1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2005, Paul Mackerras, IBM Corporation.
4  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/mm_types.h>
10 #include <linux/mm.h>
11 
12 #include <asm/pgalloc.h>
13 #include <asm/pgtable.h>
14 #include <asm/sections.h>
15 #include <asm/mmu.h>
16 #include <asm/tlb.h>
17 
18 #include <mm/mmu_decl.h>
19 
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/thp.h>
22 
23 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
24 #warning Limited user VSID range means pagetable space is wasted
25 #endif
26 
27 #ifdef CONFIG_SPARSEMEM_VMEMMAP
28 /*
29  * vmemmap is the starting address of the virtual address space where
30  * struct pages are allocated for all possible PFNs present on the system
31  * including holes and bad memory (hence sparse). These virtual struct
32  * pages are stored in sequence in this virtual address space irrespective
33  * of the fact whether the corresponding PFN is valid or not. This achieves
34  * constant relationship between address of struct page and its PFN.
35  *
36  * During boot or memory hotplug operation when a new memory section is
37  * added, physical memory allocation (including hash table bolting) will
38  * be performed for the set of struct pages which are part of the memory
39  * section. This saves memory by not allocating struct pages for PFNs
40  * which are not valid.
41  *
42  *		----------------------------------------------
43  *		| PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
44  *		----------------------------------------------
45  *
46  *	   f000000000000000                  c000000000000000
47  * vmemmap +--------------+                  +--------------+
48  *  +      |  page struct | +--------------> |  page struct |
49  *  |      +--------------+                  +--------------+
50  *  |      |  page struct | +--------------> |  page struct |
51  *  |      +--------------+ |                +--------------+
52  *  |      |  page struct | +       +------> |  page struct |
53  *  |      +--------------+         |        +--------------+
54  *  |      |  page struct |         |   +--> |  page struct |
55  *  |      +--------------+         |   |    +--------------+
56  *  |      |  page struct |         |   |
57  *  |      +--------------+         |   |
58  *  |      |  page struct |         |   |
59  *  |      +--------------+         |   |
60  *  |      |  page struct |         |   |
61  *  |      +--------------+         |   |
62  *  |      |  page struct |         |   |
63  *  |      +--------------+         |   |
64  *  |      |  page struct | +-------+   |
65  *  |      +--------------+             |
66  *  |      |  page struct | +-----------+
67  *  |      +--------------+
68  *  |      |  page struct | No mapping
69  *  |      +--------------+
70  *  |      |  page struct | No mapping
71  *  v      +--------------+
72  *
73  *		-----------------------------------------
74  *		| RELATION BETWEEN STRUCT PAGES AND PFNS|
75  *		-----------------------------------------
76  *
77  * vmemmap +--------------+                 +---------------+
78  *  +      |  page struct | +-------------> |      PFN      |
79  *  |      +--------------+                 +---------------+
80  *  |      |  page struct | +-------------> |      PFN      |
81  *  |      +--------------+                 +---------------+
82  *  |      |  page struct | +-------------> |      PFN      |
83  *  |      +--------------+                 +---------------+
84  *  |      |  page struct | +-------------> |      PFN      |
85  *  |      +--------------+                 +---------------+
86  *  |      |              |
87  *  |      +--------------+
88  *  |      |              |
89  *  |      +--------------+
90  *  |      |              |
91  *  |      +--------------+                 +---------------+
92  *  |      |  page struct | +-------------> |      PFN      |
93  *  |      +--------------+                 +---------------+
94  *  |      |              |
95  *  |      +--------------+
96  *  |      |              |
97  *  |      +--------------+                 +---------------+
98  *  |      |  page struct | +-------------> |      PFN      |
99  *  |      +--------------+                 +---------------+
100  *  |      |  page struct | +-------------> |      PFN      |
101  *  v      +--------------+                 +---------------+
102  */
103 /*
104  * On hash-based CPUs, the vmemmap is bolted in the hash table.
