xref: /openbmc/linux/arch/powerpc/lib/sstep.c (revision 98ddec80)
1 /*
2  * Single-step support.
3  *
4  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/prefetch.h>
15 #include <asm/sstep.h>
16 #include <asm/processor.h>
17 #include <linux/uaccess.h>
18 #include <asm/cpu_has_feature.h>
19 #include <asm/cputable.h>
20 
21 extern char system_call_common[];
22 
23 #ifdef CONFIG_PPC64
24 /* Bits in SRR1 that are copied from MSR */
25 #define MSR_MASK	0xffffffff87c0ffffUL
26 #else
27 #define MSR_MASK	0x87c0ffff
28 #endif
29 
30 /* Bits in XER */
31 #define XER_SO		0x80000000U
32 #define XER_OV		0x40000000U
33 #define XER_CA		0x20000000U
34 #define XER_OV32	0x00080000U
35 #define XER_CA32	0x00040000U
36 
37 #ifdef CONFIG_PPC_FPU
38 /*
39  * Functions in ldstfp.S
40  */
41 extern void get_fpr(int rn, double *p);
42 extern void put_fpr(int rn, const double *p);
43 extern void get_vr(int rn, __vector128 *p);
44 extern void put_vr(int rn, __vector128 *p);
45 extern void load_vsrn(int vsr, const void *p);
46 extern void store_vsrn(int vsr, void *p);
47 extern void conv_sp_to_dp(const float *sp, double *dp);
48 extern void conv_dp_to_sp(const double *dp, float *sp);
49 #endif
50 
51 #ifdef __powerpc64__
52 /*
53  * Functions in quad.S
54  */
55 extern int do_lq(unsigned long ea, unsigned long *regs);
56 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
57 extern int do_lqarx(unsigned long ea, unsigned long *regs);
58 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
59 		    unsigned int *crp);
60 #endif
61 
62 #ifdef __LITTLE_ENDIAN__
63 #define IS_LE	1
64 #define IS_BE	0
65 #else
66 #define IS_LE	0
67 #define IS_BE	1
68 #endif
69 
70 /*
71  * Emulate the truncation of 64 bit values in 32-bit mode.
72  */
73 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
74 							unsigned long val)
75 {
76 #ifdef __powerpc64__
77 	if ((msr & MSR_64BIT) == 0)
78 		val &= 0xffffffffUL;
79 #endif
80 	return val;
81 }
82 
83 /*
84  * Determine whether a conditional branch instruction would branch.
85  */
86 static nokprobe_inline int branch_taken(unsigned int instr,
87 					const struct pt_regs *regs,
88 					struct instruction_op *op)
89 {
90 	unsigned int bo = (instr >> 21) & 0x1f;
91 	unsigned int bi;
92 
93 	if ((bo & 4) == 0) {
94 		/* decrement counter */
95 		op->type |= DECCTR;
96 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97 			return 0;
98 	}
99 	if ((bo & 0x10) == 0) {
100 		/* check bit from CR */
101 		bi = (instr >> 16) & 0x1f;
102 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103 			return 0;
104 	}
105 	return 1;
106 }
107 
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109 				       unsigned long ea, int nb)
110 {
111 	if (!user_mode(regs))
112 		return 1;
113 	if (__access_ok(ea, nb, USER_DS))
114 		return 1;
115 	if (__access_ok(ea, 1, USER_DS))
116 		/* Access overlaps the end of the user region */
117 		regs->dar = USER_DS.seg;
118 	else
119 		regs->dar = ea;
120 	return 0;
121 }
122 
123 /*
124  * Calculate effective address for a D-form instruction
125  */
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 					      const struct pt_regs *regs)
128 {
129 	int ra;
130 	unsigned long ea;
131 
132 	ra = (instr >> 16) & 0x1f;
133 	ea = (signed short) instr;		/* sign-extend */
134 	if (ra)
135 		ea += regs->gpr[ra];
136 
137 	return ea;
138 }
139 
140 #ifdef __powerpc64__
141 /*
