xref: /openbmc/linux/arch/powerpc/lib/sstep.c (revision bf8981a2aa082d9d64771b47c8a1c9c388d8cd40)
1 /*
2  * Single-step support.
3  *
4  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/prefetch.h>
15 #include <asm/sstep.h>
16 #include <asm/processor.h>
17 #include <linux/uaccess.h>
18 #include <asm/cpu_has_feature.h>
19 #include <asm/cputable.h>
20 
21 extern char system_call_common[];
22 
23 #ifdef CONFIG_PPC64
24 /* Bits in SRR1 that are copied from MSR */
25 #define MSR_MASK	0xffffffff87c0ffffUL
26 #else
27 #define MSR_MASK	0x87c0ffff
28 #endif
29 
30 /* Bits in XER */
31 #define XER_SO		0x80000000U
32 #define XER_OV		0x40000000U
33 #define XER_CA		0x20000000U
34 #define XER_OV32	0x00080000U
35 #define XER_CA32	0x00040000U
36 
37 #ifdef CONFIG_PPC_FPU
38 /*
39  * Functions in ldstfp.S
40  */
41 extern void get_fpr(int rn, double *p);
42 extern void put_fpr(int rn, const double *p);
43 extern void get_vr(int rn, __vector128 *p);
44 extern void put_vr(int rn, __vector128 *p);
45 extern void load_vsrn(int vsr, const void *p);
46 extern void store_vsrn(int vsr, void *p);
47 extern void conv_sp_to_dp(const float *sp, double *dp);
48 extern void conv_dp_to_sp(const double *dp, float *sp);
49 #endif
50 
51 #ifdef __powerpc64__
52 /*
53  * Functions in quad.S
54  */
55 extern int do_lq(unsigned long ea, unsigned long *regs);
56 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
57 extern int do_lqarx(unsigned long ea, unsigned long *regs);
58 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
59 		    unsigned int *crp);
60 #endif
61 
62 #ifdef __LITTLE_ENDIAN__
63 #define IS_LE	1
64 #define IS_BE	0
65 #else
66 #define IS_LE	0
67 #define IS_BE	1
68 #endif
69 
70 /*
71  * Emulate the truncation of 64 bit values in 32-bit mode.
72  */
73 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
74 							unsigned long val)
75 {
76 #ifdef __powerpc64__
77 	if ((msr & MSR_64BIT) == 0)
78 		val &= 0xffffffffUL;
79 #endif
80 	return val;
81 }
82 
83 /*
84  * Determine whether a conditional branch instruction would branch.
85  */
86 static nokprobe_inline int branch_taken(unsigned int instr,
87 					const struct pt_regs *regs,
88 					struct instruction_op *op)
89 {
90 	unsigned int bo = (instr >> 21) & 0x1f;
91 	unsigned int bi;
92 
93 	if ((bo & 4) == 0) {
94 		/* decrement counter */
95 		op->type |= DECCTR;
96 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97 			return 0;
98 	}
99 	if ((bo & 0x10) == 0) {
100 		/* check bit from CR */
101 		bi = (instr >> 16) & 0x1f;
102 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103 			return 0;
104 	}
105 	return 1;
106 }
107 
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109 				       unsigned long ea, int nb)
110 {
111 	if (!user_mode(regs))
112 		return 1;
113 	if (__access_ok(ea, nb, USER_DS))
114 		return 1;
115 	if (__access_ok(ea, 1, USER_DS))
116 		/* Access overlaps the end of the user region */
117 		regs->dar = USER_DS.seg;
118 	else
119 		regs->dar = ea;
120 	return 0;
121 }
122 
123 /*
124  * Calculate effective address for a D-form instruction
125  */
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 					      const struct pt_regs *regs)
128 {
129 	int ra;
130 	unsigned long ea;
131 
132 	ra = (instr >> 16) & 0x1f;
133 	ea = (signed short) instr;		/* sign-extend */
134 	if (ra)
135 		ea += regs->gpr[ra];
136 
137 	return ea;
138 }
139 
140 #ifdef __powerpc64__
141 /*
142  * Calculate effective address for a DS-form instruction
143  */
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 					       const struct pt_regs *regs)
146 {
147 	int ra;
148 	unsigned long ea;
149 
150 	ra = (instr >> 16) & 0x1f;
151 	ea = (signed short) (instr & ~3);	/* sign-extend */
152 	if (ra)
153 		ea += regs->gpr[ra];
154 
155 	return ea;
156 }
157 
158 /*
159  * Calculate effective address for a DQ-form instruction
160  */
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 					       const struct pt_regs *regs)
163 {
164 	int ra;
165 	unsigned long ea;
166 
167 	ra = (instr >> 16) & 0x1f;
168 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
169 	if (ra)
170 		ea += regs->gpr[ra];
171 
172 	return ea;
173 }
174 #endif /* __powerpc64 */
175 
176 /*
177  * Calculate effective address for an X-form instruction
178  */
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180 					      const struct pt_regs *regs)
181 {
182 	int ra, rb;
183 	unsigned long ea;
184 
185 	ra = (instr >> 16) & 0x1f;
186 	rb = (instr >> 11) & 0x1f;
187 	ea = regs->gpr[rb];
188 	if (ra)
189 		ea += regs->gpr[ra];
190 
191 	return ea;
192 }
193 
194 /*
195  * Return the largest power of 2, not greater than sizeof(unsigned long),
196  * such that x is a multiple of it.
197  */
198 static nokprobe_inline unsigned long max_align(unsigned long x)
199 {
200 	x |= sizeof(unsigned long);
201 	return x & -x;		/* isolates rightmost bit */
202 }
203 
204 static nokprobe_inline unsigned long byterev_2(unsigned long x)
205 {
206 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
207 }
208 
209 static nokprobe_inline unsigned long byterev_4(unsigned long x)
210 {
211 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
212 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
213 }
214 
215 #ifdef __powerpc64__
216 static nokprobe_inline unsigned long byterev_8(unsigned long x)
217 {
218 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
219 }
220 #endif
221 
222 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
223 {
224 	switch (nb) {
225 	case 2:
226 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
227 		break;
228 	case 4:
229 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
230 		break;
231 #ifdef __powerpc64__
232 	case 8:
233 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
234 		break;
235 	case 16: {
236 		unsigned long *up = (unsigned long *)ptr;
237 		unsigned long tmp;
238 		tmp = byterev_8(up[0]);
239 		up[0] = byterev_8(up[1]);
240 		up[1] = tmp;
241 		break;
242 	}
243 #endif
244 	default:
245 		WARN_ON_ONCE(1);
246 	}
247 }
248 
249 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
250 					    unsigned long ea, int nb,
251 					    struct pt_regs *regs)
252 {
253 	int err = 0;
254 	unsigned long x = 0;
255 
256 	switch (nb) {
257 	case 1:
258 		err = __get_user(x, (unsigned char __user *) ea);
259 		break;
260 	case 2:
261 		err = __get_user(x, (unsigned short __user *) ea);
262 		break;
263 	case 4:
264 		err = __get_user(x, (unsigned int __user *) ea);
265 		break;
266 #ifdef __powerpc64__
267 	case 8:
268 		err = __get_user(x, (unsigned long __user *) ea);
269 		break;
270 #endif
271 	}
272 	if (!err)
273 		*dest = x;
274 	else
275 		regs->dar = ea;
276 	return err;
277 }
278 
279 /*
280  * Copy from userspace to a buffer, using the largest possible
281  * aligned accesses, up to sizeof(long).
282  */
283 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
284 				       struct pt_regs *regs)
285 {
286 	int err = 0;
287 	int c;
288 
289 	for (; nb > 0; nb -= c) {
290 		c = max_align(ea);
291 		if (c > nb)
292 			c = max_align(nb);
293 		switch (c) {
294 		case 1:
295 			err = __get_user(*dest, (unsigned char __user *) ea);
296 			break;
297 		case 2:
298 			err = __get_user(*(u16 *)dest,
299 					 (unsigned short __user *) ea);
300 			break;
301 		case 4:
302 			err = __get_user(*(u32 *)dest,
303 					 (unsigned int __user *) ea);
304 			break;
305 #ifdef __powerpc64__
306 		case 8:
307 			err = __get_user(*(unsigned long *)dest,
308 					 (unsigned long __user *) ea);
309 			break;
310 #endif
311 		}
312 		if (err) {
313 			regs->dar = ea;
314 			return err;
315 		}
316 		dest += c;
317 		ea += c;
318 	}
319 	return 0;
320 }
321 
322 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
323 					      unsigned long ea, int nb,
324 					      struct pt_regs *regs)
325 {
326 	union {
327 		unsigned long ul;
328 		u8 b[sizeof(unsigned long)];
329 	} u;
330 	int i;
331 	int err;
332 
333 	u.ul = 0;
334 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
335 	err = copy_mem_in(&u.b[i], ea, nb, regs);
336 	if (!err)
337 		*dest = u.ul;
338 	return err;
339 }
340 
341 /*
342  * Read memory at address ea for nb bytes, return 0 for success
343  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
344  * If nb < sizeof(long), the result is right-justified on BE systems.
345  */
346 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
347 			      struct pt_regs *regs)
348 {
349 	if (!address_ok(regs, ea, nb))
350 		return -EFAULT;
351 	if ((ea & (nb - 1)) == 0)
352 		return read_mem_aligned(dest, ea, nb, regs);
353 	return read_mem_unaligned(dest, ea, nb, regs);
354 }
355 NOKPROBE_SYMBOL(read_mem);
356 
357 static nokprobe_inline int write_mem_aligned(unsigned long val,
358 					     unsigned long ea, int nb,
359 					     struct pt_regs *regs)
360 {
361 	int err = 0;
362 
363 	switch (nb) {
364 	case 1:
365 		err = __put_user(val, (unsigned char __user *) ea);
366 		break;
367 	case 2:
368 		err = __put_user(val, (unsigned short __user *) ea);
369 		break;
370 	case 4:
371 		err = __put_user(val, (unsigned int __user *) ea);
372 		break;
373 #ifdef __powerpc64__
374 	case 8:
375 		err = __put_user(val, (unsigned long __user *) ea);
376 		break;
377 #endif
378 	}
379 	if (err)
380 		regs->dar = ea;
381 	return err;
382 }
383 
384 /*
385  * Copy from a buffer to userspace, using the largest possible
386  * aligned accesses, up to sizeof(long).
387  */
388 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
389 					struct pt_regs *regs)
390 {
391 	int err = 0;
392 	int c;
393 
394 	for (; nb > 0; nb -= c) {
395 		c = max_align(ea);
396 		if (c > nb)
397 			c = max_align(nb);
398 		switch (c) {
399 		case 1:
400 			err = __put_user(*dest, (unsigned char __user *) ea);
401 			break;
402 		case 2:
403 			err = __put_user(*(u16 *)dest,
404 					 (unsigned short __user *) ea);
405 			break;
406 		case 4:
407 			err = __put_user(*(u32 *)dest,
408 					 (unsigned int __user *) ea);
409 			break;
410 #ifdef __powerpc64__
411 		case 8:
412 			err = __put_user(*(unsigned long *)dest,
413 					 (unsigned long __user *) ea);
414 			break;
415 #endif
416 		}
417 		if (err) {
418 			regs->dar = ea;
419 			return err;
420 		}
421 		dest += c;
422 		ea += c;
423 	}
424 	return 0;
425 }
426 
427 static nokprobe_inline int write_mem_unaligned(unsigned long val,
428 					       unsigned long ea, int nb,
429 					       struct pt_regs *regs)
430 {
431 	union {
432 		unsigned long ul;
433 		u8 b[sizeof(unsigned long)];
434 	} u;
435 	int i;
436 
437 	u.ul = val;
438 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
439 	return copy_mem_out(&u.b[i], ea, nb, regs);
440 }
441 
442 /*
443  * Write memory at address ea for nb bytes, return 0 for success
444  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
445  */
446 static int write_mem(unsigned long val, unsigned long ea, int nb,
447 			       struct pt_regs *regs)
448 {
449 	if (!address_ok(regs, ea, nb))
450 		return -EFAULT;
451 	if ((ea & (nb - 1)) == 0)
452 		return write_mem_aligned(val, ea, nb, regs);
453 	return write_mem_unaligned(val, ea, nb, regs);
454 }
455 NOKPROBE_SYMBOL(write_mem);
456 
457 #ifdef CONFIG_PPC_FPU
458 /*
459  * These access either the real FP register or the image in the
460  * thread_struct, depending on regs->msr & MSR_FP.
