xref: /openbmc/linux/arch/powerpc/lib/sstep.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17 
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20 
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK	0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK	0x87c0ffff
26 #endif
27 
28 /* Bits in XER */
29 #define XER_SO		0x80000000U
30 #define XER_OV		0x40000000U
31 #define XER_CA		0x20000000U
32 #define XER_OV32	0x00080000U
33 #define XER_CA32	0x00040000U
34 
35 #ifdef CONFIG_VSX
36 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
37 #endif
38 
39 #ifdef CONFIG_PPC_FPU
40 /*
41  * Functions in ldstfp.S
42  */
43 extern void get_fpr(int rn, double *p);
44 extern void put_fpr(int rn, const double *p);
45 extern void get_vr(int rn, __vector128 *p);
46 extern void put_vr(int rn, __vector128 *p);
47 extern void load_vsrn(int vsr, const void *p);
48 extern void store_vsrn(int vsr, void *p);
49 extern void conv_sp_to_dp(const float *sp, double *dp);
50 extern void conv_dp_to_sp(const double *dp, float *sp);
51 #endif
52 
53 #ifdef __powerpc64__
54 /*
55  * Functions in quad.S
56  */
57 extern int do_lq(unsigned long ea, unsigned long *regs);
58 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
59 extern int do_lqarx(unsigned long ea, unsigned long *regs);
60 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
61 		    unsigned int *crp);
62 #endif
63 
64 #ifdef __LITTLE_ENDIAN__
65 #define IS_LE	1
66 #define IS_BE	0
67 #else
68 #define IS_LE	0
69 #define IS_BE	1
70 #endif
71 
72 /*
73  * Emulate the truncation of 64 bit values in 32-bit mode.
74  */
75 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
76 							unsigned long val)
77 {
78 #ifdef __powerpc64__
79 	if ((msr & MSR_64BIT) == 0)
80 		val &= 0xffffffffUL;
81 #endif
82 	return val;
83 }
84 
85 /*
86  * Determine whether a conditional branch instruction would branch.
87  */
88 static nokprobe_inline int branch_taken(unsigned int instr,
89 					const struct pt_regs *regs,
90 					struct instruction_op *op)
91 {
92 	unsigned int bo = (instr >> 21) & 0x1f;
93 	unsigned int bi;
94 
95 	if ((bo & 4) == 0) {
96 		/* decrement counter */
97 		op->type |= DECCTR;
98 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
99 			return 0;
100 	}
101 	if ((bo & 0x10) == 0) {
102 		/* check bit from CR */
103 		bi = (instr >> 16) & 0x1f;
104 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
105 			return 0;
106 	}
107 	return 1;
108 }
109 
110 static nokprobe_inline long address_ok(struct pt_regs *regs,
111 				       unsigned long ea, int nb)
112 {
113 	if (!user_mode(regs))
114 		return 1;
115 	if (__access_ok(ea, nb))
116 		return 1;
117 	if (__access_ok(ea, 1))
118 		/* Access overlaps the end of the user region */
119 		regs->dar = TASK_SIZE_MAX - 1;
120 	else
121 		regs->dar = ea;
122 	return 0;
123 }
124 
125 /*
126  * Calculate effective address for a D-form instruction
127  */
128 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
129 					      const struct pt_regs *regs)
130 {
131 	int ra;
132 	unsigned long ea;
133 
134 	ra = (instr >> 16) & 0x1f;
135 	ea = (signed short) instr;		/* sign-extend */
136 	if (ra)
137 		ea += regs->gpr[ra];
138 
139 	return ea;
140 }
141 
142 #ifdef __powerpc64__
143 /*
144  * Calculate effective address for a DS-form instruction
145  */
146 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
147 					       const struct pt_regs *regs)
148 {
149 	int ra;
150 	unsigned long ea;
151 
152 	ra = (instr >> 16) & 0x1f;
153 	ea = (signed short) (instr & ~3);	/* sign-extend */
154 	if (ra)
155 		ea += regs->gpr[ra];
156 
157 	return ea;
158 }
159 
160 /*
161  * Calculate effective address for a DQ-form instruction
162  */
163 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
164 					       const struct pt_regs *regs)
165 {
166 	int ra;
167 	unsigned long ea;
168 
169 	ra = (instr >> 16) & 0x1f;
170 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
171 	if (ra)
172 		ea += regs->gpr[ra];
173 
174 	return ea;
175 }
176 #endif /* __powerpc64 */
177 
178 /*
179  * Calculate effective address for an X-form instruction
180  */
181 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
182 					      const struct pt_regs *regs)
183 {
184 	int ra, rb;
185 	unsigned long ea;
186 
187 	ra = (instr >> 16) & 0x1f;
188 	rb = (instr >> 11) & 0x1f;
189 	ea = regs->gpr[rb];
190 	if (ra)
191 		ea += regs->gpr[ra];
192 
193 	return ea;
194 }
195 
196 /*
197  * Calculate effective address for a MLS:D-form / 8LS:D-form
198  * prefixed instruction
199  */
200 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
201 						  unsigned int suffix,
202 						  const struct pt_regs *regs)
203 {
204 	int ra, prefix_r;
205 	unsigned int  dd;
206 	unsigned long ea, d0, d1, d;
207 
208 	prefix_r = GET_PREFIX_R(instr);
209 	ra = GET_PREFIX_RA(suffix);
210 
211 	d0 = instr & 0x3ffff;
212 	d1 = suffix & 0xffff;
213 	d = (d0 << 16) | d1;
214 
215 	/*
216 	 * sign extend a 34 bit number
217 	 */
218 	dd = (unsigned int)(d >> 2);
219 	ea = (signed int)dd;
220 	ea = (ea << 2) | (d & 0x3);
221 
222 	if (!prefix_r && ra)
223 		ea += regs->gpr[ra];
224 	else if (!prefix_r && !ra)
225 		; /* Leave ea as is */
226 	else if (prefix_r)
227 		ea += regs->nip;
228 
229 	/*
230 	 * (prefix_r && ra) is an invalid form. Should already be
231 	 * checked for by caller!
232 	 */
233 
234 	return ea;
235 }
236 
237 /*
238  * Return the largest power of 2, not greater than sizeof(unsigned long),
239  * such that x is a multiple of it.
240  */
241 static nokprobe_inline unsigned long max_align(unsigned long x)
242 {
243 	x |= sizeof(unsigned long);
244 	return x & -x;		/* isolates rightmost bit */
245 }
246 
247 static nokprobe_inline unsigned long byterev_2(unsigned long x)
248 {
249 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
250 }
251 
252 static nokprobe_inline unsigned long byterev_4(unsigned long x)
253 {
254 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
255 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
256 }
257 
258 #ifdef __powerpc64__
259 static nokprobe_inline unsigned long byterev_8(unsigned long x)
260 {
261 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
262 }
263 #endif
264 
265 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
266 {
267 	switch (nb) {
268 	case 2:
269 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
270 		break;
271 	case 4:
272 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
273 		break;
274 #ifdef __powerpc64__
275 	case 8:
276 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
277 		break;
278 	case 16: {
279 		unsigned long *up = (unsigned long *)ptr;
280 		unsigned long tmp;
281 		tmp = byterev_8(up[0]);
282 		up[0] = byterev_8(up[1]);
283 		up[1] = tmp;
284 		break;
285 	}
286 	case 32: {
287 		unsigned long *up = (unsigned long *)ptr;
288 		unsigned long tmp;
289 
290 		tmp = byterev_8(up[0]);
291 		up[0] = byterev_8(up[3]);
292 		up[3] = tmp;
293 		tmp = byterev_8(up[2]);
294 		up[2] = byterev_8(up[1]);
295 		up[1] = tmp;
296 		break;
297 	}
298 
299 #endif
300 	default:
301 		WARN_ON_ONCE(1);
302 	}
303 }
304 
305 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
306 					    unsigned long ea, int nb,
307 					    struct pt_regs *regs)
308 {
309 	int err = 0;
310 	unsigned long x = 0;
311 
312 	switch (nb) {
313 	case 1:
314 		err = __get_user(x, (unsigned char __user *) ea);
315 		break;
316 	case 2:
317 		err = __get_user(x, (unsigned short __user *) ea);
318 		break;
319 	case 4:
320 		err = __get_user(x, (unsigned int __user *) ea);
321 		break;
322 #ifdef __powerpc64__
323 	case 8:
324 		err = __get_user(x, (unsigned long __user *) ea);
325 		break;
326 #endif
327 	}
328 	if (!err)
329 		*dest = x;
330 	else
331 		regs->dar = ea;
332 	return err;
333 }
334 
335 /*
336  * Copy from userspace to a buffer, using the largest possible
337  * aligned accesses, up to sizeof(long).
338  */
339 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
340 				       struct pt_regs *regs)
341 {
342 	int err = 0;
343 	int c;
344 
345 	for (; nb > 0; nb -= c) {
346 		c = max_align(ea);
347 		if (c > nb)
348 			c = max_align(nb);
349 		switch (c) {
350 		case 1:
351 			err = __get_user(*dest, (unsigned char __user *) ea);
352 			break;
353 		case 2:
354 			err = __get_user(*(u16 *)dest,
355 					 (unsigned short __user *) ea);
356 			break;
357 		case 4:
358 			err = __get_user(*(u32 *)dest,
359 					 (unsigned int __user *) ea);
360 			break;
361 #ifdef __powerpc64__
362 		case 8:
363 			err = __get_user(*(unsigned long *)dest,
364 					 (unsigned long __user *) ea);
365 			break;
366 #endif
367 		}
368 		if (err) {
369 			regs->dar = ea;
370 			return err;
371 		}
372 		dest += c;
373 		ea += c;
374 	}
375 	return 0;
376 }
377 
378 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
379 					      unsigned long ea, int nb,
380 					      struct pt_regs *regs)
381 {
382 	union {
383 		unsigned long ul;
384 		u8 b[sizeof(unsigned long)];
385 	} u;
386 	int i;
387 	int err;
388 
389 	u.ul = 0;
390 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
391 	err = copy_mem_in(&u.b[i], ea, nb, regs);
392 	if (!err)
393 		*dest = u.ul;
394 	return err;
395 }
396 
397 /*
398  * Read memory at address ea for nb bytes, return 0 for success
399  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
400  * If nb < sizeof(long), the result is right-justified on BE systems.
401  */
402 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
403 			      struct pt_regs *regs)
404 {
405 	if (!address_ok(regs, ea, nb))
406 		return -EFAULT;
407 	if ((ea & (nb - 1)) == 0)
408 		return read_mem_aligned(dest, ea, nb, regs);
409 	return read_mem_unaligned(dest, ea, nb, regs);
410 }
411 NOKPROBE_SYMBOL(read_mem);
412 
413 static nokprobe_inline int write_mem_aligned(unsigned long val,
414 					     unsigned long ea, int nb,
415 					     struct pt_regs *regs)
416 {
417 	int err = 0;
418 
419 	switch (nb) {
420 	case 1:
421 		err = __put_user(val, (unsigned char __user *) ea);
422 		break;
423 	case 2:
424 		err = __put_user(val, (unsigned short __user *) ea);
425 		break;
426 	case 4:
427 		err = __put_user(val, (unsigned int __user *) ea);
428 		break;
429 #ifdef __powerpc64__
430 	case 8:
431 		err = __put_user(val, (unsigned long __user *) ea);
432 		break;
433 #endif
434 	}
435 	if (err)
436 		regs->dar = ea;
437 	return err;
438 }
439 
440 /*
441  * Copy from a buffer to userspace, using the largest possible
442  * aligned accesses, up to sizeof(long).
443  */
444 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
445 					struct pt_regs *regs)
446 {
447 	int err = 0;
448 	int c;
449 
450 	for (; nb > 0; nb -= c) {
451 		c = max_align(ea);
452 		if (c > nb)
453 			c = max_align(nb);
454 		switch (c) {
455 		case 1:
456 			err = __put_user(*dest, (unsigned char __user *) ea);
457 			break;
458 		case 2:
459 			err = __put_user(*(u16 *)dest,
460 					 (unsigned short __user *) ea);
461 			break;
462 		case 4:
463 			err = __put_user(*(u32 *)dest,
464 					 (unsigned int __user *) ea);
465 			break;
466 #ifdef __powerpc64__
467 		case 8:
468 			err = __put_user(*(unsigned long *)dest,
469 					 (unsigned long __user *) ea);
470 			break;
471 #endif
472 		}
473 		if (err) {
474 			regs->dar = ea;
475 			return err;
476 		}
477 		dest += c;
478 		ea += c;
479 	}
480 	return 0;
481 }
482 
483 static nokprobe_inline int write_mem_unaligned(unsigned long val,
484 					       unsigned long ea, int nb,
485 					       struct pt_regs *regs)
486 {
487 	union {
488 		unsigned long ul;
489 		u8 b[sizeof(unsigned long)];
490 	} u;
491 	int i;
492 
493 	u.ul = val;
494 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
495 	return copy_mem_out(&u.b[i], ea, nb, regs);
496 }
497 
498 /*
499  * Write memory at address ea for nb bytes, return 0 for success
500  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
501  */
502 static int write_mem(unsigned long val, unsigned long ea, int nb,
503 			       struct pt_regs *regs)
504 {
505 	if (!address_ok(regs, ea, nb))
506 		return -EFAULT;
507 	if ((ea & (nb - 1)) == 0)
508 		return write_mem_aligned(val, ea, nb, regs);
509 	return write_mem_unaligned(val, ea, nb, regs);
510 }
511 NOKPROBE_SYMBOL(write_mem);
512 
513 #ifdef CONFIG_PPC_FPU
514 /*
515  * These access either the real FP register or the image in the
516  * thread_struct, depending on regs->msr & MSR_FP.