142  * Calculate effective address for a DS-form instruction
143  */
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 					       const struct pt_regs *regs)
146 {
147 	int ra;
148 	unsigned long ea;
149 
150 	ra = (instr >> 16) & 0x1f;
151 	ea = (signed short) (instr & ~3);	/* sign-extend */
152 	if (ra)
153 		ea += regs->gpr[ra];
154 
155 	return ea;
156 }
157 
158 /*
159  * Calculate effective address for a DQ-form instruction
160  */
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 					       const struct pt_regs *regs)
163 {
164 	int ra;
165 	unsigned long ea;
166 
167 	ra = (instr >> 16) & 0x1f;
168 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
169 	if (ra)
170 		ea += regs->gpr[ra];
171 
172 	return ea;
173 }
174 #endif /* __powerpc64 */
175 
176 /*
177  * Calculate effective address for an X-form instruction
178  */
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180 					      const struct pt_regs *regs)
181 {
182 	int ra, rb;
183 	unsigned long ea;
184 
185 	ra = (instr >> 16) & 0x1f;
186 	rb = (instr >> 11) & 0x1f;
187 	ea = regs->gpr[rb];
188 	if (ra)
189 		ea += regs->gpr[ra];
190 
191 	return ea;
192 }
193 
194 /*
195  * Return the largest power of 2, not greater than sizeof(unsigned long),
196  * such that x is a multiple of it.
197  */
198 static nokprobe_inline unsigned long max_align(unsigned long x)
199 {
200 	x |= sizeof(unsigned long);
201 	return x & -x;		/* isolates rightmost bit */
202 }
203 
204 static nokprobe_inline unsigned long byterev_2(unsigned long x)
205 {
206 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
207 }
208 
209 static nokprobe_inline unsigned long byterev_4(unsigned long x)
210 {
211 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
212 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
213 }
214 
215 #ifdef __powerpc64__
216 static nokprobe_inline unsigned long byterev_8(unsigned long x)
217 {
218 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
219 }
220 #endif
221 
222 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
223 {
224 	switch (nb) {
225 	case 2:
226 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
227 		break;
228 	case 4:
229 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
230 		break;
231 #ifdef __powerpc64__
232 	case 8:
233 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
234 		break;
235 	case 16: {
236 		unsigned long *up = (unsigned long *)ptr;
237 		unsigned long tmp;
238 		tmp = byterev_8(up[0]);
239 		up[0] = byterev_8(up[1]);
240 		up[1] = tmp;
241 		break;
242 	}
243 #endif
244 	default:
245 		WARN_ON_ONCE(1);
246 	}
247 }
248 
249 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
250 					    unsigned long ea, int nb,
251 					    struct pt_regs *regs)
252 {
253 	int err = 0;
254 	unsigned long x = 0;
255 
256 	switch (nb) {
257 	case 1:
258 		err = __get_user(x, (unsigned char __user *) ea);
259 		break;
260 	case 2:
261 		err = __get_user(x, (unsigned short __user *) ea);
262 		break;
263 	case 4:
264 		err = __get_user(x, (unsigned int __user *) ea);
265 		break;
266 #ifdef __powerpc64__
267 	case 8:
268 		err = __get_user(x, (unsigned long __user *) ea);
269 		break;
270 #endif
271 	}
272 	if (!err)
273 		*dest = x;
274 	else
275 		regs->dar = ea;
276 	return err;
277 }
278 
279 /*
280  * Copy from userspace to a buffer, using the largest possible
281  * aligned accesses, up to sizeof(long).