105  *
106  */
107 int __meminit hash__vmemmap_create_mapping(unsigned long start,
108 				       unsigned long page_size,
109 				       unsigned long phys)
110 {
111 	int rc;
112 
113 	if ((start + page_size) >= H_VMEMMAP_END) {
114 		pr_warn("Outside the supported range\n");
115 		return -1;
116 	}
117 
118 	rc = htab_bolt_mapping(start, start + page_size, phys,
119 			       pgprot_val(PAGE_KERNEL),
120 			       mmu_vmemmap_psize, mmu_kernel_ssize);
121 	if (rc < 0) {
122 		int rc2 = htab_remove_mapping(start, start + page_size,
123 					      mmu_vmemmap_psize,
124 					      mmu_kernel_ssize);
125 		BUG_ON(rc2 && (rc2 != -ENOENT));
126 	}
127 	return rc;
128 }
129 
130 #ifdef CONFIG_MEMORY_HOTPLUG
131 void hash__vmemmap_remove_mapping(unsigned long start,
132 			      unsigned long page_size)
133 {
134 	int rc = htab_remove_mapping(start, start + page_size,
135 				     mmu_vmemmap_psize,
136 				     mmu_kernel_ssize);
137 	BUG_ON((rc < 0) && (rc != -ENOENT));
138 	WARN_ON(rc == -ENOENT);
139 }
140 #endif
141 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
142 
143 /*
144  * map_kernel_page currently only called by __ioremap
145  * map_kernel_page adds an entry to the ioremap page table
146  * and adds an entry to the HPT, possibly bolting it
147  */
148 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
149 {
150 	pgd_t *pgdp;
151 	p4d_t *p4dp;
152 	pud_t *pudp;
153 	pmd_t *pmdp;
154 	pte_t *ptep;
155 
156 	BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
157 	if (slab_is_available()) {
158 		pgdp = pgd_offset_k(ea);
159 		p4dp = p4d_offset(pgdp, ea);
160 		pudp = pud_alloc(&init_mm, p4dp, ea);
161 		if (!pudp)
162 			return -ENOMEM;
163 		pmdp = pmd_alloc(&init_mm, pudp, ea);
164 		if (!pmdp)
165 			return -ENOMEM;
166 		ptep = pte_alloc_kernel(pmdp, ea);
167 		if (!ptep)
168 			return -ENOMEM;
169 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
170 	} else {
171 		/*
172 		 * If the mm subsystem is not fully up, we cannot create a
173 		 * linux page table entry for this mapping.  Simply bolt an
174 		 * entry in the hardware page table.
175 		 *
176 		 */
177 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
178 				      mmu_io_psize, mmu_kernel_ssize)) {
179 			printk(KERN_ERR "Failed to do bolted mapping IO "
180 			       "memory at %016lx !\n", pa);
181 			return -ENOMEM;
182 		}
183 	}
184 
185 	smp_wmb();
186 	return 0;
187 }
188 
189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
190 
191 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
192 				    pmd_t *pmdp, unsigned long clr,
193 				    unsigned long set)
194 {
195 	__be64 old_be, tmp;
196 	unsigned long old;
197 
198 #ifdef CONFIG_DEBUG_VM
199 	WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
200 	assert_spin_locked(pmd_lockptr(mm, pmdp));
201 #endif
202 
203 	__asm__ __volatile__(
204 	"1:	ldarx	%0,0,%3\n\
205 		and.	%1,%0,%6\n\
206 		bne-	1b \n\
207 		andc	%1,%0,%4 \n\
208 		or	%1,%1,%7\n\
209 		stdcx.	%1,0,%3 \n\
210 		bne-	1b"
211 	: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
212 	: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
213 	  "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
214 	: "cc" );
215 
216 	old = be64_to_cpu(old_be);
217 
218 	trace_hugepage_update(addr, old, clr, set);
219 	if (old & H_PAGE_HASHPTE)
220 		hpte_do_hugepage_flush(mm, addr, pmdp, old);
221 	return old;
222 }
223 
224 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
225 			    pmd_t *pmdp)
226 {
227 	pmd_t pmd;
228 
229 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
230 	VM_BUG_ON(pmd_trans_huge(*pmdp));
231 	VM_BUG_ON(pmd_devmap(*pmdp));
232 
233 	pmd = *pmdp;
234 	pmd_clear(pmdp);
235 	/*
236 	 * Wait for all pending hash_page to finish. This is needed
237 	 * in case of subpage collapse. When we collapse normal pages
238 	 * to hugepage, we first clear the pmd, then invalidate all
239 	 * the PTE entries. The assumption here is that any low level
240 	 * page fault will see a none pmd and take the slow path that
241 	 * will wait on mmap_sem. But we could very well be in a
242 	 * hash_page with local ptep pointer value. Such a hash page
243 	 * can result in adding new HPTE entries for normal subpages.
