xref: /openbmc/linux/arch/powerpc/lib/sstep.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17 
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20 
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK	0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK	0x87c0ffff
26 #endif
27 
28 /* Bits in XER */
29 #define XER_SO		0x80000000U
30 #define XER_OV		0x40000000U
31 #define XER_CA		0x20000000U
32 #define XER_OV32	0x00080000U
33 #define XER_CA32	0x00040000U
34 
35 #ifdef CONFIG_PPC_FPU
36 /*
37  * Functions in ldstfp.S
38  */
39 extern void get_fpr(int rn, double *p);
40 extern void put_fpr(int rn, const double *p);
41 extern void get_vr(int rn, __vector128 *p);
42 extern void put_vr(int rn, __vector128 *p);
43 extern void load_vsrn(int vsr, const void *p);
44 extern void store_vsrn(int vsr, void *p);
45 extern void conv_sp_to_dp(const float *sp, double *dp);
46 extern void conv_dp_to_sp(const double *dp, float *sp);
47 #endif
48 
49 #ifdef __powerpc64__
50 /*
51  * Functions in quad.S
52  */
53 extern int do_lq(unsigned long ea, unsigned long *regs);
54 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
55 extern int do_lqarx(unsigned long ea, unsigned long *regs);
56 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
57 		    unsigned int *crp);
58 #endif
59 
60 #ifdef __LITTLE_ENDIAN__
61 #define IS_LE	1
62 #define IS_BE	0
63 #else
64 #define IS_LE	0
65 #define IS_BE	1
66 #endif
67 
68 /*
69  * Emulate the truncation of 64 bit values in 32-bit mode.
70  */
71 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
72 							unsigned long val)
73 {
74 #ifdef __powerpc64__
75 	if ((msr & MSR_64BIT) == 0)
76 		val &= 0xffffffffUL;
77 #endif
78 	return val;
79 }
80 
81 /*
82  * Determine whether a conditional branch instruction would branch.
83  */
84 static nokprobe_inline int branch_taken(unsigned int instr,
85 					const struct pt_regs *regs,
86 					struct instruction_op *op)
87 {
88 	unsigned int bo = (instr >> 21) & 0x1f;
89 	unsigned int bi;
90 
91 	if ((bo & 4) == 0) {
92 		/* decrement counter */
93 		op->type |= DECCTR;
94 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
95 			return 0;
96 	}
97 	if ((bo & 0x10) == 0) {
98 		/* check bit from CR */
99 		bi = (instr >> 16) & 0x1f;
100 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
101 			return 0;
102 	}
103 	return 1;
104 }
105 
106 static nokprobe_inline long address_ok(struct pt_regs *regs,
107 				       unsigned long ea, int nb)
108 {
109 	if (!user_mode(regs))
110 		return 1;
111 	if (__access_ok(ea, nb))
112 		return 1;
113 	if (__access_ok(ea, 1))
114 		/* Access overlaps the end of the user region */
115 		regs->dar = TASK_SIZE_MAX - 1;
116 	else
117 		regs->dar = ea;
118 	return 0;
119 }
120 
121 /*
122  * Calculate effective address for a D-form instruction
123  */
124 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
125 					      const struct pt_regs *regs)
126 {
127 	int ra;
128 	unsigned long ea;
129 
130 	ra = (instr >> 16) & 0x1f;
131 	ea = (signed short) instr;		/* sign-extend */
132 	if (ra)
133 		ea += regs->gpr[ra];
134 
135 	return ea;
136 }
137 
138 #ifdef __powerpc64__
139 /*
140  * Calculate effective address for a DS-form instruction
141  */
142 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
143 					       const struct pt_regs *regs)
144 {
145 	int ra;
146 	unsigned long ea;
147 
148 	ra = (instr >> 16) & 0x1f;
149 	ea = (signed short) (instr & ~3);	/* sign-extend */
150 	if (ra)
151 		ea += regs->gpr[ra];
152 
153 	return ea;
154 }
155 
156 /*
157  * Calculate effective address for a DQ-form instruction
158  */
159 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
160 					       const struct pt_regs *regs)
161 {
162 	int ra;
163 	unsigned long ea;
164 
165 	ra = (instr >> 16) & 0x1f;
166 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
167 	if (ra)
168 		ea += regs->gpr[ra];
169 
170 	return ea;
171 }
172 #endif /* __powerpc64 */
173 
174 /*
175  * Calculate effective address for an X-form instruction
176  */
177 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
178 					      const struct pt_regs *regs)
179 {
180 	int ra, rb;
181 	unsigned long ea;
182 
183 	ra = (instr >> 16) & 0x1f;
184 	rb = (instr >> 11) & 0x1f;
185 	ea = regs->gpr[rb];
186 	if (ra)
187 		ea += regs->gpr[ra];
188 
189 	return ea;
190 }
191 
192 /*
193  * Calculate effective address for a MLS:D-form / 8LS:D-form
194  * prefixed instruction
195  */
196 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
197 						  unsigned int suffix,
198 						  const struct pt_regs *regs)
199 {
200 	int ra, prefix_r;
201 	unsigned int  dd;
202 	unsigned long ea, d0, d1, d;
203 
204 	prefix_r = GET_PREFIX_R(instr);
205 	ra = GET_PREFIX_RA(suffix);
206 
207 	d0 = instr & 0x3ffff;
208 	d1 = suffix & 0xffff;
209 	d = (d0 << 16) | d1;
210 
211 	/*
212 	 * sign extend a 34 bit number
213 	 */
214 	dd = (unsigned int)(d >> 2);
215 	ea = (signed int)dd;
216 	ea = (ea << 2) | (d & 0x3);
217 
218 	if (!prefix_r && ra)
219 		ea += regs->gpr[ra];
220 	else if (!prefix_r && !ra)
221 		; /* Leave ea as is */
222 	else if (prefix_r)
223 		ea += regs->nip;
224 
225 	/*
226 	 * (prefix_r && ra) is an invalid form. Should already be
227 	 * checked for by caller!
228 	 */
229 
230 	return ea;
231 }
232 
233 /*
234  * Return the largest power of 2, not greater than sizeof(unsigned long),
235  * such that x is a multiple of it.
236  */
237 static nokprobe_inline unsigned long max_align(unsigned long x)
238 {
239 	x |= sizeof(unsigned long);
240 	return x & -x;		/* isolates rightmost bit */
241 }
242 
243 static nokprobe_inline unsigned long byterev_2(unsigned long x)
244 {
245 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
246 }
247 
248 static nokprobe_inline unsigned long byterev_4(unsigned long x)
249 {
250 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
251 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
252 }
253 
254 #ifdef __powerpc64__
255 static nokprobe_inline unsigned long byterev_8(unsigned long x)
256 {
257 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
258 }
259 #endif
260 
261 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
262 {
263 	switch (nb) {
264 	case 2:
265 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
266 		break;
267 	case 4:
268 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
269 		break;
270 #ifdef __powerpc64__
271 	case 8:
272 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
273 		break;
274 	case 16: {
275 		unsigned long *up = (unsigned long *)ptr;
276 		unsigned long tmp;
277 		tmp = byterev_8(up[0]);
278 		up[0] = byterev_8(up[1]);
279 		up[1] = tmp;
280 		break;
281 	}
282 #endif
283 	default:
284 		WARN_ON_ONCE(1);
285 	}
286 }
287 
288 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
289 					    unsigned long ea, int nb,
290 					    struct pt_regs *regs)
291 {
292 	int err = 0;
293 	unsigned long x = 0;
294 
295 	switch (nb) {
296 	case 1:
297 		err = __get_user(x, (unsigned char __user *) ea);
298 		break;
299 	case 2:
300 		err = __get_user(x, (unsigned short __user *) ea);
301 		break;
302 	case 4:
303 		err = __get_user(x, (unsigned int __user *) ea);
304 		break;
305 #ifdef __powerpc64__
306 	case 8:
307 		err = __get_user(x, (unsigned long __user *) ea);
308 		break;
309 #endif
310 	}
311 	if (!err)
312 		*dest = x;
313 	else
314 		regs->dar = ea;
315 	return err;
316 }
317 
318 /*
319  * Copy from userspace to a buffer, using the largest possible
320  * aligned accesses, up to sizeof(long).
321  */
322 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
323 				       struct pt_regs *regs)
324 {
325 	int err = 0;
326 	int c;
327 
328 	for (; nb > 0; nb -= c) {
329 		c = max_align(ea);
330 		if (c > nb)
331 			c = max_align(nb);
332 		switch (c) {
333 		case 1:
334 			err = __get_user(*dest, (unsigned char __user *) ea);
335 			break;
336 		case 2:
337 			err = __get_user(*(u16 *)dest,
338 					 (unsigned short __user *) ea);
339 			break;
340 		case 4:
341 			err = __get_user(*(u32 *)dest,
342 					 (unsigned int __user *) ea);
343 			break;
344 #ifdef __powerpc64__
345 		case 8:
346 			err = __get_user(*(unsigned long *)dest,
347 					 (unsigned long __user *) ea);
348 			break;
349 #endif
350 		}
351 		if (err) {
352 			regs->dar = ea;
353 			return err;
354 		}
355 		dest += c;
356 		ea += c;
357 	}
358 	return 0;
359 }
360 
361 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
362 					      unsigned long ea, int nb,
363 					      struct pt_regs *regs)
364 {
365 	union {
366 		unsigned long ul;
367 		u8 b[sizeof(unsigned long)];
368 	} u;
369 	int i;
370 	int err;
371 
372 	u.ul = 0;
373 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
374 	err = copy_mem_in(&u.b[i], ea, nb, regs);
375 	if (!err)
376 		*dest = u.ul;
377 	return err;
378 }
379 
380 /*
381  * Read memory at address ea for nb bytes, return 0 for success
382  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
383  * If nb < sizeof(long), the result is right-justified on BE systems.
384  */
385 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
386 			      struct pt_regs *regs)
387 {
388 	if (!address_ok(regs, ea, nb))
389 		return -EFAULT;
390 	if ((ea & (nb - 1)) == 0)
391 		return read_mem_aligned(dest, ea, nb, regs);
392 	return read_mem_unaligned(dest, ea, nb, regs);
393 }
394 NOKPROBE_SYMBOL(read_mem);
395 
396 static nokprobe_inline int write_mem_aligned(unsigned long val,
397 					     unsigned long ea, int nb,
398 					     struct pt_regs *regs)
399 {
400 	int err = 0;
401 
402 	switch (nb) {
403 	case 1:
404 		err = __put_user(val, (unsigned char __user *) ea);
405 		break;
406 	case 2:
407 		err = __put_user(val, (unsigned short __user *) ea);
408 		break;
409 	case 4:
410 		err = __put_user(val, (unsigned int __user *) ea);
411 		break;
412 #ifdef __powerpc64__
413 	case 8:
414 		err = __put_user(val, (unsigned long __user *) ea);
415 		break;
416 #endif
417 	}
418 	if (err)
419 		regs->dar = ea;
420 	return err;
421 }
422 
423 /*
424  * Copy from a buffer to userspace, using the largest possible
425  * aligned accesses, up to sizeof(long).
426  */
427 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
428 					struct pt_regs *regs)
429 {
430 	int err = 0;
431 	int c;
432 
433 	for (; nb > 0; nb -= c) {
434 		c = max_align(ea);
435 		if (c > nb)
436 			c = max_align(nb);
437 		switch (c) {
438 		case 1:
439 			err = __put_user(*dest, (unsigned char __user *) ea);
440 			break;
441 		case 2:
442 			err = __put_user(*(u16 *)dest,
443 					 (unsigned short __user *) ea);
444 			break;
445 		case 4:
446 			err = __put_user(*(u32 *)dest,
447 					 (unsigned int __user *) ea);
448 			break;
449 #ifdef __powerpc64__
450 		case 8:
451 			err = __put_user(*(unsigned long *)dest,
452 					 (unsigned long __user *) ea);
453 			break;
454 #endif
455 		}
456 		if (err) {
457 			regs->dar = ea;
458 			return err;
459 		}
460 		dest += c;
461 		ea += c;
462 	}
463 	return 0;
464 }
465 
466 static nokprobe_inline int write_mem_unaligned(unsigned long val,
467 					       unsigned long ea, int nb,
468 					       struct pt_regs *regs)
469 {
470 	union {
471 		unsigned long ul;
472 		u8 b[sizeof(unsigned long)];
473 	} u;
474 	int i;
475 
476 	u.ul = val;
477 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
478 	return copy_mem_out(&u.b[i], ea, nb, regs);
479 }
480 
481 /*
482  * Write memory at address ea for nb bytes, return 0 for success
483  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
484  */
485 static int write_mem(unsigned long val, unsigned long ea, int nb,
486 			       struct pt_regs *regs)
487 {
488 	if (!address_ok(regs, ea, nb))
489 		return -EFAULT;
490 	if ((ea & (nb - 1)) == 0)
491 		return write_mem_aligned(val, ea, nb, regs);
492 	return write_mem_unaligned(val, ea, nb, regs);
493 }
494 NOKPROBE_SYMBOL(write_mem);
495 
496 #ifdef CONFIG_PPC_FPU
497 /*
498  * These access either the real FP register or the image in the
499  * thread_struct, depending on regs->msr & MSR_FP.
