xref: /openbmc/linux/arch/powerpc/mm/book3s64/hash_pgtable.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2005, Paul Mackerras, IBM Corporation.
4  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/mm_types.h>
10 #include <linux/mm.h>
11 #include <linux/stop_machine.h>
12 
13 #include <asm/sections.h>
14 #include <asm/mmu.h>
15 #include <asm/tlb.h>
16 #include <asm/firmware.h>
17 
18 #include <mm/mmu_decl.h>
19 
20 #include <trace/events/thp.h>
21 
22 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
23 #warning Limited user VSID range means pagetable space is wasted
24 #endif
25 
26 #ifdef CONFIG_SPARSEMEM_VMEMMAP
27 /*
28  * vmemmap is the starting address of the virtual address space where
29  * struct pages are allocated for all possible PFNs present on the system
30  * including holes and bad memory (hence sparse). These virtual struct
31  * pages are stored in sequence in this virtual address space irrespective
32  * of the fact whether the corresponding PFN is valid or not. This achieves
33  * constant relationship between address of struct page and its PFN.
34  *
35  * During boot or memory hotplug operation when a new memory section is
36  * added, physical memory allocation (including hash table bolting) will
37  * be performed for the set of struct pages which are part of the memory
38  * section. This saves memory by not allocating struct pages for PFNs
39  * which are not valid.
40  *
41  *		----------------------------------------------
42  *		| PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
43  *		----------------------------------------------
44  *
45  *	   f000000000000000                  c000000000000000
46  * vmemmap +--------------+                  +--------------+
47  *  +      |  page struct | +--------------> |  page struct |
48  *  |      +--------------+                  +--------------+
49  *  |      |  page struct | +--------------> |  page struct |
50  *  |      +--------------+ |                +--------------+
51  *  |      |  page struct | +       +------> |  page struct |
52  *  |      +--------------+         |        +--------------+
53  *  |      |  page struct |         |   +--> |  page struct |
54  *  |      +--------------+         |   |    +--------------+
55  *  |      |  page struct |         |   |
56  *  |      +--------------+         |   |
57  *  |      |  page struct |         |   |
58  *  |      +--------------+         |   |
59  *  |      |  page struct |         |   |
60  *  |      +--------------+         |   |
61  *  |      |  page struct |         |   |
62  *  |      +--------------+         |   |
63  *  |      |  page struct | +-------+   |
64  *  |      +--------------+             |
65  *  |      |  page struct | +-----------+
66  *  |      +--------------+
67  *  |      |  page struct | No mapping
68  *  |      +--------------+
69  *  |      |  page struct | No mapping
70  *  v      +--------------+
71  *
72  *		-----------------------------------------
73  *		| RELATION BETWEEN STRUCT PAGES AND PFNS|
74  *		-----------------------------------------
75  *
76  * vmemmap +--------------+                 +---------------+
77  *  +      |  page struct | +-------------> |      PFN      |
78  *  |      +--------------+                 +---------------+
79  *  |      |  page struct | +-------------> |      PFN      |
80  *  |      +--------------+                 +---------------+
81  *  |      |  page struct | +-------------> |      PFN      |
82  *  |      +--------------+                 +---------------+
83  *  |      |  page struct | +-------------> |      PFN      |
84  *  |      +--------------+                 +---------------+
85  *  |      |              |
86  *  |      +--------------+
87  *  |      |              |
88  *  |      +--------------+
89  *  |      |              |
90  *  |      +--------------+                 +---------------+
91  *  |      |  page struct | +-------------> |      PFN      |
92  *  |      +--------------+                 +---------------+
93  *  |      |              |
94  *  |      +--------------+
95  *  |      |              |
96  *  |      +--------------+                 +---------------+
97  *  |      |  page struct | +-------------> |      PFN      |
98  *  |      +--------------+                 +---------------+
99  *  |      |  page struct | +-------------> |      PFN      |
100  *  v      +--------------+                 +---------------+
101  */
102 /*
103  * On hash-based CPUs, the vmemmap is bolted in the hash table.