461  */
462 static int do_fp_load(struct instruction_op *op, unsigned long ea,
463 		      struct pt_regs *regs, bool cross_endian)
464 {
465 	int err, rn, nb;
466 	union {
467 		int i;
468 		unsigned int u;
469 		float f;
470 		double d[2];
471 		unsigned long l[2];
472 		u8 b[2 * sizeof(double)];
473 	} u;
474 
475 	nb = GETSIZE(op->type);
476 	if (!address_ok(regs, ea, nb))
477 		return -EFAULT;
478 	rn = op->reg;
479 	err = copy_mem_in(u.b, ea, nb, regs);
480 	if (err)
481 		return err;
482 	if (unlikely(cross_endian)) {
483 		do_byte_reverse(u.b, min(nb, 8));
484 		if (nb == 16)
485 			do_byte_reverse(&u.b[8], 8);
486 	}
487 	preempt_disable();
488 	if (nb == 4) {
489 		if (op->type & FPCONV)
490 			conv_sp_to_dp(&u.f, &u.d[0]);
491 		else if (op->type & SIGNEXT)
492 			u.l[0] = u.i;
493 		else
494 			u.l[0] = u.u;
495 	}
496 	if (regs->msr & MSR_FP)
497 		put_fpr(rn, &u.d[0]);
498 	else
499 		current->thread.TS_FPR(rn) = u.l[0];
500 	if (nb == 16) {
501 		/* lfdp */
502 		rn |= 1;
503 		if (regs->msr & MSR_FP)
504 			put_fpr(rn, &u.d[1]);
505 		else
506 			current->thread.TS_FPR(rn) = u.l[1];
507 	}
508 	preempt_enable();
509 	return 0;
510 }
511 NOKPROBE_SYMBOL(do_fp_load);
512 
513 static int do_fp_store(struct instruction_op *op, unsigned long ea,
514 		       struct pt_regs *regs, bool cross_endian)
515 {
516 	int rn, nb;
517 	union {
518 		unsigned int u;
519 		float f;
520 		double d[2];
521 		unsigned long l[2];
522 		u8 b[2 * sizeof(double)];
523 	} u;
524 
525 	nb = GETSIZE(op->type);
526 	if (!address_ok(regs, ea, nb))
527 		return -EFAULT;
528 	rn = op->reg;
529 	preempt_disable();
530 	if (regs->msr & MSR_FP)
531 		get_fpr(rn, &u.d[0]);
532 	else
533 		u.l[0] = current->thread.TS_FPR(rn);
534 	if (nb == 4) {
535 		if (op->type & FPCONV)
536 			conv_dp_to_sp(&u.d[0], &u.f);
537 		else
538 			u.u = u.l[0];
539 	}
540 	if (nb == 16) {
541 		rn |= 1;
542 		if (regs->msr & MSR_FP)
543 			get_fpr(rn, &u.d[1]);
544 		else
545 			u.l[1] = current->thread.TS_FPR(rn);
546 	}
547 	preempt_enable();
548 	if (unlikely(cross_endian)) {
549 		do_byte_reverse(u.b, min(nb, 8));
550 		if (nb == 16)
551 			do_byte_reverse(&u.b[8], 8);
552 	}
553 	return copy_mem_out(u.b, ea, nb, regs);
554 }
555 NOKPROBE_SYMBOL(do_fp_store);
556 #endif
557 
558 #ifdef CONFIG_ALTIVEC
559 /* For Altivec/VMX, no need to worry about alignment */
560 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561 				       int size, struct pt_regs *regs,
562 				       bool cross_endian)
563 {
564 	int err;
565 	union {
566 		__vector128 v;
567 		u8 b[sizeof(__vector128)];
568 	} u = {};
569 
570 	if (!address_ok(regs, ea & ~0xfUL, 16))
571 		return -EFAULT;
572 	/* align to multiple of size */
573 	ea &= ~(size - 1);
574 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
575 	if (err)
576 		return err;
577 	if (unlikely(cross_endian))
578 		do_byte_reverse(&u.b[ea & 0xf], size);
579 	preempt_disable();
580 	if (regs->msr & MSR_VEC)
581 		put_vr(rn, &u.v);
582 	else
583 		current->thread.vr_state.vr[rn] = u.v;
584 	preempt_enable();
585 	return 0;
586 }
587 
588 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
589 					int size, struct pt_regs *regs,
590 					bool cross_endian)
591 {
592 	union {
593 		__vector128 v;
594 		u8 b[sizeof(__vector128)];
595 	} u;
596 
597 	if (!address_ok(regs, ea & ~0xfUL, 16))
598 		return -EFAULT;
599 	/* align to multiple of size */
600 	ea &= ~(size - 1);
601 
602 	preempt_disable();
603 	if (regs->msr & MSR_VEC)
604 		get_vr(rn, &u.v);
605 	else
606 		u.v = current->thread.vr_state.vr[rn];
607 	preempt_enable();
608 	if (unlikely(cross_endian))
609 		do_byte_reverse(&u.b[ea & 0xf], size);
610 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
611 }
612 #endif /* CONFIG_ALTIVEC */
613 
614 #ifdef __powerpc64__
615 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
616 				      int reg, bool cross_endian)
617 {
618 	int err;
619 
620 	if (!address_ok(regs, ea, 16))
621 		return -EFAULT;
622 	/* if aligned, should be atomic */
623 	if ((ea & 0xf) == 0) {
624 		err = do_lq(ea, &regs->gpr[reg]);
625 	} else {
626 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
627 		if (!err)
628 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
629 	}
630 	if (!err && unlikely(cross_endian))
631 		do_byte_reverse(&regs->gpr[reg], 16);
632 	return err;
633 }
634 
635 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
636 				       int reg, bool cross_endian)
637 {
638 	int err;
639 	unsigned long vals[2];
640 
641 	if (!address_ok(regs, ea, 16))
642 		return -EFAULT;
643 	vals[0] = regs->gpr[reg];
644 	vals[1] = regs->gpr[reg + 1];
645 	if (unlikely(cross_endian))
646 		do_byte_reverse(vals, 16);
647 
648 	/* if aligned, should be atomic */
649 	if ((ea & 0xf) == 0)
650 		return do_stq(ea, vals[0], vals[1]);
651 
652 	err = write_mem(vals[IS_LE], ea, 8, regs);
653 	if (!err)
654 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
655 	return err;
656 }
657 #endif /* __powerpc64 */
658 
659 #ifdef CONFIG_VSX
660 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
661 		      const void *mem, bool rev)
662 {
663 	int size, read_size;
664 	int i, j;
665 	const unsigned int *wp;
666 	const unsigned short *hp;
667 	const unsigned char *bp;
668 
669 	size = GETSIZE(op->type);
670 	reg->d[0] = reg->d[1] = 0;
671 
672 	switch (op->element_size) {
673 	case 16:
674 		/* whole vector; lxv[x] or lxvl[l] */
675 		if (size == 0)
676 			break;
677 		memcpy(reg, mem, size);
678 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
679 			rev = !rev;
680 		if (rev)
681 			do_byte_reverse(reg, 16);
682 		break;
683 	case 8:
684 		/* scalar loads, lxvd2x, lxvdsx */
685 		read_size = (size >= 8) ? 8 : size;
686 		i = IS_LE ? 8 : 8 - read_size;
687 		memcpy(&reg->b[i], mem, read_size);
688 		if (rev)
689 			do_byte_reverse(&reg->b[i], 8);
690 		if (size < 8) {
691 			if (op->type & SIGNEXT) {
692 				/* size == 4 is the only case here */
693 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
694 			} else if (op->vsx_flags & VSX_FPCONV) {
695 				preempt_disable();
696 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
697 					      &reg->dp[IS_LE]);
698 				preempt_enable();
699 			}
700 		} else {
701 			if (size == 16) {
702 				unsigned long v = *(unsigned long *)(mem + 8);
703 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
704 			} else if (op->vsx_flags & VSX_SPLAT)
705 				reg->d[IS_BE] = reg->d[IS_LE];
706 		}
707 		break;
708 	case 4:
709 		/* lxvw4x, lxvwsx */
710 		wp = mem;
711 		for (j = 0; j < size / 4; ++j) {
712 			i = IS_LE ? 3 - j : j;
713 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
714 		}
715 		if (op->vsx_flags & VSX_SPLAT) {
716 			u32 val = reg->w[IS_LE ? 3 : 0];
717 			for (; j < 4; ++j) {
718 				i = IS_LE ? 3 - j : j;
719 				reg->w[i] = val;
720 			}
721 		}
722 		break;
723 	case 2:
724 		/* lxvh8x */
725 		hp = mem;
726 		for (j = 0; j < size / 2; ++j) {
727 			i = IS_LE ? 7 - j : j;
728 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
729 		}
730 		break;
731 	case 1:
732 		/* lxvb16x */
733 		bp = mem;
734 		for (j = 0; j < size; ++j) {
735 			i = IS_LE ? 15 - j : j;
736 			reg->b[i] = *bp++;
737 		}
738 		break;
739 	}
740 }
741 EXPORT_SYMBOL_GPL(emulate_vsx_load);
742 NOKPROBE_SYMBOL(emulate_vsx_load);
743 
744 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
745 		       void *mem, bool rev)
746 {
747 	int size, write_size;
748 	int i, j;
749 	union vsx_reg buf;
750 	unsigned int *wp;
751 	unsigned short *hp;
752 	unsigned char *bp;
753 
754 	size = GETSIZE(op->type);
755 
756 	switch (op->element_size) {
757 	case 16:
758 		/* stxv, stxvx, stxvl, stxvll */
759 		if (size == 0)
760 			break;
761 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
762 			rev = !rev;
763 		if (rev) {
764 			/* reverse 16 bytes */
765 			buf.d[0] = byterev_8(reg->d[1]);
766 			buf.d[1] = byterev_8(reg->d[0]);
767 			reg = &buf;
768 		}
769 		memcpy(mem, reg, size);
770 		break;
771 	case 8:
772 		/* scalar stores, stxvd2x */
773 		write_size = (size >= 8) ? 8 : size;
774 		i = IS_LE ? 8 : 8 - write_size;
775 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
776 			buf.d[0] = buf.d[1] = 0;
777 			preempt_disable();
778 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
779 			preempt_enable();
780 			reg = &buf;
781 		}
782 		memcpy(mem, &reg->b[i], write_size);
783 		if (size == 16)
784 			memcpy(mem + 8, &reg->d[IS_BE], 8);
785 		if (unlikely(rev)) {
786 			do_byte_reverse(mem, write_size);
787 			if (size == 16)
788 				do_byte_reverse(mem + 8, 8);
789 		}
790 		break;
791 	case 4:
792 		/* stxvw4x */
793 		wp = mem;
794 		for (j = 0; j < size / 4; ++j) {
795 			i = IS_LE ? 3 - j : j;
796 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
797 		}
798 		break;
799 	case 2:
800 		/* stxvh8x */
801 		hp = mem;
802 		for (j = 0; j < size / 2; ++j) {
803 			i = IS_LE ? 7 - j : j;
804 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
805 		}
806 		break;
807 	case 1:
808 		/* stvxb16x */
809 		bp = mem;
810 		for (j = 0; j < size; ++j) {
811 			i = IS_LE ? 15 - j : j;
812 			*bp++ = reg->b[i];
813 		}
814 		break;
815 	}
816 }
817 EXPORT_SYMBOL_GPL(emulate_vsx_store);
818 NOKPROBE_SYMBOL(emulate_vsx_store);
819 
820 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
821 				       unsigned long ea, struct pt_regs *regs,
822 				       bool cross_endian)
823 {
824 	int reg = op->reg;
825 	u8 mem[16];
826 	union vsx_reg buf;
827 	int size = GETSIZE(op->type);
828 
829 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
830 		return -EFAULT;
831 
832 	emulate_vsx_load(op, &buf, mem, cross_endian);
833 	preempt_disable();
834 	if (reg < 32) {
835 		/* FP regs + extensions */
836 		if (regs->msr & MSR_FP) {
837 			load_vsrn(reg, &buf);
838 		} else {
839 			current->thread.fp_state.fpr[reg][0] = buf.d[0];
840 			current->thread.fp_state.fpr[reg][1] = buf.d[1];
841 		}
842 	} else {
843 		if (regs->msr & MSR_VEC)
844 			load_vsrn(reg, &buf);
845 		else
846 			current->thread.vr_state.vr[reg - 32] = buf.v;
847 	}
848 	preempt_enable();
849 	return 0;
850 }
851 
852 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
853 					unsigned long ea, struct pt_regs *regs,
854 					bool cross_endian)
855 {
856 	int reg = op->reg;
857 	u8 mem[16];
858 	union vsx_reg buf;
859 	int size = GETSIZE(op->type);
860 
861 	if (!address_ok(regs, ea, size))
862 		return -EFAULT;
863 
864 	preempt_disable();
865 	if (reg < 32) {
866 		/* FP regs + extensions */
867 		if (regs->msr & MSR_FP) {
868 			store_vsrn(reg, &buf);
869 		} else {
870 			buf.d[0] = current->thread.fp_state.fpr[reg][0];
871 			buf.d[1] = current->thread.fp_state.fpr[reg][1];
872 		}
873 	} else {
874 		if (regs->msr & MSR_VEC)
875 			store_vsrn(reg, &buf);
876 		else
877 			buf.v = current->thread.vr_state.vr[reg - 32];
878 	}
879 	preempt_enable();
880 	emulate_vsx_store(op, &buf, mem, cross_endian);
881 	return  copy_mem_out(mem, ea, size, regs);
882 }
883 #endif /* CONFIG_VSX */
884 
885 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
886 {
887 	int err;
888 	unsigned long i, size;
889 
890 #ifdef __powerpc64__
891 	size = ppc64_caches.l1d.block_size;
892 	if (!(regs->msr & MSR_64BIT))
893 		ea &= 0xffffffffUL;
894 #else
895 	size = L1_CACHE_BYTES;
896 #endif
897 	ea &= ~(size - 1);
898 	if (!address_ok(regs, ea, size))
899 		return -EFAULT;
900 	for (i = 0; i < size; i += sizeof(long)) {
901 		err = __put_user(0, (unsigned long __user *) (ea + i));
902 		if (err) {
903 			regs->dar = ea;
904 			return err;
905 		}
906 	}
907 	return 0;
908 }
909 NOKPROBE_SYMBOL(emulate_dcbz);
910 
911 #define __put_user_asmx(x, addr, err, op, cr)		\
912 	__asm__ __volatile__(				\
913 		"1:	" op " %2,0,%3\n"		\
914 		"	mfcr	%1\n"			\
915 		"2:\n"					\
916 		".section .fixup,\"ax\"\n"		\
917 		"3:	li	%0,%4\n"		\
918 		"	b	2b\n"			\
919 		".previous\n"				\