500  */
501 static int do_fp_load(struct instruction_op *op, unsigned long ea,
502 		      struct pt_regs *regs, bool cross_endian)
503 {
504 	int err, rn, nb;
505 	union {
506 		int i;
507 		unsigned int u;
508 		float f;
509 		double d[2];
510 		unsigned long l[2];
511 		u8 b[2 * sizeof(double)];
512 	} u;
513 
514 	nb = GETSIZE(op->type);
515 	if (!address_ok(regs, ea, nb))
516 		return -EFAULT;
517 	rn = op->reg;
518 	err = copy_mem_in(u.b, ea, nb, regs);
519 	if (err)
520 		return err;
521 	if (unlikely(cross_endian)) {
522 		do_byte_reverse(u.b, min(nb, 8));
523 		if (nb == 16)
524 			do_byte_reverse(&u.b[8], 8);
525 	}
526 	preempt_disable();
527 	if (nb == 4) {
528 		if (op->type & FPCONV)
529 			conv_sp_to_dp(&u.f, &u.d[0]);
530 		else if (op->type & SIGNEXT)
531 			u.l[0] = u.i;
532 		else
533 			u.l[0] = u.u;
534 	}
535 	if (regs->msr & MSR_FP)
536 		put_fpr(rn, &u.d[0]);
537 	else
538 		current->thread.TS_FPR(rn) = u.l[0];
539 	if (nb == 16) {
540 		/* lfdp */
541 		rn |= 1;
542 		if (regs->msr & MSR_FP)
543 			put_fpr(rn, &u.d[1]);
544 		else
545 			current->thread.TS_FPR(rn) = u.l[1];
546 	}
547 	preempt_enable();
548 	return 0;
549 }
550 NOKPROBE_SYMBOL(do_fp_load);
551 
552 static int do_fp_store(struct instruction_op *op, unsigned long ea,
553 		       struct pt_regs *regs, bool cross_endian)
554 {
555 	int rn, nb;
556 	union {
557 		unsigned int u;
558 		float f;
559 		double d[2];
560 		unsigned long l[2];
561 		u8 b[2 * sizeof(double)];
562 	} u;
563 
564 	nb = GETSIZE(op->type);
565 	if (!address_ok(regs, ea, nb))
566 		return -EFAULT;
567 	rn = op->reg;
568 	preempt_disable();
569 	if (regs->msr & MSR_FP)
570 		get_fpr(rn, &u.d[0]);
571 	else
572 		u.l[0] = current->thread.TS_FPR(rn);
573 	if (nb == 4) {
574 		if (op->type & FPCONV)
575 			conv_dp_to_sp(&u.d[0], &u.f);
576 		else
577 			u.u = u.l[0];
578 	}
579 	if (nb == 16) {
580 		rn |= 1;
581 		if (regs->msr & MSR_FP)
582 			get_fpr(rn, &u.d[1]);
583 		else
584 			u.l[1] = current->thread.TS_FPR(rn);
585 	}
586 	preempt_enable();
587 	if (unlikely(cross_endian)) {
588 		do_byte_reverse(u.b, min(nb, 8));
589 		if (nb == 16)
590 			do_byte_reverse(&u.b[8], 8);
591 	}
592 	return copy_mem_out(u.b, ea, nb, regs);
593 }
594 NOKPROBE_SYMBOL(do_fp_store);
595 #endif
596 
597 #ifdef CONFIG_ALTIVEC
598 /* For Altivec/VMX, no need to worry about alignment */
599 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
600 				       int size, struct pt_regs *regs,
601 				       bool cross_endian)
602 {
603 	int err;
604 	union {
605 		__vector128 v;
606 		u8 b[sizeof(__vector128)];
607 	} u = {};
608 
609 	if (!address_ok(regs, ea & ~0xfUL, 16))
610 		return -EFAULT;
611 	/* align to multiple of size */
612 	ea &= ~(size - 1);
613 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
614 	if (err)
615 		return err;
616 	if (unlikely(cross_endian))
617 		do_byte_reverse(&u.b[ea & 0xf], size);
618 	preempt_disable();
619 	if (regs->msr & MSR_VEC)
620 		put_vr(rn, &u.v);
621 	else
622 		current->thread.vr_state.vr[rn] = u.v;
623 	preempt_enable();
624 	return 0;
625 }
626 
627 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
628 					int size, struct pt_regs *regs,
629 					bool cross_endian)
630 {
631 	union {
632 		__vector128 v;
633 		u8 b[sizeof(__vector128)];
634 	} u;
635 
636 	if (!address_ok(regs, ea & ~0xfUL, 16))
637 		return -EFAULT;
638 	/* align to multiple of size */
639 	ea &= ~(size - 1);
640 
641 	preempt_disable();
642 	if (regs->msr & MSR_VEC)
643 		get_vr(rn, &u.v);
644 	else
645 		u.v = current->thread.vr_state.vr[rn];
646 	preempt_enable();
647 	if (unlikely(cross_endian))
648 		do_byte_reverse(&u.b[ea & 0xf], size);
649 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
650 }
651 #endif /* CONFIG_ALTIVEC */
652 
653 #ifdef __powerpc64__
654 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
655 				      int reg, bool cross_endian)
656 {
657 	int err;
658 
659 	if (!address_ok(regs, ea, 16))
660 		return -EFAULT;
661 	/* if aligned, should be atomic */
662 	if ((ea & 0xf) == 0) {
663 		err = do_lq(ea, &regs->gpr[reg]);
664 	} else {
665 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
666 		if (!err)
667 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
668 	}
669 	if (!err && unlikely(cross_endian))
670 		do_byte_reverse(&regs->gpr[reg], 16);
671 	return err;
672 }
673 
674 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
675 				       int reg, bool cross_endian)
676 {
677 	int err;
678 	unsigned long vals[2];
679 
680 	if (!address_ok(regs, ea, 16))
681 		return -EFAULT;
682 	vals[0] = regs->gpr[reg];
683 	vals[1] = regs->gpr[reg + 1];
684 	if (unlikely(cross_endian))
685 		do_byte_reverse(vals, 16);
686 
687 	/* if aligned, should be atomic */
688 	if ((ea & 0xf) == 0)
689 		return do_stq(ea, vals[0], vals[1]);
690 
691 	err = write_mem(vals[IS_LE], ea, 8, regs);
692 	if (!err)
693 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
694 	return err;
695 }
696 #endif /* __powerpc64 */
697 
698 #ifdef CONFIG_VSX
699 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
700 		      const void *mem, bool rev)
701 {
702 	int size, read_size;
703 	int i, j;
704 	const unsigned int *wp;
705 	const unsigned short *hp;
706 	const unsigned char *bp;
707 
708 	size = GETSIZE(op->type);
709 	reg->d[0] = reg->d[1] = 0;
710 
711 	switch (op->element_size) {
712 	case 16:
713 		/* whole vector; lxv[x] or lxvl[l] */
714 		if (size == 0)
715 			break;
716 		memcpy(reg, mem, size);
717 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
718 			rev = !rev;
719 		if (rev)
720 			do_byte_reverse(reg, 16);
721 		break;
722 	case 8:
723 		/* scalar loads, lxvd2x, lxvdsx */
724 		read_size = (size >= 8) ? 8 : size;
725 		i = IS_LE ? 8 : 8 - read_size;
726 		memcpy(&reg->b[i], mem, read_size);
727 		if (rev)
728 			do_byte_reverse(&reg->b[i], 8);
729 		if (size < 8) {
730 			if (op->type & SIGNEXT) {
731 				/* size == 4 is the only case here */
732 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
733 			} else if (op->vsx_flags & VSX_FPCONV) {
734 				preempt_disable();
735 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
736 					      &reg->dp[IS_LE]);
737 				preempt_enable();
738 			}
739 		} else {
740 			if (size == 16) {
741 				unsigned long v = *(unsigned long *)(mem + 8);
742 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
743 			} else if (op->vsx_flags & VSX_SPLAT)
744 				reg->d[IS_BE] = reg->d[IS_LE];
745 		}
746 		break;
747 	case 4:
748 		/* lxvw4x, lxvwsx */
749 		wp = mem;
750 		for (j = 0; j < size / 4; ++j) {
751 			i = IS_LE ? 3 - j : j;
752 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
753 		}
754 		if (op->vsx_flags & VSX_SPLAT) {
755 			u32 val = reg->w[IS_LE ? 3 : 0];
756 			for (; j < 4; ++j) {
757 				i = IS_LE ? 3 - j : j;
758 				reg->w[i] = val;
759 			}
760 		}
761 		break;
762 	case 2:
763 		/* lxvh8x */
764 		hp = mem;
765 		for (j = 0; j < size / 2; ++j) {
766 			i = IS_LE ? 7 - j : j;
767 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
768 		}
769 		break;
770 	case 1:
771 		/* lxvb16x */
772 		bp = mem;
773 		for (j = 0; j < size; ++j) {
774 			i = IS_LE ? 15 - j : j;
775 			reg->b[i] = *bp++;
776 		}
777 		break;
778 	}
779 }
780 EXPORT_SYMBOL_GPL(emulate_vsx_load);
781 NOKPROBE_SYMBOL(emulate_vsx_load);
782 
783 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
784 		       void *mem, bool rev)
785 {
786 	int size, write_size;
787 	int i, j;
788 	union vsx_reg buf;
789 	unsigned int *wp;
790 	unsigned short *hp;
791 	unsigned char *bp;
792 
793 	size = GETSIZE(op->type);
794 
795 	switch (op->element_size) {
796 	case 16:
797 		/* stxv, stxvx, stxvl, stxvll */
798 		if (size == 0)
799 			break;
800 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
801 			rev = !rev;
802 		if (rev) {
803 			/* reverse 16 bytes */
804 			buf.d[0] = byterev_8(reg->d[1]);
805 			buf.d[1] = byterev_8(reg->d[0]);
806 			reg = &buf;
807 		}
808 		memcpy(mem, reg, size);
809 		break;
810 	case 8:
811 		/* scalar stores, stxvd2x */
812 		write_size = (size >= 8) ? 8 : size;
813 		i = IS_LE ? 8 : 8 - write_size;
814 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
815 			buf.d[0] = buf.d[1] = 0;
816 			preempt_disable();
817 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
818 			preempt_enable();
819 			reg = &buf;
820 		}
821 		memcpy(mem, &reg->b[i], write_size);
822 		if (size == 16)
823 			memcpy(mem + 8, &reg->d[IS_BE], 8);
824 		if (unlikely(rev)) {
825 			do_byte_reverse(mem, write_size);
826 			if (size == 16)
827 				do_byte_reverse(mem + 8, 8);
828 		}
829 		break;
830 	case 4:
831 		/* stxvw4x */
832 		wp = mem;
833 		for (j = 0; j < size / 4; ++j) {
834 			i = IS_LE ? 3 - j : j;
835 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
836 		}
837 		break;
838 	case 2:
839 		/* stxvh8x */
840 		hp = mem;
841 		for (j = 0; j < size / 2; ++j) {
842 			i = IS_LE ? 7 - j : j;
843 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
844 		}
845 		break;
846 	case 1:
847 		/* stvxb16x */
848 		bp = mem;
849 		for (j = 0; j < size; ++j) {
850 			i = IS_LE ? 15 - j : j;
851 			*bp++ = reg->b[i];
852 		}
853 		break;
854 	}
855 }
856 EXPORT_SYMBOL_GPL(emulate_vsx_store);
857 NOKPROBE_SYMBOL(emulate_vsx_store);
858 
859 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
860 				       unsigned long ea, struct pt_regs *regs,
861 				       bool cross_endian)
862 {
863 	int reg = op->reg;
864 	u8 mem[16];
865 	union vsx_reg buf;
866 	int size = GETSIZE(op->type);
867 
868 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
869 		return -EFAULT;
870 
871 	emulate_vsx_load(op, &buf, mem, cross_endian);
872 	preempt_disable();
873 	if (reg < 32) {
874 		/* FP regs + extensions */
875 		if (regs->msr & MSR_FP) {
876 			load_vsrn(reg, &buf);
877 		} else {
878 			current->thread.fp_state.fpr[reg][0] = buf.d[0];
879 			current->thread.fp_state.fpr[reg][1] = buf.d[1];
880 		}
881 	} else {
882 		if (regs->msr & MSR_VEC)
883 			load_vsrn(reg, &buf);
884 		else
885 			current->thread.vr_state.vr[reg - 32] = buf.v;
886 	}
887 	preempt_enable();
888 	return 0;
889 }
890 
891 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
892 					unsigned long ea, struct pt_regs *regs,
893 					bool cross_endian)
894 {
895 	int reg = op->reg;
896 	u8 mem[16];
897 	union vsx_reg buf;
898 	int size = GETSIZE(op->type);
899 
900 	if (!address_ok(regs, ea, size))
901 		return -EFAULT;
902 
903 	preempt_disable();
904 	if (reg < 32) {
905 		/* FP regs + extensions */
906 		if (regs->msr & MSR_FP) {
907 			store_vsrn(reg, &buf);
908 		} else {
909 			buf.d[0] = current->thread.fp_state.fpr[reg][0];
910 			buf.d[1] = current->thread.fp_state.fpr[reg][1];
911 		}
912 	} else {
913 		if (regs->msr & MSR_VEC)
914 			store_vsrn(reg, &buf);
915 		else
916 			buf.v = current->thread.vr_state.vr[reg - 32];
917 	}
918 	preempt_enable();
919 	emulate_vsx_store(op, &buf, mem, cross_endian);
920 	return  copy_mem_out(mem, ea, size, regs);
921 }
922 #endif /* CONFIG_VSX */
923 
924 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
925 {
926 	int err;
927 	unsigned long i, size;
928 
929 #ifdef __powerpc64__
930 	size = ppc64_caches.l1d.block_size;
931 	if (!(regs->msr & MSR_64BIT))
932 		ea &= 0xffffffffUL;
933 #else
934 	size = L1_CACHE_BYTES;
935 #endif
936 	ea &= ~(size - 1);
937 	if (!address_ok(regs, ea, size))
938 		return -EFAULT;
939 	for (i = 0; i < size; i += sizeof(long)) {
940 		err = __put_user(0, (unsigned long __user *) (ea + i));
941 		if (err) {
942 			regs->dar = ea;
943 			return err;
944 		}
945 	}
946 	return 0;
947 }
948 NOKPROBE_SYMBOL(emulate_dcbz);
949 
950 #define __put_user_asmx(x, addr, err, op, cr)		\
951 	__asm__ __volatile__(				\
952 		"1:	" op " %2,0,%3\n"		\
953 		"	mfcr	%1\n"			\
954 		"2:\n"					\
955 		".section .fixup,\"ax\"\n"		\
956 		"3:	li	%0,%4\n"		\
957 		"	b	2b\n"			\
958 		".previous\n"				\
959 		EX_TABLE(1b, 3b)			\
960 		: "=r" (err), "=r" (cr)			\
961 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
962 
963 #define __get_user_asmx(x, addr, err, op)		\
964 	__asm__ __volatile__(				\
965 		"1:	"op" %1,0,%2\n"			\
966 		"2:\n"					\
967 		".section .fixup,\"ax\"\n"		\
968 		"3:	li	%0,%3\n"		\
969 		"	b	2b\n"			\
970 		".previous\n"				\
971 		EX_TABLE(1b, 3b)			\
972 		: "=r" (err), "=r" (x)			\
973 		: "r" (addr), "i" (-EFAULT), "0" (err))