104  *
105  */
106 int __meminit hash__vmemmap_create_mapping(unsigned long start,
107 				       unsigned long page_size,
108 				       unsigned long phys)
109 {
110 	int rc;
111 
112 	if ((start + page_size) >= H_VMEMMAP_END) {
113 		pr_warn("Outside the supported range\n");
114 		return -1;
115 	}
116 
117 	rc = htab_bolt_mapping(start, start + page_size, phys,
118 			       pgprot_val(PAGE_KERNEL),
119 			       mmu_vmemmap_psize, mmu_kernel_ssize);
120 	if (rc < 0) {
121 		int rc2 = htab_remove_mapping(start, start + page_size,
122 					      mmu_vmemmap_psize,
123 					      mmu_kernel_ssize);
124 		BUG_ON(rc2 && (rc2 != -ENOENT));
125 	}
126 	return rc;
127 }
128 
129 #ifdef CONFIG_MEMORY_HOTPLUG
130 void hash__vmemmap_remove_mapping(unsigned long start,
131 			      unsigned long page_size)
132 {
133 	int rc = htab_remove_mapping(start, start + page_size,
134 				     mmu_vmemmap_psize,
135 				     mmu_kernel_ssize);
136 	BUG_ON((rc < 0) && (rc != -ENOENT));
137 	WARN_ON(rc == -ENOENT);
138 }
139 #endif
140 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
141 
142 /*
143  * map_kernel_page currently only called by __ioremap
144  * map_kernel_page adds an entry to the ioremap page table
145  * and adds an entry to the HPT, possibly bolting it
146  */
147 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
148 {
149 	pgd_t *pgdp;
150 	p4d_t *p4dp;
151 	pud_t *pudp;
152 	pmd_t *pmdp;
153 	pte_t *ptep;
154 
155 	BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
156 	if (slab_is_available()) {
157 		pgdp = pgd_offset_k(ea);
158 		p4dp = p4d_offset(pgdp, ea);
159 		pudp = pud_alloc(&init_mm, p4dp, ea);
160 		if (!pudp)
161 			return -ENOMEM;
162 		pmdp = pmd_alloc(&init_mm, pudp, ea);
163 		if (!pmdp)
164 			return -ENOMEM;
165 		ptep = pte_alloc_kernel(pmdp, ea);
166 		if (!ptep)
167 			return -ENOMEM;
168 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
169 	} else {
170 		/*
171 		 * If the mm subsystem is not fully up, we cannot create a
172 		 * linux page table entry for this mapping.  Simply bolt an
173 		 * entry in the hardware page table.
174 		 *
175 		 */
176 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
177 				      mmu_io_psize, mmu_kernel_ssize)) {
178 			printk(KERN_ERR "Failed to do bolted mapping IO "
179 			       "memory at %016lx !\n", pa);
180 			return -ENOMEM;
181 		}
182 	}
183 
184 	smp_wmb();
185 	return 0;
186 }
187 
188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
189 
190 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
191 				    pmd_t *pmdp, unsigned long clr,
192 				    unsigned long set)
193 {
194 	__be64 old_be, tmp;
195 	unsigned long old;
196 
197 #ifdef CONFIG_DEBUG_VM
198 	WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
199 	assert_spin_locked(pmd_lockptr(mm, pmdp));
200 #endif
201 
202 	__asm__ __volatile__(
203 	"1:	ldarx	%0,0,%3\n\
204 		and.	%1,%0,%6\n\
205 		bne-	1b \n\
206 		andc	%1,%0,%4 \n\
207 		or	%1,%1,%7\n\
208 		stdcx.	%1,0,%3 \n\
209 		bne-	1b"
210 	: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
211 	: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
212 	  "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
213 	: "cc" );
214 
215 	old = be64_to_cpu(old_be);
216 
217 	trace_hugepage_update_pmd(addr, old, clr, set);
218 	if (old & H_PAGE_HASHPTE)
219 		hpte_do_hugepage_flush(mm, addr, pmdp, old);
220 	return old;
221 }
222 
223 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
224 			    pmd_t *pmdp)
225 {
226 	pmd_t pmd;
227 
228 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
229 	VM_BUG_ON(pmd_trans_huge(*pmdp));
230 	VM_BUG_ON(pmd_devmap(*pmdp));
231 
232 	pmd = *pmdp;
233 	pmd_clear(pmdp);
234 	/*
235 	 * Wait for all pending hash_page to finish. This is needed
236 	 * in case of subpage collapse. When we collapse normal pages
237 	 * to hugepage, we first clear the pmd, then invalidate all
238 	 * the PTE entries. The assumption here is that any low level
239 	 * page fault will see a none pmd and take the slow path that
240 	 * will wait on mmap_lock. But we could very well be in a
241 	 * hash_page with local ptep pointer value. Such a hash page
242 	 * can result in adding new HPTE entries for normal subpages.
243 	 * That means we could be modifying the page content as we
244 	 * copy them to a huge page. So wait for parallel hash_page
245 	 * to finish before invalidating HPTE entries. We can do this
246 	 * by sending an IPI to all the cpus and executing a dummy
247 	 * function there.
248 	 */
249 	serialize_against_pte_lookup(vma->vm_mm);
250 	/*
251 	 * Now invalidate the hpte entries in the range
252 	 * covered by pmd. This make sure we take a
253 	 * fault and will find the pmd as none, which will
254 	 * result in a major fault which takes mmap_lock and
255 	 * hence wait for collapse to complete. Without this
256 	 * the __collapse_huge_page_copy can result in copying
257 	 * the old content.