517  */
518 static int do_fp_load(struct instruction_op *op, unsigned long ea,
519 		      struct pt_regs *regs, bool cross_endian)
520 {
521 	int err, rn, nb;
522 	union {
523 		int i;
524 		unsigned int u;
525 		float f;
526 		double d[2];
527 		unsigned long l[2];
528 		u8 b[2 * sizeof(double)];
529 	} u;
530 
531 	nb = GETSIZE(op->type);
532 	if (!address_ok(regs, ea, nb))
533 		return -EFAULT;
534 	rn = op->reg;
535 	err = copy_mem_in(u.b, ea, nb, regs);
536 	if (err)
537 		return err;
538 	if (unlikely(cross_endian)) {
539 		do_byte_reverse(u.b, min(nb, 8));
540 		if (nb == 16)
541 			do_byte_reverse(&u.b[8], 8);
542 	}
543 	preempt_disable();
544 	if (nb == 4) {
545 		if (op->type & FPCONV)
546 			conv_sp_to_dp(&u.f, &u.d[0]);
547 		else if (op->type & SIGNEXT)
548 			u.l[0] = u.i;
549 		else
550 			u.l[0] = u.u;
551 	}
552 	if (regs->msr & MSR_FP)
553 		put_fpr(rn, &u.d[0]);
554 	else
555 		current->thread.TS_FPR(rn) = u.l[0];
556 	if (nb == 16) {
557 		/* lfdp */
558 		rn |= 1;
559 		if (regs->msr & MSR_FP)
560 			put_fpr(rn, &u.d[1]);
561 		else
562 			current->thread.TS_FPR(rn) = u.l[1];
563 	}
564 	preempt_enable();
565 	return 0;
566 }
567 NOKPROBE_SYMBOL(do_fp_load);
568 
569 static int do_fp_store(struct instruction_op *op, unsigned long ea,
570 		       struct pt_regs *regs, bool cross_endian)
571 {
572 	int rn, nb;
573 	union {
574 		unsigned int u;
575 		float f;
576 		double d[2];
577 		unsigned long l[2];
578 		u8 b[2 * sizeof(double)];
579 	} u;
580 
581 	nb = GETSIZE(op->type);
582 	if (!address_ok(regs, ea, nb))
583 		return -EFAULT;
584 	rn = op->reg;
585 	preempt_disable();
586 	if (regs->msr & MSR_FP)
587 		get_fpr(rn, &u.d[0]);
588 	else
589 		u.l[0] = current->thread.TS_FPR(rn);
590 	if (nb == 4) {
591 		if (op->type & FPCONV)
592 			conv_dp_to_sp(&u.d[0], &u.f);
593 		else
594 			u.u = u.l[0];
595 	}
596 	if (nb == 16) {
597 		rn |= 1;
598 		if (regs->msr & MSR_FP)
599 			get_fpr(rn, &u.d[1]);
600 		else
601 			u.l[1] = current->thread.TS_FPR(rn);
602 	}
603 	preempt_enable();
604 	if (unlikely(cross_endian)) {
605 		do_byte_reverse(u.b, min(nb, 8));
606 		if (nb == 16)
607 			do_byte_reverse(&u.b[8], 8);
608 	}
609 	return copy_mem_out(u.b, ea, nb, regs);
610 }
611 NOKPROBE_SYMBOL(do_fp_store);
612 #endif
613 
614 #ifdef CONFIG_ALTIVEC
615 /* For Altivec/VMX, no need to worry about alignment */
616 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
617 				       int size, struct pt_regs *regs,
618 				       bool cross_endian)
619 {
620 	int err;
621 	union {
622 		__vector128 v;
623 		u8 b[sizeof(__vector128)];
624 	} u = {};
625 
626 	if (!address_ok(regs, ea & ~0xfUL, 16))
627 		return -EFAULT;
628 	/* align to multiple of size */
629 	ea &= ~(size - 1);
630 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
631 	if (err)
632 		return err;
633 	if (unlikely(cross_endian))
634 		do_byte_reverse(&u.b[ea & 0xf], size);
635 	preempt_disable();
636 	if (regs->msr & MSR_VEC)
637 		put_vr(rn, &u.v);
638 	else
639 		current->thread.vr_state.vr[rn] = u.v;
640 	preempt_enable();
641 	return 0;
642 }
643 
644 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
645 					int size, struct pt_regs *regs,
646 					bool cross_endian)
647 {
648 	union {
649 		__vector128 v;
650 		u8 b[sizeof(__vector128)];
651 	} u;
652 
653 	if (!address_ok(regs, ea & ~0xfUL, 16))
654 		return -EFAULT;
655 	/* align to multiple of size */
656 	ea &= ~(size - 1);
657 
658 	preempt_disable();
659 	if (regs->msr & MSR_VEC)
660 		get_vr(rn, &u.v);
661 	else
662 		u.v = current->thread.vr_state.vr[rn];
663 	preempt_enable();
664 	if (unlikely(cross_endian))
665 		do_byte_reverse(&u.b[ea & 0xf], size);
666 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
667 }
668 #endif /* CONFIG_ALTIVEC */
669 
670 #ifdef __powerpc64__
671 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
672 				      int reg, bool cross_endian)
673 {
674 	int err;
675 
676 	if (!address_ok(regs, ea, 16))
677 		return -EFAULT;
678 	/* if aligned, should be atomic */
679 	if ((ea & 0xf) == 0) {
680 		err = do_lq(ea, &regs->gpr[reg]);
681 	} else {
682 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
683 		if (!err)
684 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
685 	}
686 	if (!err && unlikely(cross_endian))
687 		do_byte_reverse(&regs->gpr[reg], 16);
688 	return err;
689 }
690 
691 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
692 				       int reg, bool cross_endian)
693 {
694 	int err;
695 	unsigned long vals[2];
696 
697 	if (!address_ok(regs, ea, 16))
698 		return -EFAULT;
699 	vals[0] = regs->gpr[reg];
700 	vals[1] = regs->gpr[reg + 1];
701 	if (unlikely(cross_endian))
702 		do_byte_reverse(vals, 16);
703 
704 	/* if aligned, should be atomic */
705 	if ((ea & 0xf) == 0)
706 		return do_stq(ea, vals[0], vals[1]);
707 
708 	err = write_mem(vals[IS_LE], ea, 8, regs);
709 	if (!err)
710 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
711 	return err;
712 }
713 #endif /* __powerpc64 */
714 
715 #ifdef CONFIG_VSX
716 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
717 		      const void *mem, bool rev)
718 {
719 	int size, read_size;
720 	int i, j;
721 	const unsigned int *wp;
722 	const unsigned short *hp;
723 	const unsigned char *bp;
724 
725 	size = GETSIZE(op->type);
726 	reg->d[0] = reg->d[1] = 0;
727 
728 	switch (op->element_size) {
729 	case 32:
730 		/* [p]lxvp[x] */
731 	case 16:
732 		/* whole vector; lxv[x] or lxvl[l] */
733 		if (size == 0)
734 			break;
735 		memcpy(reg, mem, size);
736 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
737 			rev = !rev;
738 		if (rev)
739 			do_byte_reverse(reg, size);
740 		break;
741 	case 8:
742 		/* scalar loads, lxvd2x, lxvdsx */
743 		read_size = (size >= 8) ? 8 : size;
744 		i = IS_LE ? 8 : 8 - read_size;
745 		memcpy(&reg->b[i], mem, read_size);
746 		if (rev)
747 			do_byte_reverse(&reg->b[i], 8);
748 		if (size < 8) {
749 			if (op->type & SIGNEXT) {
750 				/* size == 4 is the only case here */
751 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
752 			} else if (op->vsx_flags & VSX_FPCONV) {
753 				preempt_disable();
754 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
755 					      &reg->dp[IS_LE]);
756 				preempt_enable();
757 			}
758 		} else {
759 			if (size == 16) {
760 				unsigned long v = *(unsigned long *)(mem + 8);
761 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
762 			} else if (op->vsx_flags & VSX_SPLAT)
763 				reg->d[IS_BE] = reg->d[IS_LE];
764 		}
765 		break;
766 	case 4:
767 		/* lxvw4x, lxvwsx */
768 		wp = mem;
769 		for (j = 0; j < size / 4; ++j) {
770 			i = IS_LE ? 3 - j : j;
771 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
772 		}
773 		if (op->vsx_flags & VSX_SPLAT) {
774 			u32 val = reg->w[IS_LE ? 3 : 0];
775 			for (; j < 4; ++j) {
776 				i = IS_LE ? 3 - j : j;
777 				reg->w[i] = val;
778 			}
779 		}
780 		break;
781 	case 2:
782 		/* lxvh8x */
783 		hp = mem;
784 		for (j = 0; j < size / 2; ++j) {
785 			i = IS_LE ? 7 - j : j;
786 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
787 		}
788 		break;
789 	case 1:
790 		/* lxvb16x */
791 		bp = mem;
792 		for (j = 0; j < size; ++j) {
793 			i = IS_LE ? 15 - j : j;
794 			reg->b[i] = *bp++;
795 		}
796 		break;
797 	}
798 }
799 EXPORT_SYMBOL_GPL(emulate_vsx_load);
800 NOKPROBE_SYMBOL(emulate_vsx_load);
801 
802 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
803 		       void *mem, bool rev)
804 {
805 	int size, write_size;
806 	int i, j;
807 	union vsx_reg buf;
808 	unsigned int *wp;
809 	unsigned short *hp;
810 	unsigned char *bp;
811 
812 	size = GETSIZE(op->type);
813 
814 	switch (op->element_size) {
815 	case 32:
816 		/* [p]stxvp[x] */
817 		if (size == 0)
818 			break;
819 		if (rev) {
820 			/* reverse 32 bytes */
821 			union vsx_reg buf32[2];
822 			buf32[0].d[0] = byterev_8(reg[1].d[1]);
823 			buf32[0].d[1] = byterev_8(reg[1].d[0]);
824 			buf32[1].d[0] = byterev_8(reg[0].d[1]);
825 			buf32[1].d[1] = byterev_8(reg[0].d[0]);
826 			memcpy(mem, buf32, size);
827 		} else {
828 			memcpy(mem, reg, size);
829 		}
830 		break;
831 	case 16:
832 		/* stxv, stxvx, stxvl, stxvll */
833 		if (size == 0)
834 			break;
835 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
836 			rev = !rev;
837 		if (rev) {
838 			/* reverse 16 bytes */
839 			buf.d[0] = byterev_8(reg->d[1]);
840 			buf.d[1] = byterev_8(reg->d[0]);
841 			reg = &buf;
842 		}
843 		memcpy(mem, reg, size);
844 		break;
845 	case 8:
846 		/* scalar stores, stxvd2x */
847 		write_size = (size >= 8) ? 8 : size;
848 		i = IS_LE ? 8 : 8 - write_size;
849 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
850 			buf.d[0] = buf.d[1] = 0;
851 			preempt_disable();
852 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
853 			preempt_enable();
854 			reg = &buf;
855 		}
856 		memcpy(mem, &reg->b[i], write_size);
857 		if (size == 16)
858 			memcpy(mem + 8, &reg->d[IS_BE], 8);
859 		if (unlikely(rev)) {
860 			do_byte_reverse(mem, write_size);
861 			if (size == 16)
862 				do_byte_reverse(mem + 8, 8);
863 		}
864 		break;
865 	case 4:
866 		/* stxvw4x */
867 		wp = mem;
868 		for (j = 0; j < size / 4; ++j) {
869 			i = IS_LE ? 3 - j : j;
870 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
871 		}
872 		break;
873 	case 2:
874 		/* stxvh8x */
875 		hp = mem;
876 		for (j = 0; j < size / 2; ++j) {
877 			i = IS_LE ? 7 - j : j;
878 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
879 		}
880 		break;
881 	case 1:
882 		/* stvxb16x */
883 		bp = mem;
884 		for (j = 0; j < size; ++j) {
885 			i = IS_LE ? 15 - j : j;
886 			*bp++ = reg->b[i];
887 		}
888 		break;
889 	}
890 }
891 EXPORT_SYMBOL_GPL(emulate_vsx_store);
892 NOKPROBE_SYMBOL(emulate_vsx_store);
893 
894 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
895 				       unsigned long ea, struct pt_regs *regs,
896 				       bool cross_endian)
897 {
898 	int reg = op->reg;
899 	int i, j, nr_vsx_regs;
900 	u8 mem[32];
901 	union vsx_reg buf[2];
902 	int size = GETSIZE(op->type);
903 
904 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
905 		return -EFAULT;
906 
907 	nr_vsx_regs = size / sizeof(__vector128);
908 	emulate_vsx_load(op, buf, mem, cross_endian);
909 	preempt_disable();
910 	if (reg < 32) {
911 		/* FP regs + extensions */
912 		if (regs->msr & MSR_FP) {
913 			for (i = 0; i < nr_vsx_regs; i++) {
914 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
915 				load_vsrn(reg + i, &buf[j].v);
916 			}
917 		} else {
918 			for (i = 0; i < nr_vsx_regs; i++) {
919 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
920 				current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
921 				current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
922 			}
923 		}
924 	} else {
925 		if (regs->msr & MSR_VEC) {
926 			for (i = 0; i < nr_vsx_regs; i++) {
927 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
928 				load_vsrn(reg + i, &buf[j].v);
929 			}
930 		} else {
931 			for (i = 0; i < nr_vsx_regs; i++) {
932 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
933 				current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
934 			}
935 		}
936 	}
937 	preempt_enable();
938 	return 0;
939 }
940 
941 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
942 					unsigned long ea, struct pt_regs *regs,
943 					bool cross_endian)
944 {
945 	int reg = op->reg;
946 	int i, j, nr_vsx_regs;
947 	u8 mem[32];
948 	union vsx_reg buf[2];
949 	int size = GETSIZE(op->type);
950 
951 	if (!address_ok(regs, ea, size))
952 		return -EFAULT;
953 
954 	nr_vsx_regs = size / sizeof(__vector128);
955 	preempt_disable();
956 	if (reg < 32) {
957 		/* FP regs + extensions */
958 		if (regs->msr & MSR_FP) {
959 			for (i = 0; i < nr_vsx_regs; i++) {
960 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
961 				store_vsrn(reg + i, &buf[j].v);
962 			}
963 		} else {
964 			for (i = 0; i < nr_vsx_regs; i++) {
965 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
966 				buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
967 				buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
968 			}
969 		}
970 	} else {
971 		if (regs->msr & MSR_VEC) {
972 			for (i = 0; i < nr_vsx_regs; i++) {
973 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
974 				store_vsrn(reg + i, &buf[j].v);
975 			}
976 		} else {
977 			for (i = 0; i < nr_vsx_regs; i++) {
978 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
979 				buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
980 			}
981 		}
982 	}
983 	preempt_enable();
984 	emulate_vsx_store(op, buf, mem, cross_endian);
985 	return  copy_mem_out(mem, ea, size, regs);
986 }
987 #endif /* CONFIG_VSX */
988 
989 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
990 {
991 	int err;
992 	unsigned long i, size;
993 
994 #ifdef __powerpc64__
995 	size = ppc64_caches.l1d.block_size;
996 	if (!(regs->msr & MSR_64BIT))
997 		ea &= 0xffffffffUL;
998 #else
999 	size = L1_CACHE_BYTES;
1000 #endif
1001 	ea &= ~(size - 1);
1002 	if (!address_ok(regs, ea, size))
1003 		return -EFAULT;
1004 	for (i = 0; i < size; i += sizeof(long)) {
1005 		err = __put_user(0, (unsigned long __user *) (ea + i));
1006 		if (err) {
1007 			regs->dar = ea;
1008 			return err;
1009 		}
1010 	}
1011 	return 0;
1012 }
1013 NOKPROBE_SYMBOL(emulate_dcbz);
1014 
1015 #define __put_user_asmx(x, addr, err, op, cr)		\
1016 	__asm__ __volatile__(				\
1017 		"1:	" op " %2,0,%3\n"		\
1018 		"	mfcr	%1\n"			\