974 
975 #define __cacheop_user_asmx(addr, err, op)		\
976 	__asm__ __volatile__(				\
977 		"1:	"op" 0,%1\n"			\
978 		"2:\n"					\
979 		".section .fixup,\"ax\"\n"		\
980 		"3:	li	%0,%3\n"		\
981 		"	b	2b\n"			\
982 		".previous\n"				\
983 		EX_TABLE(1b, 3b)			\
984 		: "=r" (err)				\
985 		: "r" (addr), "i" (-EFAULT), "0" (err))
986 
987 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
988 				    struct instruction_op *op)
989 {
990 	long val = op->val;
991 
992 	op->type |= SETCC;
993 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
994 #ifdef __powerpc64__
995 	if (!(regs->msr & MSR_64BIT))
996 		val = (int) val;
997 #endif
998 	if (val < 0)
999 		op->ccval |= 0x80000000;
1000 	else if (val > 0)
1001 		op->ccval |= 0x40000000;
1002 	else
1003 		op->ccval |= 0x20000000;
1004 }
1005 
1006 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1007 {
1008 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1009 		if (val)
1010 			op->xerval |= XER_CA32;
1011 		else
1012 			op->xerval &= ~XER_CA32;
1013 	}
1014 }
1015 
1016 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1017 				     struct instruction_op *op, int rd,
1018 				     unsigned long val1, unsigned long val2,
1019 				     unsigned long carry_in)
1020 {
1021 	unsigned long val = val1 + val2;
1022 
1023 	if (carry_in)
1024 		++val;
1025 	op->type = COMPUTE + SETREG + SETXER;
1026 	op->reg = rd;
1027 	op->val = val;
1028 #ifdef __powerpc64__
1029 	if (!(regs->msr & MSR_64BIT)) {
1030 		val = (unsigned int) val;
1031 		val1 = (unsigned int) val1;
1032 	}
1033 #endif
1034 	op->xerval = regs->xer;
1035 	if (val < val1 || (carry_in && val == val1))
1036 		op->xerval |= XER_CA;
1037 	else
1038 		op->xerval &= ~XER_CA;
1039 
1040 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1041 			(carry_in && (unsigned int)val == (unsigned int)val1));
1042 }
1043 
1044 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1045 					  struct instruction_op *op,
1046 					  long v1, long v2, int crfld)
1047 {
1048 	unsigned int crval, shift;
1049 
1050 	op->type = COMPUTE + SETCC;
1051 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1052 	if (v1 < v2)
1053 		crval |= 8;
1054 	else if (v1 > v2)
1055 		crval |= 4;
1056 	else
1057 		crval |= 2;
1058 	shift = (7 - crfld) * 4;
1059 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1060 }
1061 
1062 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1063 					    struct instruction_op *op,
1064 					    unsigned long v1,
1065 					    unsigned long v2, int crfld)
1066 {
1067 	unsigned int crval, shift;
1068 
1069 	op->type = COMPUTE + SETCC;
1070 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1071 	if (v1 < v2)
1072 		crval |= 8;
1073 	else if (v1 > v2)
1074 		crval |= 4;
1075 	else
1076 		crval |= 2;
1077 	shift = (7 - crfld) * 4;
1078 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1079 }
1080 
1081 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1082 				    struct instruction_op *op,
1083 				    unsigned long v1, unsigned long v2)
1084 {
1085 	unsigned long long out_val, mask;
1086 	int i;
1087 
1088 	out_val = 0;
1089 	for (i = 0; i < 8; i++) {
1090 		mask = 0xffUL << (i * 8);
1091 		if ((v1 & mask) == (v2 & mask))
1092 			out_val |= mask;
1093 	}
1094 	op->val = out_val;
1095 }
1096 
1097 /*
1098  * The size parameter is used to adjust the equivalent popcnt instruction.
1099  * popcntb = 8, popcntw = 32, popcntd = 64
1100  */
1101 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1102 				      struct instruction_op *op,
1103 				      unsigned long v1, int size)
1104 {
1105 	unsigned long long out = v1;
1106 
1107 	out -= (out >> 1) & 0x5555555555555555ULL;
1108 	out = (0x3333333333333333ULL & out) +
1109 	      (0x3333333333333333ULL & (out >> 2));
1110 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1111 
1112 	if (size == 8) {	/* popcntb */
1113 		op->val = out;
1114 		return;
1115 	}
1116 	out += out >> 8;
1117 	out += out >> 16;
1118 	if (size == 32) {	/* popcntw */
1119 		op->val = out & 0x0000003f0000003fULL;
1120 		return;
1121 	}
1122 
1123 	out = (out + (out >> 32)) & 0x7f;
1124 	op->val = out;	/* popcntd */
1125 }
1126 
1127 #ifdef CONFIG_PPC64
1128 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1129 				      struct instruction_op *op,
1130 				      unsigned long v1, unsigned long v2)
1131 {
1132 	unsigned char perm, idx;
1133 	unsigned int i;
1134 
1135 	perm = 0;
1136 	for (i = 0; i < 8; i++) {
1137 		idx = (v1 >> (i * 8)) & 0xff;
1138 		if (idx < 64)
1139 			if (v2 & PPC_BIT(idx))
1140 				perm |= 1 << i;
1141 	}
1142 	op->val = perm;
1143 }
1144 #endif /* CONFIG_PPC64 */
1145 /*
1146  * The size parameter adjusts the equivalent prty instruction.
1147  * prtyw = 32, prtyd = 64
1148  */
1149 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1150 				    struct instruction_op *op,
1151 				    unsigned long v, int size)
1152 {
1153 	unsigned long long res = v ^ (v >> 8);
1154 
1155 	res ^= res >> 16;
1156 	if (size == 32) {		/* prtyw */
1157 		op->val = res & 0x0000000100000001ULL;
1158 		return;
1159 	}
1160 
1161 	res ^= res >> 32;
1162 	op->val = res & 1;	/*prtyd */
1163 }
1164 
1165 static nokprobe_inline int trap_compare(long v1, long v2)
1166 {
1167 	int ret = 0;
1168 
1169 	if (v1 < v2)
1170 		ret |= 0x10;
1171 	else if (v1 > v2)
1172 		ret |= 0x08;
1173 	else
1174 		ret |= 0x04;
1175 	if ((unsigned long)v1 < (unsigned long)v2)
1176 		ret |= 0x02;
1177 	else if ((unsigned long)v1 > (unsigned long)v2)
1178 		ret |= 0x01;
1179 	return ret;
1180 }
1181 
1182 /*
1183  * Elements of 32-bit rotate and mask instructions.
1184  */
1185 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1186 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1187 #ifdef __powerpc64__
1188 #define MASK64_L(mb)	(~0UL >> (mb))
1189 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1190 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1191 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1192 #else
1193 #define DATA32(x)	(x)
1194 #endif
1195 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1196 
1197 /*
1198  * Decode an instruction, and return information about it in *op
1199  * without changing *regs.
1200  * Integer arithmetic and logical instructions, branches, and barrier
1201  * instructions can be emulated just using the information in *op.
1202  *
1203  * Return value is 1 if the instruction can be emulated just by
1204  * updating *regs with the information in *op, -1 if we need the
1205  * GPRs but *regs doesn't contain the full register set, or 0
1206  * otherwise.
1207  */
1208 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1209 		  struct ppc_inst instr)
1210 {
1211 #ifdef CONFIG_PPC64
1212 	unsigned int suffixopcode, prefixtype, prefix_r;
1213 #endif
1214 	unsigned int opcode, ra, rb, rc, rd, spr, u;
1215 	unsigned long int imm;
1216 	unsigned long int val, val2;
1217 	unsigned int mb, me, sh;
1218 	unsigned int word, suffix;
1219 	long ival;
1220 
1221 	word = ppc_inst_val(instr);
1222 	suffix = ppc_inst_suffix(instr);
1223 
1224 	op->type = COMPUTE;
1225 
1226 	opcode = ppc_inst_primary_opcode(instr);
1227 	switch (opcode) {
1228 	case 16:	/* bc */
1229 		op->type = BRANCH;
1230 		imm = (signed short)(word & 0xfffc);
1231 		if ((word & 2) == 0)
1232 			imm += regs->nip;
1233 		op->val = truncate_if_32bit(regs->msr, imm);
1234 		if (word & 1)
1235 			op->type |= SETLK;
1236 		if (branch_taken(word, regs, op))
1237 			op->type |= BRTAKEN;
1238 		return 1;
1239 #ifdef CONFIG_PPC64
1240 	case 17:	/* sc */
1241 		if ((word & 0xfe2) == 2)
1242 			op->type = SYSCALL;
1243 		else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1244 				(word & 0xfe3) == 1)
1245 			op->type = SYSCALL_VECTORED_0;
1246 		else
1247 			op->type = UNKNOWN;
1248 		return 0;
1249 #endif
1250 	case 18:	/* b */
1251 		op->type = BRANCH | BRTAKEN;
1252 		imm = word & 0x03fffffc;
1253 		if (imm & 0x02000000)
1254 			imm -= 0x04000000;
1255 		if ((word & 2) == 0)
1256 			imm += regs->nip;
1257 		op->val = truncate_if_32bit(regs->msr, imm);
1258 		if (word & 1)
1259 			op->type |= SETLK;
1260 		return 1;
1261 	case 19:
1262 		switch ((word >> 1) & 0x3ff) {
1263 		case 0:		/* mcrf */
1264 			op->type = COMPUTE + SETCC;
1265 			rd = 7 - ((word >> 23) & 0x7);
1266 			ra = 7 - ((word >> 18) & 0x7);
1267 			rd *= 4;
1268 			ra *= 4;
1269 			val = (regs->ccr >> ra) & 0xf;
1270 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1271 			return 1;
1272 
1273 		case 16:	/* bclr */
1274 		case 528:	/* bcctr */
1275 			op->type = BRANCH;
1276 			imm = (word & 0x400)? regs->ctr: regs->link;
1277 			op->val = truncate_if_32bit(regs->msr, imm);
1278 			if (word & 1)
1279 				op->type |= SETLK;
1280 			if (branch_taken(word, regs, op))
1281 				op->type |= BRTAKEN;
1282 			return 1;
1283 
1284 		case 18:	/* rfid, scary */
1285 			if (regs->msr & MSR_PR)
1286 				goto priv;
1287 			op->type = RFI;
1288 			return 0;
1289 
1290 		case 150:	/* isync */
1291 			op->type = BARRIER | BARRIER_ISYNC;
1292 			return 1;
1293 
1294 		case 33:	/* crnor */
1295 		case 129:	/* crandc */
1296 		case 193:	/* crxor */
1297 		case 225:	/* crnand */
1298 		case 257:	/* crand */
1299 		case 289:	/* creqv */
1300 		case 417:	/* crorc */
1301 		case 449:	/* cror */
1302 			op->type = COMPUTE + SETCC;
1303 			ra = (word >> 16) & 0x1f;
1304 			rb = (word >> 11) & 0x1f;
1305 			rd = (word >> 21) & 0x1f;
1306 			ra = (regs->ccr >> (31 - ra)) & 1;
1307 			rb = (regs->ccr >> (31 - rb)) & 1;
1308 			val = (word >> (6 + ra * 2 + rb)) & 1;
1309 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1310 				(val << (31 - rd));
1311 			return 1;
1312 		}
1313 		break;
1314 	case 31:
1315 		switch ((word >> 1) & 0x3ff) {
1316 		case 598:	/* sync */
1317 			op->type = BARRIER + BARRIER_SYNC;
1318 #ifdef __powerpc64__
1319 			switch ((word >> 21) & 3) {
1320 			case 1:		/* lwsync */
1321 				op->type = BARRIER + BARRIER_LWSYNC;
1322 				break;
1323 			case 2:		/* ptesync */
1324 				op->type = BARRIER + BARRIER_PTESYNC;
1325 				break;
1326 			}
1327 #endif
1328 			return 1;
1329 
1330 		case 854:	/* eieio */
1331 			op->type = BARRIER + BARRIER_EIEIO;
1332 			return 1;
1333 		}
1334 		break;
1335 	}
1336 
1337 	/* Following cases refer to regs->gpr[], so we need all regs */
1338 	if (!FULL_REGS(regs))
1339 		return -1;
1340 
1341 	rd = (word >> 21) & 0x1f;
1342 	ra = (word >> 16) & 0x1f;
1343 	rb = (word >> 11) & 0x1f;
1344 	rc = (word >> 6) & 0x1f;
1345 
1346 	switch (opcode) {
1347 #ifdef __powerpc64__
1348 	case 1:
1349 		prefix_r = GET_PREFIX_R(word);
1350 		ra = GET_PREFIX_RA(suffix);
1351 		rd = (suffix >> 21) & 0x1f;
1352 		op->reg = rd;
1353 		op->val = regs->gpr[rd];
1354 		suffixopcode = get_op(suffix);
1355 		prefixtype = (word >> 24) & 0x3;
1356 		switch (prefixtype) {
1357 		case 2:
1358 			if (prefix_r && ra)
1359 				return 0;
1360 			switch (suffixopcode) {
1361 			case 14:	/* paddi */
1362 				op->type = COMPUTE | PREFIXED;
1363 				op->val = mlsd_8lsd_ea(word, suffix, regs);
1364 				goto compute_done;
1365 			}
1366 		}
1367 		break;
1368 	case 2:		/* tdi */
1369 		if (rd & trap_compare(regs->gpr[ra], (short) word))
1370 			goto trap;
1371 		return 1;
1372 #endif
1373 	case 3:		/* twi */
1374 		if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1375 			goto trap;
1376 		return 1;
1377 
1378 #ifdef __powerpc64__
1379 	case 4:
1380 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1381 			return -1;
1382 
1383 		switch (word & 0x3f) {
1384 		case 48:	/* maddhd */
1385 			asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1386 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1387 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1388 			goto compute_done;
1389 
1390 		case 49:	/* maddhdu */
1391 			asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1392 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1393 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1394 			goto compute_done;
1395 
1396 		case 51:	/* maddld */
1397 			asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1398 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1399 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1400 			goto compute_done;
1401 		}
1402 
1403 		/*
1404 		 * There are other instructions from ISA 3.0 with the same
1405 		 * primary opcode which do not have emulation support yet.