282  */
283 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
284 				       struct pt_regs *regs)
285 {
286 	int err = 0;
287 	int c;
288 
289 	for (; nb > 0; nb -= c) {
290 		c = max_align(ea);
291 		if (c > nb)
292 			c = max_align(nb);
293 		switch (c) {
294 		case 1:
295 			err = __get_user(*dest, (unsigned char __user *) ea);
296 			break;
297 		case 2:
298 			err = __get_user(*(u16 *)dest,
299 					 (unsigned short __user *) ea);
300 			break;
301 		case 4:
302 			err = __get_user(*(u32 *)dest,
303 					 (unsigned int __user *) ea);
304 			break;
305 #ifdef __powerpc64__
306 		case 8:
307 			err = __get_user(*(unsigned long *)dest,
308 					 (unsigned long __user *) ea);
309 			break;
310 #endif
311 		}
312 		if (err) {
313 			regs->dar = ea;
314 			return err;
315 		}
316 		dest += c;
317 		ea += c;
318 	}
319 	return 0;
320 }
321 
322 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
323 					      unsigned long ea, int nb,
324 					      struct pt_regs *regs)
325 {
326 	union {
327 		unsigned long ul;
328 		u8 b[sizeof(unsigned long)];
329 	} u;
330 	int i;
331 	int err;
332 
333 	u.ul = 0;
334 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
335 	err = copy_mem_in(&u.b[i], ea, nb, regs);
336 	if (!err)
337 		*dest = u.ul;
338 	return err;
339 }
340 
341 /*
342  * Read memory at address ea for nb bytes, return 0 for success
343  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
344  * If nb < sizeof(long), the result is right-justified on BE systems.
345  */
346 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
347 			      struct pt_regs *regs)
348 {
349 	if (!address_ok(regs, ea, nb))
350 		return -EFAULT;
351 	if ((ea & (nb - 1)) == 0)
352 		return read_mem_aligned(dest, ea, nb, regs);
353 	return read_mem_unaligned(dest, ea, nb, regs);
354 }
355 NOKPROBE_SYMBOL(read_mem);
356 
357 static nokprobe_inline int write_mem_aligned(unsigned long val,
358 					     unsigned long ea, int nb,
359 					     struct pt_regs *regs)
360 {
361 	int err = 0;
362 
363 	switch (nb) {
364 	case 1:
365 		err = __put_user(val, (unsigned char __user *) ea);
366 		break;
367 	case 2:
368 		err = __put_user(val, (unsigned short __user *) ea);
369 		break;
370 	case 4:
371 		err = __put_user(val, (unsigned int __user *) ea);
372 		break;
373 #ifdef __powerpc64__
374 	case 8:
375 		err = __put_user(val, (unsigned long __user *) ea);
376 		break;
377 #endif
378 	}
379 	if (err)
380 		regs->dar = ea;
381 	return err;
382 }
383 
384 /*
385  * Copy from a buffer to userspace, using the largest possible
386  * aligned accesses, up to sizeof(long).
387  */
388 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
389 					struct pt_regs *regs)
390 {
391 	int err = 0;
392 	int c;
393 
394 	for (; nb > 0; nb -= c) {
395 		c = max_align(ea);
396 		if (c > nb)
397 			c = max_align(nb);
398 		switch (c) {
399 		case 1:
400 			err = __put_user(*dest, (unsigned char __user *) ea);
401 			break;
402 		case 2:
403 			err = __put_user(*(u16 *)dest,
404 					 (unsigned short __user *) ea);
405 			break;
406 		case 4:
407 			err = __put_user(*(u32 *)dest,
408 					 (unsigned int __user *) ea);
409 			break;
410 #ifdef __powerpc64__
411 		case 8:
412 			err = __put_user(*(unsigned long *)dest,
413 					 (unsigned long __user *) ea);
414 			break;
415 #endif
416 		}
417 		if (err) {
418 			regs->dar = ea;
419 			return err;
420 		}
421 		dest += c;
422 		ea += c;
423 	}
424 	return 0;
425 }
426 
427 static nokprobe_inline int write_mem_unaligned(unsigned long val,
428 					       unsigned long ea, int nb,
429 					       struct pt_regs *regs)
430 {
431 	union {
432 		unsigned long ul;
433 		u8 b[sizeof(unsigned long)];
434 	} u;
435 	int i;
436 
437 	u.ul = val;
438 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
439 	return copy_mem_out(&u.b[i], ea, nb, regs);
440 }
441 
442 /*
443  * Write memory at address ea for nb bytes, return 0 for success
444  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
445  */
446 static int write_mem(unsigned long val, unsigned long ea, int nb,
447 			       struct pt_regs *regs)
448 {
449 	if (!address_ok(regs, ea, nb))
450 		return -EFAULT;
451 	if ((ea & (nb - 1)) == 0)
452 		return write_mem_aligned(val, ea, nb, regs);
453 	return write_mem_unaligned(val, ea, nb, regs);
454 }
455 NOKPROBE_SYMBOL(write_mem);
456 
457 #ifdef CONFIG_PPC_FPU
458 /*
459  * These access either the real FP register or the image in the
460  * thread_struct, depending on regs->msr & MSR_FP.