1019 		"2:\n"					\
1020 		".section .fixup,\"ax\"\n"		\
1021 		"3:	li	%0,%4\n"		\
1022 		"	b	2b\n"			\
1023 		".previous\n"				\
1024 		EX_TABLE(1b, 3b)			\
1025 		: "=r" (err), "=r" (cr)			\
1026 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1027 
1028 #define __get_user_asmx(x, addr, err, op)		\
1029 	__asm__ __volatile__(				\
1030 		"1:	"op" %1,0,%2\n"			\
1031 		"2:\n"					\
1032 		".section .fixup,\"ax\"\n"		\
1033 		"3:	li	%0,%3\n"		\
1034 		"	b	2b\n"			\
1035 		".previous\n"				\
1036 		EX_TABLE(1b, 3b)			\
1037 		: "=r" (err), "=r" (x)			\
1038 		: "r" (addr), "i" (-EFAULT), "0" (err))
1039 
1040 #define __cacheop_user_asmx(addr, err, op)		\
1041 	__asm__ __volatile__(				\
1042 		"1:	"op" 0,%1\n"			\
1043 		"2:\n"					\
1044 		".section .fixup,\"ax\"\n"		\
1045 		"3:	li	%0,%3\n"		\
1046 		"	b	2b\n"			\
1047 		".previous\n"				\
1048 		EX_TABLE(1b, 3b)			\
1049 		: "=r" (err)				\
1050 		: "r" (addr), "i" (-EFAULT), "0" (err))
1051 
1052 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1053 				    struct instruction_op *op)
1054 {
1055 	long val = op->val;
1056 
1057 	op->type |= SETCC;
1058 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1059 #ifdef __powerpc64__
1060 	if (!(regs->msr & MSR_64BIT))
1061 		val = (int) val;
1062 #endif
1063 	if (val < 0)
1064 		op->ccval |= 0x80000000;
1065 	else if (val > 0)
1066 		op->ccval |= 0x40000000;
1067 	else
1068 		op->ccval |= 0x20000000;
1069 }
1070 
1071 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1072 {
1073 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1074 		if (val)
1075 			op->xerval |= XER_CA32;
1076 		else
1077 			op->xerval &= ~XER_CA32;
1078 	}
1079 }
1080 
1081 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1082 				     struct instruction_op *op, int rd,
1083 				     unsigned long val1, unsigned long val2,
1084 				     unsigned long carry_in)
1085 {
1086 	unsigned long val = val1 + val2;
1087 
1088 	if (carry_in)
1089 		++val;
1090 	op->type = COMPUTE + SETREG + SETXER;
1091 	op->reg = rd;
1092 	op->val = val;
1093 #ifdef __powerpc64__
1094 	if (!(regs->msr & MSR_64BIT)) {
1095 		val = (unsigned int) val;
1096 		val1 = (unsigned int) val1;
1097 	}
1098 #endif
1099 	op->xerval = regs->xer;
1100 	if (val < val1 || (carry_in && val == val1))
1101 		op->xerval |= XER_CA;
1102 	else
1103 		op->xerval &= ~XER_CA;
1104 
1105 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1106 			(carry_in && (unsigned int)val == (unsigned int)val1));
1107 }
1108 
1109 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1110 					  struct instruction_op *op,
1111 					  long v1, long v2, int crfld)
1112 {
1113 	unsigned int crval, shift;
1114 
1115 	op->type = COMPUTE + SETCC;
1116 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1117 	if (v1 < v2)
1118 		crval |= 8;
1119 	else if (v1 > v2)
1120 		crval |= 4;
1121 	else
1122 		crval |= 2;
1123 	shift = (7 - crfld) * 4;
1124 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1125 }
1126 
1127 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1128 					    struct instruction_op *op,
1129 					    unsigned long v1,
1130 					    unsigned long v2, int crfld)
1131 {
1132 	unsigned int crval, shift;
1133 
1134 	op->type = COMPUTE + SETCC;
1135 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1136 	if (v1 < v2)
1137 		crval |= 8;
1138 	else if (v1 > v2)
1139 		crval |= 4;
1140 	else
1141 		crval |= 2;
1142 	shift = (7 - crfld) * 4;
1143 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1144 }
1145 
1146 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1147 				    struct instruction_op *op,
1148 				    unsigned long v1, unsigned long v2)
1149 {
1150 	unsigned long long out_val, mask;
1151 	int i;
1152 
1153 	out_val = 0;
1154 	for (i = 0; i < 8; i++) {
1155 		mask = 0xffUL << (i * 8);
1156 		if ((v1 & mask) == (v2 & mask))
1157 			out_val |= mask;
1158 	}
1159 	op->val = out_val;
1160 }
1161 
1162 /*
1163  * The size parameter is used to adjust the equivalent popcnt instruction.
1164  * popcntb = 8, popcntw = 32, popcntd = 64
1165  */
1166 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1167 				      struct instruction_op *op,
1168 				      unsigned long v1, int size)
1169 {
1170 	unsigned long long out = v1;
1171 
1172 	out -= (out >> 1) & 0x5555555555555555ULL;
1173 	out = (0x3333333333333333ULL & out) +
1174 	      (0x3333333333333333ULL & (out >> 2));
1175 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1176 
1177 	if (size == 8) {	/* popcntb */
1178 		op->val = out;
1179 		return;
1180 	}
1181 	out += out >> 8;
1182 	out += out >> 16;
1183 	if (size == 32) {	/* popcntw */
1184 		op->val = out & 0x0000003f0000003fULL;
1185 		return;
1186 	}
1187 
1188 	out = (out + (out >> 32)) & 0x7f;
1189 	op->val = out;	/* popcntd */
1190 }
1191 
1192 #ifdef CONFIG_PPC64
1193 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1194 				      struct instruction_op *op,
1195 				      unsigned long v1, unsigned long v2)
1196 {
1197 	unsigned char perm, idx;
1198 	unsigned int i;
1199 
1200 	perm = 0;
1201 	for (i = 0; i < 8; i++) {
1202 		idx = (v1 >> (i * 8)) & 0xff;
1203 		if (idx < 64)
1204 			if (v2 & PPC_BIT(idx))
1205 				perm |= 1 << i;
1206 	}
1207 	op->val = perm;
1208 }
1209 #endif /* CONFIG_PPC64 */
1210 /*
1211  * The size parameter adjusts the equivalent prty instruction.
1212  * prtyw = 32, prtyd = 64
1213  */
1214 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1215 				    struct instruction_op *op,
1216 				    unsigned long v, int size)
1217 {
1218 	unsigned long long res = v ^ (v >> 8);
1219 
1220 	res ^= res >> 16;
1221 	if (size == 32) {		/* prtyw */
1222 		op->val = res & 0x0000000100000001ULL;
1223 		return;
1224 	}
1225 
1226 	res ^= res >> 32;
1227 	op->val = res & 1;	/*prtyd */
1228 }
1229 
1230 static nokprobe_inline int trap_compare(long v1, long v2)
1231 {
1232 	int ret = 0;
1233 
1234 	if (v1 < v2)
1235 		ret |= 0x10;
1236 	else if (v1 > v2)
1237 		ret |= 0x08;
1238 	else
1239 		ret |= 0x04;
1240 	if ((unsigned long)v1 < (unsigned long)v2)
1241 		ret |= 0x02;
1242 	else if ((unsigned long)v1 > (unsigned long)v2)
1243 		ret |= 0x01;
1244 	return ret;
1245 }
1246 
1247 /*
1248  * Elements of 32-bit rotate and mask instructions.
1249  */
1250 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1251 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1252 #ifdef __powerpc64__
1253 #define MASK64_L(mb)	(~0UL >> (mb))
1254 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1255 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1256 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1257 #else
1258 #define DATA32(x)	(x)
1259 #endif
1260 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1261 
1262 /*
1263  * Decode an instruction, and return information about it in *op
1264  * without changing *regs.
1265  * Integer arithmetic and logical instructions, branches, and barrier
1266  * instructions can be emulated just using the information in *op.
1267  *
1268  * Return value is 1 if the instruction can be emulated just by
1269  * updating *regs with the information in *op, -1 if we need the
1270  * GPRs but *regs doesn't contain the full register set, or 0
1271  * otherwise.
1272  */
1273 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1274 		  struct ppc_inst instr)
1275 {
1276 #ifdef CONFIG_PPC64
1277 	unsigned int suffixopcode, prefixtype, prefix_r;
1278 #endif
1279 	unsigned int opcode, ra, rb, rc, rd, spr, u;
1280 	unsigned long int imm;
1281 	unsigned long int val, val2;
1282 	unsigned int mb, me, sh;
1283 	unsigned int word, suffix;
1284 	long ival;
1285 
1286 	word = ppc_inst_val(instr);
1287 	suffix = ppc_inst_suffix(instr);
1288 
1289 	op->type = COMPUTE;
1290 
1291 	opcode = ppc_inst_primary_opcode(instr);
1292 	switch (opcode) {
1293 	case 16:	/* bc */
1294 		op->type = BRANCH;
1295 		imm = (signed short)(word & 0xfffc);
1296 		if ((word & 2) == 0)
1297 			imm += regs->nip;
1298 		op->val = truncate_if_32bit(regs->msr, imm);
1299 		if (word & 1)
1300 			op->type |= SETLK;
1301 		if (branch_taken(word, regs, op))
1302 			op->type |= BRTAKEN;
1303 		return 1;
1304 #ifdef CONFIG_PPC64
1305 	case 17:	/* sc */
1306 		if ((word & 0xfe2) == 2)
1307 			op->type = SYSCALL;
1308 		else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1309 				(word & 0xfe3) == 1) {	/* scv */
1310 			op->type = SYSCALL_VECTORED_0;
1311 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1312 				goto unknown_opcode;
1313 		} else
1314 			op->type = UNKNOWN;
1315 		return 0;
1316 #endif
1317 	case 18:	/* b */
1318 		op->type = BRANCH | BRTAKEN;
1319 		imm = word & 0x03fffffc;
1320 		if (imm & 0x02000000)
1321 			imm -= 0x04000000;
1322 		if ((word & 2) == 0)
1323 			imm += regs->nip;
1324 		op->val = truncate_if_32bit(regs->msr, imm);
1325 		if (word & 1)
1326 			op->type |= SETLK;
1327 		return 1;
1328 	case 19:
1329 		switch ((word >> 1) & 0x3ff) {
1330 		case 0:		/* mcrf */
1331 			op->type = COMPUTE + SETCC;
1332 			rd = 7 - ((word >> 23) & 0x7);
1333 			ra = 7 - ((word >> 18) & 0x7);
1334 			rd *= 4;
1335 			ra *= 4;
1336 			val = (regs->ccr >> ra) & 0xf;
1337 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1338 			return 1;
1339 
1340 		case 16:	/* bclr */
1341 		case 528:	/* bcctr */
1342 			op->type = BRANCH;
1343 			imm = (word & 0x400)? regs->ctr: regs->link;
1344 			op->val = truncate_if_32bit(regs->msr, imm);
1345 			if (word & 1)
1346 				op->type |= SETLK;
1347 			if (branch_taken(word, regs, op))
1348 				op->type |= BRTAKEN;
1349 			return 1;
1350 
1351 		case 18:	/* rfid, scary */
1352 			if (regs->msr & MSR_PR)
1353 				goto priv;
1354 			op->type = RFI;
1355 			return 0;
1356 
1357 		case 150:	/* isync */
1358 			op->type = BARRIER | BARRIER_ISYNC;
1359 			return 1;
1360 
1361 		case 33:	/* crnor */
1362 		case 129:	/* crandc */
1363 		case 193:	/* crxor */
1364 		case 225:	/* crnand */
1365 		case 257:	/* crand */
1366 		case 289:	/* creqv */
1367 		case 417:	/* crorc */
1368 		case 449:	/* cror */
1369 			op->type = COMPUTE + SETCC;
1370 			ra = (word >> 16) & 0x1f;
1371 			rb = (word >> 11) & 0x1f;
1372 			rd = (word >> 21) & 0x1f;
1373 			ra = (regs->ccr >> (31 - ra)) & 1;
1374 			rb = (regs->ccr >> (31 - rb)) & 1;
1375 			val = (word >> (6 + ra * 2 + rb)) & 1;
1376 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1377 				(val << (31 - rd));
1378 			return 1;
1379 		}
1380 		break;
1381 	case 31:
1382 		switch ((word >> 1) & 0x3ff) {
1383 		case 598:	/* sync */
1384 			op->type = BARRIER + BARRIER_SYNC;
1385 #ifdef __powerpc64__
1386 			switch ((word >> 21) & 3) {
1387 			case 1:		/* lwsync */
1388 				op->type = BARRIER + BARRIER_LWSYNC;
1389 				break;
1390 			case 2:		/* ptesync */
1391 				op->type = BARRIER + BARRIER_PTESYNC;
1392 				break;
1393 			}
1394 #endif
1395 			return 1;
1396 
1397 		case 854:	/* eieio */
1398 			op->type = BARRIER + BARRIER_EIEIO;
1399 			return 1;
1400 		}
1401 		break;
1402 	}
1403 
1404 	/* Following cases refer to regs->gpr[], so we need all regs */
1405 	if (!FULL_REGS(regs))
1406 		return -1;
1407 
1408 	rd = (word >> 21) & 0x1f;
1409 	ra = (word >> 16) & 0x1f;
1410 	rb = (word >> 11) & 0x1f;
1411 	rc = (word >> 6) & 0x1f;
1412 
1413 	switch (opcode) {
1414 #ifdef __powerpc64__
1415 	case 1:
1416 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
1417 			goto unknown_opcode;
1418 
1419 		prefix_r = GET_PREFIX_R(word);
1420 		ra = GET_PREFIX_RA(suffix);
1421 		rd = (suffix >> 21) & 0x1f;
1422 		op->reg = rd;
1423 		op->val = regs->gpr[rd];
1424 		suffixopcode = get_op(suffix);
1425 		prefixtype = (word >> 24) & 0x3;
1426 		switch (prefixtype) {
1427 		case 2:
1428 			if (prefix_r && ra)
1429 				return 0;
1430 			switch (suffixopcode) {
1431 			case 14:	/* paddi */
1432 				op->type = COMPUTE | PREFIXED;
1433 				op->val = mlsd_8lsd_ea(word, suffix, regs);
1434 				goto compute_done;
1435 			}
1436 		}
1437 		break;
1438 	case 2:		/* tdi */
1439 		if (rd & trap_compare(regs->gpr[ra], (short) word))
1440 			goto trap;
1441 		return 1;
1442 #endif
1443 	case 3:		/* twi */
1444 		if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1445 			goto trap;
1446 		return 1;
1447 
1448 #ifdef __powerpc64__
1449 	case 4:
1450 		/*
1451 		 * There are very many instructions with this primary opcode
1452 		 * introduced in the ISA as early as v2.03. However, the ones
1453 		 * we currently emulate were all introduced with ISA 3.0
1454 		 */
1455 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1456 			goto unknown_opcode;
1457 
1458 		switch (word & 0x3f) {
1459 		case 48:	/* maddhd */
1460 			asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1461 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1462 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1463 			goto compute_done;
1464 
1465 		case 49:	/* maddhdu */
1466 			asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1467 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1468 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1469 			goto compute_done;
1470 
1471 		case 51:	/* maddld */
1472 			asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1473 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1474 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1475 			goto compute_done;
1476 		}
1477 
1478 		/*
1479 		 * There are other instructions from ISA 3.0 with the same
1480 		 * primary opcode which do not have emulation support yet.