1406 		 */
1407 		return -1;
1408 #endif
1409 
1410 	case 7:		/* mulli */
1411 		op->val = regs->gpr[ra] * (short) word;
1412 		goto compute_done;
1413 
1414 	case 8:		/* subfic */
1415 		imm = (short) word;
1416 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1417 		return 1;
1418 
1419 	case 10:	/* cmpli */
1420 		imm = (unsigned short) word;
1421 		val = regs->gpr[ra];
1422 #ifdef __powerpc64__
1423 		if ((rd & 1) == 0)
1424 			val = (unsigned int) val;
1425 #endif
1426 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1427 		return 1;
1428 
1429 	case 11:	/* cmpi */
1430 		imm = (short) word;
1431 		val = regs->gpr[ra];
1432 #ifdef __powerpc64__
1433 		if ((rd & 1) == 0)
1434 			val = (int) val;
1435 #endif
1436 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1437 		return 1;
1438 
1439 	case 12:	/* addic */
1440 		imm = (short) word;
1441 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1442 		return 1;
1443 
1444 	case 13:	/* addic. */
1445 		imm = (short) word;
1446 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1447 		set_cr0(regs, op);
1448 		return 1;
1449 
1450 	case 14:	/* addi */
1451 		imm = (short) word;
1452 		if (ra)
1453 			imm += regs->gpr[ra];
1454 		op->val = imm;
1455 		goto compute_done;
1456 
1457 	case 15:	/* addis */
1458 		imm = ((short) word) << 16;
1459 		if (ra)
1460 			imm += regs->gpr[ra];
1461 		op->val = imm;
1462 		goto compute_done;
1463 
1464 	case 19:
1465 		if (((word >> 1) & 0x1f) == 2) {
1466 			/* addpcis */
1467 			imm = (short) (word & 0xffc1);	/* d0 + d2 fields */
1468 			imm |= (word >> 15) & 0x3e;	/* d1 field */
1469 			op->val = regs->nip + (imm << 16) + 4;
1470 			goto compute_done;
1471 		}
1472 		op->type = UNKNOWN;
1473 		return 0;
1474 
1475 	case 20:	/* rlwimi */
1476 		mb = (word >> 6) & 0x1f;
1477 		me = (word >> 1) & 0x1f;
1478 		val = DATA32(regs->gpr[rd]);
1479 		imm = MASK32(mb, me);
1480 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1481 		goto logical_done;
1482 
1483 	case 21:	/* rlwinm */
1484 		mb = (word >> 6) & 0x1f;
1485 		me = (word >> 1) & 0x1f;
1486 		val = DATA32(regs->gpr[rd]);
1487 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1488 		goto logical_done;
1489 
1490 	case 23:	/* rlwnm */
1491 		mb = (word >> 6) & 0x1f;
1492 		me = (word >> 1) & 0x1f;
1493 		rb = regs->gpr[rb] & 0x1f;
1494 		val = DATA32(regs->gpr[rd]);
1495 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1496 		goto logical_done;
1497 
1498 	case 24:	/* ori */
1499 		op->val = regs->gpr[rd] | (unsigned short) word;
1500 		goto logical_done_nocc;
1501 
1502 	case 25:	/* oris */
1503 		imm = (unsigned short) word;
1504 		op->val = regs->gpr[rd] | (imm << 16);
1505 		goto logical_done_nocc;
1506 
1507 	case 26:	/* xori */
1508 		op->val = regs->gpr[rd] ^ (unsigned short) word;
1509 		goto logical_done_nocc;
1510 
1511 	case 27:	/* xoris */
1512 		imm = (unsigned short) word;
1513 		op->val = regs->gpr[rd] ^ (imm << 16);
1514 		goto logical_done_nocc;
1515 
1516 	case 28:	/* andi. */
1517 		op->val = regs->gpr[rd] & (unsigned short) word;
1518 		set_cr0(regs, op);
1519 		goto logical_done_nocc;
1520 
1521 	case 29:	/* andis. */
1522 		imm = (unsigned short) word;
1523 		op->val = regs->gpr[rd] & (imm << 16);
1524 		set_cr0(regs, op);
1525 		goto logical_done_nocc;
1526 
1527 #ifdef __powerpc64__
1528 	case 30:	/* rld* */
1529 		mb = ((word >> 6) & 0x1f) | (word & 0x20);
1530 		val = regs->gpr[rd];
1531 		if ((word & 0x10) == 0) {
1532 			sh = rb | ((word & 2) << 4);
1533 			val = ROTATE(val, sh);
1534 			switch ((word >> 2) & 3) {
1535 			case 0:		/* rldicl */
1536 				val &= MASK64_L(mb);
1537 				break;
1538 			case 1:		/* rldicr */
1539 				val &= MASK64_R(mb);
1540 				break;
1541 			case 2:		/* rldic */
1542 				val &= MASK64(mb, 63 - sh);
1543 				break;
1544 			case 3:		/* rldimi */
1545 				imm = MASK64(mb, 63 - sh);
1546 				val = (regs->gpr[ra] & ~imm) |
1547 					(val & imm);
1548 			}
1549 			op->val = val;
1550 			goto logical_done;
1551 		} else {
1552 			sh = regs->gpr[rb] & 0x3f;
1553 			val = ROTATE(val, sh);
1554 			switch ((word >> 1) & 7) {
1555 			case 0:		/* rldcl */
1556 				op->val = val & MASK64_L(mb);
1557 				goto logical_done;
1558 			case 1:		/* rldcr */
1559 				op->val = val & MASK64_R(mb);
1560 				goto logical_done;
1561 			}
1562 		}
1563 #endif
1564 		op->type = UNKNOWN;	/* illegal instruction */
1565 		return 0;
1566 
1567 	case 31:
1568 		/* isel occupies 32 minor opcodes */
1569 		if (((word >> 1) & 0x1f) == 15) {
1570 			mb = (word >> 6) & 0x1f; /* bc field */
1571 			val = (regs->ccr >> (31 - mb)) & 1;
1572 			val2 = (ra) ? regs->gpr[ra] : 0;
1573 
1574 			op->val = (val) ? val2 : regs->gpr[rb];
1575 			goto compute_done;
1576 		}
1577 
1578 		switch ((word >> 1) & 0x3ff) {
1579 		case 4:		/* tw */
1580 			if (rd == 0x1f ||
1581 			    (rd & trap_compare((int)regs->gpr[ra],
1582 					       (int)regs->gpr[rb])))
1583 				goto trap;
1584 			return 1;
1585 #ifdef __powerpc64__
1586 		case 68:	/* td */
1587 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1588 				goto trap;
1589 			return 1;
1590 #endif
1591 		case 83:	/* mfmsr */
1592 			if (regs->msr & MSR_PR)
1593 				goto priv;
1594 			op->type = MFMSR;
1595 			op->reg = rd;
1596 			return 0;
1597 		case 146:	/* mtmsr */
1598 			if (regs->msr & MSR_PR)
1599 				goto priv;
1600 			op->type = MTMSR;
1601 			op->reg = rd;
1602 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1603 			return 0;
1604 #ifdef CONFIG_PPC64
1605 		case 178:	/* mtmsrd */
1606 			if (regs->msr & MSR_PR)
1607 				goto priv;
1608 			op->type = MTMSR;
1609 			op->reg = rd;
1610 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1611 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1612 			imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1613 			op->val = imm;
1614 			return 0;
1615 #endif
1616 
1617 		case 19:	/* mfcr */
1618 			imm = 0xffffffffUL;
1619 			if ((word >> 20) & 1) {
1620 				imm = 0xf0000000UL;
1621 				for (sh = 0; sh < 8; ++sh) {
1622 					if (word & (0x80000 >> sh))
1623 						break;
1624 					imm >>= 4;
1625 				}
1626 			}
1627 			op->val = regs->ccr & imm;
1628 			goto compute_done;
1629 
1630 		case 144:	/* mtcrf */
1631 			op->type = COMPUTE + SETCC;
1632 			imm = 0xf0000000UL;
1633 			val = regs->gpr[rd];
1634 			op->ccval = regs->ccr;
1635 			for (sh = 0; sh < 8; ++sh) {
1636 				if (word & (0x80000 >> sh))
1637 					op->ccval = (op->ccval & ~imm) |
1638 						(val & imm);
1639 				imm >>= 4;
1640 			}
1641 			return 1;
1642 
1643 		case 339:	/* mfspr */
1644 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1645 			op->type = MFSPR;
1646 			op->reg = rd;
1647 			op->spr = spr;
1648 			if (spr == SPRN_XER || spr == SPRN_LR ||
1649 			    spr == SPRN_CTR)
1650 				return 1;
1651 			return 0;
1652 
1653 		case 467:	/* mtspr */
1654 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1655 			op->type = MTSPR;
1656 			op->val = regs->gpr[rd];
1657 			op->spr = spr;
1658 			if (spr == SPRN_XER || spr == SPRN_LR ||
1659 			    spr == SPRN_CTR)
1660 				return 1;
1661 			return 0;
1662 
1663 /*
1664  * Compare instructions
1665  */
1666 		case 0:	/* cmp */
1667 			val = regs->gpr[ra];
1668 			val2 = regs->gpr[rb];
1669 #ifdef __powerpc64__
1670 			if ((rd & 1) == 0) {
1671 				/* word (32-bit) compare */
1672 				val = (int) val;
1673 				val2 = (int) val2;
1674 			}
1675 #endif
1676 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1677 			return 1;
1678 
1679 		case 32:	/* cmpl */
1680 			val = regs->gpr[ra];
1681 			val2 = regs->gpr[rb];
1682 #ifdef __powerpc64__
1683 			if ((rd & 1) == 0) {
1684 				/* word (32-bit) compare */
1685 				val = (unsigned int) val;
1686 				val2 = (unsigned int) val2;
1687 			}
1688 #endif
1689 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1690 			return 1;
1691 
1692 		case 508: /* cmpb */
1693 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1694 			goto logical_done_nocc;
1695 
1696 /*
1697  * Arithmetic instructions
1698  */
1699 		case 8:	/* subfc */
1700 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1701 				       regs->gpr[rb], 1);
1702 			goto arith_done;
1703 #ifdef __powerpc64__
1704 		case 9:	/* mulhdu */
1705 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1706 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1707 			goto arith_done;
1708 #endif
1709 		case 10:	/* addc */
1710 			add_with_carry(regs, op, rd, regs->gpr[ra],
1711 				       regs->gpr[rb], 0);
1712 			goto arith_done;
1713 
1714 		case 11:	/* mulhwu */
1715 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1716 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1717 			goto arith_done;
1718 
1719 		case 40:	/* subf */
1720 			op->val = regs->gpr[rb] - regs->gpr[ra];
1721 			goto arith_done;
1722 #ifdef __powerpc64__
1723 		case 73:	/* mulhd */
1724 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1725 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1726 			goto arith_done;
1727 #endif
1728 		case 75:	/* mulhw */
1729 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1730 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1731 			goto arith_done;
1732 
1733 		case 104:	/* neg */
1734 			op->val = -regs->gpr[ra];
1735 			goto arith_done;
1736 
1737 		case 136:	/* subfe */
1738 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1739 				       regs->gpr[rb], regs->xer & XER_CA);
1740 			goto arith_done;
1741 
1742 		case 138:	/* adde */
1743 			add_with_carry(regs, op, rd, regs->gpr[ra],
1744 				       regs->gpr[rb], regs->xer & XER_CA);
1745 			goto arith_done;
1746 
1747 		case 200:	/* subfze */
1748 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1749 				       regs->xer & XER_CA);
1750 			goto arith_done;
1751 
1752 		case 202:	/* addze */
1753 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1754 				       regs->xer & XER_CA);
1755 			goto arith_done;
1756 
1757 		case 232:	/* subfme */
1758 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1759 				       regs->xer & XER_CA);
1760 			goto arith_done;
1761 #ifdef __powerpc64__
1762 		case 233:	/* mulld */
1763 			op->val = regs->gpr[ra] * regs->gpr[rb];
1764 			goto arith_done;
1765 #endif
1766 		case 234:	/* addme */
1767 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1768 				       regs->xer & XER_CA);
1769 			goto arith_done;
1770 
1771 		case 235:	/* mullw */
1772 			op->val = (long)(int) regs->gpr[ra] *
1773 				(int) regs->gpr[rb];
1774 
1775 			goto arith_done;
1776 #ifdef __powerpc64__
1777 		case 265:	/* modud */
1778 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1779 				return -1;
1780 			op->val = regs->gpr[ra] % regs->gpr[rb];
1781 			goto compute_done;
1782 #endif
1783 		case 266:	/* add */
1784 			op->val = regs->gpr[ra] + regs->gpr[rb];
1785 			goto arith_done;
1786 
1787 		case 267:	/* moduw */
1788 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1789 				return -1;
