address range
176  *                            from the hash table (and the TLB). But keeps
177  *                            the linux PTEs intact.
178  *
179  * @start	: starting address
180  * @end         : ending address (not included in the flush)
181  *
182  * This function is mostly to be used by some IO hotplug code in order
183  * to remove all hash entries from a given address range used to map IO
184  * space on a removed PCI-PCI bidge without tearing down the full mapping
185  * since 64K pages may overlap with other bridges when using 64K pages
186  * with 4K HW pages on IO space.
187  *
188  * Because of that usage pattern, it is implemented for small size rather
189  * than speed.
190  */
191 void __flush_hash_table_range(unsigned long start, unsigned long end)
192 {
193 	int hugepage_shift;
194 	unsigned long flags;
195 
196 	start = ALIGN_DOWN(start, PAGE_SIZE);
197 	end = _ALIGN_UP(end, PAGE_SIZE);
198 
199 
200 	/*
201 	 * Note: Normally, we should only ever use a batch within a
202 	 * PTE locked section. This violates the rule, but will work
203 	 * since we don't actually modify the PTEs, we just flush the
204 	 * hash while leaving the PTEs intact (including their reference
205 	 * to being hashed). This is not the most performance oriented
206 	 * way to do things but is fine for our needs here.
207 	 */
208 	local_irq_save(flags);
209 	arch_enter_lazy_mmu_mode();
210 	for (; start < end; start += PAGE_SIZE) {
211 		pte_t *ptep = find_init_mm_pte(start, &hugepage_shift);
212 		unsigned long pte;
213 
214 		if (ptep == NULL)
215 			continue;
216 		pte = pte_val(*ptep);
217 		if (!(pte & H_PAGE_HASHPTE))
218 			continue;
219 		hpte_need_flush(&init_mm, start, ptep, pte, hugepage_shift);
220 	}
221 	arch_leave_lazy_mmu_mode();
222 	local_irq_restore(flags);
223 }
224 
225 void flush_tlb_pmd_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr)
226 {
227 	pte_t *pte;
228 	pte_t *start_pte;
229 	unsigned long flags;
230 
231 	addr = ALIGN_DOWN(addr, PMD_SIZE);
232 	/*
233 	 * Note: Normally, we should only ever use a batch within a
234 	 * PTE locked section. This violates the rule, but will work
235 	 * since we don't actually modify the PTEs, we just flush the
236 	 * hash while leaving the PTEs intact (including their reference
237 	 * to being hashed). This is not the most performance oriented
238 	 * way to do things but is fine for our needs here.
239 	 */
240 	local_irq_save(flags);
241 	arch_enter_lazy_mmu_mode();
242 	start_pte = pte_offset_map(pmd, addr);
243 	for (pte = start_pte; pte < start_pte + PTRS_PER_PTE; pte++) {
244 		unsigned long pteval = pte_val(*pte);
245 		if (pteval & H_PAGE_HASHPTE)
246 			hpte_need_flush(mm, addr, pte, pteval, 0);
247 		addr += PAGE_SIZE;
248 	}
249 	arch_leave_lazy_mmu_mode();
250 	local_irq_restore(flags);
251 }
252