244 	 * That means we could be modifying the page content as we
245 	 * copy them to a huge page. So wait for parallel hash_page
246 	 * to finish before invalidating HPTE entries. We can do this
247 	 * by sending an IPI to all the cpus and executing a dummy
248 	 * function there.
249 	 */
250 	serialize_against_pte_lookup(vma->vm_mm);
251 	/*
252 	 * Now invalidate the hpte entries in the range
253 	 * covered by pmd. This make sure we take a
254 	 * fault and will find the pmd as none, which will
255 	 * result in a major fault which takes mmap_sem and
256 	 * hence wait for collapse to complete. Without this
257 	 * the __collapse_huge_page_copy can result in copying
258 	 * the old content.
259 	 */
260 	flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
261 	return pmd;
262 }
263 
264 /*
265  * We want to put the pgtable in pmd and use pgtable for tracking
266  * the base page size hptes
267  */
268 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
269 				  pgtable_t pgtable)
270 {
271 	pgtable_t *pgtable_slot;
272 
273 	assert_spin_locked(pmd_lockptr(mm, pmdp));
274 	/*
275 	 * we store the pgtable in the second half of PMD
276 	 */
277 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
278 	*pgtable_slot = pgtable;
279 	/*
280 	 * expose the deposited pgtable to other cpus.
281 	 * before we set the hugepage PTE at pmd level
282 	 * hash fault code looks at the deposted pgtable
283 	 * to store hash index values.
284 	 */
285 	smp_wmb();
286 }
287 
288 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
289 {
290 	pgtable_t pgtable;
291 	pgtable_t *pgtable_slot;
292 
293 	assert_spin_locked(pmd_lockptr(mm, pmdp));
294 
295 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
296 	pgtable = *pgtable_slot;
297 	/*
298 	 * Once we withdraw, mark the entry NULL.
299 	 */
300 	*pgtable_slot = NULL;
301 	/*
302 	 * We store HPTE information in the deposited PTE fragment.
303 	 * zero out the content on withdraw.
304 	 */
305 	memset(pgtable, 0, PTE_FRAG_SIZE);
306 	return pgtable;
307 }
308 
309 /*
310  * A linux hugepage PMD was changed and the corresponding hash table entries
311  * neesd to be flushed.