1790 			op->val = (unsigned int) regs->gpr[ra] %
1791 				(unsigned int) regs->gpr[rb];
1792 			goto compute_done;
1793 #ifdef __powerpc64__
1794 		case 457:	/* divdu */
1795 			op->val = regs->gpr[ra] / regs->gpr[rb];
1796 			goto arith_done;
1797 #endif
1798 		case 459:	/* divwu */
1799 			op->val = (unsigned int) regs->gpr[ra] /
1800 				(unsigned int) regs->gpr[rb];
1801 			goto arith_done;
1802 #ifdef __powerpc64__
1803 		case 489:	/* divd */
1804 			op->val = (long int) regs->gpr[ra] /
1805 				(long int) regs->gpr[rb];
1806 			goto arith_done;
1807 #endif
1808 		case 491:	/* divw */
1809 			op->val = (int) regs->gpr[ra] /
1810 				(int) regs->gpr[rb];
1811 			goto arith_done;
1812 #ifdef __powerpc64__
1813 		case 425:	/* divde[.] */
1814 			asm volatile(PPC_DIVDE(%0, %1, %2) :
1815 				"=r" (op->val) : "r" (regs->gpr[ra]),
1816 				"r" (regs->gpr[rb]));
1817 			goto arith_done;
1818 		case 393:	/* divdeu[.] */
1819 			asm volatile(PPC_DIVDEU(%0, %1, %2) :
1820 				"=r" (op->val) : "r" (regs->gpr[ra]),
1821 				"r" (regs->gpr[rb]));
1822 			goto arith_done;
1823 #endif
1824 		case 755:	/* darn */
1825 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1826 				return -1;
1827 			switch (ra & 0x3) {
1828 			case 0:
1829 				/* 32-bit conditioned */
1830 				asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1831 				goto compute_done;
1832 
1833 			case 1:
1834 				/* 64-bit conditioned */
1835 				asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1836 				goto compute_done;
1837 
1838 			case 2:
1839 				/* 64-bit raw */
1840 				asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1841 				goto compute_done;
1842 			}
1843 
1844 			return -1;
1845 #ifdef __powerpc64__
1846 		case 777:	/* modsd */
1847 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1848 				return -1;
1849 			op->val = (long int) regs->gpr[ra] %
1850 				(long int) regs->gpr[rb];
1851 			goto compute_done;
1852 #endif
1853 		case 779:	/* modsw */
1854 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1855 				return -1;
1856 			op->val = (int) regs->gpr[ra] %
1857 				(int) regs->gpr[rb];
1858 			goto compute_done;
1859 
1860 
1861 /*
1862  * Logical instructions
1863  */
1864 		case 26:	/* cntlzw */
1865 			val = (unsigned int) regs->gpr[rd];
1866 			op->val = ( val ? __builtin_clz(val) : 32 );
1867 			goto logical_done;
1868 #ifdef __powerpc64__
1869 		case 58:	/* cntlzd */
1870 			val = regs->gpr[rd];
1871 			op->val = ( val ? __builtin_clzl(val) : 64 );
1872 			goto logical_done;
1873 #endif
1874 		case 28:	/* and */
1875 			op->val = regs->gpr[rd] & regs->gpr[rb];
1876 			goto logical_done;
1877 
1878 		case 60:	/* andc */
1879 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
1880 			goto logical_done;
1881 
1882 		case 122:	/* popcntb */
1883 			do_popcnt(regs, op, regs->gpr[rd], 8);
1884 			goto logical_done_nocc;
1885 
1886 		case 124:	/* nor */
1887 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1888 			goto logical_done;
1889 
1890 		case 154:	/* prtyw */
1891 			do_prty(regs, op, regs->gpr[rd], 32);
1892 			goto logical_done_nocc;
1893 
1894 		case 186:	/* prtyd */
1895 			do_prty(regs, op, regs->gpr[rd], 64);
1896 			goto logical_done_nocc;
1897 #ifdef CONFIG_PPC64
1898 		case 252:	/* bpermd */
1899 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1900 			goto logical_done_nocc;
1901 #endif
1902 		case 284:	/* xor */
1903 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1904 			goto logical_done;
1905 
1906 		case 316:	/* xor */
1907 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
1908 			goto logical_done;
1909 
1910 		case 378:	/* popcntw */
1911 			do_popcnt(regs, op, regs->gpr[rd], 32);
1912 			goto logical_done_nocc;
1913 
1914 		case 412:	/* orc */
1915 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
1916 			goto logical_done;
1917 
1918 		case 444:	/* or */
1919 			op->val = regs->gpr[rd] | regs->gpr[rb];
1920 			goto logical_done;
1921 
1922 		case 476:	/* nand */
1923 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1924 			goto logical_done;
1925 #ifdef CONFIG_PPC64
1926 		case 506:	/* popcntd */
1927 			do_popcnt(regs, op, regs->gpr[rd], 64);
1928 			goto logical_done_nocc;
1929 #endif
1930 		case 538:	/* cnttzw */
1931 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1932 				return -1;
1933 			val = (unsigned int) regs->gpr[rd];
1934 			op->val = (val ? __builtin_ctz(val) : 32);
1935 			goto logical_done;
1936 #ifdef __powerpc64__
1937 		case 570:	/* cnttzd */
1938 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1939 				return -1;
1940 			val = regs->gpr[rd];
1941 			op->val = (val ? __builtin_ctzl(val) : 64);
1942 			goto logical_done;
1943 #endif
1944 		case 922:	/* extsh */
1945 			op->val = (signed short) regs->gpr[rd];
1946 			goto logical_done;
1947 
1948 		case 954:	/* extsb */
1949 			op->val = (signed char) regs->gpr[rd];
1950 			goto logical_done;
1951 #ifdef __powerpc64__
1952 		case 986:	/* extsw */
1953 			op->val = (signed int) regs->gpr[rd];
1954 			goto logical_done;
1955 #endif
1956 
1957 /*
1958  * Shift instructions
1959  */
1960 		case 24:	/* slw */
1961 			sh = regs->gpr[rb] & 0x3f;
1962 			if (sh < 32)
1963 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1964 			else
1965 				op->val = 0;
1966 			goto logical_done;
1967 
1968 		case 536:	/* srw */
1969 			sh = regs->gpr[rb] & 0x3f;
1970 			if (sh < 32)
1971 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1972 			else
1973 				op->val = 0;
1974 			goto logical_done;
1975 
1976 		case 792:	/* sraw */
1977 			op->type = COMPUTE + SETREG + SETXER;
1978 			sh = regs->gpr[rb] & 0x3f;
1979 			ival = (signed int) regs->gpr[rd];
1980 			op->val = ival >> (sh < 32 ? sh : 31);
1981 			op->xerval = regs->xer;
1982 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1983 				op->xerval |= XER_CA;
1984 			else
1985 				op->xerval &= ~XER_CA;
1986 			set_ca32(op, op->xerval & XER_CA);
1987 			goto logical_done;
1988 
1989 		case 824:	/* srawi */
1990 			op->type = COMPUTE + SETREG + SETXER;
1991 			sh = rb;
1992 			ival = (signed int) regs->gpr[rd];
1993 			op->val = ival >> sh;
1994 			op->xerval = regs->xer;
1995 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1996 				op->xerval |= XER_CA;
1997 			else
1998 				op->xerval &= ~XER_CA;
1999 			set_ca32(op, op->xerval & XER_CA);
2000 			goto logical_done;
2001 
2002 #ifdef __powerpc64__
2003 		case 27:	/* sld */
2004 			sh = regs->gpr[rb] & 0x7f;
2005 			if (sh < 64)
2006 				op->val = regs->gpr[rd] << sh;
2007 			else
2008 				op->val = 0;
2009 			goto logical_done;
2010 
2011 		case 539:	/* srd */
2012 			sh = regs->gpr[rb] & 0x7f;
2013 			if (sh < 64)
2014 				op->val = regs->gpr[rd] >> sh;
2015 			else
2016 				op->val = 0;
2017 			goto logical_done;
2018 
2019 		case 794:	/* srad */
2020 			op->type = COMPUTE + SETREG + SETXER;
2021 			sh = regs->gpr[rb] & 0x7f;
2022 			ival = (signed long int) regs->gpr[rd];
2023 			op->val = ival >> (sh < 64 ? sh : 63);
2024 			op->xerval = regs->xer;
2025 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2026 				op->xerval |= XER_CA;
2027 			else
2028 				op->xerval &= ~XER_CA;
2029 			set_ca32(op, op->xerval & XER_CA);
2030 			goto logical_done;
2031 
2032 		case 826:	/* sradi with sh_5 = 0 */
2033 		case 827:	/* sradi with sh_5 = 1 */
2034 			op->type = COMPUTE + SETREG + SETXER;
2035 			sh = rb | ((word & 2) << 4);
2036 			ival = (signed long int) regs->gpr[rd];
2037 			op->val = ival >> sh;
2038 			op->xerval = regs->xer;
2039 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2040 				op->xerval |= XER_CA;
2041 			else
2042 				op->xerval &= ~XER_CA;
2043 			set_ca32(op, op->xerval & XER_CA);
2044 			goto logical_done;
2045 
2046 		case 890:	/* extswsli with sh_5 = 0 */
2047 		case 891:	/* extswsli with sh_5 = 1 */
2048 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2049 				return -1;
2050 			op->type = COMPUTE + SETREG;
2051 			sh = rb | ((word & 2) << 4);
2052 			val = (signed int) regs->gpr[rd];
2053 			if (sh)
2054 				op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2055 			else
2056 				op->val = val;
2057 			goto logical_done;
2058 
2059 #endif /* __powerpc64__ */
2060 
2061 /*
2062  * Cache instructions
2063  */
2064 		case 54:	/* dcbst */
2065 			op->type = MKOP(CACHEOP, DCBST, 0);
2066 			op->ea = xform_ea(word, regs);
2067 			return 0;
2068 
2069 		case 86:	/* dcbf */
2070 			op->type = MKOP(CACHEOP, DCBF, 0);
2071 			op->ea = xform_ea(word, regs);
2072 			return 0;
2073 
2074 		case 246:	/* dcbtst */
2075 			op->type = MKOP(CACHEOP, DCBTST, 0);
2076 			op->ea = xform_ea(word, regs);
2077 			op->reg = rd;
2078 			return 0;
2079 
2080 		case 278:	/* dcbt */
2081 			op->type = MKOP(CACHEOP, DCBTST, 0);
2082 			op->ea = xform_ea(word, regs);
2083 			op->reg = rd;
2084 			return 0;
2085 
2086 		case 982:	/* icbi */
2087 			op->type = MKOP(CACHEOP, ICBI, 0);
2088 			op->ea = xform_ea(word, regs);
2089 			return 0;
2090 
2091 		case 1014:	/* dcbz */
2092 			op->type = MKOP(CACHEOP, DCBZ, 0);
2093 			op->ea = xform_ea(word, regs);
2094 			return 0;
2095 		}
2096 		break;
2097 	}
2098 
2099 /*
2100  * Loads and stores.
2101  */
2102 	op->type = UNKNOWN;
2103 	op->update_reg = ra;
2104 	op->reg = rd;
2105 	op->val = regs->gpr[rd];
2106 	u = (word >> 20) & UPDATE;
2107 	op->vsx_flags = 0;
2108 
2109 	switch (opcode) {
2110 	case 31:
2111 		u = word & UPDATE;
2112 		op->ea = xform_ea(word, regs);
2113 		switch ((word >> 1) & 0x3ff) {
2114 		case 20:	/* lwarx */
2115 			op->type = MKOP(LARX, 0, 4);
2116 			break;
2117 
2118 		case 150:	/* stwcx. */
2119 			op->type = MKOP(STCX, 0, 4);
2120 			break;
2121 
2122 #ifdef __powerpc64__
2123 		case 84:	/* ldarx */
2124 			op->type = MKOP(LARX, 0, 8);
2125 			break;
2126 
2127 		case 214:	/* stdcx. */
2128 			op->type = MKOP(STCX, 0, 8);
2129 			break;
2130 
2131 		case 52:	/* lbarx */
2132 			op->type = MKOP(LARX, 0, 1);
2133 			break;
2134 
2135 		case 694:	/* stbcx. */
2136 			op->type = MKOP(STCX, 0, 1);
2137 			break;
2138 
2139 		case 116:	/* lharx */
2140 			op->type = MKOP(LARX, 0, 2);
2141 			break;
2142 
2143 		case 726:	/* sthcx. */
2144 			op->type = MKOP(STCX, 0, 2);
2145 			break;
2146 
2147 		case 276:	/* lqarx */
2148 			if (!((rd & 1) || rd == ra || rd == rb))
2149 				op->type = MKOP(LARX, 0, 16);
2150 			break;
2151 
2152 		case 182:	/* stqcx. */
2153 			if (!(rd & 1))
2154 				op->type = MKOP(STCX, 0, 16);
2155 			break;
2156 #endif
2157 
2158 		case 23:	/* lwzx */
2159 		case 55:	/* lwzux */
2160 			op->type = MKOP(LOAD, u, 4);
2161 			break;
2162 
2163 		case 87:	/* lbzx */
2164 		case 119:	/* lbzux */
2165 			op->type = MKOP(LOAD, u, 1);
2166 			break;
2167 
2168 #ifdef CONFIG_ALTIVEC
2169 		/*
2170 		 * Note: for the load/store vector element instructions,
2171 		 * bits of the EA say which field of the VMX register to use.