920 		EX_TABLE(1b, 3b)			\
921 		: "=r" (err), "=r" (cr)			\
922 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
923 
924 #define __get_user_asmx(x, addr, err, op)		\
925 	__asm__ __volatile__(				\
926 		"1:	"op" %1,0,%2\n"			\
927 		"2:\n"					\
928 		".section .fixup,\"ax\"\n"		\
929 		"3:	li	%0,%3\n"		\
930 		"	b	2b\n"			\
931 		".previous\n"				\
932 		EX_TABLE(1b, 3b)			\
933 		: "=r" (err), "=r" (x)			\
934 		: "r" (addr), "i" (-EFAULT), "0" (err))
935 
936 #define __cacheop_user_asmx(addr, err, op)		\
937 	__asm__ __volatile__(				\
938 		"1:	"op" 0,%1\n"			\
939 		"2:\n"					\
940 		".section .fixup,\"ax\"\n"		\
941 		"3:	li	%0,%3\n"		\
942 		"	b	2b\n"			\
943 		".previous\n"				\
944 		EX_TABLE(1b, 3b)			\
945 		: "=r" (err)				\
946 		: "r" (addr), "i" (-EFAULT), "0" (err))
947 
948 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
949 				    struct instruction_op *op)
950 {
951 	long val = op->val;
952 
953 	op->type |= SETCC;
954 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
955 #ifdef __powerpc64__
956 	if (!(regs->msr & MSR_64BIT))
957 		val = (int) val;
958 #endif
959 	if (val < 0)
960 		op->ccval |= 0x80000000;
961 	else if (val > 0)
962 		op->ccval |= 0x40000000;
963 	else
964 		op->ccval |= 0x20000000;
965 }
966 
967 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
968 {
969 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
970 		if (val)
971 			op->xerval |= XER_CA32;
972 		else
973 			op->xerval &= ~XER_CA32;
974 	}
975 }
976 
977 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
978 				     struct instruction_op *op, int rd,
979 				     unsigned long val1, unsigned long val2,
980 				     unsigned long carry_in)
981 {
982 	unsigned long val = val1 + val2;
983 
984 	if (carry_in)
985 		++val;
986 	op->type = COMPUTE + SETREG + SETXER;
987 	op->reg = rd;
988 	op->val = val;
989 #ifdef __powerpc64__
990 	if (!(regs->msr & MSR_64BIT)) {
991 		val = (unsigned int) val;
992 		val1 = (unsigned int) val1;
993 	}
994 #endif
995 	op->xerval = regs->xer;
996 	if (val < val1 || (carry_in && val == val1))
997 		op->xerval |= XER_CA;
998 	else
999 		op->xerval &= ~XER_CA;
1000 
1001 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1002 			(carry_in && (unsigned int)val == (unsigned int)val1));
1003 }
1004 
1005 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1006 					  struct instruction_op *op,
1007 					  long v1, long v2, int crfld)
1008 {
1009 	unsigned int crval, shift;
1010 
1011 	op->type = COMPUTE + SETCC;
1012 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1013 	if (v1 < v2)
1014 		crval |= 8;
1015 	else if (v1 > v2)
1016 		crval |= 4;
1017 	else
1018 		crval |= 2;
1019 	shift = (7 - crfld) * 4;
1020 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1021 }
1022 
1023 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1024 					    struct instruction_op *op,
1025 					    unsigned long v1,
1026 					    unsigned long v2, int crfld)
1027 {
1028 	unsigned int crval, shift;
1029 
1030 	op->type = COMPUTE + SETCC;
1031 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1032 	if (v1 < v2)
1033 		crval |= 8;
1034 	else if (v1 > v2)
1035 		crval |= 4;
1036 	else
1037 		crval |= 2;
1038 	shift = (7 - crfld) * 4;
1039 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1040 }
1041 
1042 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1043 				    struct instruction_op *op,
1044 				    unsigned long v1, unsigned long v2)
1045 {
1046 	unsigned long long out_val, mask;
1047 	int i;
1048 
1049 	out_val = 0;
1050 	for (i = 0; i < 8; i++) {
1051 		mask = 0xffUL << (i * 8);
1052 		if ((v1 & mask) == (v2 & mask))
1053 			out_val |= mask;
1054 	}
1055 	op->val = out_val;
1056 }
1057 
1058 /*
1059  * The size parameter is used to adjust the equivalent popcnt instruction.
1060  * popcntb = 8, popcntw = 32, popcntd = 64
1061  */
1062 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1063 				      struct instruction_op *op,
1064 				      unsigned long v1, int size)
1065 {
1066 	unsigned long long out = v1;
1067 
1068 	out -= (out >> 1) & 0x5555555555555555ULL;
1069 	out = (0x3333333333333333ULL & out) +
1070 	      (0x3333333333333333ULL & (out >> 2));
1071 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1072 
1073 	if (size == 8) {	/* popcntb */
1074 		op->val = out;
1075 		return;
1076 	}
1077 	out += out >> 8;
1078 	out += out >> 16;
1079 	if (size == 32) {	/* popcntw */
1080 		op->val = out & 0x0000003f0000003fULL;
1081 		return;
1082 	}
1083 
1084 	out = (out + (out >> 32)) & 0x7f;
1085 	op->val = out;	/* popcntd */
1086 }
1087 
1088 #ifdef CONFIG_PPC64
1089 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1090 				      struct instruction_op *op,
1091 				      unsigned long v1, unsigned long v2)
1092 {
1093 	unsigned char perm, idx;
1094 	unsigned int i;
1095 
1096 	perm = 0;
1097 	for (i = 0; i < 8; i++) {
1098 		idx = (v1 >> (i * 8)) & 0xff;
1099 		if (idx < 64)
1100 			if (v2 & PPC_BIT(idx))
1101 				perm |= 1 << i;
1102 	}
1103 	op->val = perm;
1104 }
1105 #endif /* CONFIG_PPC64 */
1106 /*
1107  * The size parameter adjusts the equivalent prty instruction.
1108  * prtyw = 32, prtyd = 64
1109  */
1110 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1111 				    struct instruction_op *op,
1112 				    unsigned long v, int size)
1113 {
1114 	unsigned long long res = v ^ (v >> 8);
1115 
1116 	res ^= res >> 16;
1117 	if (size == 32) {		/* prtyw */
1118 		op->val = res & 0x0000000100000001ULL;
1119 		return;
1120 	}
1121 
1122 	res ^= res >> 32;
1123 	op->val = res & 1;	/*prtyd */
1124 }
1125 
1126 static nokprobe_inline int trap_compare(long v1, long v2)
1127 {
1128 	int ret = 0;
1129 
1130 	if (v1 < v2)
1131 		ret |= 0x10;
1132 	else if (v1 > v2)
1133 		ret |= 0x08;
1134 	else
1135 		ret |= 0x04;
1136 	if ((unsigned long)v1 < (unsigned long)v2)
1137 		ret |= 0x02;
1138 	else if ((unsigned long)v1 > (unsigned long)v2)
1139 		ret |= 0x01;
1140 	return ret;
1141 }
1142 
1143 /*
1144  * Elements of 32-bit rotate and mask instructions.
1145  */
1146 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1147 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1148 #ifdef __powerpc64__
1149 #define MASK64_L(mb)	(~0UL >> (mb))
1150 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1151 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1152 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1153 #else
1154 #define DATA32(x)	(x)
1155 #endif
1156 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1157 
1158 /*
1159  * Decode an instruction, and return information about it in *op
1160  * without changing *regs.
1161  * Integer arithmetic and logical instructions, branches, and barrier
1162  * instructions can be emulated just using the information in *op.
1163  *
1164  * Return value is 1 if the instruction can be emulated just by
1165  * updating *regs with the information in *op, -1 if we need the
1166  * GPRs but *regs doesn't contain the full register set, or 0
1167  * otherwise.
1168  */
1169 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1170 		  unsigned int instr)
1171 {
1172 	unsigned int opcode, ra, rb, rc, rd, spr, u;
1173 	unsigned long int imm;
1174 	unsigned long int val, val2;
1175 	unsigned int mb, me, sh;
1176 	long ival;
1177 
1178 	op->type = COMPUTE;
1179 
1180 	opcode = instr >> 26;
1181 	switch (opcode) {
1182 	case 16:	/* bc */
1183 		op->type = BRANCH;
1184 		imm = (signed short)(instr & 0xfffc);
1185 		if ((instr & 2) == 0)
1186 			imm += regs->nip;
1187 		op->val = truncate_if_32bit(regs->msr, imm);
1188 		if (instr & 1)
1189 			op->type |= SETLK;
1190 		if (branch_taken(instr, regs, op))
1191 			op->type |= BRTAKEN;
1192 		return 1;
1193 #ifdef CONFIG_PPC64
1194 	case 17:	/* sc */
1195 		if ((instr & 0xfe2) == 2)
1196 			op->type = SYSCALL;
1197 		else
1198 			op->type = UNKNOWN;
1199 		return 0;
1200 #endif
1201 	case 18:	/* b */
1202 		op->type = BRANCH | BRTAKEN;
1203 		imm = instr & 0x03fffffc;
1204 		if (imm & 0x02000000)
1205 			imm -= 0x04000000;
1206 		if ((instr & 2) == 0)
1207 			imm += regs->nip;
1208 		op->val = truncate_if_32bit(regs->msr, imm);
1209 		if (instr & 1)
1210 			op->type |= SETLK;
1211 		return 1;
1212 	case 19:
1213 		switch ((instr >> 1) & 0x3ff) {
1214 		case 0:		/* mcrf */
1215 			op->type = COMPUTE + SETCC;
1216 			rd = 7 - ((instr >> 23) & 0x7);
1217 			ra = 7 - ((instr >> 18) & 0x7);
1218 			rd *= 4;
1219 			ra *= 4;
1220 			val = (regs->ccr >> ra) & 0xf;
1221 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1222 			return 1;
1223 
1224 		case 16:	/* bclr */
1225 		case 528:	/* bcctr */
1226 			op->type = BRANCH;
1227 			imm = (instr & 0x400)? regs->ctr: regs->link;
1228 			op->val = truncate_if_32bit(regs->msr, imm);
1229 			if (instr & 1)
1230 				op->type |= SETLK;
1231 			if (branch_taken(instr, regs, op))
1232 				op->type |= BRTAKEN;
1233 			return 1;
1234 
1235 		case 18:	/* rfid, scary */
1236 			if (regs->msr & MSR_PR)
1237 				goto priv;
1238 			op->type = RFI;
1239 			return 0;
1240 
1241 		case 150:	/* isync */
1242 			op->type = BARRIER | BARRIER_ISYNC;
1243 			return 1;
1244 
1245 		case 33:	/* crnor */
1246 		case 129:	/* crandc */
1247 		case 193:	/* crxor */
1248 		case 225:	/* crnand */
1249 		case 257:	/* crand */
1250 		case 289:	/* creqv */
1251 		case 417:	/* crorc */
1252 		case 449:	/* cror */
1253 			op->type = COMPUTE + SETCC;
1254 			ra = (instr >> 16) & 0x1f;
1255 			rb = (instr >> 11) & 0x1f;
1256 			rd = (instr >> 21) & 0x1f;
1257 			ra = (regs->ccr >> (31 - ra)) & 1;
1258 			rb = (regs->ccr >> (31 - rb)) & 1;
1259 			val = (instr >> (6 + ra * 2 + rb)) & 1;
1260 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1261 				(val << (31 - rd));
1262 			return 1;
1263 		}
1264 		break;
1265 	case 31:
1266 		switch ((instr >> 1) & 0x3ff) {
1267 		case 598:	/* sync */
1268 			op->type = BARRIER + BARRIER_SYNC;
1269 #ifdef __powerpc64__
1270 			switch ((instr >> 21) & 3) {
1271 			case 1:		/* lwsync */
1272 				op->type = BARRIER + BARRIER_LWSYNC;
1273 				break;
1274 			case 2:		/* ptesync */
1275 				op->type = BARRIER + BARRIER_PTESYNC;
1276 				break;
1277 			}
1278 #endif
1279 			return 1;
1280 
1281 		case 854:	/* eieio */
1282 			op->type = BARRIER + BARRIER_EIEIO;
1283 			return 1;
1284 		}
1285 		break;
1286 	}
1287 
1288 	/* Following cases refer to regs->gpr[], so we need all regs */
1289 	if (!FULL_REGS(regs))
1290 		return -1;
1291 
1292 	rd = (instr >> 21) & 0x1f;
1293 	ra = (instr >> 16) & 0x1f;
1294 	rb = (instr >> 11) & 0x1f;
1295 	rc = (instr >> 6) & 0x1f;
1296 
1297 	switch (opcode) {
1298 #ifdef __powerpc64__
1299 	case 2:		/* tdi */
1300 		if (rd & trap_compare(regs->gpr[ra], (short) instr))
1301 			goto trap;
1302 		return 1;
1303 #endif
1304 	case 3:		/* twi */
1305 		if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1306 			goto trap;
1307 		return 1;
1308 
1309 #ifdef __powerpc64__
1310 	case 4:
1311 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1312 			return -1;
1313 
1314 		switch (instr & 0x3f) {
1315 		case 48:	/* maddhd */
1316 			asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1317 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1318 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1319 			goto compute_done;
1320 
1321 		case 49:	/* maddhdu */
1322 			asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1323 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1324 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1325 			goto compute_done;
1326 
1327 		case 51:	/* maddld */
1328 			asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1329 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1330 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1331 			goto compute_done;
1332 		}
1333 
1334 		/*
1335 		 * There are other instructions from ISA 3.0 with the same
1336 		 * primary opcode which do not have emulation support yet.