258 	 */
259 	flush_hash_table_pmd_range(vma->vm_mm, &pmd, address);
260 	return pmd;
261 }
262 
263 /*
264  * We want to put the pgtable in pmd and use pgtable for tracking
265  * the base page size hptes
266  */
267 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
268 				  pgtable_t pgtable)
269 {
270 	pgtable_t *pgtable_slot;
271 
272 	assert_spin_locked(pmd_lockptr(mm, pmdp));
273 	/*
274 	 * we store the pgtable in the second half of PMD
275 	 */
276 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
277 	*pgtable_slot = pgtable;
278 	/*
279 	 * expose the deposited pgtable to other cpus.
280 	 * before we set the hugepage PTE at pmd level
281 	 * hash fault code looks at the deposted pgtable
282 	 * to store hash index values.
283 	 */
284 	smp_wmb();
285 }
286 
287 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
288 {
289 	pgtable_t pgtable;
290 	pgtable_t *pgtable_slot;
291 
292 	assert_spin_locked(pmd_lockptr(mm, pmdp));
293 
294 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
295 	pgtable = *pgtable_slot;
296 	/*
297 	 * Once we withdraw, mark the entry NULL.
298 	 */
299 	*pgtable_slot = NULL;
300 	/*
301 	 * We store HPTE information in the deposited PTE fragment.
302 	 * zero out the content on withdraw.
303 	 */
304 	memset(pgtable, 0, PTE_FRAG_SIZE);
305 	return pgtable;
306 }
307 
308 /*
309  * A linux hugepage PMD was changed and the corresponding hash table entries
310  * neesd to be flushed.
311  */
312 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
313 			    pmd_t *pmdp, unsigned long old_pmd)
314 {
315 	int ssize;
316 	unsigned int psize;
317 	unsigned long vsid;
318 	unsigned long flags = 0;
319 
320 	/* get the base page size,vsid and segment size */
321 #ifdef CONFIG_DEBUG_VM
322 	psize = get_slice_psize(mm, addr);
323 	BUG_ON(psize == MMU_PAGE_16M);
324 #endif
325 	if (old_pmd & H_PAGE_COMBO)
326 		psize = MMU_PAGE_4K;
327 	else
328 		psize = MMU_PAGE_64K;
329 
330 	if (!is_kernel_addr(addr)) {
331 		ssize = user_segment_size(addr);
332 		vsid = get_user_vsid(&mm->context, addr, ssize);
333 		WARN_ON(vsid == 0);
334 	} else {
335 		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
336 		ssize = mmu_kernel_ssize;
337 	}
338 
339 	if (mm_is_thread_local(mm))
340 		flags |= HPTE_LOCAL_UPDATE;
341 
342 	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
343 }
344 
345 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
346 				unsigned long addr, pmd_t *pmdp)
347 {
348 	pmd_t old_pmd;
349 	pgtable_t pgtable;
350 	unsigned long old;
351 	pgtable_t *pgtable_slot;
352 
353 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
354 	old_pmd = __pmd(old);
355 	/*
356 	 * We have pmd == none and we are holding page_table_lock.
357 	 * So we can safely go and clear the pgtable hash
358 	 * index info.
359 	 */
360 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
361 	pgtable = *pgtable_slot;
362 	/*
363 	 * Let's zero out old valid and hash index details
364 	 * hash fault look at them.
365 	 */
366 	memset(pgtable, 0, PTE_FRAG_SIZE);
367 	return old_pmd;
368 }
369 
370 int hash__has_transparent_hugepage(void)
371 {
372 
373 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
374 		return 0;
375 	/*
376 	 * We support THP only if PMD_SIZE is 16MB.
377 	 */
378 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
379 		return 0;
380 	/*
381 	 * We need to make sure that we support 16MB hugepage in a segment
382 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
383 	 * of 64K.
