1 /*
2  * Copyright 2005, Paul Mackerras, IBM Corporation.
3  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
4  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/sched.h>
13 #include <linux/mm_types.h>
14 #include <linux/mm.h>
15 
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 #include <asm/sections.h>
19 #include <asm/mmu.h>
20 #include <asm/tlb.h>
21 
22 #include <mm/mmu_decl.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/thp.h>
26 
27 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
28 #warning Limited user VSID range means pagetable space is wasted
29 #endif
30 
31 #ifdef CONFIG_SPARSEMEM_VMEMMAP
32 /*
33  * vmemmap is the starting address of the virtual address space where
34  * struct pages are allocated for all possible PFNs present on the system
35  * including holes and bad memory (hence sparse). These virtual struct
36  * pages are stored in sequence in this virtual address space irrespective
37  * of the fact whether the corresponding PFN is valid or not. This achieves
38  * constant relationship between address of struct page and its PFN.
39  *
40  * During boot or memory hotplug operation when a new memory section is
41  * added, physical memory allocation (including hash table bolting) will
42  * be performed for the set of struct pages which are part of the memory
43  * section. This saves memory by not allocating struct pages for PFNs
44  * which are not valid.
45  *
46  *		----------------------------------------------
47  *		| PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
48  *		----------------------------------------------
49  *
50  *	   f000000000000000                  c000000000000000
51  * vmemmap +--------------+                  +--------------+
52  *  +      |  page struct | +--------------> |  page struct |
53  *  |      +--------------+                  +--------------+
54  *  |      |  page struct | +--------------> |  page struct |
55  *  |      +--------------+ |                +--------------+
56  *  |      |  page struct | +       +------> |  page struct |
57  *  |      +--------------+         |        +--------------+
58  *  |      |  page struct |         |   +--> |  page struct |
59  *  |      +--------------+         |   |    +--------------+
60  *  |      |  page struct |         |   |
61  *  |      +--------------+         |   |
62  *  |      |  page struct |         |   |
63  *  |      +--------------+         |   |
64  *  |      |  page struct |         |   |
65  *  |      +--------------+         |   |
66  *  |      |  page struct |         |   |
67  *  |      +--------------+         |   |
68  *  |      |  page struct | +-------+   |
69  *  |      +--------------+             |
70  *  |      |  page struct | +-----------+
71  *  |      +--------------+
72  *  |      |  page struct | No mapping
73  *  |      +--------------+
74  *  |      |  page struct | No mapping
75  *  v      +--------------+
76  *
77  *		-----------------------------------------
78  *		| RELATION BETWEEN STRUCT PAGES AND PFNS|
79  *		-----------------------------------------
80  *
81  * vmemmap +--------------+                 +---------------+
82  *  +      |  page struct | +-------------> |      PFN      |
83  *  |      +--------------+                 +---------------+
84  *  |      |  page struct | +-------------> |      PFN      |
85  *  |      +--------------+                 +---------------+
86  *  |      |  page struct | +-------------> |      PFN      |
87  *  |      +--------------+                 +---------------+
88  *  |      |  page struct | +-------------> |      PFN      |
89  *  |      +--------------+                 +---------------+
90  *  |      |              |
91  *  |      +--------------+
92  *  |      |              |
93  *  |      +--------------+
94  *  |      |              |
95  *  |      +--------------+                 +---------------+
96  *  |      |  page struct | +-------------> |      PFN      |
97  *  |      +--------------+                 +---------------+
98  *  |      |              |
99  *  |      +--------------+
100  *  |      |              |
101  *  |      +--------------+                 +---------------+
102  *  |      |  page struct | +-------------> |      PFN      |
103  *  |      +--------------+                 +---------------+
104  *  |      |  page struct | +-------------> |      PFN      |
105  *  v      +--------------+                 +---------------+
106  */
107 /*
108  * On hash-based CPUs, the vmemmap is bolted in the hash table.
109  *
110  */
111 int __meminit hash__vmemmap_create_mapping(unsigned long start,
112 				       unsigned long page_size,
113 				       unsigned long phys)
114 {
115 	int rc;
116 
117 	if ((start + page_size) >= H_VMEMMAP_END) {
118 		pr_warn("Outside the supported range\n");
119 		return -1;
120 	}
121 
122 	rc = htab_bolt_mapping(start, start + page_size, phys,
123 			       pgprot_val(PAGE_KERNEL),
124 			       mmu_vmemmap_psize, mmu_kernel_ssize);
125 	if (rc < 0) {
126 		int rc2 = htab_remove_mapping(start, start + page_size,
127 					      mmu_vmemmap_psize,
128 					      mmu_kernel_ssize);
129 		BUG_ON(rc2 && (rc2 != -ENOENT));
130 	}
131 	return rc;
132 }
133 
134 #ifdef CONFIG_MEMORY_HOTPLUG
135 void hash__vmemmap_remove_mapping(unsigned long start,
136 			      unsigned long page_size)
137 {
138 	int rc = htab_remove_mapping(start, start + page_size,
139 				     mmu_vmemmap_psize,
140 				     mmu_kernel_ssize);
141 	BUG_ON((rc < 0) && (rc != -ENOENT));
142 	WARN_ON(rc == -ENOENT);
143 }
144 #endif
145 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
146 
147 /*
148  * map_kernel_page currently only called by __ioremap
149  * map_kernel_page adds an entry to the ioremap page table
150  * and adds an entry to the HPT, possibly bolting it
151  */
152 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
153 {
154 	pgd_t *pgdp;
155 	pud_t *pudp;
156 	pmd_t *pmdp;
157 	pte_t *ptep;
158 
159 	BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
160 	if (slab_is_available()) {
161 		pgdp = pgd_offset_k(ea);
162 		pudp = pud_alloc(&init_mm, pgdp, ea);
163 		if (!pudp)
164 			return -ENOMEM;
165 		pmdp = pmd_alloc(&init_mm, pudp, ea);
166 		if (!pmdp)
167 			return -ENOMEM;
168 		ptep = pte_alloc_kernel(pmdp, ea);
169 		if (!ptep)
170 			return -ENOMEM;
171 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
172 	} else {
173 		/*
174 		 * If the mm subsystem is not fully up, we cannot create a
175 		 * linux page table entry for this mapping.  Simply bolt an
176 		 * entry in the hardware page table.