1337 		 */
1338 		return -1;
1339 #endif
1340 
1341 	case 7:		/* mulli */
1342 		op->val = regs->gpr[ra] * (short) instr;
1343 		goto compute_done;
1344 
1345 	case 8:		/* subfic */
1346 		imm = (short) instr;
1347 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1348 		return 1;
1349 
1350 	case 10:	/* cmpli */
1351 		imm = (unsigned short) instr;
1352 		val = regs->gpr[ra];
1353 #ifdef __powerpc64__
1354 		if ((rd & 1) == 0)
1355 			val = (unsigned int) val;
1356 #endif
1357 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1358 		return 1;
1359 
1360 	case 11:	/* cmpi */
1361 		imm = (short) instr;
1362 		val = regs->gpr[ra];
1363 #ifdef __powerpc64__
1364 		if ((rd & 1) == 0)
1365 			val = (int) val;
1366 #endif
1367 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1368 		return 1;
1369 
1370 	case 12:	/* addic */
1371 		imm = (short) instr;
1372 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1373 		return 1;
1374 
1375 	case 13:	/* addic. */
1376 		imm = (short) instr;
1377 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1378 		set_cr0(regs, op);
1379 		return 1;
1380 
1381 	case 14:	/* addi */
1382 		imm = (short) instr;
1383 		if (ra)
1384 			imm += regs->gpr[ra];
1385 		op->val = imm;
1386 		goto compute_done;
1387 
1388 	case 15:	/* addis */
1389 		imm = ((short) instr) << 16;
1390 		if (ra)
1391 			imm += regs->gpr[ra];
1392 		op->val = imm;
1393 		goto compute_done;
1394 
1395 	case 19:
1396 		if (((instr >> 1) & 0x1f) == 2) {
1397 			/* addpcis */
1398 			imm = (short) (instr & 0xffc1);	/* d0 + d2 fields */
1399 			imm |= (instr >> 15) & 0x3e;	/* d1 field */
1400 			op->val = regs->nip + (imm << 16) + 4;
1401 			goto compute_done;
1402 		}
1403 		op->type = UNKNOWN;
1404 		return 0;
1405 
1406 	case 20:	/* rlwimi */
1407 		mb = (instr >> 6) & 0x1f;
1408 		me = (instr >> 1) & 0x1f;
1409 		val = DATA32(regs->gpr[rd]);
1410 		imm = MASK32(mb, me);
1411 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1412 		goto logical_done;
1413 
1414 	case 21:	/* rlwinm */
1415 		mb = (instr >> 6) & 0x1f;
1416 		me = (instr >> 1) & 0x1f;
1417 		val = DATA32(regs->gpr[rd]);
1418 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1419 		goto logical_done;
1420 
1421 	case 23:	/* rlwnm */
1422 		mb = (instr >> 6) & 0x1f;
1423 		me = (instr >> 1) & 0x1f;
1424 		rb = regs->gpr[rb] & 0x1f;
1425 		val = DATA32(regs->gpr[rd]);
1426 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1427 		goto logical_done;
1428 
1429 	case 24:	/* ori */
1430 		op->val = regs->gpr[rd] | (unsigned short) instr;
1431 		goto logical_done_nocc;
1432 
1433 	case 25:	/* oris */
1434 		imm = (unsigned short) instr;
1435 		op->val = regs->gpr[rd] | (imm << 16);
1436 		goto logical_done_nocc;
1437 
1438 	case 26:	/* xori */
1439 		op->val = regs->gpr[rd] ^ (unsigned short) instr;
1440 		goto logical_done_nocc;
1441 
1442 	case 27:	/* xoris */
1443 		imm = (unsigned short) instr;
1444 		op->val = regs->gpr[rd] ^ (imm << 16);
1445 		goto logical_done_nocc;
1446 
1447 	case 28:	/* andi. */
1448 		op->val = regs->gpr[rd] & (unsigned short) instr;
1449 		set_cr0(regs, op);
1450 		goto logical_done_nocc;
1451 
1452 	case 29:	/* andis. */
1453 		imm = (unsigned short) instr;
1454 		op->val = regs->gpr[rd] & (imm << 16);
1455 		set_cr0(regs, op);
1456 		goto logical_done_nocc;
1457 
1458 #ifdef __powerpc64__
1459 	case 30:	/* rld* */
1460 		mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1461 		val = regs->gpr[rd];
1462 		if ((instr & 0x10) == 0) {
1463 			sh = rb | ((instr & 2) << 4);
1464 			val = ROTATE(val, sh);
1465 			switch ((instr >> 2) & 3) {
1466 			case 0:		/* rldicl */
1467 				val &= MASK64_L(mb);
1468 				break;
1469 			case 1:		/* rldicr */
1470 				val &= MASK64_R(mb);
1471 				break;
1472 			case 2:		/* rldic */
1473 				val &= MASK64(mb, 63 - sh);
1474 				break;
1475 			case 3:		/* rldimi */
1476 				imm = MASK64(mb, 63 - sh);
1477 				val = (regs->gpr[ra] & ~imm) |
1478 					(val & imm);
1479 			}
1480 			op->val = val;
1481 			goto logical_done;
1482 		} else {
1483 			sh = regs->gpr[rb] & 0x3f;
1484 			val = ROTATE(val, sh);
1485 			switch ((instr >> 1) & 7) {
1486 			case 0:		/* rldcl */
1487 				op->val = val & MASK64_L(mb);
1488 				goto logical_done;
1489 			case 1:		/* rldcr */
1490 				op->val = val & MASK64_R(mb);
1491 				goto logical_done;
1492 			}
1493 		}
1494 #endif
1495 		op->type = UNKNOWN;	/* illegal instruction */
1496 		return 0;
1497 
1498 	case 31:
1499 		/* isel occupies 32 minor opcodes */
1500 		if (((instr >> 1) & 0x1f) == 15) {
1501 			mb = (instr >> 6) & 0x1f; /* bc field */
1502 			val = (regs->ccr >> (31 - mb)) & 1;
1503 			val2 = (ra) ? regs->gpr[ra] : 0;
1504 
1505 			op->val = (val) ? val2 : regs->gpr[rb];
1506 			goto compute_done;
1507 		}
1508 
1509 		switch ((instr >> 1) & 0x3ff) {
1510 		case 4:		/* tw */
1511 			if (rd == 0x1f ||
1512 			    (rd & trap_compare((int)regs->gpr[ra],
1513 					       (int)regs->gpr[rb])))
1514 				goto trap;
1515 			return 1;
1516 #ifdef __powerpc64__
1517 		case 68:	/* td */
1518 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1519 				goto trap;
1520 			return 1;
1521 #endif
1522 		case 83:	/* mfmsr */
1523 			if (regs->msr & MSR_PR)
1524 				goto priv;
1525 			op->type = MFMSR;
1526 			op->reg = rd;
1527 			return 0;
1528 		case 146:	/* mtmsr */
1529 			if (regs->msr & MSR_PR)
1530 				goto priv;
1531 			op->type = MTMSR;
1532 			op->reg = rd;
1533 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1534 			return 0;
1535 #ifdef CONFIG_PPC64
1536 		case 178:	/* mtmsrd */
1537 			if (regs->msr & MSR_PR)
1538 				goto priv;
1539 			op->type = MTMSR;
1540 			op->reg = rd;
1541 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1542 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1543 			imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1544 			op->val = imm;
1545 			return 0;
1546 #endif
1547 
1548 		case 19:	/* mfcr */
1549 			imm = 0xffffffffUL;
1550 			if ((instr >> 20) & 1) {
1551 				imm = 0xf0000000UL;
1552 				for (sh = 0; sh < 8; ++sh) {
1553 					if (instr & (0x80000 >> sh))
1554 						break;
1555 					imm >>= 4;
1556 				}
1557 			}
1558 			op->val = regs->ccr & imm;
1559 			goto compute_done;
1560 
1561 		case 144:	/* mtcrf */
1562 			op->type = COMPUTE + SETCC;
1563 			imm = 0xf0000000UL;
1564 			val = regs->gpr[rd];
1565 			op->ccval = regs->ccr;
1566 			for (sh = 0; sh < 8; ++sh) {
1567 				if (instr & (0x80000 >> sh))
1568 					op->ccval = (op->ccval & ~imm) |
1569 						(val & imm);
1570 				imm >>= 4;
1571 			}
1572 			return 1;
1573 
1574 		case 339:	/* mfspr */
1575 			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1576 			op->type = MFSPR;
1577 			op->reg = rd;
1578 			op->spr = spr;
1579 			if (spr == SPRN_XER || spr == SPRN_LR ||
1580 			    spr == SPRN_CTR)
1581 				return 1;
1582 			return 0;
1583 
1584 		case 467:	/* mtspr */
1585 			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1586 			op->type = MTSPR;
1587 			op->val = regs->gpr[rd];
1588 			op->spr = spr;
1589 			if (spr == SPRN_XER || spr == SPRN_LR ||
1590 			    spr == SPRN_CTR)
1591 				return 1;
1592 			return 0;
1593 
1594 /*
1595  * Compare instructions
1596  */
1597 		case 0:	/* cmp */
1598 			val = regs->gpr[ra];
1599 			val2 = regs->gpr[rb];
1600 #ifdef __powerpc64__
1601 			if ((rd & 1) == 0) {
1602 				/* word (32-bit) compare */
1603 				val = (int) val;
1604 				val2 = (int) val2;
1605 			}
1606 #endif
1607 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1608 			return 1;
1609 
1610 		case 32:	/* cmpl */
1611 			val = regs->gpr[ra];
1612 			val2 = regs->gpr[rb];
1613 #ifdef __powerpc64__
1614 			if ((rd & 1) == 0) {
1615 				/* word (32-bit) compare */
1616 				val = (unsigned int) val;
1617 				val2 = (unsigned int) val2;
1618 			}
1619 #endif
1620 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1621 			return 1;
1622 
1623 		case 508: /* cmpb */
1624 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1625 			goto logical_done_nocc;
1626 
1627 /*
1628  * Arithmetic instructions
1629  */
1630 		case 8:	/* subfc */
1631 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1632 				       regs->gpr[rb], 1);
1633 			goto arith_done;
1634 #ifdef __powerpc64__
1635 		case 9:	/* mulhdu */
1636 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1637 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1638 			goto arith_done;
1639 #endif
1640 		case 10:	/* addc */
1641 			add_with_carry(regs, op, rd, regs->gpr[ra],
1642 				       regs->gpr[rb], 0);
1643 			goto arith_done;
1644 
1645 		case 11:	/* mulhwu */
1646 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1647 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1648 			goto arith_done;
1649 
1650 		case 40:	/* subf */
1651 			op->val = regs->gpr[rb] - regs->gpr[ra];
1652 			goto arith_done;
1653 #ifdef __powerpc64__
1654 		case 73:	/* mulhd */
1655 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1656 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1657 			goto arith_done;
1658 #endif
1659 		case 75:	/* mulhw */
1660 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1661 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1662 			goto arith_done;
1663 
1664 		case 104:	/* neg */
1665 			op->val = -regs->gpr[ra];
1666 			goto arith_done;
1667 
1668 		case 136:	/* subfe */
1669 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1670 				       regs->gpr[rb], regs->xer & XER_CA);
1671 			goto arith_done;
1672 
1673 		case 138:	/* adde */
1674 			add_with_carry(regs, op, rd, regs->gpr[ra],
1675 				       regs->gpr[rb], regs->xer & XER_CA);
1676 			goto arith_done;
1677 
1678 		case 200:	/* subfze */
1679 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1680 				       regs->xer & XER_CA);
1681 			goto arith_done;
1682 
1683 		case 202:	/* addze */
1684 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1685 				       regs->xer & XER_CA);
1686 			goto arith_done;
1687 
1688 		case 232:	/* subfme */
1689 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1690 				       regs->xer & XER_CA);
1691 			goto arith_done;
1692 #ifdef __powerpc64__
1693 		case 233:	/* mulld */
1694 			op->val = regs->gpr[ra] * regs->gpr[rb];
1695 			goto arith_done;
1696 #endif
1697 		case 234:	/* addme */
1698 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1699 				       regs->xer & XER_CA);
1700 			goto arith_done;
1701 
1702 		case 235:	/* mullw */
1703 			op->val = (long)(int) regs->gpr[ra] *
1704 				(int) regs->gpr[rb];
1705 
1706 			goto arith_done;
1707 #ifdef __powerpc64__
1708 		case 265:	/* modud */
1709 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1710 				return -1;
1711 			op->val = regs->gpr[ra] % regs->gpr[rb];