384 	 */
385 	/*
386 	 * If we have 64K HPTE, we will be using that by default
387 	 */
388 	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
389 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
390 		return 0;
391 	/*
392 	 * Ok we only have 4K HPTE
393 	 */
394 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
395 		return 0;
396 
397 	return 1;
398 }
399 EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
400 
401 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
402 
403 #ifdef CONFIG_STRICT_KERNEL_RWX
404 
405 struct change_memory_parms {
406 	unsigned long start, end, newpp;
407 	unsigned int step, nr_cpus;
408 	atomic_t master_cpu;
409 	atomic_t cpu_counter;
410 };
411 
412 // We'd rather this was on the stack but it has to be in the RMO
413 static struct change_memory_parms chmem_parms;
414 
415 // And therefore we need a lock to protect it from concurrent use
416 static DEFINE_MUTEX(chmem_lock);
417 
418 static void change_memory_range(unsigned long start, unsigned long end,
419 				unsigned int step, unsigned long newpp)
420 {
421 	unsigned long idx;
422 
423 	pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
424 		 start, end, newpp, step);
425 
426 	for (idx = start; idx < end; idx += step)
427 		/* Not sure if we can do much with the return value */
428 		mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
429 							mmu_kernel_ssize);
430 }
431 
432 static int notrace chmem_secondary_loop(struct change_memory_parms *parms)
433 {
434 	unsigned long msr, tmp, flags;
435 	int *p;
436 
437 	p = &parms->cpu_counter.counter;
438 
439 	local_irq_save(flags);
440 	hard_irq_disable();
441 
442 	asm volatile (
443 	// Switch to real mode and leave interrupts off
444 	"mfmsr	%[msr]			;"
445 	"li	%[tmp], %[MSR_IR_DR]	;"
446 	"andc	%[tmp], %[msr], %[tmp]	;"
447 	"mtmsrd %[tmp]			;"
448 
449 	// Tell the master we are in real mode
450 	"1:				"
451 	"lwarx	%[tmp], 0, %[p]		;"
452 	"addic	%[tmp], %[tmp], -1	;"
453 	"stwcx.	%[tmp], 0, %[p]		;"
454 	"bne-	1b			;"
455 
456 	// Spin until the counter goes to zero
457 	"2:				;"
458 	"lwz	%[tmp], 0(%[p])		;"
459 	"cmpwi	%[tmp], 0		;"
460 	"bne-	2b			;"
461 
462 	// Switch back to virtual mode
463 	"mtmsrd %[msr]			;"
464 
465 	: // outputs
466 	  [msr] "=&r" (msr), [tmp] "=&b" (tmp), "+m" (*p)
467 	: // inputs
468 	  [p] "b" (p), [MSR_IR_DR] "i" (MSR_IR | MSR_DR)
469 	: // clobbers
470 	  "cc", "xer"
471 	);
472 
473 	local_irq_restore(flags);
474 
475 	return 0;
476 }
477 
478 static int change_memory_range_fn(void *data)
479 {
480 	struct change_memory_parms *parms = data;
481 
482 	// First CPU goes through, all others wait.
483 	if (atomic_xchg(&parms->master_cpu, 1) == 1)
484 		return chmem_secondary_loop(parms);
485 
486 	// Wait for all but one CPU (this one) to call-in
487 	while (atomic_read(&parms->cpu_counter) > 1)
488 		barrier();
489 
490 	change_memory_range(parms->start, parms->end, parms->step, parms->newpp);
491 
492 	mb();
493 
494 	// Signal the other CPUs that we're done
495 	atomic_dec(&parms->cpu_counter);
496 
497 	return 0;
498 }
499 
500 static bool hash__change_memory_range(unsigned long start, unsigned long end,
501 				      unsigned long newpp)
502 {
503 	unsigned int step, shift;
504 
505 	shift = mmu_psize_defs[mmu_linear_psize].shift;
506 	step = 1 << shift;
507 
508 	start = ALIGN_DOWN(start, step);
509 	end = ALIGN(end, step); // aligns up
510 
511 	if (start >= end)
512 		return false;
513 
514 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
515 		mutex_lock(&chmem_lock);
516 
517 		chmem_parms.start = start;
518 		chmem_parms.end = end;
519 		chmem_parms.step = step;
520 		chmem_parms.newpp = newpp;
521 		atomic_set(&chmem_parms.master_cpu, 0);
522 
523 		cpus_read_lock();
524 
525 		atomic_set(&chmem_parms.cpu_counter, num_online_cpus());
526 
527 		// Ensure state is consistent before we call the other CPUs
528 		mb();
529 
530 		stop_machine_cpuslocked(change_memory_range_fn, &chmem_parms,
531 					cpu_online_mask);
532 
533 		cpus_read_unlock();
534 		mutex_unlock(&chmem_lock);
535 	} else
536 		change_memory_range(start, end, step, newpp);
537 
538 	return true;
539 }
540 
541 void hash__mark_rodata_ro(void)
542 {
543 	unsigned long start, end, pp;
544 
545 	start = (unsigned long)_stext;
546 	end = (unsigned long)__end_rodata;
547 
548 	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL_ROX), HPTE_USE_KERNEL_KEY);
549 
550 	WARN_ON(!hash__change_memory_range(start, end, pp));
551 }
552 
553 void hash__mark_initmem_nx(void)
554 {
555 	unsigned long start, end, pp;
556 
557 	start = (unsigned long)__init_begin;
558 	end = (unsigned long)__init_end;
559 
560 	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
561 
562 	WARN_ON(!hash__change_memory_range(start, end, pp));
563 }
564 #endif
565