177 		 *
178 		 */
179 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
180 				      mmu_io_psize, mmu_kernel_ssize)) {
181 			printk(KERN_ERR "Failed to do bolted mapping IO "
182 			       "memory at %016lx !\n", pa);
183 			return -ENOMEM;
184 		}
185 	}
186 
187 	smp_wmb();
188 	return 0;
189 }
190 
191 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
192 
193 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
194 				    pmd_t *pmdp, unsigned long clr,
195 				    unsigned long set)
196 {
197 	__be64 old_be, tmp;
198 	unsigned long old;
199 
200 #ifdef CONFIG_DEBUG_VM
201 	WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
202 	assert_spin_locked(pmd_lockptr(mm, pmdp));
203 #endif
204 
205 	__asm__ __volatile__(
206 	"1:	ldarx	%0,0,%3\n\
207 		and.	%1,%0,%6\n\
208 		bne-	1b \n\
209 		andc	%1,%0,%4 \n\
210 		or	%1,%1,%7\n\
211 		stdcx.	%1,0,%3 \n\
212 		bne-	1b"
213 	: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
214 	: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
215 	  "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
216 	: "cc" );
217 
218 	old = be64_to_cpu(old_be);
219 
220 	trace_hugepage_update(addr, old, clr, set);
221 	if (old & H_PAGE_HASHPTE)
222 		hpte_do_hugepage_flush(mm, addr, pmdp, old);
223 	return old;
224 }
225 
226 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
227 			    pmd_t *pmdp)
228 {
229 	pmd_t pmd;
230 
231 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
232 	VM_BUG_ON(pmd_trans_huge(*pmdp));
233 	VM_BUG_ON(pmd_devmap(*pmdp));
234 
235 	pmd = *pmdp;
236 	pmd_clear(pmdp);
237 	/*
238 	 * Wait for all pending hash_page to finish. This is needed
239 	 * in case of subpage collapse. When we collapse normal pages
240 	 * to hugepage, we first clear the pmd, then invalidate all
241 	 * the PTE entries. The assumption here is that any low level
242 	 * page fault will see a none pmd and take the slow path that
243 	 * will wait on mmap_sem. But we could very well be in a
244 	 * hash_page with local ptep pointer value. Such a hash page
245 	 * can result in adding new HPTE entries for normal subpages.
246 	 * That means we could be modifying the page content as we
247 	 * copy them to a huge page. So wait for parallel hash_page
248 	 * to finish before invalidating HPTE entries. We can do this
249 	 * by sending an IPI to all the cpus and executing a dummy
250 	 * function there.
251 	 */
252 	serialize_against_pte_lookup(vma->vm_mm);
253 	/*
254 	 * Now invalidate the hpte entries in the range
255 	 * covered by pmd. This make sure we take a
256 	 * fault and will find the pmd as none, which will
257 	 * result in a major fault which takes mmap_sem and
258 	 * hence wait for collapse to complete. Without this
259 	 * the __collapse_huge_page_copy can result in copying
260 	 * the old content.
261 	 */
262 	flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
263 	return pmd;
264 }
265 
266 /*
267  * We want to put the pgtable in pmd and use pgtable for tracking
268  * the base page size hptes
269  */
270 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
271 				  pgtable_t pgtable)
272 {
273 	pgtable_t *pgtable_slot;
274 
275 	assert_spin_locked(pmd_lockptr(mm, pmdp));
276 	/*
277 	 * we store the pgtable in the second half of PMD
278 	 */
279 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
280 	*pgtable_slot = pgtable;
281 	/*
282 	 * expose the deposited pgtable to other cpus.
283 	 * before we set the hugepage PTE at pmd level
284 	 * hash fault code looks at the deposted pgtable
285 	 * to store hash index values.