1481 		 */
1482 		goto unknown_opcode;
1483 #endif
1484 
1485 	case 7:		/* mulli */
1486 		op->val = regs->gpr[ra] * (short) word;
1487 		goto compute_done;
1488 
1489 	case 8:		/* subfic */
1490 		imm = (short) word;
1491 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1492 		return 1;
1493 
1494 	case 10:	/* cmpli */
1495 		imm = (unsigned short) word;
1496 		val = regs->gpr[ra];
1497 #ifdef __powerpc64__
1498 		if ((rd & 1) == 0)
1499 			val = (unsigned int) val;
1500 #endif
1501 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1502 		return 1;
1503 
1504 	case 11:	/* cmpi */
1505 		imm = (short) word;
1506 		val = regs->gpr[ra];
1507 #ifdef __powerpc64__
1508 		if ((rd & 1) == 0)
1509 			val = (int) val;
1510 #endif
1511 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1512 		return 1;
1513 
1514 	case 12:	/* addic */
1515 		imm = (short) word;
1516 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1517 		return 1;
1518 
1519 	case 13:	/* addic. */
1520 		imm = (short) word;
1521 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1522 		set_cr0(regs, op);
1523 		return 1;
1524 
1525 	case 14:	/* addi */
1526 		imm = (short) word;
1527 		if (ra)
1528 			imm += regs->gpr[ra];
1529 		op->val = imm;
1530 		goto compute_done;
1531 
1532 	case 15:	/* addis */
1533 		imm = ((short) word) << 16;
1534 		if (ra)
1535 			imm += regs->gpr[ra];
1536 		op->val = imm;
1537 		goto compute_done;
1538 
1539 	case 19:
1540 		if (((word >> 1) & 0x1f) == 2) {
1541 			/* addpcis */
1542 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1543 				goto unknown_opcode;
1544 			imm = (short) (word & 0xffc1);	/* d0 + d2 fields */
1545 			imm |= (word >> 15) & 0x3e;	/* d1 field */
1546 			op->val = regs->nip + (imm << 16) + 4;
1547 			goto compute_done;
1548 		}
1549 		op->type = UNKNOWN;
1550 		return 0;
1551 
1552 	case 20:	/* rlwimi */
1553 		mb = (word >> 6) & 0x1f;
1554 		me = (word >> 1) & 0x1f;
1555 		val = DATA32(regs->gpr[rd]);
1556 		imm = MASK32(mb, me);
1557 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1558 		goto logical_done;
1559 
1560 	case 21:	/* rlwinm */
1561 		mb = (word >> 6) & 0x1f;
1562 		me = (word >> 1) & 0x1f;
1563 		val = DATA32(regs->gpr[rd]);
1564 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1565 		goto logical_done;
1566 
1567 	case 23:	/* rlwnm */
1568 		mb = (word >> 6) & 0x1f;
1569 		me = (word >> 1) & 0x1f;
1570 		rb = regs->gpr[rb] & 0x1f;
1571 		val = DATA32(regs->gpr[rd]);
1572 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1573 		goto logical_done;
1574 
1575 	case 24:	/* ori */
1576 		op->val = regs->gpr[rd] | (unsigned short) word;
1577 		goto logical_done_nocc;
1578 
1579 	case 25:	/* oris */
1580 		imm = (unsigned short) word;
1581 		op->val = regs->gpr[rd] | (imm << 16);
1582 		goto logical_done_nocc;
1583 
1584 	case 26:	/* xori */
1585 		op->val = regs->gpr[rd] ^ (unsigned short) word;
1586 		goto logical_done_nocc;
1587 
1588 	case 27:	/* xoris */
1589 		imm = (unsigned short) word;
1590 		op->val = regs->gpr[rd] ^ (imm << 16);
1591 		goto logical_done_nocc;
1592 
1593 	case 28:	/* andi. */
1594 		op->val = regs->gpr[rd] & (unsigned short) word;
1595 		set_cr0(regs, op);
1596 		goto logical_done_nocc;
1597 
1598 	case 29:	/* andis. */
1599 		imm = (unsigned short) word;
1600 		op->val = regs->gpr[rd] & (imm << 16);
1601 		set_cr0(regs, op);
1602 		goto logical_done_nocc;
1603 
1604 #ifdef __powerpc64__
1605 	case 30:	/* rld* */
1606 		mb = ((word >> 6) & 0x1f) | (word & 0x20);
1607 		val = regs->gpr[rd];
1608 		if ((word & 0x10) == 0) {
1609 			sh = rb | ((word & 2) << 4);
1610 			val = ROTATE(val, sh);
1611 			switch ((word >> 2) & 3) {
1612 			case 0:		/* rldicl */
1613 				val &= MASK64_L(mb);
1614 				break;
1615 			case 1:		/* rldicr */
1616 				val &= MASK64_R(mb);
1617 				break;
1618 			case 2:		/* rldic */
1619 				val &= MASK64(mb, 63 - sh);
1620 				break;
1621 			case 3:		/* rldimi */
1622 				imm = MASK64(mb, 63 - sh);
1623 				val = (regs->gpr[ra] & ~imm) |
1624 					(val & imm);
1625 			}
1626 			op->val = val;
1627 			goto logical_done;
1628 		} else {
1629 			sh = regs->gpr[rb] & 0x3f;
1630 			val = ROTATE(val, sh);
1631 			switch ((word >> 1) & 7) {
1632 			case 0:		/* rldcl */
1633 				op->val = val & MASK64_L(mb);
1634 				goto logical_done;
1635 			case 1:		/* rldcr */
1636 				op->val = val & MASK64_R(mb);
1637 				goto logical_done;
1638 			}
1639 		}
1640 #endif
1641 		op->type = UNKNOWN;	/* illegal instruction */
1642 		return 0;
1643 
1644 	case 31:
1645 		/* isel occupies 32 minor opcodes */
1646 		if (((word >> 1) & 0x1f) == 15) {
1647 			mb = (word >> 6) & 0x1f; /* bc field */
1648 			val = (regs->ccr >> (31 - mb)) & 1;
1649 			val2 = (ra) ? regs->gpr[ra] : 0;
1650 
1651 			op->val = (val) ? val2 : regs->gpr[rb];
1652 			goto compute_done;
1653 		}
1654 
1655 		switch ((word >> 1) & 0x3ff) {
1656 		case 4:		/* tw */
1657 			if (rd == 0x1f ||
1658 			    (rd & trap_compare((int)regs->gpr[ra],
1659 					       (int)regs->gpr[rb])))
1660 				goto trap;
1661 			return 1;
1662 #ifdef __powerpc64__
1663 		case 68:	/* td */
1664 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1665 				goto trap;
1666 			return 1;
1667 #endif
1668 		case 83:	/* mfmsr */
1669 			if (regs->msr & MSR_PR)
1670 				goto priv;
1671 			op->type = MFMSR;
1672 			op->reg = rd;
1673 			return 0;
1674 		case 146:	/* mtmsr */
1675 			if (regs->msr & MSR_PR)
1676 				goto priv;
1677 			op->type = MTMSR;
1678 			op->reg = rd;
1679 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1680 			return 0;
1681 #ifdef CONFIG_PPC64
1682 		case 178:	/* mtmsrd */
1683 			if (regs->msr & MSR_PR)
1684 				goto priv;
1685 			op->type = MTMSR;
1686 			op->reg = rd;
1687 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1688 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1689 			imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1690 			op->val = imm;
1691 			return 0;
1692 #endif
1693 
1694 		case 19:	/* mfcr */
1695 			imm = 0xffffffffUL;
1696 			if ((word >> 20) & 1) {
1697 				imm = 0xf0000000UL;
1698 				for (sh = 0; sh < 8; ++sh) {
1699 					if (word & (0x80000 >> sh))
1700 						break;
1701 					imm >>= 4;
1702 				}
1703 			}
1704 			op->val = regs->ccr & imm;
1705 			goto compute_done;
1706 
1707 		case 144:	/* mtcrf */
1708 			op->type = COMPUTE + SETCC;
1709 			imm = 0xf0000000UL;
1710 			val = regs->gpr[rd];
1711 			op->ccval = regs->ccr;
1712 			for (sh = 0; sh < 8; ++sh) {
1713 				if (word & (0x80000 >> sh))
1714 					op->ccval = (op->ccval & ~imm) |
1715 						(val & imm);
1716 				imm >>= 4;
1717 			}
1718 			return 1;
1719 
1720 		case 339:	/* mfspr */
1721 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1722 			op->type = MFSPR;
1723 			op->reg = rd;
1724 			op->spr = spr;
1725 			if (spr == SPRN_XER || spr == SPRN_LR ||
1726 			    spr == SPRN_CTR)
1727 				return 1;
1728 			return 0;
1729 
1730 		case 467:	/* mtspr */
1731 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1732 			op->type = MTSPR;
1733 			op->val = regs->gpr[rd];
1734 			op->spr = spr;
1735 			if (spr == SPRN_XER || spr == SPRN_LR ||
1736 			    spr == SPRN_CTR)
1737 				return 1;
1738 			return 0;
1739 
1740 /*
1741  * Compare instructions
1742  */
1743 		case 0:	/* cmp */
1744 			val = regs->gpr[ra];
1745 			val2 = regs->gpr[rb];
1746 #ifdef __powerpc64__
1747 			if ((rd & 1) == 0) {
1748 				/* word (32-bit) compare */
1749 				val = (int) val;
1750 				val2 = (int) val2;
1751 			}
1752 #endif
1753 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1754 			return 1;
1755 
1756 		case 32:	/* cmpl */
1757 			val = regs->gpr[ra];
1758 			val2 = regs->gpr[rb];
1759 #ifdef __powerpc64__
1760 			if ((rd & 1) == 0) {
1761 				/* word (32-bit) compare */
1762 				val = (unsigned int) val;
1763 				val2 = (unsigned int) val2;
1764 			}
1765 #endif
1766 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1767 			return 1;
1768 
1769 		case 508: /* cmpb */
1770 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1771 			goto logical_done_nocc;
1772 
1773 /*
1774  * Arithmetic instructions
1775  */
1776 		case 8:	/* subfc */
1777 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1778 				       regs->gpr[rb], 1);
1779 			goto arith_done;
1780 #ifdef __powerpc64__
1781 		case 9:	/* mulhdu */
1782 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1783 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1784 			goto arith_done;
1785 #endif
1786 		case 10:	/* addc */
1787 			add_with_carry(regs, op, rd, regs->gpr[ra],
1788 				       regs->gpr[rb], 0);
1789 			goto arith_done;
1790 
1791 		case 11:	/* mulhwu */
1792 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1793 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1794 			goto arith_done;
1795 
1796 		case 40:	/* subf */
1797 			op->val = regs->gpr[rb] - regs->gpr[ra];
1798 			goto arith_done;
1799 #ifdef __powerpc64__
1800 		case 73:	/* mulhd */
1801 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1802 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1803 			goto arith_done;
1804 #endif
1805 		case 75:	/* mulhw */
1806 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1807 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1808 			goto arith_done;
1809 
1810 		case 104:	/* neg */
1811 			op->val = -regs->gpr[ra];
1812 			goto arith_done;
1813 
1814 		case 136:	/* subfe */
1815 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1816 				       regs->gpr[rb], regs->xer & XER_CA);
1817 			goto arith_done;
1818 
1819 		case 138:	/* adde */
1820 			add_with_carry(regs, op, rd, regs->gpr[ra],
1821 				       regs->gpr[rb], regs->xer & XER_CA);
1822 			goto arith_done;
1823 
1824 		case 200:	/* subfze */
1825 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1826 				       regs->xer & XER_CA);
1827 			goto arith_done;
1828 
1829 		case 202:	/* addze */
1830 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1831 				       regs->xer & XER_CA);
1832 			goto arith_done;
1833 
1834 		case 232:	/* subfme */
1835 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1836 				       regs->xer & XER_CA);
1837 			goto arith_done;
1838 #ifdef __powerpc64__
1839 		case 233:	/* mulld */
1840 			op->val = regs->gpr[ra] * regs->gpr[rb];
1841 			goto arith_done;
1842 #endif
1843 		case 234:	/* addme */
1844 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1845 				       regs->xer & XER_CA);
1846 			goto arith_done;
1847 
1848 		case 235:	/* mullw */
1849 			op->val = (long)(int) regs->gpr[ra] *
1850 				(int) regs->gpr[rb];
1851 
1852 			goto arith_done;
1853 #ifdef __powerpc64__
1854 		case 265:	/* modud */
1855 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1856 				goto unknown_opcode;
1857 			op->val = regs->gpr[ra] % regs->gpr[rb];
1858 			goto compute_done;
1859 #endif
1860 		case 266:	/* add */
1861 			op->val = regs->gpr[ra] + regs->gpr[rb];
1862 			goto arith_done;
1863 
1864 		case 267:	/* moduw */