2172 		 */
2173 		case 7:		/* lvebx */
2174 			op->type = MKOP(LOAD_VMX, 0, 1);
2175 			op->element_size = 1;
2176 			break;
2177 
2178 		case 39:	/* lvehx */
2179 			op->type = MKOP(LOAD_VMX, 0, 2);
2180 			op->element_size = 2;
2181 			break;
2182 
2183 		case 71:	/* lvewx */
2184 			op->type = MKOP(LOAD_VMX, 0, 4);
2185 			op->element_size = 4;
2186 			break;
2187 
2188 		case 103:	/* lvx */
2189 		case 359:	/* lvxl */
2190 			op->type = MKOP(LOAD_VMX, 0, 16);
2191 			op->element_size = 16;
2192 			break;
2193 
2194 		case 135:	/* stvebx */
2195 			op->type = MKOP(STORE_VMX, 0, 1);
2196 			op->element_size = 1;
2197 			break;
2198 
2199 		case 167:	/* stvehx */
2200 			op->type = MKOP(STORE_VMX, 0, 2);
2201 			op->element_size = 2;
2202 			break;
2203 
2204 		case 199:	/* stvewx */
2205 			op->type = MKOP(STORE_VMX, 0, 4);
2206 			op->element_size = 4;
2207 			break;
2208 
2209 		case 231:	/* stvx */
2210 		case 487:	/* stvxl */
2211 			op->type = MKOP(STORE_VMX, 0, 16);
2212 			break;
2213 #endif /* CONFIG_ALTIVEC */
2214 
2215 #ifdef __powerpc64__
2216 		case 21:	/* ldx */
2217 		case 53:	/* ldux */
2218 			op->type = MKOP(LOAD, u, 8);
2219 			break;
2220 
2221 		case 149:	/* stdx */
2222 		case 181:	/* stdux */
2223 			op->type = MKOP(STORE, u, 8);
2224 			break;
2225 #endif
2226 
2227 		case 151:	/* stwx */
2228 		case 183:	/* stwux */
2229 			op->type = MKOP(STORE, u, 4);
2230 			break;
2231 
2232 		case 215:	/* stbx */
2233 		case 247:	/* stbux */
2234 			op->type = MKOP(STORE, u, 1);
2235 			break;
2236 
2237 		case 279:	/* lhzx */
2238 		case 311:	/* lhzux */
2239 			op->type = MKOP(LOAD, u, 2);
2240 			break;
2241 
2242 #ifdef __powerpc64__
2243 		case 341:	/* lwax */
2244 		case 373:	/* lwaux */
2245 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2246 			break;
2247 #endif
2248 
2249 		case 343:	/* lhax */
2250 		case 375:	/* lhaux */
2251 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2252 			break;
2253 
2254 		case 407:	/* sthx */
2255 		case 439:	/* sthux */
2256 			op->type = MKOP(STORE, u, 2);
2257 			break;
2258 
2259 #ifdef __powerpc64__
2260 		case 532:	/* ldbrx */
2261 			op->type = MKOP(LOAD, BYTEREV, 8);
2262 			break;
2263 
2264 #endif
2265 		case 533:	/* lswx */
2266 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2267 			break;
2268 
2269 		case 534:	/* lwbrx */
2270 			op->type = MKOP(LOAD, BYTEREV, 4);
2271 			break;
2272 
2273 		case 597:	/* lswi */
2274 			if (rb == 0)
2275 				rb = 32;	/* # bytes to load */
2276 			op->type = MKOP(LOAD_MULTI, 0, rb);
2277 			op->ea = ra ? regs->gpr[ra] : 0;
2278 			break;
2279 
2280 #ifdef CONFIG_PPC_FPU
2281 		case 535:	/* lfsx */
2282 		case 567:	/* lfsux */
2283 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2284 			break;
2285 
2286 		case 599:	/* lfdx */
2287 		case 631:	/* lfdux */
2288 			op->type = MKOP(LOAD_FP, u, 8);
2289 			break;
2290 
2291 		case 663:	/* stfsx */
2292 		case 695:	/* stfsux */
2293 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2294 			break;
2295 
2296 		case 727:	/* stfdx */
2297 		case 759:	/* stfdux */
2298 			op->type = MKOP(STORE_FP, u, 8);
2299 			break;
2300 
2301 #ifdef __powerpc64__
2302 		case 791:	/* lfdpx */
2303 			op->type = MKOP(LOAD_FP, 0, 16);
2304 			break;
2305 
2306 		case 855:	/* lfiwax */
2307 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2308 			break;
2309 
2310 		case 887:	/* lfiwzx */
2311 			op->type = MKOP(LOAD_FP, 0, 4);
2312 			break;
2313 
2314 		case 919:	/* stfdpx */
2315 			op->type = MKOP(STORE_FP, 0, 16);
2316 			break;
2317 
2318 		case 983:	/* stfiwx */
2319 			op->type = MKOP(STORE_FP, 0, 4);
2320 			break;
2321 #endif /* __powerpc64 */
2322 #endif /* CONFIG_PPC_FPU */
2323 
2324 #ifdef __powerpc64__
2325 		case 660:	/* stdbrx */
2326 			op->type = MKOP(STORE, BYTEREV, 8);
2327 			op->val = byterev_8(regs->gpr[rd]);
2328 			break;
2329 
2330 #endif
2331 		case 661:	/* stswx */
2332 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2333 			break;
2334 
2335 		case 662:	/* stwbrx */
2336 			op->type = MKOP(STORE, BYTEREV, 4);
2337 			op->val = byterev_4(regs->gpr[rd]);
2338 			break;
2339 
2340 		case 725:	/* stswi */
2341 			if (rb == 0)
2342 				rb = 32;	/* # bytes to store */
2343 			op->type = MKOP(STORE_MULTI, 0, rb);
2344 			op->ea = ra ? regs->gpr[ra] : 0;
2345 			break;
2346 
2347 		case 790:	/* lhbrx */
2348 			op->type = MKOP(LOAD, BYTEREV, 2);
2349 			break;
2350 
2351 		case 918:	/* sthbrx */
2352 			op->type = MKOP(STORE, BYTEREV, 2);
2353 			op->val = byterev_2(regs->gpr[rd]);
2354 			break;
2355 
2356 #ifdef CONFIG_VSX
2357 		case 12:	/* lxsiwzx */
2358 			op->reg = rd | ((word & 1) << 5);
2359 			op->type = MKOP(LOAD_VSX, 0, 4);
2360 			op->element_size = 8;
2361 			break;
2362 
2363 		case 76:	/* lxsiwax */
2364 			op->reg = rd | ((word & 1) << 5);
2365 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2366 			op->element_size = 8;
2367 			break;
2368 
2369 		case 140:	/* stxsiwx */
2370 			op->reg = rd | ((word & 1) << 5);
2371 			op->type = MKOP(STORE_VSX, 0, 4);
2372 			op->element_size = 8;
2373 			break;
2374 
2375 		case 268:	/* lxvx */
2376 			op->reg = rd | ((word & 1) << 5);
2377 			op->type = MKOP(LOAD_VSX, 0, 16);
2378 			op->element_size = 16;
2379 			op->vsx_flags = VSX_CHECK_VEC;
2380 			break;
2381 
2382 		case 269:	/* lxvl */
2383 		case 301: {	/* lxvll */
2384 			int nb;
2385 			op->reg = rd | ((word & 1) << 5);
2386 			op->ea = ra ? regs->gpr[ra] : 0;
2387 			nb = regs->gpr[rb] & 0xff;
2388 			if (nb > 16)
2389 				nb = 16;
2390 			op->type = MKOP(LOAD_VSX, 0, nb);
2391 			op->element_size = 16;
2392 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2393 				VSX_CHECK_VEC;
2394 			break;
2395 		}
2396 		case 332:	/* lxvdsx */
2397 			op->reg = rd | ((word & 1) << 5);
2398 			op->type = MKOP(LOAD_VSX, 0, 8);
2399 			op->element_size = 8;
2400 			op->vsx_flags = VSX_SPLAT;
2401 			break;
2402 
2403 		case 364:	/* lxvwsx */
2404 			op->reg = rd | ((word & 1) << 5);
2405 			op->type = MKOP(LOAD_VSX, 0, 4);
2406 			op->element_size = 4;
2407 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2408 			break;
2409 
2410 		case 396:	/* stxvx */
2411 			op->reg = rd | ((word & 1) << 5);
2412 			op->type = MKOP(STORE_VSX, 0, 16);
2413 			op->element_size = 16;
2414 			op->vsx_flags = VSX_CHECK_VEC;
2415 			break;
2416 
2417 		case 397:	/* stxvl */
2418 		case 429: {	/* stxvll */
2419 			int nb;
2420 			op->reg = rd | ((word & 1) << 5);
2421 			op->ea = ra ? regs->gpr[ra] : 0;
2422 			nb = regs->gpr[rb] & 0xff;
2423 			if (nb > 16)
2424 				nb = 16;
2425 			op->type = MKOP(STORE_VSX, 0, nb);
2426 			op->element_size = 16;
2427 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2428 				VSX_CHECK_VEC;
2429 			break;
2430 		}
2431 		case 524:	/* lxsspx */
2432 			op->reg = rd | ((word & 1) << 5);
2433 			op->type = MKOP(LOAD_VSX, 0, 4);
2434 			op->element_size = 8;
2435 			op->vsx_flags = VSX_FPCONV;
2436 			break;
2437 
2438 		case 588:	/* lxsdx */
2439 			op->reg = rd | ((word & 1) << 5);
2440 			op->type = MKOP(LOAD_VSX, 0, 8);
2441 			op->element_size = 8;
2442 			break;
2443 
2444 		case 652:	/* stxsspx */
2445 			op->reg = rd | ((word & 1) << 5);
2446 			op->type = MKOP(STORE_VSX, 0, 4);
2447 			op->element_size = 8;
2448 			op->vsx_flags = VSX_FPCONV;
2449 			break;
2450 
2451 		case 716:	/* stxsdx */
2452 			op->reg = rd | ((word & 1) << 5);
2453 			op->type = MKOP(STORE_VSX, 0, 8);
2454 			op->element_size = 8;
2455 			break;
2456 
2457 		case 780:	/* lxvw4x */
2458 			op->reg = rd | ((word & 1) << 5);
2459 			op->type = MKOP(LOAD_VSX, 0, 16);
2460 			op->element_size = 4;
2461 			break;
2462 
2463 		case 781:	/* lxsibzx */
2464 			op->reg = rd | ((word & 1) << 5);
2465 			op->type = MKOP(LOAD_VSX, 0, 1);
2466 			op->element_size = 8;
2467 			op->vsx_flags = VSX_CHECK_VEC;
2468 			break;
2469 
2470 		case 812:	/* lxvh8x */
2471 			op->reg = rd | ((word & 1) << 5);
2472 			op->type = MKOP(LOAD_VSX, 0, 16);
2473 			op->element_size = 2;
2474 			op->vsx_flags = VSX_CHECK_VEC;
2475 			break;
2476 
2477 		case 813:	/* lxsihzx */
2478 			op->reg = rd | ((word & 1) << 5);
2479 			op->type = MKOP(LOAD_VSX, 0, 2);
2480 			op->element_size = 8;
2481 			op->vsx_flags = VSX_CHECK_VEC;
2482 			break;
2483 
2484 		case 844:	/* lxvd2x */
2485 			op->reg = rd | ((word & 1) << 5);
2486 			op->type = MKOP(LOAD_VSX, 0, 16);
2487 			op->element_size = 8;
2488 			break;
2489 
2490 		case 876:	/* lxvb16x */
2491 			op->reg = rd | ((word & 1) << 5);
2492 			op->type = MKOP(LOAD_VSX, 0, 16);
2493 			op->element_size = 1;
2494 			op->vsx_flags = VSX_CHECK_VEC;
2495 			break;
2496 
2497 		case 908:	/* stxvw4x */
2498 			op->reg = rd | ((word & 1) << 5);
2499 			op->type = MKOP(STORE_VSX, 0, 16);
2500 			op->element_size = 4;
2501 			break;
2502 
2503 		case 909:	/* stxsibx */
2504 			op->reg = rd | ((word & 1) << 5);
2505 			op->type = MKOP(STORE_VSX, 0, 1);
2506 			op->element_size = 8;
2507 			op->vsx_flags = VSX_CHECK_VEC;
2508 			break;
2509 
2510 		case 940:	/* stxvh8x */
2511 			op->reg = rd | ((word & 1) << 5);
2512 			op->type = MKOP(STORE_VSX, 0, 16);
2513 			op->element_size = 2;
2514 			op->vsx_flags = VSX_CHECK_VEC;
2515 			break;
2516 
2517 		case 941:	/* stxsihx */
2518 			op->reg = rd | ((word & 1) << 5);
2519 			op->type = MKOP(STORE_VSX, 0, 2);
2520 			op->element_size = 8;
2521 			op->vsx_flags = VSX_CHECK_VEC;
2522 			break;
2523 
2524 		case 972:	/* stxvd2x */
2525 			op->reg = rd | ((word & 1) << 5);
2526 			op->type = MKOP(STORE_VSX, 0, 16);
2527 			op->element_size = 8;
2528 			break;
2529 
2530 		case 1004:	/* stxvb16x */
2531 			op->reg = rd | ((word & 1) << 5);
2532 			op->type = MKOP(STORE_VSX, 0, 16);
2533 			op->element_size = 1;
2534 			op->vsx_flags = VSX_CHECK_VEC;
2535 			break;
2536 
2537 #endif /* CONFIG_VSX */
2538 		}
2539 		break;
2540 
2541 	case 32:	/* lwz */
2542 	case 33:	/* lwzu */
2543 		op->type = MKOP(LOAD, u, 4);
2544 		op->ea = dform_ea(word, regs);
2545 		break;
2546 
2547 	case 34:	/* lbz */
2548 	case 35:	/* lbzu */
2549 		op->type = MKOP(LOAD, u, 1);
2550 		op->ea = dform_ea(word, regs);
2551 		break;
2552 
2553 	case 36:	/* stw */
2554 	case 37:	/* stwu */
2555 		op->type = MKOP(STORE, u, 4);
2556 		op->ea = dform_ea(word, regs);
2557 		break;
2558 
2559 	case 38:	/* stb */
2560 	case 39:	/* stbu */
2561 		op->type = MKOP(STORE, u, 1);
2562 		op->ea = dform_ea(word, regs);
2563 		break;
2564 
2565 	case 40:	/* lhz */
2566 	case 41:	/* lhzu */
2567 		op->type = MKOP(LOAD, u, 2);
2568 		op->ea = dform_ea(word, regs);
2569 		break;
2570 
2571 	case 42:	/* lha */
2572 	case 43:	/* lhau */
2573 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2574 		op->ea = dform_ea(word, regs);
2575 		break;
2576 
2577 	case 44:	/* sth */