1712 			goto compute_done;
1713 #endif
1714 		case 266:	/* add */
1715 			op->val = regs->gpr[ra] + regs->gpr[rb];
1716 			goto arith_done;
1717 
1718 		case 267:	/* moduw */
1719 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1720 				return -1;
1721 			op->val = (unsigned int) regs->gpr[ra] %
1722 				(unsigned int) regs->gpr[rb];
1723 			goto compute_done;
1724 #ifdef __powerpc64__
1725 		case 457:	/* divdu */
1726 			op->val = regs->gpr[ra] / regs->gpr[rb];
1727 			goto arith_done;
1728 #endif
1729 		case 459:	/* divwu */
1730 			op->val = (unsigned int) regs->gpr[ra] /
1731 				(unsigned int) regs->gpr[rb];
1732 			goto arith_done;
1733 #ifdef __powerpc64__
1734 		case 489:	/* divd */
1735 			op->val = (long int) regs->gpr[ra] /
1736 				(long int) regs->gpr[rb];
1737 			goto arith_done;
1738 #endif
1739 		case 491:	/* divw */
1740 			op->val = (int) regs->gpr[ra] /
1741 				(int) regs->gpr[rb];
1742 			goto arith_done;
1743 
1744 		case 755:	/* darn */
1745 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1746 				return -1;
1747 			switch (ra & 0x3) {
1748 			case 0:
1749 				/* 32-bit conditioned */
1750 				asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1751 				goto compute_done;
1752 
1753 			case 1:
1754 				/* 64-bit conditioned */
1755 				asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1756 				goto compute_done;
1757 
1758 			case 2:
1759 				/* 64-bit raw */
1760 				asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1761 				goto compute_done;
1762 			}
1763 
1764 			return -1;
1765 #ifdef __powerpc64__
1766 		case 777:	/* modsd */
1767 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1768 				return -1;
1769 			op->val = (long int) regs->gpr[ra] %
1770 				(long int) regs->gpr[rb];
1771 			goto compute_done;
1772 #endif
1773 		case 779:	/* modsw */
1774 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1775 				return -1;
1776 			op->val = (int) regs->gpr[ra] %
1777 				(int) regs->gpr[rb];
1778 			goto compute_done;
1779 
1780 
1781 /*
1782  * Logical instructions
1783  */
1784 		case 26:	/* cntlzw */
1785 			val = (unsigned int) regs->gpr[rd];
1786 			op->val = ( val ? __builtin_clz(val) : 32 );
1787 			goto logical_done;
1788 #ifdef __powerpc64__
1789 		case 58:	/* cntlzd */
1790 			val = regs->gpr[rd];
1791 			op->val = ( val ? __builtin_clzl(val) : 64 );
1792 			goto logical_done;
1793 #endif
1794 		case 28:	/* and */
1795 			op->val = regs->gpr[rd] & regs->gpr[rb];
1796 			goto logical_done;
1797 
1798 		case 60:	/* andc */
1799 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
1800 			goto logical_done;
1801 
1802 		case 122:	/* popcntb */
1803 			do_popcnt(regs, op, regs->gpr[rd], 8);
1804 			goto logical_done_nocc;
1805 
1806 		case 124:	/* nor */
1807 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1808 			goto logical_done;
1809 
1810 		case 154:	/* prtyw */
1811 			do_prty(regs, op, regs->gpr[rd], 32);
1812 			goto logical_done_nocc;
1813 
1814 		case 186:	/* prtyd */
1815 			do_prty(regs, op, regs->gpr[rd], 64);
1816 			goto logical_done_nocc;
1817 #ifdef CONFIG_PPC64
1818 		case 252:	/* bpermd */
1819 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1820 			goto logical_done_nocc;
1821 #endif
1822 		case 284:	/* xor */
1823 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1824 			goto logical_done;
1825 
1826 		case 316:	/* xor */
1827 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
1828 			goto logical_done;
1829 
1830 		case 378:	/* popcntw */
1831 			do_popcnt(regs, op, regs->gpr[rd], 32);
1832 			goto logical_done_nocc;
1833 
1834 		case 412:	/* orc */
1835 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
1836 			goto logical_done;
1837 
1838 		case 444:	/* or */
1839 			op->val = regs->gpr[rd] | regs->gpr[rb];
1840 			goto logical_done;
1841 
1842 		case 476:	/* nand */
1843 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1844 			goto logical_done;
1845 #ifdef CONFIG_PPC64
1846 		case 506:	/* popcntd */
1847 			do_popcnt(regs, op, regs->gpr[rd], 64);
1848 			goto logical_done_nocc;
1849 #endif
1850 		case 538:	/* cnttzw */
1851 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1852 				return -1;
1853 			val = (unsigned int) regs->gpr[rd];
1854 			op->val = (val ? __builtin_ctz(val) : 32);
1855 			goto logical_done;
1856 #ifdef __powerpc64__
1857 		case 570:	/* cnttzd */
1858 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1859 				return -1;
1860 			val = regs->gpr[rd];
1861 			op->val = (val ? __builtin_ctzl(val) : 64);
1862 			goto logical_done;
1863 #endif
1864 		case 922:	/* extsh */
1865 			op->val = (signed short) regs->gpr[rd];
1866 			goto logical_done;
1867 
1868 		case 954:	/* extsb */
1869 			op->val = (signed char) regs->gpr[rd];
1870 			goto logical_done;
1871 #ifdef __powerpc64__
1872 		case 986:	/* extsw */
1873 			op->val = (signed int) regs->gpr[rd];
1874 			goto logical_done;
1875 #endif
1876 
1877 /*
1878  * Shift instructions
1879  */
1880 		case 24:	/* slw */
1881 			sh = regs->gpr[rb] & 0x3f;
1882 			if (sh < 32)
1883 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1884 			else
1885 				op->val = 0;
1886 			goto logical_done;
1887 
1888 		case 536:	/* srw */
1889 			sh = regs->gpr[rb] & 0x3f;
1890 			if (sh < 32)
1891 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1892 			else
1893 				op->val = 0;
1894 			goto logical_done;
1895 
1896 		case 792:	/* sraw */
1897 			op->type = COMPUTE + SETREG + SETXER;
1898 			sh = regs->gpr[rb] & 0x3f;
1899 			ival = (signed int) regs->gpr[rd];
1900 			op->val = ival >> (sh < 32 ? sh : 31);
1901 			op->xerval = regs->xer;
1902 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1903 				op->xerval |= XER_CA;
1904 			else
1905 				op->xerval &= ~XER_CA;
1906 			set_ca32(op, op->xerval & XER_CA);
1907 			goto logical_done;
1908 
1909 		case 824:	/* srawi */
1910 			op->type = COMPUTE + SETREG + SETXER;
1911 			sh = rb;
1912 			ival = (signed int) regs->gpr[rd];
1913 			op->val = ival >> sh;
1914 			op->xerval = regs->xer;
1915 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1916 				op->xerval |= XER_CA;
1917 			else
1918 				op->xerval &= ~XER_CA;
1919 			set_ca32(op, op->xerval & XER_CA);
1920 			goto logical_done;
1921 
1922 #ifdef __powerpc64__
1923 		case 27:	/* sld */
1924 			sh = regs->gpr[rb] & 0x7f;
1925 			if (sh < 64)
1926 				op->val = regs->gpr[rd] << sh;
1927 			else
1928 				op->val = 0;
1929 			goto logical_done;
1930 
1931 		case 539:	/* srd */
1932 			sh = regs->gpr[rb] & 0x7f;
1933 			if (sh < 64)
1934 				op->val = regs->gpr[rd] >> sh;
1935 			else
1936 				op->val = 0;
1937 			goto logical_done;
1938 
1939 		case 794:	/* srad */
1940 			op->type = COMPUTE + SETREG + SETXER;
1941 			sh = regs->gpr[rb] & 0x7f;
1942 			ival = (signed long int) regs->gpr[rd];
1943 			op->val = ival >> (sh < 64 ? sh : 63);
1944 			op->xerval = regs->xer;
1945 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1946 				op->xerval |= XER_CA;
1947 			else
1948 				op->xerval &= ~XER_CA;
1949 			set_ca32(op, op->xerval & XER_CA);
1950 			goto logical_done;
1951 
1952 		case 826:	/* sradi with sh_5 = 0 */
1953 		case 827:	/* sradi with sh_5 = 1 */
1954 			op->type = COMPUTE + SETREG + SETXER;
1955 			sh = rb | ((instr & 2) << 4);
1956 			ival = (signed long int) regs->gpr[rd];
1957 			op->val = ival >> sh;
1958 			op->xerval = regs->xer;
1959 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1960 				op->xerval |= XER_CA;
1961 			else
1962 				op->xerval &= ~XER_CA;
1963 			set_ca32(op, op->xerval & XER_CA);
1964 			goto logical_done;
1965 
1966 		case 890:	/* extswsli with sh_5 = 0 */
1967 		case 891:	/* extswsli with sh_5 = 1 */
1968 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1969 				return -1;
1970 			op->type = COMPUTE + SETREG;
1971 			sh = rb | ((instr & 2) << 4);
1972 			val = (signed int) regs->gpr[rd];
1973 			if (sh)
1974 				op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
1975 			else
1976 				op->val = val;
1977 			goto logical_done;
1978 
1979 #endif /* __powerpc64__ */
1980 
1981 /*
1982  * Cache instructions
1983  */
1984 		case 54:	/* dcbst */
1985 			op->type = MKOP(CACHEOP, DCBST, 0);
1986 			op->ea = xform_ea(instr, regs);
1987 			return 0;
1988 
1989 		case 86:	/* dcbf */
1990 			op->type = MKOP(CACHEOP, DCBF, 0);
1991 			op->ea = xform_ea(instr, regs);
1992 			return 0;
1993 
1994 		case 246:	/* dcbtst */
1995 			op->type = MKOP(CACHEOP, DCBTST, 0);
1996 			op->ea = xform_ea(instr, regs);
1997 			op->reg = rd;
1998 			return 0;
1999 
2000 		case 278:	/* dcbt */
2001 			op->type = MKOP(CACHEOP, DCBTST, 0);
2002 			op->ea = xform_ea(instr, regs);
2003 			op->reg = rd;
2004 			return 0;
2005 
2006 		case 982:	/* icbi */
2007 			op->type = MKOP(CACHEOP, ICBI, 0);
2008 			op->ea = xform_ea(instr, regs);
2009 			return 0;
2010 
2011 		case 1014:	/* dcbz */
2012 			op->type = MKOP(CACHEOP, DCBZ, 0);
2013 			op->ea = xform_ea(instr, regs);
2014 			return 0;
2015 		}
2016 		break;
2017 	}
2018 
2019 /*
2020  * Loads and stores.
2021  */
2022 	op->type = UNKNOWN;
2023 	op->update_reg = ra;
2024 	op->reg = rd;
2025 	op->val = regs->gpr[rd];
2026 	u = (instr >> 20) & UPDATE;
2027 	op->vsx_flags = 0;
2028 
2029 	switch (opcode) {
2030 	case 31:
2031 		u = instr & UPDATE;
2032 		op->ea = xform_ea(instr, regs);
2033 		switch ((instr >> 1) & 0x3ff) {
2034 		case 20:	/* lwarx */
2035 			op->type = MKOP(LARX, 0, 4);
2036 			break;
2037 
2038 		case 150:	/* stwcx. */
2039 			op->type = MKOP(STCX, 0, 4);
2040 			break;
2041 
2042 #ifdef __powerpc64__
2043 		case 84:	/* ldarx */
2044 			op->type = MKOP(LARX, 0, 8);
2045 			break;
2046 
2047 		case 214:	/* stdcx. */
2048 			op->type = MKOP(STCX, 0, 8);
2049 			break;
2050 
2051 		case 52:	/* lbarx */
2052 			op->type = MKOP(LARX, 0, 1);
2053 			break;
2054 
2055 		case 694:	/* stbcx. */
2056 			op->type = MKOP(STCX, 0, 1);
2057 			break;
2058 
2059 		case 116:	/* lharx */
2060 			op->type = MKOP(LARX, 0, 2);
2061 			break;
2062 
2063 		case 726:	/* sthcx. */
2064 			op->type = MKOP(STCX, 0, 2);
2065 			break;
2066 
2067 		case 276:	/* lqarx */
2068 			if (!((rd & 1) || rd == ra || rd == rb))
2069 				op->type = MKOP(LARX, 0, 16);
2070 			break;
2071 
2072 		case 182:	/* stqcx. */
2073 			if (!(rd & 1))
2074 				op->type = MKOP(STCX, 0, 16);
2075 			break;
2076 #endif
2077 
2078 		case 23:	/* lwzx */
2079 		case 55:	/* lwzux */
2080 			op->type = MKOP(LOAD, u, 4);
2081 			break;
2082 
2083 		case 87:	/* lbzx */
2084 		case 119:	/* lbzux */
2085 			op->type = MKOP(LOAD, u, 1);
2086 			break;
2087 
2088 #ifdef CONFIG_ALTIVEC
2089 		/*
2090 		 * Note: for the load/store vector element instructions,
2091 		 * bits of the EA say which field of the VMX register to use.