1865 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1866 				goto unknown_opcode;
1867 			op->val = (unsigned int) regs->gpr[ra] %
1868 				(unsigned int) regs->gpr[rb];
1869 			goto compute_done;
1870 #ifdef __powerpc64__
1871 		case 457:	/* divdu */
1872 			op->val = regs->gpr[ra] / regs->gpr[rb];
1873 			goto arith_done;
1874 #endif
1875 		case 459:	/* divwu */
1876 			op->val = (unsigned int) regs->gpr[ra] /
1877 				(unsigned int) regs->gpr[rb];
1878 			goto arith_done;
1879 #ifdef __powerpc64__
1880 		case 489:	/* divd */
1881 			op->val = (long int) regs->gpr[ra] /
1882 				(long int) regs->gpr[rb];
1883 			goto arith_done;
1884 #endif
1885 		case 491:	/* divw */
1886 			op->val = (int) regs->gpr[ra] /
1887 				(int) regs->gpr[rb];
1888 			goto arith_done;
1889 #ifdef __powerpc64__
1890 		case 425:	/* divde[.] */
1891 			asm volatile(PPC_DIVDE(%0, %1, %2) :
1892 				"=r" (op->val) : "r" (regs->gpr[ra]),
1893 				"r" (regs->gpr[rb]));
1894 			goto arith_done;
1895 		case 393:	/* divdeu[.] */
1896 			asm volatile(PPC_DIVDEU(%0, %1, %2) :
1897 				"=r" (op->val) : "r" (regs->gpr[ra]),
1898 				"r" (regs->gpr[rb]));
1899 			goto arith_done;
1900 #endif
1901 		case 755:	/* darn */
1902 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1903 				goto unknown_opcode;
1904 			switch (ra & 0x3) {
1905 			case 0:
1906 				/* 32-bit conditioned */
1907 				asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1908 				goto compute_done;
1909 
1910 			case 1:
1911 				/* 64-bit conditioned */
1912 				asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1913 				goto compute_done;
1914 
1915 			case 2:
1916 				/* 64-bit raw */
1917 				asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1918 				goto compute_done;
1919 			}
1920 
1921 			goto unknown_opcode;
1922 #ifdef __powerpc64__
1923 		case 777:	/* modsd */
1924 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1925 				goto unknown_opcode;
1926 			op->val = (long int) regs->gpr[ra] %
1927 				(long int) regs->gpr[rb];
1928 			goto compute_done;
1929 #endif
1930 		case 779:	/* modsw */
1931 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1932 				goto unknown_opcode;
1933 			op->val = (int) regs->gpr[ra] %
1934 				(int) regs->gpr[rb];
1935 			goto compute_done;
1936 
1937 
1938 /*
1939  * Logical instructions
1940  */
1941 		case 26:	/* cntlzw */
1942 			val = (unsigned int) regs->gpr[rd];
1943 			op->val = ( val ? __builtin_clz(val) : 32 );
1944 			goto logical_done;
1945 #ifdef __powerpc64__
1946 		case 58:	/* cntlzd */
1947 			val = regs->gpr[rd];
1948 			op->val = ( val ? __builtin_clzl(val) : 64 );
1949 			goto logical_done;
1950 #endif
1951 		case 28:	/* and */
1952 			op->val = regs->gpr[rd] & regs->gpr[rb];
1953 			goto logical_done;
1954 
1955 		case 60:	/* andc */
1956 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
1957 			goto logical_done;
1958 
1959 		case 122:	/* popcntb */
1960 			do_popcnt(regs, op, regs->gpr[rd], 8);
1961 			goto logical_done_nocc;
1962 
1963 		case 124:	/* nor */
1964 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1965 			goto logical_done;
1966 
1967 		case 154:	/* prtyw */
1968 			do_prty(regs, op, regs->gpr[rd], 32);
1969 			goto logical_done_nocc;
1970 
1971 		case 186:	/* prtyd */
1972 			do_prty(regs, op, regs->gpr[rd], 64);
1973 			goto logical_done_nocc;
1974 #ifdef CONFIG_PPC64
1975 		case 252:	/* bpermd */
1976 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1977 			goto logical_done_nocc;
1978 #endif
1979 		case 284:	/* xor */
1980 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1981 			goto logical_done;
1982 
1983 		case 316:	/* xor */
1984 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
1985 			goto logical_done;
1986 
1987 		case 378:	/* popcntw */
1988 			do_popcnt(regs, op, regs->gpr[rd], 32);
1989 			goto logical_done_nocc;
1990 
1991 		case 412:	/* orc */
1992 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
1993 			goto logical_done;
1994 
1995 		case 444:	/* or */
1996 			op->val = regs->gpr[rd] | regs->gpr[rb];
1997 			goto logical_done;
1998 
1999 		case 476:	/* nand */
2000 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2001 			goto logical_done;
2002 #ifdef CONFIG_PPC64
2003 		case 506:	/* popcntd */
2004 			do_popcnt(regs, op, regs->gpr[rd], 64);
2005 			goto logical_done_nocc;
2006 #endif
2007 		case 538:	/* cnttzw */
2008 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2009 				goto unknown_opcode;
2010 			val = (unsigned int) regs->gpr[rd];
2011 			op->val = (val ? __builtin_ctz(val) : 32);
2012 			goto logical_done;
2013 #ifdef __powerpc64__
2014 		case 570:	/* cnttzd */
2015 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2016 				goto unknown_opcode;
2017 			val = regs->gpr[rd];
2018 			op->val = (val ? __builtin_ctzl(val) : 64);
2019 			goto logical_done;
2020 #endif
2021 		case 922:	/* extsh */
2022 			op->val = (signed short) regs->gpr[rd];
2023 			goto logical_done;
2024 
2025 		case 954:	/* extsb */
2026 			op->val = (signed char) regs->gpr[rd];
2027 			goto logical_done;
2028 #ifdef __powerpc64__
2029 		case 986:	/* extsw */
2030 			op->val = (signed int) regs->gpr[rd];
2031 			goto logical_done;
2032 #endif
2033 
2034 /*
2035  * Shift instructions
2036  */
2037 		case 24:	/* slw */
2038 			sh = regs->gpr[rb] & 0x3f;
2039 			if (sh < 32)
2040 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2041 			else
2042 				op->val = 0;
2043 			goto logical_done;
2044 
2045 		case 536:	/* srw */
2046 			sh = regs->gpr[rb] & 0x3f;
2047 			if (sh < 32)
2048 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2049 			else
2050 				op->val = 0;
2051 			goto logical_done;
2052 
2053 		case 792:	/* sraw */
2054 			op->type = COMPUTE + SETREG + SETXER;
2055 			sh = regs->gpr[rb] & 0x3f;
2056 			ival = (signed int) regs->gpr[rd];
2057 			op->val = ival >> (sh < 32 ? sh : 31);
2058 			op->xerval = regs->xer;
2059 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2060 				op->xerval |= XER_CA;
2061 			else
2062 				op->xerval &= ~XER_CA;
2063 			set_ca32(op, op->xerval & XER_CA);
2064 			goto logical_done;
2065 
2066 		case 824:	/* srawi */
2067 			op->type = COMPUTE + SETREG + SETXER;
2068 			sh = rb;
2069 			ival = (signed int) regs->gpr[rd];
2070 			op->val = ival >> sh;
2071 			op->xerval = regs->xer;
2072 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2073 				op->xerval |= XER_CA;
2074 			else
2075 				op->xerval &= ~XER_CA;
2076 			set_ca32(op, op->xerval & XER_CA);
2077 			goto logical_done;
2078 
2079 #ifdef __powerpc64__
2080 		case 27:	/* sld */
2081 			sh = regs->gpr[rb] & 0x7f;
2082 			if (sh < 64)
2083 				op->val = regs->gpr[rd] << sh;
2084 			else
2085 				op->val = 0;
2086 			goto logical_done;
2087 
2088 		case 539:	/* srd */
2089 			sh = regs->gpr[rb] & 0x7f;
2090 			if (sh < 64)
2091 				op->val = regs->gpr[rd] >> sh;
2092 			else
2093 				op->val = 0;
2094 			goto logical_done;
2095 
2096 		case 794:	/* srad */
2097 			op->type = COMPUTE + SETREG + SETXER;
2098 			sh = regs->gpr[rb] & 0x7f;
2099 			ival = (signed long int) regs->gpr[rd];
2100 			op->val = ival >> (sh < 64 ? sh : 63);
2101 			op->xerval = regs->xer;
2102 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2103 				op->xerval |= XER_CA;
2104 			else
2105 				op->xerval &= ~XER_CA;
2106 			set_ca32(op, op->xerval & XER_CA);
2107 			goto logical_done;
2108 
2109 		case 826:	/* sradi with sh_5 = 0 */
2110 		case 827:	/* sradi with sh_5 = 1 */
2111 			op->type = COMPUTE + SETREG + SETXER;
2112 			sh = rb | ((word & 2) << 4);
2113 			ival = (signed long int) regs->gpr[rd];
2114 			op->val = ival >> sh;
2115 			op->xerval = regs->xer;
2116 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2117 				op->xerval |= XER_CA;
2118 			else
2119 				op->xerval &= ~XER_CA;
2120 			set_ca32(op, op->xerval & XER_CA);
2121 			goto logical_done;
2122 
2123 		case 890:	/* extswsli with sh_5 = 0 */
2124 		case 891:	/* extswsli with sh_5 = 1 */
2125 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2126 				goto unknown_opcode;
2127 			op->type = COMPUTE + SETREG;
2128 			sh = rb | ((word & 2) << 4);
2129 			val = (signed int) regs->gpr[rd];
2130 			if (sh)
2131 				op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2132 			else
2133 				op->val = val;
2134 			goto logical_done;
2135 
2136 #endif /* __powerpc64__ */
2137 
2138 /*
2139  * Cache instructions
2140  */
2141 		case 54:	/* dcbst */
2142 			op->type = MKOP(CACHEOP, DCBST, 0);
2143 			op->ea = xform_ea(word, regs);
2144 			return 0;
2145 
2146 		case 86:	/* dcbf */
2147 			op->type = MKOP(CACHEOP, DCBF, 0);
2148 			op->ea = xform_ea(word, regs);
2149 			return 0;
2150 
2151 		case 246:	/* dcbtst */
2152 			op->type = MKOP(CACHEOP, DCBTST, 0);
2153 			op->ea = xform_ea(word, regs);
2154 			op->reg = rd;
2155 			return 0;
2156 
2157 		case 278:	/* dcbt */
2158 			op->type = MKOP(CACHEOP, DCBTST, 0);
2159 			op->ea = xform_ea(word, regs);
2160 			op->reg = rd;
2161 			return 0;
2162 
2163 		case 982:	/* icbi */
2164 			op->type = MKOP(CACHEOP, ICBI, 0);
2165 			op->ea = xform_ea(word, regs);
2166 			return 0;
2167 
2168 		case 1014:	/* dcbz */
2169 			op->type = MKOP(CACHEOP, DCBZ, 0);
2170 			op->ea = xform_ea(word, regs);
2171 			return 0;
2172 		}
2173 		break;
2174 	}
2175 
2176 /*
2177  * Loads and stores.
2178  */
2179 	op->type = UNKNOWN;
2180 	op->update_reg = ra;
2181 	op->reg = rd;
2182 	op->val = regs->gpr[rd];
2183 	u = (word >> 20) & UPDATE;
2184 	op->vsx_flags = 0;
2185 
2186 	switch (opcode) {
2187 	case 31:
2188 		u = word & UPDATE;
2189 		op->ea = xform_ea(word, regs);
2190 		switch ((word >> 1) & 0x3ff) {
2191 		case 20:	/* lwarx */
2192 			op->type = MKOP(LARX, 0, 4);
2193 			break;
2194 
2195 		case 150:	/* stwcx. */
2196 			op->type = MKOP(STCX, 0, 4);
2197 			break;
2198 
2199 #ifdef __powerpc64__
2200 		case 84:	/* ldarx */
2201 			op->type = MKOP(LARX, 0, 8);
2202 			break;
2203 
2204 		case 214:	/* stdcx. */
2205 			op->type = MKOP(STCX, 0, 8);
2206 			break;
2207 
2208 		case 52:	/* lbarx */
2209 			op->type = MKOP(LARX, 0, 1);
2210 			break;
2211 
2212 		case 694:	/* stbcx. */
2213 			op->type = MKOP(STCX, 0, 1);
2214 			break;
2215 
2216 		case 116:	/* lharx */
2217 			op->type = MKOP(LARX, 0, 2);
2218 			break;
2219 
2220 		case 726:	/* sthcx. */
2221 			op->type = MKOP(STCX, 0, 2);
2222 			break;
2223 
2224 		case 276:	/* lqarx */
2225 			if (!((rd & 1) || rd == ra || rd == rb))
2226 				op->type = MKOP(LARX, 0, 16);
2227 			break;
2228 
2229 		case 182:	/* stqcx. */
2230 			if (!(rd & 1))
2231 				op->type = MKOP(STCX, 0, 16);
2232 			break;
2233 #endif
2234 
2235 		case 23:	/* lwzx */
2236 		case 55:	/* lwzux */
2237 			op->type = MKOP(LOAD, u, 4);
2238 			break;
2239 
2240 		case 87:	/* lbzx */
2241 		case 119:	/* lbzux */
2242 			op->type = MKOP(LOAD, u, 1);
2243 			break;
2244 
2245 #ifdef CONFIG_ALTIVEC
2246 		/*
2247 		 * Note: for the load/store vector element instructions,
2248 		 * bits of the EA say which field of the VMX register to use.