2578 	case 45:	/* sthu */
2579 		op->type = MKOP(STORE, u, 2);
2580 		op->ea = dform_ea(word, regs);
2581 		break;
2582 
2583 	case 46:	/* lmw */
2584 		if (ra >= rd)
2585 			break;		/* invalid form, ra in range to load */
2586 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2587 		op->ea = dform_ea(word, regs);
2588 		break;
2589 
2590 	case 47:	/* stmw */
2591 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2592 		op->ea = dform_ea(word, regs);
2593 		break;
2594 
2595 #ifdef CONFIG_PPC_FPU
2596 	case 48:	/* lfs */
2597 	case 49:	/* lfsu */
2598 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2599 		op->ea = dform_ea(word, regs);
2600 		break;
2601 
2602 	case 50:	/* lfd */
2603 	case 51:	/* lfdu */
2604 		op->type = MKOP(LOAD_FP, u, 8);
2605 		op->ea = dform_ea(word, regs);
2606 		break;
2607 
2608 	case 52:	/* stfs */
2609 	case 53:	/* stfsu */
2610 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2611 		op->ea = dform_ea(word, regs);
2612 		break;
2613 
2614 	case 54:	/* stfd */
2615 	case 55:	/* stfdu */
2616 		op->type = MKOP(STORE_FP, u, 8);
2617 		op->ea = dform_ea(word, regs);
2618 		break;
2619 #endif
2620 
2621 #ifdef __powerpc64__
2622 	case 56:	/* lq */
2623 		if (!((rd & 1) || (rd == ra)))
2624 			op->type = MKOP(LOAD, 0, 16);
2625 		op->ea = dqform_ea(word, regs);
2626 		break;
2627 #endif
2628 
2629 #ifdef CONFIG_VSX
2630 	case 57:	/* lfdp, lxsd, lxssp */
2631 		op->ea = dsform_ea(word, regs);
2632 		switch (word & 3) {
2633 		case 0:		/* lfdp */
2634 			if (rd & 1)
2635 				break;		/* reg must be even */
2636 			op->type = MKOP(LOAD_FP, 0, 16);
2637 			break;
2638 		case 2:		/* lxsd */
2639 			op->reg = rd + 32;
2640 			op->type = MKOP(LOAD_VSX, 0, 8);
2641 			op->element_size = 8;
2642 			op->vsx_flags = VSX_CHECK_VEC;
2643 			break;
2644 		case 3:		/* lxssp */
2645 			op->reg = rd + 32;
2646 			op->type = MKOP(LOAD_VSX, 0, 4);
2647 			op->element_size = 8;
2648 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2649 			break;
2650 		}
2651 		break;
2652 #endif /* CONFIG_VSX */
2653 
2654 #ifdef __powerpc64__
2655 	case 58:	/* ld[u], lwa */
2656 		op->ea = dsform_ea(word, regs);
2657 		switch (word & 3) {
2658 		case 0:		/* ld */
2659 			op->type = MKOP(LOAD, 0, 8);
2660 			break;
2661 		case 1:		/* ldu */
2662 			op->type = MKOP(LOAD, UPDATE, 8);
2663 			break;
2664 		case 2:		/* lwa */
2665 			op->type = MKOP(LOAD, SIGNEXT, 4);
2666 			break;
2667 		}
2668 		break;
2669 #endif
2670 
2671 #ifdef CONFIG_VSX
2672 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2673 		switch (word & 7) {
2674 		case 0:		/* stfdp with LSB of DS field = 0 */
2675 		case 4:		/* stfdp with LSB of DS field = 1 */
2676 			op->ea = dsform_ea(word, regs);
2677 			op->type = MKOP(STORE_FP, 0, 16);
2678 			break;
2679 
2680 		case 1:		/* lxv */
2681 			op->ea = dqform_ea(word, regs);
2682 			if (word & 8)
2683 				op->reg = rd + 32;
2684 			op->type = MKOP(LOAD_VSX, 0, 16);
2685 			op->element_size = 16;
2686 			op->vsx_flags = VSX_CHECK_VEC;
2687 			break;
2688 
2689 		case 2:		/* stxsd with LSB of DS field = 0 */
2690 		case 6:		/* stxsd with LSB of DS field = 1 */
2691 			op->ea = dsform_ea(word, regs);
2692 			op->reg = rd + 32;
2693 			op->type = MKOP(STORE_VSX, 0, 8);
2694 			op->element_size = 8;
2695 			op->vsx_flags = VSX_CHECK_VEC;
2696 			break;
2697 
2698 		case 3:		/* stxssp with LSB of DS field = 0 */
2699 		case 7:		/* stxssp with LSB of DS field = 1 */
2700 			op->ea = dsform_ea(word, regs);
2701 			op->reg = rd + 32;
2702 			op->type = MKOP(STORE_VSX, 0, 4);
2703 			op->element_size = 8;
2704 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2705 			break;
2706 
2707 		case 5:		/* stxv */
2708 			op->ea = dqform_ea(word, regs);
2709 			if (word & 8)
2710 				op->reg = rd + 32;
2711 			op->type = MKOP(STORE_VSX, 0, 16);
2712 			op->element_size = 16;
2713 			op->vsx_flags = VSX_CHECK_VEC;
2714 			break;
2715 		}
2716 		break;
2717 #endif /* CONFIG_VSX */
2718 
2719 #ifdef __powerpc64__
2720 	case 62:	/* std[u] */
2721 		op->ea = dsform_ea(word, regs);
2722 		switch (word & 3) {
2723 		case 0:		/* std */
2724 			op->type = MKOP(STORE, 0, 8);
2725 			break;
2726 		case 1:		/* stdu */
2727 			op->type = MKOP(STORE, UPDATE, 8);
2728 			break;
2729 		case 2:		/* stq */
2730 			if (!(rd & 1))
2731 				op->type = MKOP(STORE, 0, 16);
2732 			break;
2733 		}
2734 		break;
2735 	case 1: /* Prefixed instructions */
2736 		prefix_r = GET_PREFIX_R(word);
2737 		ra = GET_PREFIX_RA(suffix);
2738 		op->update_reg = ra;
2739 		rd = (suffix >> 21) & 0x1f;
2740 		op->reg = rd;
2741 		op->val = regs->gpr[rd];
2742 
2743 		suffixopcode = get_op(suffix);
2744 		prefixtype = (word >> 24) & 0x3;
2745 		switch (prefixtype) {
2746 		case 0: /* Type 00  Eight-Byte Load/Store */
2747 			if (prefix_r && ra)
2748 				break;
2749 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2750 			switch (suffixopcode) {
2751 			case 41:	/* plwa */
2752 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2753 				break;
2754 			case 42:        /* plxsd */
2755 				op->reg = rd + 32;
2756 				op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2757 				op->element_size = 8;
2758 				op->vsx_flags = VSX_CHECK_VEC;
2759 				break;
2760 			case 43:	/* plxssp */
2761 				op->reg = rd + 32;
2762 				op->type = MKOP(LOAD_VSX, PREFIXED, 4);
2763 				op->element_size = 8;
2764 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2765 				break;
2766 			case 46:	/* pstxsd */
2767 				op->reg = rd + 32;
2768 				op->type = MKOP(STORE_VSX, PREFIXED, 8);
2769 				op->element_size = 8;
2770 				op->vsx_flags = VSX_CHECK_VEC;
2771 				break;
2772 			case 47:	/* pstxssp */
2773 				op->reg = rd + 32;
2774 				op->type = MKOP(STORE_VSX, PREFIXED, 4);
2775 				op->element_size = 8;
2776 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2777 				break;
2778 			case 51:	/* plxv1 */
2779 				op->reg += 32;
2780 				fallthrough;
2781 			case 50:	/* plxv0 */
2782 				op->type = MKOP(LOAD_VSX, PREFIXED, 16);
2783 				op->element_size = 16;
2784 				op->vsx_flags = VSX_CHECK_VEC;
2785 				break;
2786 			case 55:	/* pstxv1 */
2787 				op->reg = rd + 32;
2788 				fallthrough;
2789 			case 54:	/* pstxv0 */
2790 				op->type = MKOP(STORE_VSX, PREFIXED, 16);
2791 				op->element_size = 16;
2792 				op->vsx_flags = VSX_CHECK_VEC;
2793 				break;
2794 			case 56:        /* plq */
2795 				op->type = MKOP(LOAD, PREFIXED, 16);
2796 				break;
2797 			case 57:	/* pld */
2798 				op->type = MKOP(LOAD, PREFIXED, 8);
2799 				break;
2800 			case 60:        /* stq */
2801 				op->type = MKOP(STORE, PREFIXED, 16);
2802 				break;
2803 			case 61:	/* pstd */
2804 				op->type = MKOP(STORE, PREFIXED, 8);
2805 				break;
2806 			}
2807 			break;
2808 		case 1: /* Type 01 Eight-Byte Register-to-Register */
2809 			break;
2810 		case 2: /* Type 10 Modified Load/Store */
2811 			if (prefix_r && ra)
2812 				break;
2813 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2814 			switch (suffixopcode) {
2815 			case 32:	/* plwz */
2816 				op->type = MKOP(LOAD, PREFIXED, 4);
2817 				break;
2818 			case 34:	/* plbz */
2819 				op->type = MKOP(LOAD, PREFIXED, 1);
2820 				break;
2821 			case 36:	/* pstw */
2822 				op->type = MKOP(STORE, PREFIXED, 4);
2823 				break;
2824 			case 38:	/* pstb */
2825 				op->type = MKOP(STORE, PREFIXED, 1);
2826 				break;
2827 			case 40:	/* plhz */
2828 				op->type = MKOP(LOAD, PREFIXED, 2);
2829 				break;
2830 			case 42:	/* plha */
2831 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
2832 				break;
2833 			case 44:	/* psth */
2834 				op->type = MKOP(STORE, PREFIXED, 2);
2835 				break;
2836 			case 48:        /* plfs */
2837 				op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
2838 				break;
2839 			case 50:        /* plfd */
2840 				op->type = MKOP(LOAD_FP, PREFIXED, 8);
2841 				break;
2842 			case 52:        /* pstfs */
2843 				op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
2844 				break;
2845 			case 54:        /* pstfd */
2846 				op->type = MKOP(STORE_FP, PREFIXED, 8);
2847 				break;
2848 			}
2849 			break;
2850 		case 3: /* Type 11 Modified Register-to-Register */
2851 			break;
2852 		}
2853 #endif /* __powerpc64__ */
2854 
2855 	}
2856 
2857 #ifdef CONFIG_VSX
2858 	if ((GETTYPE(op->type) == LOAD_VSX ||
2859 	     GETTYPE(op->type) == STORE_VSX) &&
2860 	    !cpu_has_feature(CPU_FTR_VSX)) {
2861 		return -1;
2862 	}
2863 #endif /* CONFIG_VSX */
2864 
2865 	return 0;
2866 
2867  logical_done:
2868 	if (word & 1)
2869 		set_cr0(regs, op);
2870  logical_done_nocc:
2871 	op->reg = ra;
2872 	op->type |= SETREG;
2873 	return 1;
2874 
2875  arith_done:
2876 	if (word & 1)
2877 		set_cr0(regs, op);
2878  compute_done:
2879 	op->reg = rd;
2880 	op->type |= SETREG;
2881 	return 1;
2882 
2883  priv:
2884 	op->type = INTERRUPT | 0x700;
2885 	op->val = SRR1_PROGPRIV;
2886 	return 0;
2887 
2888  trap:
2889 	op->type = INTERRUPT | 0x700;
2890 	op->val = SRR1_PROGTRAP;
2891 	return 0;
2892 }
2893 EXPORT_SYMBOL_GPL(analyse_instr);
2894 NOKPROBE_SYMBOL(analyse_instr);
2895 
2896 /*
2897  * For PPC32 we always use stwu with r1 to change the stack pointer.
2898  * So this emulated store may corrupt the exception frame, now we
2899  * have to provide the exception frame trampoline, which is pushed
2900  * below the kprobed function stack. So we only update gpr[1] but
2901  * don't emulate the real store operation. We will do real store
2902  * operation safely in exception return code by checking this flag.
2903  */
2904 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2905 {
2906 #ifdef CONFIG_PPC32
2907 	/*
2908 	 * Check if we will touch kernel stack overflow
2909 	 */
2910 	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2911 		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2912 		return -EINVAL;
2913 	}
2914 #endif /* CONFIG_PPC32 */
2915 	/*
2916 	 * Check if we already set since that means we'll
2917 	 * lose the previous value.
2918 	 */
2919 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2920 	set_thread_flag(TIF_EMULATE_STACK_STORE);
2921 	return 0;
2922 }
2923 
2924 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2925 {
2926 	switch (size) {
2927 	case 2:
2928 		*valp = (signed short) *valp;
2929 		break;
2930 	case 4:
2931 		*valp = (signed int) *valp;
2932 		break;
2933 	}
2934 }
2935 
2936 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2937 {
2938 	switch (size) {
2939 	case 2:
2940 		*valp = byterev_2(*valp);
2941 		break;
2942 	case 4:
2943 		*valp = byterev_4(*valp);
2944 		break;
2945 #ifdef __powerpc64__
2946 	case 8:
2947 		*valp = byterev_8(*valp);
2948 		break;
2949 #endif
2950 	}
2951 }
2952 
2953 /*
2954  * Emulate an instruction that can be executed just by updating
2955  * fields in *regs.