461  */
462 static int do_fp_load(struct instruction_op *op, unsigned long ea,
463 		      struct pt_regs *regs, bool cross_endian)
464 {
465 	int err, rn, nb;
466 	union {
467 		int i;
468 		unsigned int u;
469 		float f;
470 		double d[2];
471 		unsigned long l[2];
472 		u8 b[2 * sizeof(double)];
473 	} u;
474 
475 	nb = GETSIZE(op->type);
476 	if (!address_ok(regs, ea, nb))
477 		return -EFAULT;
478 	rn = op->reg;
479 	err = copy_mem_in(u.b, ea, nb, regs);
480 	if (err)
481 		return err;
482 	if (unlikely(cross_endian)) {
483 		do_byte_reverse(u.b, min(nb, 8));
484 		if (nb == 16)
485 			do_byte_reverse(&u.b[8], 8);
486 	}
487 	preempt_disable();
488 	if (nb == 4) {
489 		if (op->type & FPCONV)
490 			conv_sp_to_dp(&u.f, &u.d[0]);
491 		else if (op->type & SIGNEXT)
492 			u.l[0] = u.i;
493 		else
494 			u.l[0] = u.u;
495 	}
496 	if (regs->msr & MSR_FP)
497 		put_fpr(rn, &u.d[0]);
498 	else
499 		current->thread.TS_FPR(rn) = u.l[0];
500 	if (nb == 16) {
501 		/* lfdp */
502 		rn |= 1;
503 		if (regs->msr & MSR_FP)
504 			put_fpr(rn, &u.d[1]);
505 		else
506 			current->thread.TS_FPR(rn) = u.l[1];
507 	}
508 	preempt_enable();
509 	return 0;
510 }
511 NOKPROBE_SYMBOL(do_fp_load);
512 
513 static int do_fp_store(struct instruction_op *op, unsigned long ea,
514 		       struct pt_regs *regs, bool cross_endian)
515 {
516 	int rn, nb;
517 	union {
518 		unsigned int u;
519 		float f;
520 		double d[2];
521 		unsigned long l[2];
522 		u8 b[2 * sizeof(double)];
523 	} u;
524 
525 	nb = GETSIZE(op->type);
526 	if (!address_ok(regs, ea, nb))
527 		return -EFAULT;
528 	rn = op->reg;
529 	preempt_disable();
530 	if (regs->msr & MSR_FP)
531 		get_fpr(rn, &u.d[0]);
532 	else
533 		u.l[0] = current->thread.TS_FPR(rn);
534 	if (nb == 4) {
535 		if (op->type & FPCONV)
536 			conv_dp_to_sp(&u.d[0], &u.f);
537 		else
538 			u.u = u.l[0];
539 	}
540 	if (nb == 16) {
541 		rn |= 1;
542 		if (regs->msr & MSR_FP)
543 			get_fpr(rn, &u.d[1]);
544 		else
545 			u.l[1] = current->thread.TS_FPR(rn);
546 	}
547 	preempt_enable();
548 	if (unlikely(cross_endian)) {
549 		do_byte_reverse(u.b, min(nb, 8));
550 		if (nb == 16)
551 			do_byte_reverse(&u.b[8], 8);
552 	}
553 	return copy_mem_out(u.b, ea, nb, regs);
554 }
555 NOKPROBE_SYMBOL(do_fp_store);
556 #endif
557 
558 #ifdef CONFIG_ALTIVEC
559 /* For Altivec/VMX, no need to worry about alignment */
560 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561 				       int size, struct pt_regs *regs,
562 				       bool cross_endian)
563 {
564 	int err;
565 	union {
566 		__vector128 v;
567 		u8 b[sizeof(__vector128)];
568 	} u = {};
569 
570 	if (!address_ok(regs, ea & ~0xfUL, 16))
571 		return -EFAULT;
572 	/* align to multiple of size */
573 	ea &= ~(size - 1);
574 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
575 	if (err)
576 		return err;