2249 		 */
2250 		case 7:		/* lvebx */
2251 			op->type = MKOP(LOAD_VMX, 0, 1);
2252 			op->element_size = 1;
2253 			break;
2254 
2255 		case 39:	/* lvehx */
2256 			op->type = MKOP(LOAD_VMX, 0, 2);
2257 			op->element_size = 2;
2258 			break;
2259 
2260 		case 71:	/* lvewx */
2261 			op->type = MKOP(LOAD_VMX, 0, 4);
2262 			op->element_size = 4;
2263 			break;
2264 
2265 		case 103:	/* lvx */
2266 		case 359:	/* lvxl */
2267 			op->type = MKOP(LOAD_VMX, 0, 16);
2268 			op->element_size = 16;
2269 			break;
2270 
2271 		case 135:	/* stvebx */
2272 			op->type = MKOP(STORE_VMX, 0, 1);
2273 			op->element_size = 1;
2274 			break;
2275 
2276 		case 167:	/* stvehx */
2277 			op->type = MKOP(STORE_VMX, 0, 2);
2278 			op->element_size = 2;
2279 			break;
2280 
2281 		case 199:	/* stvewx */
2282 			op->type = MKOP(STORE_VMX, 0, 4);
2283 			op->element_size = 4;
2284 			break;
2285 
2286 		case 231:	/* stvx */
2287 		case 487:	/* stvxl */
2288 			op->type = MKOP(STORE_VMX, 0, 16);
2289 			break;
2290 #endif /* CONFIG_ALTIVEC */
2291 
2292 #ifdef __powerpc64__
2293 		case 21:	/* ldx */
2294 		case 53:	/* ldux */
2295 			op->type = MKOP(LOAD, u, 8);
2296 			break;
2297 
2298 		case 149:	/* stdx */
2299 		case 181:	/* stdux */
2300 			op->type = MKOP(STORE, u, 8);
2301 			break;
2302 #endif
2303 
2304 		case 151:	/* stwx */
2305 		case 183:	/* stwux */
2306 			op->type = MKOP(STORE, u, 4);
2307 			break;
2308 
2309 		case 215:	/* stbx */
2310 		case 247:	/* stbux */
2311 			op->type = MKOP(STORE, u, 1);
2312 			break;
2313 
2314 		case 279:	/* lhzx */
2315 		case 311:	/* lhzux */
2316 			op->type = MKOP(LOAD, u, 2);
2317 			break;
2318 
2319 #ifdef __powerpc64__
2320 		case 341:	/* lwax */
2321 		case 373:	/* lwaux */
2322 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2323 			break;
2324 #endif
2325 
2326 		case 343:	/* lhax */
2327 		case 375:	/* lhaux */
2328 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2329 			break;
2330 
2331 		case 407:	/* sthx */
2332 		case 439:	/* sthux */
2333 			op->type = MKOP(STORE, u, 2);
2334 			break;
2335 
2336 #ifdef __powerpc64__
2337 		case 532:	/* ldbrx */
2338 			op->type = MKOP(LOAD, BYTEREV, 8);
2339 			break;
2340 
2341 #endif
2342 		case 533:	/* lswx */
2343 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2344 			break;
2345 
2346 		case 534:	/* lwbrx */
2347 			op->type = MKOP(LOAD, BYTEREV, 4);
2348 			break;
2349 
2350 		case 597:	/* lswi */
2351 			if (rb == 0)
2352 				rb = 32;	/* # bytes to load */
2353 			op->type = MKOP(LOAD_MULTI, 0, rb);
2354 			op->ea = ra ? regs->gpr[ra] : 0;
2355 			break;
2356 
2357 #ifdef CONFIG_PPC_FPU
2358 		case 535:	/* lfsx */
2359 		case 567:	/* lfsux */
2360 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2361 			break;
2362 
2363 		case 599:	/* lfdx */
2364 		case 631:	/* lfdux */
2365 			op->type = MKOP(LOAD_FP, u, 8);
2366 			break;
2367 
2368 		case 663:	/* stfsx */
2369 		case 695:	/* stfsux */
2370 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2371 			break;
2372 
2373 		case 727:	/* stfdx */
2374 		case 759:	/* stfdux */
2375 			op->type = MKOP(STORE_FP, u, 8);
2376 			break;
2377 
2378 #ifdef __powerpc64__
2379 		case 791:	/* lfdpx */
2380 			op->type = MKOP(LOAD_FP, 0, 16);
2381 			break;
2382 
2383 		case 855:	/* lfiwax */
2384 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2385 			break;
2386 
2387 		case 887:	/* lfiwzx */
2388 			op->type = MKOP(LOAD_FP, 0, 4);
2389 			break;
2390 
2391 		case 919:	/* stfdpx */
2392 			op->type = MKOP(STORE_FP, 0, 16);
2393 			break;
2394 
2395 		case 983:	/* stfiwx */
2396 			op->type = MKOP(STORE_FP, 0, 4);
2397 			break;
2398 #endif /* __powerpc64 */
2399 #endif /* CONFIG_PPC_FPU */
2400 
2401 #ifdef __powerpc64__
2402 		case 660:	/* stdbrx */
2403 			op->type = MKOP(STORE, BYTEREV, 8);
2404 			op->val = byterev_8(regs->gpr[rd]);
2405 			break;
2406 
2407 #endif
2408 		case 661:	/* stswx */
2409 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2410 			break;
2411 
2412 		case 662:	/* stwbrx */
2413 			op->type = MKOP(STORE, BYTEREV, 4);
2414 			op->val = byterev_4(regs->gpr[rd]);
2415 			break;
2416 
2417 		case 725:	/* stswi */
2418 			if (rb == 0)
2419 				rb = 32;	/* # bytes to store */
2420 			op->type = MKOP(STORE_MULTI, 0, rb);
2421 			op->ea = ra ? regs->gpr[ra] : 0;
2422 			break;
2423 
2424 		case 790:	/* lhbrx */
2425 			op->type = MKOP(LOAD, BYTEREV, 2);
2426 			break;
2427 
2428 		case 918:	/* sthbrx */
2429 			op->type = MKOP(STORE, BYTEREV, 2);
2430 			op->val = byterev_2(regs->gpr[rd]);
2431 			break;
2432 
2433 #ifdef CONFIG_VSX
2434 		case 12:	/* lxsiwzx */
2435 			op->reg = rd | ((word & 1) << 5);
2436 			op->type = MKOP(LOAD_VSX, 0, 4);
2437 			op->element_size = 8;
2438 			break;
2439 
2440 		case 76:	/* lxsiwax */
2441 			op->reg = rd | ((word & 1) << 5);
2442 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2443 			op->element_size = 8;
2444 			break;
2445 
2446 		case 140:	/* stxsiwx */
2447 			op->reg = rd | ((word & 1) << 5);
2448 			op->type = MKOP(STORE_VSX, 0, 4);
2449 			op->element_size = 8;
2450 			break;
2451 
2452 		case 268:	/* lxvx */
2453 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2454 				goto unknown_opcode;
2455 			op->reg = rd | ((word & 1) << 5);
2456 			op->type = MKOP(LOAD_VSX, 0, 16);
2457 			op->element_size = 16;
2458 			op->vsx_flags = VSX_CHECK_VEC;
2459 			break;
2460 
2461 		case 269:	/* lxvl */
2462 		case 301: {	/* lxvll */
2463 			int nb;
2464 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2465 				goto unknown_opcode;
2466 			op->reg = rd | ((word & 1) << 5);
2467 			op->ea = ra ? regs->gpr[ra] : 0;
2468 			nb = regs->gpr[rb] & 0xff;
2469 			if (nb > 16)
2470 				nb = 16;
2471 			op->type = MKOP(LOAD_VSX, 0, nb);
2472 			op->element_size = 16;
2473 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2474 				VSX_CHECK_VEC;
2475 			break;
2476 		}
2477 		case 332:	/* lxvdsx */
2478 			op->reg = rd | ((word & 1) << 5);
2479 			op->type = MKOP(LOAD_VSX, 0, 8);
2480 			op->element_size = 8;
2481 			op->vsx_flags = VSX_SPLAT;
2482 			break;
2483 
2484 		case 333:       /* lxvpx */
2485 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2486 				goto unknown_opcode;
2487 			op->reg = VSX_REGISTER_XTP(rd);
2488 			op->type = MKOP(LOAD_VSX, 0, 32);
2489 			op->element_size = 32;
2490 			break;
2491 
2492 		case 364:	/* lxvwsx */
2493 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2494 				goto unknown_opcode;
2495 			op->reg = rd | ((word & 1) << 5);
2496 			op->type = MKOP(LOAD_VSX, 0, 4);
2497 			op->element_size = 4;
2498 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2499 			break;
2500 
2501 		case 396:	/* stxvx */
2502 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2503 				goto unknown_opcode;
2504 			op->reg = rd | ((word & 1) << 5);
2505 			op->type = MKOP(STORE_VSX, 0, 16);
2506 			op->element_size = 16;
2507 			op->vsx_flags = VSX_CHECK_VEC;
2508 			break;
2509 
2510 		case 397:	/* stxvl */
2511 		case 429: {	/* stxvll */
2512 			int nb;
2513 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2514 				goto unknown_opcode;
2515 			op->reg = rd | ((word & 1) << 5);
2516 			op->ea = ra ? regs->gpr[ra] : 0;
2517 			nb = regs->gpr[rb] & 0xff;
2518 			if (nb > 16)
2519 				nb = 16;
2520 			op->type = MKOP(STORE_VSX, 0, nb);
2521 			op->element_size = 16;
2522 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2523 				VSX_CHECK_VEC;
2524 			break;
2525 		}
2526 		case 461:       /* stxvpx */
2527 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2528 				goto unknown_opcode;
2529 			op->reg = VSX_REGISTER_XTP(rd);
2530 			op->type = MKOP(STORE_VSX, 0, 32);
2531 			op->element_size = 32;
2532 			break;
2533 		case 524:	/* lxsspx */
2534 			op->reg = rd | ((word & 1) << 5);
2535 			op->type = MKOP(LOAD_VSX, 0, 4);
2536 			op->element_size = 8;
2537 			op->vsx_flags = VSX_FPCONV;
2538 			break;
2539 
2540 		case 588:	/* lxsdx */
2541 			op->reg = rd | ((word & 1) << 5);
2542 			op->type = MKOP(LOAD_VSX, 0, 8);
2543 			op->element_size = 8;
2544 			break;
2545 
2546 		case 652:	/* stxsspx */
2547 			op->reg = rd | ((word & 1) << 5);
2548 			op->type = MKOP(STORE_VSX, 0, 4);
2549 			op->element_size = 8;
2550 			op->vsx_flags = VSX_FPCONV;
2551 			break;
2552 
2553 		case 716:	/* stxsdx */
2554 			op->reg = rd | ((word & 1) << 5);
2555 			op->type = MKOP(STORE_VSX, 0, 8);
2556 			op->element_size = 8;
2557 			break;
2558 
2559 		case 780:	/* lxvw4x */
2560 			op->reg = rd | ((word & 1) << 5);
2561 			op->type = MKOP(LOAD_VSX, 0, 16);
2562 			op->element_size = 4;
2563 			break;
2564 
2565 		case 781:	/* lxsibzx */
2566 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2567 				goto unknown_opcode;
2568 			op->reg = rd | ((word & 1) << 5);
2569 			op->type = MKOP(LOAD_VSX, 0, 1);
2570 			op->element_size = 8;
2571 			op->vsx_flags = VSX_CHECK_VEC;
2572 			break;
2573 
2574 		case 812:	/* lxvh8x */
2575 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2576 				goto unknown_opcode;
2577 			op->reg = rd | ((word & 1) << 5);
2578 			op->type = MKOP(LOAD_VSX, 0, 16);
2579 			op->element_size = 2;
2580 			op->vsx_flags = VSX_CHECK_VEC;
2581 			break;
2582 
2583 		case 813:	/* lxsihzx */
2584 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2585 				goto unknown_opcode;
2586 			op->reg = rd | ((word & 1) << 5);
2587 			op->type = MKOP(LOAD_VSX, 0, 2);
2588 			op->element_size = 8;
2589 			op->vsx_flags = VSX_CHECK_VEC;
2590 			break;
2591 
2592 		case 844:	/* lxvd2x */
2593 			op->reg = rd | ((word & 1) << 5);
2594 			op->type = MKOP(LOAD_VSX, 0, 16);
2595 			op->element_size = 8;
2596 			break;
2597 
2598 		case 876:	/* lxvb16x */
2599 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2600 				goto unknown_opcode;
2601 			op->reg = rd | ((word & 1) << 5);
2602 			op->type = MKOP(LOAD_VSX, 0, 16);
2603 			op->element_size = 1;
2604 			op->vsx_flags = VSX_CHECK_VEC;
2605 			break;
2606 
2607 		case 908:	/* stxvw4x */
2608 			op->reg = rd | ((word & 1) << 5);
2609 			op->type = MKOP(STORE_VSX, 0, 16);
2610 			op->element_size = 4;
2611 			break;
2612 
2613 		case 909:	/* stxsibx */
2614 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2615 				goto unknown_opcode;
2616 			op->reg = rd | ((word & 1) << 5);
2617 			op->type = MKOP(STORE_VSX, 0, 1);
2618 			op->element_size = 8;
2619 			op->vsx_flags = VSX_CHECK_VEC;
2620 			break;
2621 
2622 		case 940:	/* stxvh8x */
2623 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2624 				goto unknown_opcode;
2625 			op->reg = rd | ((word & 1) << 5);
2626 			op->type = MKOP(STORE_VSX, 0, 16);
2627 			op->element_size = 2;
2628 			op->vsx_flags = VSX_CHECK_VEC;
2629 			break;
2630 
2631 		case 941:	/* stxsihx */
2632 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2633 				goto unknown_opcode;
2634 			op->reg = rd | ((word & 1) << 5);
2635 			op->type = MKOP(STORE_VSX, 0, 2);
2636 			op->element_size = 8;
2637 			op->vsx_flags = VSX_CHECK_VEC;
2638 			break;
2639 
2640 		case 972:	/* stxvd2x */
2641 			op->reg = rd | ((word & 1) << 5);
2642 			op->type = MKOP(STORE_VSX, 0, 16);
2643 			op->element_size = 8;
2644 			break;
2645 
2646 		case 1004:	/* stxvb16x */
2647 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2648 				goto unknown_opcode;
2649 			op->reg = rd | ((word & 1) << 5);
2650 			op->type = MKOP(STORE_VSX, 0, 16);
2651 			op->element_size = 1;
2652 			op->vsx_flags = VSX_CHECK_VEC;
2653 			break;
2654 
2655 #endif /* CONFIG_VSX */
2656 		}
2657 		break;
2658 
2659 	case 32:	/* lwz */
2660 	case 33:	/* lwzu */
2661 		op->type = MKOP(LOAD, u, 4);
2662 		op->ea = dform_ea(word, regs);
2663 		break;
2664 
2665 	case 34:	/* lbz */
2666 	case 35:	/* lbzu */
2667 		op->type = MKOP(LOAD, u, 1);
2668 		op->ea = dform_ea(word, regs);
2669 		break;
2670 
2671 	case 36:	/* stw */
2672 	case 37:	/* stwu */
2673 		op->type = MKOP(STORE, u, 4);
2674 		op->ea = dform_ea(word, regs);
2675 		break;
2676 
2677 	case 38:	/* stb */
2678 	case 39:	/* stbu */
2679 		op->type = MKOP(STORE, u, 1);
2680 		op->ea = dform_ea(word, regs);
2681 		break;
2682 
2683 	case 40:	/* lhz */
2684 	case 41:	/* lhzu */
2685 		op->type = MKOP(LOAD, u, 2);
2686 		op->ea = dform_ea(word, regs);
2687 		break;
2688 
2689 	case 42:	/* lha */
2690 	case 43:	/* lhau */
2691 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2692 		op->ea = dform_ea(word, regs);
2693 		break;
2694 
2695 	case 44:	/* sth */
2696 	case 45:	/* sthu */
2697 		op->type = MKOP(STORE, u, 2);
2698 		op->ea = dform_ea(word, regs);
2699 		break;
2700 
2701 	case 46:	/* lmw */
2702 		if (ra >= rd)