312  */
313 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
314 			    pmd_t *pmdp, unsigned long old_pmd)
315 {
316 	int ssize;
317 	unsigned int psize;
318 	unsigned long vsid;
319 	unsigned long flags = 0;
320 
321 	/* get the base page size,vsid and segment size */
322 #ifdef CONFIG_DEBUG_VM
323 	psize = get_slice_psize(mm, addr);
324 	BUG_ON(psize == MMU_PAGE_16M);
325 #endif
326 	if (old_pmd & H_PAGE_COMBO)
327 		psize = MMU_PAGE_4K;
328 	else
329 		psize = MMU_PAGE_64K;
330 
331 	if (!is_kernel_addr(addr)) {
332 		ssize = user_segment_size(addr);
333 		vsid = get_user_vsid(&mm->context, addr, ssize);
334 		WARN_ON(vsid == 0);
335 	} else {
336 		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
337 		ssize = mmu_kernel_ssize;
338 	}
339 
340 	if (mm_is_thread_local(mm))
341 		flags |= HPTE_LOCAL_UPDATE;
342 
343 	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
344 }
345 
346 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
347 				unsigned long addr, pmd_t *pmdp)
348 {
349 	pmd_t old_pmd;
350 	pgtable_t pgtable;
351 	unsigned long old;
352 	pgtable_t *pgtable_slot;
353 
354 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
355 	old_pmd = __pmd(old);
356 	/*
357 	 * We have pmd == none and we are holding page_table_lock.
358 	 * So we can safely go and clear the pgtable hash
359 	 * index info.
360 	 */
361 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
362 	pgtable = *pgtable_slot;
363 	/*
364 	 * Let's zero out old valid and hash index details
365 	 * hash fault look at them.
366 	 */
367 	memset(pgtable, 0, PTE_FRAG_SIZE);
368 	/*
369 	 * Serialize against find_current_mm_pte variants which does lock-less
370 	 * lookup in page tables with local interrupts disabled. For huge pages
371 	 * it casts pmd_t to pte_t. Since format of pte_t is different from
372 	 * pmd_t we want to prevent transit from pmd pointing to page table
373 	 * to pmd pointing to huge page (and back) while interrupts are disabled.
374 	 * We clear pmd to possibly replace it with page table pointer in
375 	 * different code paths. So make sure we wait for the parallel
376 	 * find_curren_mm_pte to finish.
377 	 */
378 	serialize_against_pte_lookup(mm);
379 	return old_pmd;
380 }
381 
382 int hash__has_transparent_hugepage(void)
383 {
384 
385 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
386 		return 0;
387 	/*
388 	 * We support THP only if PMD_SIZE is 16MB.
389 	 */
390 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
391 		return 0;
392 	/*
393 	 * We need to make sure that we support 16MB hugepage in a segement
394 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
395 	 * of 64K.
396 	 */
397 	/*
398 	 * If we have 64K HPTE, we will be using that by default
399 	 */
400 	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
401 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
402 		return 0;
403 	/*
404 	 * Ok we only have 4K HPTE
405 	 */
406 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
407 		return 0;
408 
409 	return 1;
410 }
411 EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
412 
413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
414 
415 #ifdef CONFIG_STRICT_KERNEL_RWX
416 static bool hash__change_memory_range(unsigned long start, unsigned long end,
417 				      unsigned long newpp)
418 {
419 	unsigned long idx;
420 	unsigned int step, shift;
421 
422 	shift = mmu_psize_defs[mmu_linear_psize].shift;
423 	step = 1 << shift;
424 
425 	start = ALIGN_DOWN(start, step);
426 	end = ALIGN(end, step); // aligns up
427 
428 	if (start >= end)
429 		return false;
430 
431 	pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
432 		 start, end, newpp, step);
433 
434 	for (idx = start; idx < end; idx += step)
435 		/* Not sure if we can do much with the return value */
436 		mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
437 							mmu_kernel_ssize);
438 
439 	return true;
440 }
441 
442 void hash__mark_rodata_ro(void)
443 {
444 	unsigned long start, end;
445 
446 	start = (unsigned long)_stext;
447 	end = (unsigned long)__init_begin;
448 
449 	WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
450 }
451 
452 void hash__mark_initmem_nx(void)
453 {
454 	unsigned long start, end, pp;
455 
456 	start = (unsigned long)__init_begin;
457 	end = (unsigned long)__init_end;
458 
459 	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
460 
461 	WARN_ON(!hash__change_memory_range(start, end, pp));
462 }
463 #endif
464