2956  */
2957 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2958 {
2959 	unsigned long next_pc;
2960 
2961 	next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
2962 	switch (GETTYPE(op->type)) {
2963 	case COMPUTE:
2964 		if (op->type & SETREG)
2965 			regs->gpr[op->reg] = op->val;
2966 		if (op->type & SETCC)
2967 			regs->ccr = op->ccval;
2968 		if (op->type & SETXER)
2969 			regs->xer = op->xerval;
2970 		break;
2971 
2972 	case BRANCH:
2973 		if (op->type & SETLK)
2974 			regs->link = next_pc;
2975 		if (op->type & BRTAKEN)
2976 			next_pc = op->val;
2977 		if (op->type & DECCTR)
2978 			--regs->ctr;
2979 		break;
2980 
2981 	case BARRIER:
2982 		switch (op->type & BARRIER_MASK) {
2983 		case BARRIER_SYNC:
2984 			mb();
2985 			break;
2986 		case BARRIER_ISYNC:
2987 			isync();
2988 			break;
2989 		case BARRIER_EIEIO:
2990 			eieio();
2991 			break;
2992 		case BARRIER_LWSYNC:
2993 			asm volatile("lwsync" : : : "memory");
2994 			break;
2995 		case BARRIER_PTESYNC:
2996 			asm volatile("ptesync" : : : "memory");
2997 			break;
2998 		}
2999 		break;
3000 
3001 	case MFSPR:
3002 		switch (op->spr) {
3003 		case SPRN_XER:
3004 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3005 			break;
3006 		case SPRN_LR:
3007 			regs->gpr[op->reg] = regs->link;
3008 			break;
3009 		case SPRN_CTR:
3010 			regs->gpr[op->reg] = regs->ctr;
3011 			break;
3012 		default:
3013 			WARN_ON_ONCE(1);
3014 		}
3015 		break;
3016 
3017 	case MTSPR:
3018 		switch (op->spr) {
3019 		case SPRN_XER:
3020 			regs->xer = op->val & 0xffffffffUL;
3021 			break;
3022 		case SPRN_LR:
3023 			regs->link = op->val;
3024 			break;
3025 		case SPRN_CTR:
3026 			regs->ctr = op->val;
3027 			break;
3028 		default:
3029 			WARN_ON_ONCE(1);
3030 		}
3031 		break;
3032 
3033 	default:
3034 		WARN_ON_ONCE(1);
3035 	}
3036 	regs->nip = next_pc;
3037 }
3038 NOKPROBE_SYMBOL(emulate_update_regs);
3039 
3040 /*
3041  * Emulate a previously-analysed load or store instruction.
3042  * Return values are:
3043  * 0 = instruction emulated successfully
3044  * -EFAULT = address out of range or access faulted (regs->dar
3045  *	     contains the faulting address)
3046  * -EACCES = misaligned access, instruction requires alignment
3047  * -EINVAL = unknown operation in *op
3048  */
3049 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3050 {
3051 	int err, size, type;
3052 	int i, rd, nb;
3053 	unsigned int cr;
3054 	unsigned long val;
3055 	unsigned long ea;
3056 	bool cross_endian;
3057 
3058 	err = 0;
3059 	size = GETSIZE(op->type);
3060 	type = GETTYPE(op->type);
3061 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3062 	ea = truncate_if_32bit(regs->msr, op->ea);
3063 
3064 	switch (type) {
3065 	case LARX:
3066 		if (ea & (size - 1))
3067 			return -EACCES;		/* can't handle misaligned */
3068 		if (!address_ok(regs, ea, size))
3069 			return -EFAULT;
3070 		err = 0;
3071 		val = 0;
3072 		switch (size) {
3073 #ifdef __powerpc64__
3074 		case 1:
3075 			__get_user_asmx(val, ea, err, "lbarx");
3076 			break;
3077 		case 2:
3078 			__get_user_asmx(val, ea, err, "lharx");
3079 			break;
3080 #endif
3081 		case 4:
3082 			__get_user_asmx(val, ea, err, "lwarx");
3083 			break;
3084 #ifdef __powerpc64__
3085 		case 8:
3086 			__get_user_asmx(val, ea, err, "ldarx");
3087 			break;
3088 		case 16:
3089 			err = do_lqarx(ea, &regs->gpr[op->reg]);
3090 			break;
3091 #endif
3092 		default:
3093 			return -EINVAL;
3094 		}
3095 		if (err) {
3096 			regs->dar = ea;
3097 			break;
3098 		}
3099 		if (size < 16)
3100 			regs->gpr[op->reg] = val;
3101 		break;
3102 
3103 	case STCX:
3104 		if (ea & (size - 1))
3105 			return -EACCES;		/* can't handle misaligned */
3106 		if (!address_ok(regs, ea, size))
3107 			return -EFAULT;
3108 		err = 0;
3109 		switch (size) {
3110 #ifdef __powerpc64__
3111 		case 1:
3112 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3113 			break;
3114 		case 2:
3115 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3116 			break;
3117 #endif
3118 		case 4:
3119 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
3120 			break;
3121 #ifdef __powerpc64__
3122 		case 8:
3123 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
3124 			break;
3125 		case 16:
3126 			err = do_stqcx(ea, regs->gpr[op->reg],
3127 				       regs->gpr[op->reg + 1], &cr);
3128 			break;
3129 #endif
3130 		default:
3131 			return -EINVAL;
3132 		}
3133 		if (!err)
3134 			regs->ccr = (regs->ccr & 0x0fffffff) |
3135 				(cr & 0xe0000000) |
3136 				((regs->xer >> 3) & 0x10000000);
3137 		else
3138 			regs->dar = ea;
3139 		break;
3140 
3141 	case LOAD:
3142 #ifdef __powerpc64__
3143 		if (size == 16) {
3144 			err = emulate_lq(regs, ea, op->reg, cross_endian);
3145 			break;
3146 		}
3147 #endif
3148 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3149 		if (!err) {
3150 			if (op->type & SIGNEXT)
3151 				do_signext(&regs->gpr[op->reg], size);
3152 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3153 				do_byterev(&regs->gpr[op->reg], size);
3154 		}
3155 		break;
3156 
3157 #ifdef CONFIG_PPC_FPU
3158 	case LOAD_FP:
3159 		/*
3160 		 * If the instruction is in userspace, we can emulate it even
3161 		 * if the VMX state is not live, because we have the state
3162 		 * stored in the thread_struct.  If the instruction is in
3163 		 * the kernel, we must not touch the state in the thread_struct.
3164 		 */
3165 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3166 			return 0;
3167 		err = do_fp_load(op, ea, regs, cross_endian);
3168 		break;
3169 #endif
3170 #ifdef CONFIG_ALTIVEC
3171 	case LOAD_VMX:
3172 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3173 			return 0;
3174 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3175 		break;
3176 #endif
3177 #ifdef CONFIG_VSX
3178 	case LOAD_VSX: {
3179 		unsigned long msrbit = MSR_VSX;
3180 
3181 		/*
3182 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3183 		 * when the target of the instruction is a vector register.
3184 		 */
3185 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3186 			msrbit = MSR_VEC;
3187 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3188 			return 0;
3189 		err = do_vsx_load(op, ea, regs, cross_endian);
3190 		break;
3191 	}
3192 #endif
3193 	case LOAD_MULTI:
3194 		if (!address_ok(regs, ea, size))
3195 			return -EFAULT;
3196 		rd = op->reg;
3197 		for (i = 0; i < size; i += 4) {
3198 			unsigned int v32 = 0;
3199 
3200 			nb = size - i;
3201 			if (nb > 4)
3202 				nb = 4;
3203 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3204 			if (err)
3205 				break;
3206 			if (unlikely(cross_endian))
3207 				v32 = byterev_4(v32);
3208 			regs->gpr[rd] = v32;
3209 			ea += 4;
3210 			/* reg number wraps from 31 to 0 for lsw[ix] */
3211 			rd = (rd + 1) & 0x1f;
3212 		}
3213 		break;
3214 
3215 	case STORE:
3216 #ifdef __powerpc64__
3217 		if (size == 16) {
3218 			err = emulate_stq(regs, ea, op->reg, cross_endian);
3219 			break;
3220 		}
3221 #endif
3222 		if ((op->type & UPDATE) && size == sizeof(long) &&
3223 		    op->reg == 1 && op->update_reg == 1 &&
3224 		    !(regs->msr & MSR_PR) &&
3225 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3226 			err = handle_stack_update(ea, regs);
3227 			break;
3228 		}
3229 		if (unlikely(cross_endian))
3230 			do_byterev(&op->val, size);
3231 		err = write_mem(op->val, ea, size, regs);
3232 		break;
3233 
3234 #ifdef CONFIG_PPC_FPU
3235 	case STORE_FP:
3236 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3237 			return 0;
3238 		err = do_fp_store(op, ea, regs, cross_endian);
3239 		break;
3240 #endif
3241 #ifdef CONFIG_ALTIVEC
3242 	case STORE_VMX:
3243 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3244 			return 0;
3245 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3246 		break;
3247 #endif
3248 #ifdef CONFIG_VSX
3249 	case STORE_VSX: {
3250 		unsigned long msrbit = MSR_VSX;
3251 
3252 		/*
3253 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3254 		 * when the target of the instruction is a vector register.
3255 		 */
3256 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3257 			msrbit = MSR_VEC;
3258 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3259 			return 0;
3260 		err = do_vsx_store(op, ea, regs, cross_endian);
3261 		break;
3262 	}
3263 #endif
3264 	case STORE_MULTI:
3265 		if (!address_ok(regs, ea, size))
3266 			return -EFAULT;
3267 		rd = op->reg;
3268 		for (i = 0; i < size; i += 4) {
3269 			unsigned int v32 = regs->gpr[rd];
3270 
3271 			nb = size - i;
3272 			if (nb > 4)
3273 				nb = 4;
3274 			if (unlikely(cross_endian))
3275 				v32 = byterev_4(v32);
3276 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3277 			if (err)
3278 				break;
3279 			ea += 4;
3280 			/* reg number wraps from 31 to 0 for stsw[ix] */
3281 			rd = (rd + 1) & 0x1f;
3282 		}
3283 		break;
3284 
3285 	default:
3286 		return -EINVAL;
3287 	}
3288 
3289 	if (err)
3290 		return err;
3291 
3292 	if (op->type & UPDATE)
3293 		regs->gpr[op->update_reg] = op->ea;
3294 
3295 	return 0;
3296 }
3297 NOKPROBE_SYMBOL(emulate_loadstore);
3298 
3299 /*
3300  * Emulate instructions that cause a transfer of control,
3301  * loads and stores, and a few other instructions.
3302  * Returns 1 if the step was emulated, 0 if not,
3303  * or -1 if the instruction is one that should not be stepped,
3304  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3305  */
3306 int emulate_step(struct pt_regs *regs, struct ppc_inst instr)
3307 {
3308 	struct instruction_op op;
3309 	int r, err, type;
3310 	unsigned long val;
3311 	unsigned long ea;
3312 
3313 	r = analyse_instr(&op, regs, instr);
3314 	if (r < 0)
3315 		return r;
3316 	if (r > 0) {
3317 		emulate_update_regs(regs, &op);
3318 		return 1;
3319 	}
3320 
3321 	err = 0;
3322 	type = GETTYPE(op.type);
3323 
3324 	if (OP_IS_LOAD_STORE(type)) {
3325 		err = emulate_loadstore(regs, &op);
3326 		if (err)
3327 			return 0;
3328 		goto instr_done;
3329 	}
3330 
3331 	switch (type) {
3332 	case CACHEOP:
3333 		ea = truncate_if_32bit(regs->msr, op.ea);
3334 		if (!address_ok(regs, ea, 8))
3335 			return 0;
3336 		switch (op.type & CACHEOP_MASK) {
3337 		case DCBST:
3338 			__cacheop_user_asmx(ea, err, "dcbst");
3339 			break;
3340 		case DCBF:
3341 			__cacheop_user_asmx(ea, err, "dcbf");
3342 			break;
3343 		case DCBTST:
3344 			if (op.reg == 0)
3345 				prefetchw((void *) ea);
3346 			break;
3347 		case DCBT:
3348 			if (op.reg == 0)
3349 				prefetch((void *) ea);
3350 			break;
3351 		case ICBI:
3352 			__cacheop_user_asmx(ea, err, "icbi");
3353 			break;
3354 		case DCBZ:
3355 			err = emulate_dcbz(ea, regs);
3356 			break;
3357 		}
3358 		if (err) {
3359 			regs->dar = ea;
3360 			return 0;
3361 		}
3362 		goto instr_done;
3363 
3364 	case MFMSR:
3365 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3366 		goto instr_done;
3367 
3368 	case MTMSR:
3369 		val = regs->gpr[op.reg];
3370 		if ((val & MSR_RI) == 0)
3371 			/* can't step mtmsr[d] that would clear MSR_RI */
3372 			return -1;
3373 		/* here op.val is the mask of bits to change */
3374 		regs->msr = (regs->msr & ~op.val) | (val & op.val);
3375 		goto instr_done;
3376 
3377 #ifdef CONFIG_PPC64
3378 	case SYSCALL:	/* sc */
3379 		/*
3380 		 * N.B. this uses knowledge about how the syscall
3381 		 * entry code works.  If that is changed, this will
3382 		 * need to be changed also.
3383 		 */
3384 		if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3385 				cpu_has_feature(CPU_FTR_REAL_LE) &&
3386 				regs->gpr[0] == 0x1ebe) {
3387 			regs->msr ^= MSR_LE;
3388 			goto instr_done;
3389 		}
3390 		regs->gpr[9] = regs->gpr[13];
3391 		regs->gpr[10] = MSR_KERNEL;
3392 		regs->gpr[11] = regs->nip + 4;
3393 		regs->gpr[12] = regs->msr & MSR_MASK;
3394 		regs->gpr[13] = (unsigned long) get_paca();
3395 		regs->nip = (unsigned long) &system_call_common;
3396 		regs->msr = MSR_KERNEL;
3397 		return 1;
3398 
3399 #ifdef CONFIG_PPC_BOOK3S_64
3400 	case SYSCALL_VECTORED_0:	/* scv 0 */
3401 		regs->gpr[9] = regs->gpr[13];
3402 		regs->gpr[10] = MSR_KERNEL;
3403 		regs->gpr[11] = regs->nip + 4;
3404 		regs->gpr[12] = regs->msr & MSR_MASK;
3405 		regs->gpr[13] = (unsigned long) get_paca();
3406 		regs->nip = (unsigned long) &system_call_vectored_emulate;
3407 		regs->msr = MSR_KERNEL;
3408 		return 1;
3409 #endif
3410 
3411 	case RFI:
3412 		return -1;
3413 #endif
3414 	}
3415 	return 0;
3416 
3417  instr_done:
3418 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type));
3419 	return 1;
3420 }
3421 NOKPROBE_SYMBOL(emulate_step);
3422