2703 			break;		/* invalid form, ra in range to load */
2704 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2705 		op->ea = dform_ea(word, regs);
2706 		break;
2707 
2708 	case 47:	/* stmw */
2709 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2710 		op->ea = dform_ea(word, regs);
2711 		break;
2712 
2713 #ifdef CONFIG_PPC_FPU
2714 	case 48:	/* lfs */
2715 	case 49:	/* lfsu */
2716 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2717 		op->ea = dform_ea(word, regs);
2718 		break;
2719 
2720 	case 50:	/* lfd */
2721 	case 51:	/* lfdu */
2722 		op->type = MKOP(LOAD_FP, u, 8);
2723 		op->ea = dform_ea(word, regs);
2724 		break;
2725 
2726 	case 52:	/* stfs */
2727 	case 53:	/* stfsu */
2728 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2729 		op->ea = dform_ea(word, regs);
2730 		break;
2731 
2732 	case 54:	/* stfd */
2733 	case 55:	/* stfdu */
2734 		op->type = MKOP(STORE_FP, u, 8);
2735 		op->ea = dform_ea(word, regs);
2736 		break;
2737 #endif
2738 
2739 #ifdef __powerpc64__
2740 	case 56:	/* lq */
2741 		if (!((rd & 1) || (rd == ra)))
2742 			op->type = MKOP(LOAD, 0, 16);
2743 		op->ea = dqform_ea(word, regs);
2744 		break;
2745 #endif
2746 
2747 #ifdef CONFIG_VSX
2748 	case 57:	/* lfdp, lxsd, lxssp */
2749 		op->ea = dsform_ea(word, regs);
2750 		switch (word & 3) {
2751 		case 0:		/* lfdp */
2752 			if (rd & 1)
2753 				break;		/* reg must be even */
2754 			op->type = MKOP(LOAD_FP, 0, 16);
2755 			break;
2756 		case 2:		/* lxsd */
2757 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2758 				goto unknown_opcode;
2759 			op->reg = rd + 32;
2760 			op->type = MKOP(LOAD_VSX, 0, 8);
2761 			op->element_size = 8;
2762 			op->vsx_flags = VSX_CHECK_VEC;
2763 			break;
2764 		case 3:		/* lxssp */
2765 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2766 				goto unknown_opcode;
2767 			op->reg = rd + 32;
2768 			op->type = MKOP(LOAD_VSX, 0, 4);
2769 			op->element_size = 8;
2770 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2771 			break;
2772 		}
2773 		break;
2774 #endif /* CONFIG_VSX */
2775 
2776 #ifdef __powerpc64__
2777 	case 58:	/* ld[u], lwa */
2778 		op->ea = dsform_ea(word, regs);
2779 		switch (word & 3) {
2780 		case 0:		/* ld */
2781 			op->type = MKOP(LOAD, 0, 8);
2782 			break;
2783 		case 1:		/* ldu */
2784 			op->type = MKOP(LOAD, UPDATE, 8);
2785 			break;
2786 		case 2:		/* lwa */
2787 			op->type = MKOP(LOAD, SIGNEXT, 4);
2788 			break;
2789 		}
2790 		break;
2791 #endif
2792 
2793 #ifdef CONFIG_VSX
2794 	case 6:
2795 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2796 			goto unknown_opcode;
2797 		op->ea = dqform_ea(word, regs);
2798 		op->reg = VSX_REGISTER_XTP(rd);
2799 		op->element_size = 32;
2800 		switch (word & 0xf) {
2801 		case 0:         /* lxvp */
2802 			op->type = MKOP(LOAD_VSX, 0, 32);
2803 			break;
2804 		case 1:         /* stxvp */
2805 			op->type = MKOP(STORE_VSX, 0, 32);
2806 			break;
2807 		}
2808 		break;
2809 
2810 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2811 		switch (word & 7) {
2812 		case 0:		/* stfdp with LSB of DS field = 0 */
2813 		case 4:		/* stfdp with LSB of DS field = 1 */
2814 			op->ea = dsform_ea(word, regs);
2815 			op->type = MKOP(STORE_FP, 0, 16);
2816 			break;
2817 
2818 		case 1:		/* lxv */
2819 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2820 				goto unknown_opcode;
2821 			op->ea = dqform_ea(word, regs);
2822 			if (word & 8)
2823 				op->reg = rd + 32;
2824 			op->type = MKOP(LOAD_VSX, 0, 16);
2825 			op->element_size = 16;
2826 			op->vsx_flags = VSX_CHECK_VEC;
2827 			break;
2828 
2829 		case 2:		/* stxsd with LSB of DS field = 0 */
2830 		case 6:		/* stxsd with LSB of DS field = 1 */
2831 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2832 				goto unknown_opcode;
2833 			op->ea = dsform_ea(word, regs);
2834 			op->reg = rd + 32;
2835 			op->type = MKOP(STORE_VSX, 0, 8);
2836 			op->element_size = 8;
2837 			op->vsx_flags = VSX_CHECK_VEC;
2838 			break;
2839 
2840 		case 3:		/* stxssp with LSB of DS field = 0 */
2841 		case 7:		/* stxssp with LSB of DS field = 1 */
2842 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2843 				goto unknown_opcode;
2844 			op->ea = dsform_ea(word, regs);
2845 			op->reg = rd + 32;
2846 			op->type = MKOP(STORE_VSX, 0, 4);
2847 			op->element_size = 8;
2848 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2849 			break;
2850 
2851 		case 5:		/* stxv */
2852 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2853 				goto unknown_opcode;
2854 			op->ea = dqform_ea(word, regs);
2855 			if (word & 8)
2856 				op->reg = rd + 32;
2857 			op->type = MKOP(STORE_VSX, 0, 16);
2858 			op->element_size = 16;
2859 			op->vsx_flags = VSX_CHECK_VEC;
2860 			break;
2861 		}
2862 		break;
2863 #endif /* CONFIG_VSX */
2864 
2865 #ifdef __powerpc64__
2866 	case 62:	/* std[u] */
2867 		op->ea = dsform_ea(word, regs);
2868 		switch (word & 3) {
2869 		case 0:		/* std */
2870 			op->type = MKOP(STORE, 0, 8);
2871 			break;
2872 		case 1:		/* stdu */
2873 			op->type = MKOP(STORE, UPDATE, 8);
2874 			break;
2875 		case 2:		/* stq */
2876 			if (!(rd & 1))
2877 				op->type = MKOP(STORE, 0, 16);
2878 			break;
2879 		}
2880 		break;
2881 	case 1: /* Prefixed instructions */
2882 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2883 			goto unknown_opcode;
2884 
2885 		prefix_r = GET_PREFIX_R(word);
2886 		ra = GET_PREFIX_RA(suffix);
2887 		op->update_reg = ra;
2888 		rd = (suffix >> 21) & 0x1f;
2889 		op->reg = rd;
2890 		op->val = regs->gpr[rd];
2891 
2892 		suffixopcode = get_op(suffix);
2893 		prefixtype = (word >> 24) & 0x3;
2894 		switch (prefixtype) {
2895 		case 0: /* Type 00  Eight-Byte Load/Store */
2896 			if (prefix_r && ra)
2897 				break;
2898 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2899 			switch (suffixopcode) {
2900 			case 41:	/* plwa */
2901 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2902 				break;
2903 #ifdef CONFIG_VSX
2904 			case 42:        /* plxsd */
2905 				op->reg = rd + 32;
2906 				op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2907 				op->element_size = 8;
2908 				op->vsx_flags = VSX_CHECK_VEC;
2909 				break;
2910 			case 43:	/* plxssp */
2911 				op->reg = rd + 32;
2912 				op->type = MKOP(LOAD_VSX, PREFIXED, 4);
2913 				op->element_size = 8;
2914 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2915 				break;
2916 			case 46:	/* pstxsd */
2917 				op->reg = rd + 32;
2918 				op->type = MKOP(STORE_VSX, PREFIXED, 8);
2919 				op->element_size = 8;
2920 				op->vsx_flags = VSX_CHECK_VEC;
2921 				break;
2922 			case 47:	/* pstxssp */
2923 				op->reg = rd + 32;
2924 				op->type = MKOP(STORE_VSX, PREFIXED, 4);
2925 				op->element_size = 8;
2926 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2927 				break;
2928 			case 51:	/* plxv1 */
2929 				op->reg += 32;
2930 				fallthrough;
2931 			case 50:	/* plxv0 */
2932 				op->type = MKOP(LOAD_VSX, PREFIXED, 16);
2933 				op->element_size = 16;
2934 				op->vsx_flags = VSX_CHECK_VEC;
2935 				break;
2936 			case 55:	/* pstxv1 */
2937 				op->reg = rd + 32;
2938 				fallthrough;
2939 			case 54:	/* pstxv0 */
2940 				op->type = MKOP(STORE_VSX, PREFIXED, 16);
2941 				op->element_size = 16;
2942 				op->vsx_flags = VSX_CHECK_VEC;
2943 				break;
2944 #endif /* CONFIG_VSX */
2945 			case 56:        /* plq */
2946 				op->type = MKOP(LOAD, PREFIXED, 16);
2947 				break;
2948 			case 57:	/* pld */
2949 				op->type = MKOP(LOAD, PREFIXED, 8);
2950 				break;
2951 #ifdef CONFIG_VSX
2952 			case 58:        /* plxvp */
2953 				op->reg = VSX_REGISTER_XTP(rd);
2954 				op->type = MKOP(LOAD_VSX, PREFIXED, 32);
2955 				op->element_size = 32;
2956 				break;
2957 #endif /* CONFIG_VSX */
2958 			case 60:        /* pstq */
2959 				op->type = MKOP(STORE, PREFIXED, 16);
2960 				break;
2961 			case 61:	/* pstd */
2962 				op->type = MKOP(STORE, PREFIXED, 8);
2963 				break;
2964 #ifdef CONFIG_VSX
2965 			case 62:        /* pstxvp */
2966 				op->reg = VSX_REGISTER_XTP(rd);
2967 				op->type = MKOP(STORE_VSX, PREFIXED, 32);
2968 				op->element_size = 32;
2969 				break;
2970 #endif /* CONFIG_VSX */
2971 			}
2972 			break;
2973 		case 1: /* Type 01 Eight-Byte Register-to-Register */
2974 			break;
2975 		case 2: /* Type 10 Modified Load/Store */
2976 			if (prefix_r && ra)
2977 				break;
2978 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2979 			switch (suffixopcode) {
2980 			case 32:	/* plwz */
2981 				op->type = MKOP(LOAD, PREFIXED, 4);
2982 				break;
2983 			case 34:	/* plbz */
2984 				op->type = MKOP(LOAD, PREFIXED, 1);
2985 				break;
2986 			case 36:	/* pstw */
2987 				op->type = MKOP(STORE, PREFIXED, 4);
2988 				break;
2989 			case 38:	/* pstb */
2990 				op->type = MKOP(STORE, PREFIXED, 1);
2991 				break;
2992 			case 40:	/* plhz */
2993 				op->type = MKOP(LOAD, PREFIXED, 2);
2994 				break;
2995 			case 42:	/* plha */
2996 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
2997 				break;
2998 			case 44:	/* psth */
2999 				op->type = MKOP(STORE, PREFIXED, 2);
3000 				break;
3001 			case 48:        /* plfs */
3002 				op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3003 				break;
3004 			case 50:        /* plfd */
3005 				op->type = MKOP(LOAD_FP, PREFIXED, 8);
3006 				break;
3007 			case 52:        /* pstfs */
3008 				op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3009 				break;
3010 			case 54:        /* pstfd */
3011 				op->type = MKOP(STORE_FP, PREFIXED, 8);
3012 				break;
3013 			}
3014 			break;
3015 		case 3: /* Type 11 Modified Register-to-Register */
3016 			break;
3017 		}
3018 #endif /* __powerpc64__ */
3019 
3020 	}
3021 
3022 	if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3023 		switch (GETTYPE(op->type)) {
3024 		case LOAD:
3025 			if (ra == rd)
3026 				goto unknown_opcode;
3027 			fallthrough;
3028 		case STORE:
3029 		case LOAD_FP:
3030 		case STORE_FP:
3031 			if (ra == 0)
3032 				goto unknown_opcode;
3033 		}
3034 	}
3035 
3036 #ifdef CONFIG_VSX
3037 	if ((GETTYPE(op->type) == LOAD_VSX ||
3038 	     GETTYPE(op->type) == STORE_VSX) &&
3039 	    !cpu_has_feature(CPU_FTR_VSX)) {
3040 		return -1;
3041 	}
3042 #endif /* CONFIG_VSX */
3043 
3044 	return 0;
3045 
3046  unknown_opcode:
3047 	op->type = UNKNOWN;
3048 	return 0;
3049 
3050  logical_done:
3051 	if (word & 1)
3052 		set_cr0(regs, op);
3053  logical_done_nocc:
3054 	op->reg = ra;
3055 	op->type |= SETREG;
3056 	return 1;
3057 
3058  arith_done:
3059 	if (word & 1)
3060 		set_cr0(regs, op);
3061  compute_done:
3062 	op->reg = rd;
3063 	op->type |= SETREG;
3064 	return 1;
3065 
3066  priv:
3067 	op->type = INTERRUPT | 0x700;
3068 	op->val = SRR1_PROGPRIV;
3069 	return 0;
3070 
3071  trap:
3072 	op->type = INTERRUPT | 0x700;
3073 	op->val = SRR1_PROGTRAP;
3074 	return 0;
3075 }
3076 EXPORT_SYMBOL_GPL(analyse_instr);
3077 NOKPROBE_SYMBOL(analyse_instr);
3078 
3079 /*
3080  * For PPC32 we always use stwu with r1 to change the stack pointer.
3081  * So this emulated store may corrupt the exception frame, now we
3082  * have to provide the exception frame trampoline, which is pushed
3083  * below the kprobed function stack. So we only update gpr[1] but
3084  * don't emulate the real store operation. We will do real store
3085  * operation safely in exception return code by checking this flag.
3086  */
3087 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3088 {
3089 #ifdef CONFIG_PPC32
3090 	/*
3091 	 * Check if we will touch kernel stack overflow
3092 	 */
3093 	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
3094 		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
3095 		return -EINVAL;
3096 	}
3097 #endif /* CONFIG_PPC32 */
3098 	/*
3099 	 * Check if we already set since that means we'll
3100 	 * lose the previous value.
3101 	 */
3102 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3103 	set_thread_flag(TIF_EMULATE_STACK_STORE);
3104 	return 0;
3105 }
3106 
3107 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3108 {
3109 	switch (size) {
3110 	case 2:
3111 		*valp = (signed short) *valp;
3112 		break;
3113 	case 4:
3114 		*valp = (signed int) *valp;
3115 		break;
3116 	}
3117 }
3118 
3119 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3120 {
3121 	switch (size) {
3122 	case 2:
3123 		*valp = byterev_2(*valp);
3124 		break;
3125 	case 4:
3126 		*valp = byterev_4(*valp);
3127 		break;
3128 #ifdef __powerpc64__
3129 	case 8:
3130 		*valp = byterev_8(*valp);
3131 		break;
3132 #endif
3133 	}
3134 }
3135 
3136 /*
3137  * Emulate an instruction that can be executed just by updating
3138  * fields in *regs.