2092 		 */
2093 		case 7:		/* lvebx */
2094 			op->type = MKOP(LOAD_VMX, 0, 1);
2095 			op->element_size = 1;
2096 			break;
2097 
2098 		case 39:	/* lvehx */
2099 			op->type = MKOP(LOAD_VMX, 0, 2);
2100 			op->element_size = 2;
2101 			break;
2102 
2103 		case 71:	/* lvewx */
2104 			op->type = MKOP(LOAD_VMX, 0, 4);
2105 			op->element_size = 4;
2106 			break;
2107 
2108 		case 103:	/* lvx */
2109 		case 359:	/* lvxl */
2110 			op->type = MKOP(LOAD_VMX, 0, 16);
2111 			op->element_size = 16;
2112 			break;
2113 
2114 		case 135:	/* stvebx */
2115 			op->type = MKOP(STORE_VMX, 0, 1);
2116 			op->element_size = 1;
2117 			break;
2118 
2119 		case 167:	/* stvehx */
2120 			op->type = MKOP(STORE_VMX, 0, 2);
2121 			op->element_size = 2;
2122 			break;
2123 
2124 		case 199:	/* stvewx */
2125 			op->type = MKOP(STORE_VMX, 0, 4);
2126 			op->element_size = 4;
2127 			break;
2128 
2129 		case 231:	/* stvx */
2130 		case 487:	/* stvxl */
2131 			op->type = MKOP(STORE_VMX, 0, 16);
2132 			break;
2133 #endif /* CONFIG_ALTIVEC */
2134 
2135 #ifdef __powerpc64__
2136 		case 21:	/* ldx */
2137 		case 53:	/* ldux */
2138 			op->type = MKOP(LOAD, u, 8);
2139 			break;
2140 
2141 		case 149:	/* stdx */
2142 		case 181:	/* stdux */
2143 			op->type = MKOP(STORE, u, 8);
2144 			break;
2145 #endif
2146 
2147 		case 151:	/* stwx */
2148 		case 183:	/* stwux */
2149 			op->type = MKOP(STORE, u, 4);
2150 			break;
2151 
2152 		case 215:	/* stbx */
2153 		case 247:	/* stbux */
2154 			op->type = MKOP(STORE, u, 1);
2155 			break;
2156 
2157 		case 279:	/* lhzx */
2158 		case 311:	/* lhzux */
2159 			op->type = MKOP(LOAD, u, 2);
2160 			break;
2161 
2162 #ifdef __powerpc64__
2163 		case 341:	/* lwax */
2164 		case 373:	/* lwaux */
2165 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2166 			break;
2167 #endif
2168 
2169 		case 343:	/* lhax */
2170 		case 375:	/* lhaux */
2171 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2172 			break;
2173 
2174 		case 407:	/* sthx */
2175 		case 439:	/* sthux */
2176 			op->type = MKOP(STORE, u, 2);
2177 			break;
2178 
2179 #ifdef __powerpc64__
2180 		case 532:	/* ldbrx */
2181 			op->type = MKOP(LOAD, BYTEREV, 8);
2182 			break;
2183 
2184 #endif
2185 		case 533:	/* lswx */
2186 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2187 			break;
2188 
2189 		case 534:	/* lwbrx */
2190 			op->type = MKOP(LOAD, BYTEREV, 4);
2191 			break;
2192 
2193 		case 597:	/* lswi */
2194 			if (rb == 0)
2195 				rb = 32;	/* # bytes to load */
2196 			op->type = MKOP(LOAD_MULTI, 0, rb);
2197 			op->ea = ra ? regs->gpr[ra] : 0;
2198 			break;
2199 
2200 #ifdef CONFIG_PPC_FPU
2201 		case 535:	/* lfsx */
2202 		case 567:	/* lfsux */
2203 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2204 			break;
2205 
2206 		case 599:	/* lfdx */
2207 		case 631:	/* lfdux */
2208 			op->type = MKOP(LOAD_FP, u, 8);
2209 			break;
2210 
2211 		case 663:	/* stfsx */
2212 		case 695:	/* stfsux */
2213 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2214 			break;
2215 
2216 		case 727:	/* stfdx */
2217 		case 759:	/* stfdux */
2218 			op->type = MKOP(STORE_FP, u, 8);
2219 			break;
2220 
2221 #ifdef __powerpc64__
2222 		case 791:	/* lfdpx */
2223 			op->type = MKOP(LOAD_FP, 0, 16);
2224 			break;
2225 
2226 		case 855:	/* lfiwax */
2227 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2228 			break;
2229 
2230 		case 887:	/* lfiwzx */
2231 			op->type = MKOP(LOAD_FP, 0, 4);
2232 			break;
2233 
2234 		case 919:	/* stfdpx */
2235 			op->type = MKOP(STORE_FP, 0, 16);
2236 			break;
2237 
2238 		case 983:	/* stfiwx */
2239 			op->type = MKOP(STORE_FP, 0, 4);
2240 			break;
2241 #endif /* __powerpc64 */
2242 #endif /* CONFIG_PPC_FPU */
2243 
2244 #ifdef __powerpc64__
2245 		case 660:	/* stdbrx */
2246 			op->type = MKOP(STORE, BYTEREV, 8);
2247 			op->val = byterev_8(regs->gpr[rd]);
2248 			break;
2249 
2250 #endif
2251 		case 661:	/* stswx */
2252 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2253 			break;
2254 
2255 		case 662:	/* stwbrx */
2256 			op->type = MKOP(STORE, BYTEREV, 4);
2257 			op->val = byterev_4(regs->gpr[rd]);
2258 			break;
2259 
2260 		case 725:	/* stswi */
2261 			if (rb == 0)
2262 				rb = 32;	/* # bytes to store */
2263 			op->type = MKOP(STORE_MULTI, 0, rb);
2264 			op->ea = ra ? regs->gpr[ra] : 0;
2265 			break;
2266 
2267 		case 790:	/* lhbrx */
2268 			op->type = MKOP(LOAD, BYTEREV, 2);
2269 			break;
2270 
2271 		case 918:	/* sthbrx */
2272 			op->type = MKOP(STORE, BYTEREV, 2);
2273 			op->val = byterev_2(regs->gpr[rd]);
2274 			break;
2275 
2276 #ifdef CONFIG_VSX
2277 		case 12:	/* lxsiwzx */
2278 			op->reg = rd | ((instr & 1) << 5);
2279 			op->type = MKOP(LOAD_VSX, 0, 4);
2280 			op->element_size = 8;
2281 			break;
2282 
2283 		case 76:	/* lxsiwax */
2284 			op->reg = rd | ((instr & 1) << 5);
2285 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2286 			op->element_size = 8;
2287 			break;
2288 
2289 		case 140:	/* stxsiwx */
2290 			op->reg = rd | ((instr & 1) << 5);
2291 			op->type = MKOP(STORE_VSX, 0, 4);
2292 			op->element_size = 8;
2293 			break;
2294 
2295 		case 268:	/* lxvx */
2296 			op->reg = rd | ((instr & 1) << 5);
2297 			op->type = MKOP(LOAD_VSX, 0, 16);
2298 			op->element_size = 16;
2299 			op->vsx_flags = VSX_CHECK_VEC;
2300 			break;
2301 
2302 		case 269:	/* lxvl */
2303 		case 301: {	/* lxvll */
2304 			int nb;
2305 			op->reg = rd | ((instr & 1) << 5);
2306 			op->ea = ra ? regs->gpr[ra] : 0;
2307 			nb = regs->gpr[rb] & 0xff;
2308 			if (nb > 16)
2309 				nb = 16;
2310 			op->type = MKOP(LOAD_VSX, 0, nb);
2311 			op->element_size = 16;
2312 			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2313 				VSX_CHECK_VEC;
2314 			break;
2315 		}
2316 		case 332:	/* lxvdsx */
2317 			op->reg = rd | ((instr & 1) << 5);
2318 			op->type = MKOP(LOAD_VSX, 0, 8);
2319 			op->element_size = 8;
2320 			op->vsx_flags = VSX_SPLAT;
2321 			break;
2322 
2323 		case 364:	/* lxvwsx */
2324 			op->reg = rd | ((instr & 1) << 5);
2325 			op->type = MKOP(LOAD_VSX, 0, 4);
2326 			op->element_size = 4;
2327 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2328 			break;
2329 
2330 		case 396:	/* stxvx */
2331 			op->reg = rd | ((instr & 1) << 5);
2332 			op->type = MKOP(STORE_VSX, 0, 16);
2333 			op->element_size = 16;
2334 			op->vsx_flags = VSX_CHECK_VEC;
2335 			break;
2336 
2337 		case 397:	/* stxvl */
2338 		case 429: {	/* stxvll */
2339 			int nb;
2340 			op->reg = rd | ((instr & 1) << 5);
2341 			op->ea = ra ? regs->gpr[ra] : 0;
2342 			nb = regs->gpr[rb] & 0xff;
2343 			if (nb > 16)
2344 				nb = 16;
2345 			op->type = MKOP(STORE_VSX, 0, nb);
2346 			op->element_size = 16;
2347 			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2348 				VSX_CHECK_VEC;
2349 			break;
2350 		}
2351 		case 524:	/* lxsspx */
2352 			op->reg = rd | ((instr & 1) << 5);
2353 			op->type = MKOP(LOAD_VSX, 0, 4);
2354 			op->element_size = 8;
2355 			op->vsx_flags = VSX_FPCONV;
2356 			break;
2357 
2358 		case 588:	/* lxsdx */
2359 			op->reg = rd | ((instr & 1) << 5);
2360 			op->type = MKOP(LOAD_VSX, 0, 8);
2361 			op->element_size = 8;
2362 			break;
2363 
2364 		case 652:	/* stxsspx */
2365 			op->reg = rd | ((instr & 1) << 5);
2366 			op->type = MKOP(STORE_VSX, 0, 4);
2367 			op->element_size = 8;
2368 			op->vsx_flags = VSX_FPCONV;
2369 			break;
2370 
2371 		case 716:	/* stxsdx */
2372 			op->reg = rd | ((instr & 1) << 5);
2373 			op->type = MKOP(STORE_VSX, 0, 8);
2374 			op->element_size = 8;
2375 			break;
2376 
2377 		case 780:	/* lxvw4x */
2378 			op->reg = rd | ((instr & 1) << 5);
2379 			op->type = MKOP(LOAD_VSX, 0, 16);
2380 			op->element_size = 4;
2381 			break;
2382 
2383 		case 781:	/* lxsibzx */
2384 			op->reg = rd | ((instr & 1) << 5);
2385 			op->type = MKOP(LOAD_VSX, 0, 1);
2386 			op->element_size = 8;
2387 			op->vsx_flags = VSX_CHECK_VEC;
2388 			break;
2389 
2390 		case 812:	/* lxvh8x */
2391 			op->reg = rd | ((instr & 1) << 5);
2392 			op->type = MKOP(LOAD_VSX, 0, 16);
2393 			op->element_size = 2;
2394 			op->vsx_flags = VSX_CHECK_VEC;
2395 			break;
2396 
2397 		case 813:	/* lxsihzx */
2398 			op->reg = rd | ((instr & 1) << 5);
2399 			op->type = MKOP(LOAD_VSX, 0, 2);
2400 			op->element_size = 8;
2401 			op->vsx_flags = VSX_CHECK_VEC;
2402 			break;
2403 
2404 		case 844:	/* lxvd2x */
2405 			op->reg = rd | ((instr & 1) << 5);
2406 			op->type = MKOP(LOAD_VSX, 0, 16);
2407 			op->element_size = 8;
2408 			break;
2409 
2410 		case 876:	/* lxvb16x */
2411 			op->reg = rd | ((instr & 1) << 5);
2412 			op->type = MKOP(LOAD_VSX, 0, 16);
2413 			op->element_size = 1;
2414 			op->vsx_flags = VSX_CHECK_VEC;
2415 			break;
2416 
2417 		case 908:	/* stxvw4x */
2418 			op->reg = rd | ((instr & 1) << 5);
2419 			op->type = MKOP(STORE_VSX, 0, 16);
2420 			op->element_size = 4;
2421 			break;
2422 
2423 		case 909:	/* stxsibx */
2424 			op->reg = rd | ((instr & 1) << 5);