286 	 */
287 	smp_wmb();
288 }
289 
290 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
291 {
292 	pgtable_t pgtable;
293 	pgtable_t *pgtable_slot;
294 
295 	assert_spin_locked(pmd_lockptr(mm, pmdp));
296 
297 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
298 	pgtable = *pgtable_slot;
299 	/*
300 	 * Once we withdraw, mark the entry NULL.
301 	 */
302 	*pgtable_slot = NULL;
303 	/*
304 	 * We store HPTE information in the deposited PTE fragment.
305 	 * zero out the content on withdraw.
306 	 */
307 	memset(pgtable, 0, PTE_FRAG_SIZE);
308 	return pgtable;
309 }
310 
311 /*
312  * A linux hugepage PMD was changed and the corresponding hash table entries
313  * neesd to be flushed.
314  */
315 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
316 			    pmd_t *pmdp, unsigned long old_pmd)
317 {
318 	int ssize;
319 	unsigned int psize;
320 	unsigned long vsid;
321 	unsigned long flags = 0;
322 
323 	/* get the base page size,vsid and segment size */
324 #ifdef CONFIG_DEBUG_VM
325 	psize = get_slice_psize(mm, addr);
326 	BUG_ON(psize == MMU_PAGE_16M);
327 #endif
328 	if (old_pmd & H_PAGE_COMBO)
329 		psize = MMU_PAGE_4K;
330 	else
331 		psize = MMU_PAGE_64K;
332 
333 	if (!is_kernel_addr(addr)) {
334 		ssize = user_segment_size(addr);
335 		vsid = get_user_vsid(&mm->context, addr, ssize);
336 		WARN_ON(vsid == 0);
337 	} else {
338 		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
339 		ssize = mmu_kernel_ssize;
340 	}
341 
342 	if (mm_is_thread_local(mm))
343 		flags |= HPTE_LOCAL_UPDATE;
344 
345 	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
346 }
347 
348 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
349 				unsigned long addr, pmd_t *pmdp)
350 {
351 	pmd_t old_pmd;
352 	pgtable_t pgtable;
353 	unsigned long old;
354 	pgtable_t *pgtable_slot;
355 
356 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
357 	old_pmd = __pmd(old);
358 	/*
359 	 * We have pmd == none and we are holding page_table_lock.
360 	 * So we can safely go and clear the pgtable hash
361 	 * index info.
362 	 */
363 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
364 	pgtable = *pgtable_slot;
365 	/*
366 	 * Let's zero out old valid and hash index details
367 	 * hash fault look at them.
368 	 */
369 	memset(pgtable, 0, PTE_FRAG_SIZE);
370 	/*
371 	 * Serialize against find_current_mm_pte variants which does lock-less
372 	 * lookup in page tables with local interrupts disabled. For huge pages
373 	 * it casts pmd_t to pte_t. Since format of pte_t is different from
374 	 * pmd_t we want to prevent transit from pmd pointing to page table
375 	 * to pmd pointing to huge page (and back) while interrupts are disabled.
376 	 * We clear pmd to possibly replace it with page table pointer in
377 	 * different code paths. So make sure we wait for the parallel
378 	 * find_curren_mm_pte to finish.
379 	 */
380 	serialize_against_pte_lookup(mm);
381 	return old_pmd;
382 }
383 
384 int hash__has_transparent_hugepage(void)
385 {
386 
387 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
388 		return 0;
389 	/*
390 	 * We support THP only if PMD_SIZE is 16MB.
391 	 */
392 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
393 		return 0;
394 	/*
395 	 * We need to make sure that we support 16MB hugepage in a segement
396 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
397 	 * of 64K.
398 	 */
399 	/*
400 	 * If we have 64K HPTE, we will be using that by default
401 	 */
402 	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
403 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
404 		return 0;
405 	/*
406 	 * Ok we only have 4K HPTE
407 	 */
408 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
409 		return 0;
410 
411 	return 1;
412 }
413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
414 
415 #ifdef CONFIG_STRICT_KERNEL_RWX
416 static bool hash__change_memory_range(unsigned long start, unsigned long end,
417 				      unsigned long newpp)
418 {
419 	unsigned long idx;
420 	unsigned int step, shift;
421 
422 	shift = mmu_psize_defs[mmu_linear_psize].shift;
423 	step = 1 << shift;
424 
425 	start = ALIGN_DOWN(start, step);
426 	end = ALIGN(end, step); // aligns up
427 
428 	if (start >= end)
429 		return false;
430 
431 	pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
432 		 start, end, newpp, step);
433 
434 	for (idx = start; idx < end; idx += step)
435 		/* Not sure if we can do much with the return value */
436 		mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
437 							mmu_kernel_ssize);
438 
439 	return true;
440 }
441 
442 void hash__mark_rodata_ro(void)
443 {
444 	unsigned long start, end;
445 
446 	start = (unsigned long)_stext;
447 	end = (unsigned long)__init_begin;
448 
449 	WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
450 }
451 
452 void hash__mark_initmem_nx(void)
453 {
454 	unsigned long start, end, pp;
455 
456 	start = (unsigned long)__init_begin;
457 	end = (unsigned long)__init_end;
458 
459 	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
460 
461 	WARN_ON(!hash__change_memory_range(start, end, pp));
462 }
463 #endif
464