3139  */
3140 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3141 {
3142 	unsigned long next_pc;
3143 
3144 	next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3145 	switch (GETTYPE(op->type)) {
3146 	case COMPUTE:
3147 		if (op->type & SETREG)
3148 			regs->gpr[op->reg] = op->val;
3149 		if (op->type & SETCC)
3150 			regs->ccr = op->ccval;
3151 		if (op->type & SETXER)
3152 			regs->xer = op->xerval;
3153 		break;
3154 
3155 	case BRANCH:
3156 		if (op->type & SETLK)
3157 			regs->link = next_pc;
3158 		if (op->type & BRTAKEN)
3159 			next_pc = op->val;
3160 		if (op->type & DECCTR)
3161 			--regs->ctr;
3162 		break;
3163 
3164 	case BARRIER:
3165 		switch (op->type & BARRIER_MASK) {
3166 		case BARRIER_SYNC:
3167 			mb();
3168 			break;
3169 		case BARRIER_ISYNC:
3170 			isync();
3171 			break;
3172 		case BARRIER_EIEIO:
3173 			eieio();
3174 			break;
3175 		case BARRIER_LWSYNC:
3176 			asm volatile("lwsync" : : : "memory");
3177 			break;
3178 		case BARRIER_PTESYNC:
3179 			asm volatile("ptesync" : : : "memory");
3180 			break;
3181 		}
3182 		break;
3183 
3184 	case MFSPR:
3185 		switch (op->spr) {
3186 		case SPRN_XER:
3187 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3188 			break;
3189 		case SPRN_LR:
3190 			regs->gpr[op->reg] = regs->link;
3191 			break;
3192 		case SPRN_CTR:
3193 			regs->gpr[op->reg] = regs->ctr;
3194 			break;
3195 		default:
3196 			WARN_ON_ONCE(1);
3197 		}
3198 		break;
3199 
3200 	case MTSPR:
3201 		switch (op->spr) {
3202 		case SPRN_XER:
3203 			regs->xer = op->val & 0xffffffffUL;
3204 			break;
3205 		case SPRN_LR:
3206 			regs->link = op->val;
3207 			break;
3208 		case SPRN_CTR:
3209 			regs->ctr = op->val;
3210 			break;
3211 		default:
3212 			WARN_ON_ONCE(1);
3213 		}
3214 		break;
3215 
3216 	default:
3217 		WARN_ON_ONCE(1);
3218 	}
3219 	regs->nip = next_pc;
3220 }
3221 NOKPROBE_SYMBOL(emulate_update_regs);
3222 
3223 /*
3224  * Emulate a previously-analysed load or store instruction.
3225  * Return values are:
3226  * 0 = instruction emulated successfully
3227  * -EFAULT = address out of range or access faulted (regs->dar
3228  *	     contains the faulting address)
3229  * -EACCES = misaligned access, instruction requires alignment
3230  * -EINVAL = unknown operation in *op
3231  */
3232 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3233 {
3234 	int err, size, type;
3235 	int i, rd, nb;
3236 	unsigned int cr;
3237 	unsigned long val;
3238 	unsigned long ea;
3239 	bool cross_endian;
3240 
3241 	err = 0;
3242 	size = GETSIZE(op->type);
3243 	type = GETTYPE(op->type);
3244 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3245 	ea = truncate_if_32bit(regs->msr, op->ea);
3246 
3247 	switch (type) {
3248 	case LARX:
3249 		if (ea & (size - 1))
3250 			return -EACCES;		/* can't handle misaligned */
3251 		if (!address_ok(regs, ea, size))
3252 			return -EFAULT;
3253 		err = 0;
3254 		val = 0;
3255 		switch (size) {
3256 #ifdef __powerpc64__
3257 		case 1:
3258 			__get_user_asmx(val, ea, err, "lbarx");
3259 			break;
3260 		case 2:
3261 			__get_user_asmx(val, ea, err, "lharx");
3262 			break;
3263 #endif
3264 		case 4:
3265 			__get_user_asmx(val, ea, err, "lwarx");
3266 			break;
3267 #ifdef __powerpc64__
3268 		case 8:
3269 			__get_user_asmx(val, ea, err, "ldarx");
3270 			break;
3271 		case 16:
3272 			err = do_lqarx(ea, &regs->gpr[op->reg]);
3273 			break;
3274 #endif
3275 		default:
3276 			return -EINVAL;
3277 		}
3278 		if (err) {
3279 			regs->dar = ea;
3280 			break;
3281 		}
3282 		if (size < 16)
3283 			regs->gpr[op->reg] = val;
3284 		break;
3285 
3286 	case STCX:
3287 		if (ea & (size - 1))
3288 			return -EACCES;		/* can't handle misaligned */
3289 		if (!address_ok(regs, ea, size))
3290 			return -EFAULT;
3291 		err = 0;
3292 		switch (size) {
3293 #ifdef __powerpc64__
3294 		case 1:
3295 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3296 			break;
3297 		case 2:
3298 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3299 			break;
3300 #endif
3301 		case 4:
3302 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
3303 			break;
3304 #ifdef __powerpc64__
3305 		case 8:
3306 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
3307 			break;
3308 		case 16:
3309 			err = do_stqcx(ea, regs->gpr[op->reg],
3310 				       regs->gpr[op->reg + 1], &cr);
3311 			break;
3312 #endif
3313 		default:
3314 			return -EINVAL;
3315 		}
3316 		if (!err)
3317 			regs->ccr = (regs->ccr & 0x0fffffff) |
3318 				(cr & 0xe0000000) |
3319 				((regs->xer >> 3) & 0x10000000);
3320 		else
3321 			regs->dar = ea;
3322 		break;
3323 
3324 	case LOAD:
3325 #ifdef __powerpc64__
3326 		if (size == 16) {
3327 			err = emulate_lq(regs, ea, op->reg, cross_endian);
3328 			break;
3329 		}
3330 #endif
3331 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3332 		if (!err) {
3333 			if (op->type & SIGNEXT)
3334 				do_signext(&regs->gpr[op->reg], size);
3335 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3336 				do_byterev(&regs->gpr[op->reg], size);
3337 		}
3338 		break;
3339 
3340 #ifdef CONFIG_PPC_FPU
3341 	case LOAD_FP:
3342 		/*
3343 		 * If the instruction is in userspace, we can emulate it even
3344 		 * if the VMX state is not live, because we have the state
3345 		 * stored in the thread_struct.  If the instruction is in
3346 		 * the kernel, we must not touch the state in the thread_struct.
3347 		 */
3348 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3349 			return 0;
3350 		err = do_fp_load(op, ea, regs, cross_endian);
3351 		break;
3352 #endif
3353 #ifdef CONFIG_ALTIVEC
3354 	case LOAD_VMX:
3355 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3356 			return 0;
3357 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3358 		break;
3359 #endif
3360 #ifdef CONFIG_VSX
3361 	case LOAD_VSX: {
3362 		unsigned long msrbit = MSR_VSX;
3363 
3364 		/*
3365 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3366 		 * when the target of the instruction is a vector register.
3367 		 */
3368 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3369 			msrbit = MSR_VEC;
3370 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3371 			return 0;
3372 		err = do_vsx_load(op, ea, regs, cross_endian);
3373 		break;
3374 	}
3375 #endif
3376 	case LOAD_MULTI:
3377 		if (!address_ok(regs, ea, size))
3378 			return -EFAULT;
3379 		rd = op->reg;
3380 		for (i = 0; i < size; i += 4) {
3381 			unsigned int v32 = 0;
3382 
3383 			nb = size - i;
3384 			if (nb > 4)
3385 				nb = 4;
3386 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3387 			if (err)
3388 				break;
3389 			if (unlikely(cross_endian))
3390 				v32 = byterev_4(v32);
3391 			regs->gpr[rd] = v32;
3392 			ea += 4;
3393 			/* reg number wraps from 31 to 0 for lsw[ix] */
3394 			rd = (rd + 1) & 0x1f;
3395 		}
3396 		break;
3397 
3398 	case STORE:
3399 #ifdef __powerpc64__
3400 		if (size == 16) {
3401 			err = emulate_stq(regs, ea, op->reg, cross_endian);
3402 			break;
3403 		}
3404 #endif
3405 		if ((op->type & UPDATE) && size == sizeof(long) &&
3406 		    op->reg == 1 && op->update_reg == 1 &&
3407 		    !(regs->msr & MSR_PR) &&
3408 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3409 			err = handle_stack_update(ea, regs);
3410 			break;
3411 		}
3412 		if (unlikely(cross_endian))
3413 			do_byterev(&op->val, size);
3414 		err = write_mem(op->val, ea, size, regs);
3415 		break;
3416 
3417 #ifdef CONFIG_PPC_FPU
3418 	case STORE_FP:
3419 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3420 			return 0;
3421 		err = do_fp_store(op, ea, regs, cross_endian);
3422 		break;
3423 #endif
3424 #ifdef CONFIG_ALTIVEC
3425 	case STORE_VMX:
3426 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3427 			return 0;
3428 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3429 		break;
3430 #endif
3431 #ifdef CONFIG_VSX
3432 	case STORE_VSX: {
3433 		unsigned long msrbit = MSR_VSX;
3434 
3435 		/*
3436 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3437 		 * when the target of the instruction is a vector register.
3438 		 */
3439 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3440 			msrbit = MSR_VEC;
3441 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3442 			return 0;
3443 		err = do_vsx_store(op, ea, regs, cross_endian);
3444 		break;
3445 	}
3446 #endif
3447 	case STORE_MULTI:
3448 		if (!address_ok(regs, ea, size))
3449 			return -EFAULT;
3450 		rd = op->reg;
3451 		for (i = 0; i < size; i += 4) {
3452 			unsigned int v32 = regs->gpr[rd];
3453 
3454 			nb = size - i;
3455 			if (nb > 4)
3456 				nb = 4;
3457 			if (unlikely(cross_endian))
3458 				v32 = byterev_4(v32);
3459 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3460 			if (err)
3461 				break;
3462 			ea += 4;
3463 			/* reg number wraps from 31 to 0 for stsw[ix] */
3464 			rd = (rd + 1) & 0x1f;
3465 		}
3466 		break;
3467 
3468 	default:
3469 		return -EINVAL;
3470 	}
3471 
3472 	if (err)
3473 		return err;
3474 
3475 	if (op->type & UPDATE)
3476 		regs->gpr[op->update_reg] = op->ea;
3477 
3478 	return 0;
3479 }
3480 NOKPROBE_SYMBOL(emulate_loadstore);
3481 
3482 /*
3483  * Emulate instructions that cause a transfer of control,
3484  * loads and stores, and a few other instructions.
3485  * Returns 1 if the step was emulated, 0 if not,
3486  * or -1 if the instruction is one that should not be stepped,
3487  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3488  */
3489 int emulate_step(struct pt_regs *regs, struct ppc_inst instr)
3490 {
3491 	struct instruction_op op;
3492 	int r, err, type;
3493 	unsigned long val;
3494 	unsigned long ea;
3495 
3496 	r = analyse_instr(&op, regs, instr);
3497 	if (r < 0)
3498 		return r;
3499 	if (r > 0) {
3500 		emulate_update_regs(regs, &op);
3501 		return 1;
3502 	}
3503 
3504 	err = 0;
3505 	type = GETTYPE(op.type);
3506 
3507 	if (OP_IS_LOAD_STORE(type)) {
3508 		err = emulate_loadstore(regs, &op);
3509 		if (err)
3510 			return 0;
3511 		goto instr_done;
3512 	}
3513 
3514 	switch (type) {
3515 	case CACHEOP:
3516 		ea = truncate_if_32bit(regs->msr, op.ea);
3517 		if (!address_ok(regs, ea, 8))
3518 			return 0;
3519 		switch (op.type & CACHEOP_MASK) {
3520 		case DCBST:
3521 			__cacheop_user_asmx(ea, err, "dcbst");
3522 			break;
3523 		case DCBF:
3524 			__cacheop_user_asmx(ea, err, "dcbf");
3525 			break;
3526 		case DCBTST:
3527 			if (op.reg == 0)
3528 				prefetchw((void *) ea);
3529 			break;
3530 		case DCBT:
3531 			if (op.reg == 0)
3532 				prefetch((void *) ea);
3533 			break;
3534 		case ICBI:
3535 			__cacheop_user_asmx(ea, err, "icbi");
3536 			break;
3537 		case DCBZ:
3538 			err = emulate_dcbz(ea, regs);
3539 			break;
3540 		}
3541 		if (err) {
3542 			regs->dar = ea;
3543 			return 0;
3544 		}
3545 		goto instr_done;
3546 
3547 	case MFMSR:
3548 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3549 		goto instr_done;
3550 
3551 	case MTMSR:
3552 		val = regs->gpr[op.reg];
3553 		if ((val & MSR_RI) == 0)
3554 			/* can't step mtmsr[d] that would clear MSR_RI */
3555 			return -1;
3556 		/* here op.val is the mask of bits to change */
3557 		regs->msr = (regs->msr & ~op.val) | (val & op.val);
3558 		goto instr_done;
3559 
3560 #ifdef CONFIG_PPC64
3561 	case SYSCALL:	/* sc */
3562 		/*
3563 		 * N.B. this uses knowledge about how the syscall
3564 		 * entry code works.  If that is changed, this will
3565 		 * need to be changed also.
3566 		 */
3567 		if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3568 				cpu_has_feature(CPU_FTR_REAL_LE) &&
3569 				regs->gpr[0] == 0x1ebe) {
3570 			regs->msr ^= MSR_LE;
3571 			goto instr_done;
3572 		}
3573 		regs->gpr[9] = regs->gpr[13];
3574 		regs->gpr[10] = MSR_KERNEL;
3575 		regs->gpr[11] = regs->nip + 4;
3576 		regs->gpr[12] = regs->msr & MSR_MASK;
3577 		regs->gpr[13] = (unsigned long) get_paca();
3578 		regs->nip = (unsigned long) &system_call_common;
3579 		regs->msr = MSR_KERNEL;
3580 		return 1;
3581 
3582 #ifdef CONFIG_PPC_BOOK3S_64
3583 	case SYSCALL_VECTORED_0:	/* scv 0 */
3584 		regs->gpr[9] = regs->gpr[13];
3585 		regs->gpr[10] = MSR_KERNEL;
3586 		regs->gpr[11] = regs->nip + 4;
3587 		regs->gpr[12] = regs->msr & MSR_MASK;
3588 		regs->gpr[13] = (unsigned long) get_paca();
3589 		regs->nip = (unsigned long) &system_call_vectored_emulate;
3590 		regs->msr = MSR_KERNEL;
3591 		return 1;
3592 #endif
3593 
3594 	case RFI:
3595 		return -1;
3596 #endif
3597 	}
3598 	return 0;
3599 
3600  instr_done:
3601 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type));
3602 	return 1;
3603 }
3604 NOKPROBE_SYMBOL(emulate_step);
3605