2425 			op->type = MKOP(STORE_VSX, 0, 1);
2426 			op->element_size = 8;
2427 			op->vsx_flags = VSX_CHECK_VEC;
2428 			break;
2429 
2430 		case 940:	/* stxvh8x */
2431 			op->reg = rd | ((instr & 1) << 5);
2432 			op->type = MKOP(STORE_VSX, 0, 16);
2433 			op->element_size = 2;
2434 			op->vsx_flags = VSX_CHECK_VEC;
2435 			break;
2436 
2437 		case 941:	/* stxsihx */
2438 			op->reg = rd | ((instr & 1) << 5);
2439 			op->type = MKOP(STORE_VSX, 0, 2);
2440 			op->element_size = 8;
2441 			op->vsx_flags = VSX_CHECK_VEC;
2442 			break;
2443 
2444 		case 972:	/* stxvd2x */
2445 			op->reg = rd | ((instr & 1) << 5);
2446 			op->type = MKOP(STORE_VSX, 0, 16);
2447 			op->element_size = 8;
2448 			break;
2449 
2450 		case 1004:	/* stxvb16x */
2451 			op->reg = rd | ((instr & 1) << 5);
2452 			op->type = MKOP(STORE_VSX, 0, 16);
2453 			op->element_size = 1;
2454 			op->vsx_flags = VSX_CHECK_VEC;
2455 			break;
2456 
2457 #endif /* CONFIG_VSX */
2458 		}
2459 		break;
2460 
2461 	case 32:	/* lwz */
2462 	case 33:	/* lwzu */
2463 		op->type = MKOP(LOAD, u, 4);
2464 		op->ea = dform_ea(instr, regs);
2465 		break;
2466 
2467 	case 34:	/* lbz */
2468 	case 35:	/* lbzu */
2469 		op->type = MKOP(LOAD, u, 1);
2470 		op->ea = dform_ea(instr, regs);
2471 		break;
2472 
2473 	case 36:	/* stw */
2474 	case 37:	/* stwu */
2475 		op->type = MKOP(STORE, u, 4);
2476 		op->ea = dform_ea(instr, regs);
2477 		break;
2478 
2479 	case 38:	/* stb */
2480 	case 39:	/* stbu */
2481 		op->type = MKOP(STORE, u, 1);
2482 		op->ea = dform_ea(instr, regs);
2483 		break;
2484 
2485 	case 40:	/* lhz */
2486 	case 41:	/* lhzu */
2487 		op->type = MKOP(LOAD, u, 2);
2488 		op->ea = dform_ea(instr, regs);
2489 		break;
2490 
2491 	case 42:	/* lha */
2492 	case 43:	/* lhau */
2493 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2494 		op->ea = dform_ea(instr, regs);
2495 		break;
2496 
2497 	case 44:	/* sth */
2498 	case 45:	/* sthu */
2499 		op->type = MKOP(STORE, u, 2);
2500 		op->ea = dform_ea(instr, regs);
2501 		break;
2502 
2503 	case 46:	/* lmw */
2504 		if (ra >= rd)
2505 			break;		/* invalid form, ra in range to load */
2506 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2507 		op->ea = dform_ea(instr, regs);
2508 		break;
2509 
2510 	case 47:	/* stmw */
2511 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2512 		op->ea = dform_ea(instr, regs);
2513 		break;
2514 
2515 #ifdef CONFIG_PPC_FPU
2516 	case 48:	/* lfs */
2517 	case 49:	/* lfsu */
2518 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2519 		op->ea = dform_ea(instr, regs);
2520 		break;
2521 
2522 	case 50:	/* lfd */
2523 	case 51:	/* lfdu */
2524 		op->type = MKOP(LOAD_FP, u, 8);
2525 		op->ea = dform_ea(instr, regs);
2526 		break;
2527 
2528 	case 52:	/* stfs */
2529 	case 53:	/* stfsu */
2530 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2531 		op->ea = dform_ea(instr, regs);
2532 		break;
2533 
2534 	case 54:	/* stfd */
2535 	case 55:	/* stfdu */
2536 		op->type = MKOP(STORE_FP, u, 8);
2537 		op->ea = dform_ea(instr, regs);
2538 		break;
2539 #endif
2540 
2541 #ifdef __powerpc64__
2542 	case 56:	/* lq */
2543 		if (!((rd & 1) || (rd == ra)))
2544 			op->type = MKOP(LOAD, 0, 16);
2545 		op->ea = dqform_ea(instr, regs);
2546 		break;
2547 #endif
2548 
2549 #ifdef CONFIG_VSX
2550 	case 57:	/* lfdp, lxsd, lxssp */
2551 		op->ea = dsform_ea(instr, regs);
2552 		switch (instr & 3) {
2553 		case 0:		/* lfdp */
2554 			if (rd & 1)
2555 				break;		/* reg must be even */
2556 			op->type = MKOP(LOAD_FP, 0, 16);
2557 			break;
2558 		case 2:		/* lxsd */
2559 			op->reg = rd + 32;
2560 			op->type = MKOP(LOAD_VSX, 0, 8);
2561 			op->element_size = 8;
2562 			op->vsx_flags = VSX_CHECK_VEC;
2563 			break;
2564 		case 3:		/* lxssp */
2565 			op->reg = rd + 32;
2566 			op->type = MKOP(LOAD_VSX, 0, 4);
2567 			op->element_size = 8;
2568 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2569 			break;
2570 		}
2571 		break;
2572 #endif /* CONFIG_VSX */
2573 
2574 #ifdef __powerpc64__
2575 	case 58:	/* ld[u], lwa */
2576 		op->ea = dsform_ea(instr, regs);
2577 		switch (instr & 3) {
2578 		case 0:		/* ld */
2579 			op->type = MKOP(LOAD, 0, 8);
2580 			break;
2581 		case 1:		/* ldu */
2582 			op->type = MKOP(LOAD, UPDATE, 8);
2583 			break;
2584 		case 2:		/* lwa */
2585 			op->type = MKOP(LOAD, SIGNEXT, 4);
2586 			break;
2587 		}
2588 		break;
2589 #endif
2590 
2591 #ifdef CONFIG_VSX
2592 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2593 		switch (instr & 7) {
2594 		case 0:		/* stfdp with LSB of DS field = 0 */
2595 		case 4:		/* stfdp with LSB of DS field = 1 */
2596 			op->ea = dsform_ea(instr, regs);
2597 			op->type = MKOP(STORE_FP, 0, 16);
2598 			break;
2599 
2600 		case 1:		/* lxv */
2601 			op->ea = dqform_ea(instr, regs);
2602 			if (instr & 8)
2603 				op->reg = rd + 32;
2604 			op->type = MKOP(LOAD_VSX, 0, 16);
2605 			op->element_size = 16;
2606 			op->vsx_flags = VSX_CHECK_VEC;
2607 			break;
2608 
2609 		case 2:		/* stxsd with LSB of DS field = 0 */
2610 		case 6:		/* stxsd with LSB of DS field = 1 */
2611 			op->ea = dsform_ea(instr, regs);
2612 			op->reg = rd + 32;
2613 			op->type = MKOP(STORE_VSX, 0, 8);
2614 			op->element_size = 8;
2615 			op->vsx_flags = VSX_CHECK_VEC;
2616 			break;
2617 
2618 		case 3:		/* stxssp with LSB of DS field = 0 */
2619 		case 7:		/* stxssp with LSB of DS field = 1 */
2620 			op->ea = dsform_ea(instr, regs);
2621 			op->reg = rd + 32;
2622 			op->type = MKOP(STORE_VSX, 0, 4);
2623 			op->element_size = 8;
2624 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2625 			break;
2626 
2627 		case 5:		/* stxv */
2628 			op->ea = dqform_ea(instr, regs);
2629 			if (instr & 8)
2630 				op->reg = rd + 32;
2631 			op->type = MKOP(STORE_VSX, 0, 16);
2632 			op->element_size = 16;
2633 			op->vsx_flags = VSX_CHECK_VEC;
2634 			break;
2635 		}
2636 		break;
2637 #endif /* CONFIG_VSX */
2638 
2639 #ifdef __powerpc64__
2640 	case 62:	/* std[u] */
2641 		op->ea = dsform_ea(instr, regs);
2642 		switch (instr & 3) {
2643 		case 0:		/* std */
2644 			op->type = MKOP(STORE, 0, 8);
2645 			break;
2646 		case 1:		/* stdu */
2647 			op->type = MKOP(STORE, UPDATE, 8);
2648 			break;
2649 		case 2:		/* stq */
2650 			if (!(rd & 1))
2651 				op->type = MKOP(STORE, 0, 16);
2652 			break;
2653 		}
2654 		break;
2655 #endif /* __powerpc64__ */
2656 
2657 	}
2658 
2659 #ifdef CONFIG_VSX
2660 	if ((GETTYPE(op->type) == LOAD_VSX ||
2661 	     GETTYPE(op->type) == STORE_VSX) &&
2662 	    !cpu_has_feature(CPU_FTR_VSX)) {
2663 		return -1;
2664 	}
2665 #endif /* CONFIG_VSX */
2666 
2667 	return 0;
2668 
2669  logical_done:
2670 	if (instr & 1)
2671 		set_cr0(regs, op);
2672  logical_done_nocc:
2673 	op->reg = ra;
2674 	op->type |= SETREG;
2675 	return 1;
2676 
2677  arith_done:
2678 	if (instr & 1)
2679 		set_cr0(regs, op);
2680  compute_done:
2681 	op->reg = rd;
2682 	op->type |= SETREG;
2683 	return 1;
2684 
2685  priv:
2686 	op->type = INTERRUPT | 0x700;
2687 	op->val = SRR1_PROGPRIV;
2688 	return 0;
2689 
2690  trap:
2691 	op->type = INTERRUPT | 0x700;
2692 	op->val = SRR1_PROGTRAP;
2693 	return 0;
2694 }
2695 EXPORT_SYMBOL_GPL(analyse_instr);
2696 NOKPROBE_SYMBOL(analyse_instr);
2697 
2698 /*
2699  * For PPC32 we always use stwu with r1 to change the stack pointer.
2700  * So this emulated store may corrupt the exception frame, now we
2701  * have to provide the exception frame trampoline, which is pushed
2702  * below the kprobed function stack. So we only update gpr[1] but
2703  * don't emulate the real store operation. We will do real store
2704  * operation safely in exception return code by checking this flag.
2705  */
2706 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2707 {
2708 #ifdef CONFIG_PPC32
2709 	/*
2710 	 * Check if we will touch kernel stack overflow
2711 	 */
2712 	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2713 		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2714 		return -EINVAL;
2715 	}
2716 #endif /* CONFIG_PPC32 */
2717 	/*
2718 	 * Check if we already set since that means we'll
2719 	 * lose the previous value.
2720 	 */
2721 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2722 	set_thread_flag(TIF_EMULATE_STACK_STORE);
2723 	return 0;
2724 }
2725 
2726 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2727 {
2728 	switch (size) {
2729 	case 2:
2730 		*valp = (signed short) *valp;
2731 		break;
2732 	case 4:
2733 		*valp = (signed int) *valp;
2734 		break;
2735 	}
2736 }
2737 
2738 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2739 {
2740 	switch (size) {
2741 	case 2:
2742 		*valp = byterev_2(*valp);
2743 		break;
2744 	case 4:
2745 		*valp = byterev_4(*valp);
2746 		break;
2747 #ifdef __powerpc64__
2748 	case 8:
2749 		*valp = byterev_8(*valp);
2750 		break;
2751 #endif
2752 	}
2753 }
2754 
2755 /*
2756  * Emulate an instruction that can be executed just by updating
2757  * fields in *regs.
2758  */
2759 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2760 {
2761 	unsigned long next_pc;
2762 
2763 	next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2764 	switch (GETTYPE(op->type)) {
2765 	case COMPUTE:
2766 		if (op->type & SETREG)
2767 			regs->gpr[op->reg] = op->val;
2768 		if (op->type & SETCC)
2769 			regs->ccr = op->ccval;
2770 		if (op->type & SETXER)
2771 			regs->xer = op->xerval;
2772 		break;
2773 
2774 	case BRANCH:
2775 		if (op->type & SETLK)
2776 			regs->link = next_pc;
2777 		if (op->type & BRTAKEN)
2778 			next_pc = op->val;
2779 		if (op->type & DECCTR)
2780 			--regs->ctr;
2781 		break;
2782 
2783 	case BARRIER:
2784 		switch (op->type & BARRIER_MASK) {
2785 		case BARRIER_SYNC:
2786 			mb();
2787 			break;
2788 		case BARRIER_ISYNC:
2789 			isync();
2790 			break;
2791 		case BARRIER_EIEIO:
2792 			eieio();
2793 			break;
2794 		case BARRIER_LWSYNC:
2795 			asm volatile("lwsync" : : : "memory");
2796 			break;
2797 		case BARRIER_PTESYNC:
2798 			asm volatile("ptesync" : : : "memory");
2799 			break;
2800 		}
2801 		break;
2802 
2803 	case MFSPR:
2804 		switch (op->spr) {
2805 		case SPRN_XER:
2806 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2807 			break;
2808 		case SPRN_LR:
2809 			regs->gpr[op->reg] = regs->link;
2810 			break;
2811 		case SPRN_CTR:
2812 			regs->gpr[op->reg] = regs->ctr;
2813 			break;
2814 		default:
2815 			WARN_ON_ONCE(1);
2816 		}
2817 		break;
2818 
2819 	case MTSPR:
2820 		switch (op->spr) {
2821 		case SPRN_XER:
2822 			regs->xer = op->val & 0xffffffffUL;
2823 			break;
2824 		case SPRN_LR:
2825 			regs->link = op->val;
2826 			break;
2827 		case SPRN_CTR:
2828 			regs->ctr = op->val;
2829 			break;
2830 		default:
2831 			WARN_ON_ONCE(1);
2832 		}
2833 		break;
2834 
2835 	default:
2836 		WARN_ON_ONCE(1);
2837 	}
2838 	regs->nip = next_pc;
2839 }
2840 NOKPROBE_SYMBOL(emulate_update_regs);
2841 
2842 /*
2843  * Emulate a previously-analysed load or store instruction.
2844  * Return values are:
2845  * 0 = instruction emulated successfully
2846  * -EFAULT = address out of range or access faulted (regs->dar
2847  *	     contains the faulting address)
2848  * -EACCES = misaligned access, instruction requires alignment
2849  * -EINVAL = unknown operation in *op
2850  */
2851 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2852 {
2853 	int err, size, type;
2854 	int i, rd, nb;
2855 	unsigned int cr;
2856 	unsigned long val;
2857 	unsigned long ea;
2858 	bool cross_endian;
2859 
2860 	err = 0;
2861 	size = GETSIZE(op->type);
2862 	type = GETTYPE(op->type);
2863 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2864 	ea = truncate_if_32bit(regs->msr, op->ea);
2865 
2866 	switch (type) {
2867 	case LARX:
2868 		if (ea & (size - 1))
2869 			return -EACCES;		/* can't handle misaligned */
2870 		if (!address_ok(regs, ea, size))
2871 			return -EFAULT;
2872 		err = 0;
2873 		val = 0;
2874 		switch (size) {
2875 #ifdef __powerpc64__
2876 		case 1:
2877 			__get_user_asmx(val, ea, err, "lbarx");
2878 			break;
2879 		case 2:
2880 			__get_user_asmx(val, ea, err, "lharx");
2881 			break;
2882 #endif
2883 		case 4:
2884 			__get_user_asmx(val, ea, err, "lwarx");
2885 			break;
2886 #ifdef __powerpc64__
2887 		case 8:
2888 			__get_user_asmx(val, ea, err, "ldarx");
2889 			break;
2890 		case 16:
2891 			err = do_lqarx(ea, &regs->gpr[op->reg]);
2892 			break;
2893 #endif
2894 		default:
2895 			return -EINVAL;
2896 		}
2897 		if (err) {
2898 			regs->dar = ea;
2899 			break;
2900 		}
2901 		if (size < 16)
2902 			regs->gpr[op->reg] = val;
2903 		break;
2904 
2905 	case STCX:
2906 		if (ea & (size - 1))
2907 			return -EACCES;		/* can't handle misaligned */
2908 		if (!address_ok(regs, ea, size))
2909 			return -EFAULT;
2910 		err = 0;
2911 		switch (size) {
2912 #ifdef __powerpc64__
2913 		case 1:
2914 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
2915 			break;
2916 		case 2:
2917 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
2918 			break;
2919 #endif
2920 		case 4:
2921 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
2922 			break;
2923 #ifdef __powerpc64__
2924 		case 8:
2925 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
2926 			break;
2927 		case 16:
2928 			err = do_stqcx(ea, regs->gpr[op->reg],
2929 				       regs->gpr[op->reg + 1], &cr);
2930 			break;
2931 #endif
2932 		default:
2933 			return -EINVAL;
2934 		}
2935 		if (!err)
2936 			regs->ccr = (regs->ccr & 0x0fffffff) |
2937 				(cr & 0xe0000000) |
2938 				((regs->xer >> 3) & 0x10000000);
2939 		else
2940 			regs->dar = ea;
2941 		break;
2942 
2943 	case LOAD:
2944 #ifdef __powerpc64__
2945 		if (size == 16) {
2946 			err = emulate_lq(regs, ea, op->reg, cross_endian);
2947 			break;
2948 		}
2949 #endif
2950 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2951 		if (!err) {
2952 			if (op->type & SIGNEXT)
2953 				do_signext(&regs->gpr[op->reg], size);
2954 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2955 				do_byterev(&regs->gpr[op->reg], size);
2956 		}
2957 		break;
2958 
2959 #ifdef CONFIG_PPC_FPU
2960 	case LOAD_FP:
2961 		/*
2962 		 * If the instruction is in userspace, we can emulate it even
2963 		 * if the VMX state is not live, because we have the state
2964 		 * stored in the thread_struct.  If the instruction is in
2965 		 * the kernel, we must not touch the state in the thread_struct.
2966 		 */
2967 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2968 			return 0;
2969 		err = do_fp_load(op, ea, regs, cross_endian);
2970 		break;
2971 #endif
2972 #ifdef CONFIG_ALTIVEC
2973 	case LOAD_VMX:
2974 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2975 			return 0;
2976 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2977 		break;
2978 #endif
2979 #ifdef CONFIG_VSX
2980 	case LOAD_VSX: {
2981 		unsigned long msrbit = MSR_VSX;
2982 
2983 		/*
2984 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2985 		 * when the target of the instruction is a vector register.
2986 		 */
2987 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2988 			msrbit = MSR_VEC;
2989 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2990 			return 0;
2991 		err = do_vsx_load(op, ea, regs, cross_endian);
2992 		break;
2993 	}
2994 #endif
2995 	case LOAD_MULTI:
2996 		if (!address_ok(regs, ea, size))
2997 			return -EFAULT;
2998 		rd = op->reg;
2999 		for (i = 0; i < size; i += 4) {
3000 			unsigned int v32 = 0;
3001 
3002 			nb = size - i;
3003 			if (nb > 4)
3004 				nb = 4;
3005 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3006 			if (err)
3007 				break;
3008 			if (unlikely(cross_endian))
3009 				v32 = byterev_4(v32);
3010 			regs->gpr[rd] = v32;
3011 			ea += 4;
3012 			/* reg number wraps from 31 to 0 for lsw[ix] */
3013 			rd = (rd + 1) & 0x1f;
3014 		}
3015 		break;
3016 
3017 	case STORE:
3018 #ifdef __powerpc64__
3019 		if (size == 16) {
3020 			err = emulate_stq(regs, ea, op->reg, cross_endian);
3021 			break;
3022 		}
3023 #endif
3024 		if ((op->type & UPDATE) && size == sizeof(long) &&
3025 		    op->reg == 1 && op->update_reg == 1 &&
3026 		    !(regs->msr & MSR_PR) &&
3027 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3028 			err = handle_stack_update(ea, regs);
3029 			break;
3030 		}
3031 		if (unlikely(cross_endian))
3032 			do_byterev(&op->val, size);
3033 		err = write_mem(op->val, ea, size, regs);
3034 		break;
3035 
3036 #ifdef CONFIG_PPC_FPU
3037 	case STORE_FP:
3038 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3039 			return 0;
3040 		err = do_fp_store(op, ea, regs, cross_endian);
3041 		break;
3042 #endif
3043 #ifdef CONFIG_ALTIVEC
3044 	case STORE_VMX:
3045 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3046 			return 0;
3047 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3048 		break;
3049 #endif
3050 #ifdef CONFIG_VSX
3051 	case STORE_VSX: {
3052 		unsigned long msrbit = MSR_VSX;
3053 
3054 		/*
3055 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3056 		 * when the target of the instruction is a vector register.
3057 		 */
3058 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3059 			msrbit = MSR_VEC;
3060 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3061 			return 0;
3062 		err = do_vsx_store(op, ea, regs, cross_endian);
3063 		break;
3064 	}
3065 #endif
3066 	case STORE_MULTI:
3067 		if (!address_ok(regs, ea, size))
3068 			return -EFAULT;
3069 		rd = op->reg;
3070 		for (i = 0; i < size; i += 4) {
3071 			unsigned int v32 = regs->gpr[rd];
3072 
3073 			nb = size - i;
3074 			if (nb > 4)
3075 				nb = 4;
3076 			if (unlikely(cross_endian))
3077 				v32 = byterev_4(v32);
3078 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3079 			if (err)
3080 				break;
3081 			ea += 4;
3082 			/* reg number wraps from 31 to 0 for stsw[ix] */
3083 			rd = (rd + 1) & 0x1f;
3084 		}
3085 		break;
3086 
3087 	default:
3088 		return -EINVAL;
3089 	}
3090 
3091 	if (err)
3092 		return err;
3093 
3094 	if (op->type & UPDATE)
3095 		regs->gpr[op->update_reg] = op->ea;
3096 
3097 	return 0;
3098 }
3099 NOKPROBE_SYMBOL(emulate_loadstore);
3100 
3101 /*
3102  * Emulate instructions that cause a transfer of control,
3103  * loads and stores, and a few other instructions.
3104  * Returns 1 if the step was emulated, 0 if not,
3105  * or -1 if the instruction is one that should not be stepped,
3106  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3107  */
3108 int emulate_step(struct pt_regs *regs, unsigned int instr)
3109 {
3110 	struct instruction_op op;
3111 	int r, err, type;
3112 	unsigned long val;
3113 	unsigned long ea;
3114 
3115 	r = analyse_instr(&op, regs, instr);
3116 	if (r < 0)
3117 		return r;
3118 	if (r > 0) {
3119 		emulate_update_regs(regs, &op);
3120 		return 1;
3121 	}
3122 
3123 	err = 0;
3124 	type = GETTYPE(op.type);
3125 
3126 	if (OP_IS_LOAD_STORE(type)) {
3127 		err = emulate_loadstore(regs, &op);
3128 		if (err)
3129 			return 0;
3130 		goto instr_done;
3131 	}
3132 
3133 	switch (type) {
3134 	case CACHEOP:
3135 		ea = truncate_if_32bit(regs->msr, op.ea);
3136 		if (!address_ok(regs, ea, 8))
3137 			return 0;
3138 		switch (op.type & CACHEOP_MASK) {
3139 		case DCBST:
3140 			__cacheop_user_asmx(ea, err, "dcbst");
3141 			break;
3142 		case DCBF:
3143 			__cacheop_user_asmx(ea, err, "dcbf");
3144 			break;
3145 		case DCBTST:
3146 			if (op.reg == 0)
3147 				prefetchw((void *) ea);
3148 			break;
3149 		case DCBT:
3150 			if (op.reg == 0)
3151 				prefetch((void *) ea);
3152 			break;
3153 		case ICBI:
3154 			__cacheop_user_asmx(ea, err, "icbi");
3155 			break;
3156 		case DCBZ:
3157 			err = emulate_dcbz(ea, regs);
3158 			break;
3159 		}
3160 		if (err) {
3161 			regs->dar = ea;
3162 			return 0;
3163 		}
3164 		goto instr_done;
3165 
3166 	case MFMSR:
3167 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3168 		goto instr_done;
3169 
3170 	case MTMSR:
3171 		val = regs->gpr[op.reg];
3172 		if ((val & MSR_RI) == 0)
3173 			/* can't step mtmsr[d] that would clear MSR_RI */
3174 			return -1;
3175 		/* here op.val is the mask of bits to change */
3176 		regs->msr = (regs->msr & ~op.val) | (val & op.val);
3177 		goto instr_done;
3178 
3179 #ifdef CONFIG_PPC64
3180 	case SYSCALL:	/* sc */
3181 		/*
3182 		 * N.B. this uses knowledge about how the syscall
3183 		 * entry code works.  If that is changed, this will
3184 		 * need to be changed also.
3185 		 */
3186 		if (regs->gpr[0] == 0x1ebe &&
3187 		    cpu_has_feature(CPU_FTR_REAL_LE)) {
3188 			regs->msr ^= MSR_LE;
3189 			goto instr_done;
3190 		}
3191 		regs->gpr[9] = regs->gpr[13];
3192 		regs->gpr[10] = MSR_KERNEL;
3193 		regs->gpr[11] = regs->nip + 4;
3194 		regs->gpr[12] = regs->msr & MSR_MASK;
3195 		regs->gpr[13] = (unsigned long) get_paca();
3196 		regs->nip = (unsigned long) &system_call_common;
3197 		regs->msr = MSR_KERNEL;
3198 		return 1;
3199 
3200 	case RFI:
3201 		return -1;
3202 #endif
3203 	}
3204 	return 0;
3205 
3206  instr_done:
3207 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3208 	return 1;
3209 }
3210 NOKPROBE_SYMBOL(emulate_step);
3211