577 	if (unlikely(cross_endian))
578 		do_byte_reverse(&u.b[ea & 0xf], size);
579 	preempt_disable();
580 	if (regs->msr & MSR_VEC)
581 		put_vr(rn, &u.v);
582 	else
583 		current->thread.vr_state.vr[rn] = u.v;
584 	preempt_enable();
585 	return 0;
586 }
587 
588 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
589 					int size, struct pt_regs *regs,
590 					bool cross_endian)
591 {
592 	union {
593 		__vector128 v;
594 		u8 b[sizeof(__vector128)];
595 	} u;
596 
597 	if (!address_ok(regs, ea & ~0xfUL, 16))
598 		return -EFAULT;
599 	/* align to multiple of size */
600 	ea &= ~(size - 1);
601 
602 	preempt_disable();
603 	if (regs->msr & MSR_VEC)
604 		get_vr(rn, &u.v);
605 	else
606 		u.v = current->thread.vr_state.vr[rn];
607 	preempt_enable();
608 	if (unlikely(cross_endian))
609 		do_byte_reverse(&u.b[ea & 0xf], size);
610 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
611 }
612 #endif /* CONFIG_ALTIVEC */
613 
614 #ifdef __powerpc64__
615 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
616 				      int reg, bool cross_endian)
617 {
618 	int err;
619 
620 	if (!address_ok(regs, ea, 16))
621 		return -EFAULT;
622 	/* if aligned, should be atomic */
623 	if ((ea & 0xf) == 0) {
624 		err = do_lq(ea, &regs->gpr[reg]);
625 	} else {
626 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
627 		if (!err)
628 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
629 	}
630 	if (!err && unlikely(cross_endian))
631 		do_byte_reverse(&regs->gpr[reg], 16);
632 	return err;
633 }
634 
635 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
636 				       int reg, bool cross_endian)
637 {
638 	int err;
639 	unsigned long vals[2];
640 
641 	if (!address_ok(regs, ea, 16))
642 		return -EFAULT;
643 	vals[0] = regs->gpr[reg];
644 	vals[1] = regs->gpr[reg + 1];
645 	if (unlikely(cross_endian))
646 		do_byte_reverse(vals, 16);
647 
648 	/* if aligned, should be atomic */
649 	if ((ea & 0xf) == 0)
650 		return do_stq(ea, vals[0], vals[1]);
651 
652 	err = write_mem(vals[IS_LE], ea, 8, regs);
653 	if (!err)
654 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
655 	return err;
656 }
657 #endif /* __powerpc64 */
658 
659 #ifdef CONFIG_VSX
660 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
661 		      const void *mem, bool rev)
662 {
663 	int size, read_size;
664 	int i, j;
665 	const unsigned int *wp;
666 	const unsigned short *hp;
667 	const unsigned char *bp;
668 
669 	size = GETSIZE(op->type);
670 	reg->d[0] = reg->d[1] = 0;
671 
672 	switch (op->element_size) {
673 	case 16:
674 		/* whole vector; lxv[x] or lxvl[l] */
675 		if (size == 0)
676 			break;
677 		memcpy(reg, mem, size);
678 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
679 			rev = !rev;
680 		if (rev)
681 			do_byte_reverse(reg, 16);
682 		break;
683 	case 8:
684 		/* scalar loads, lxvd2x, lxvdsx */
685 		read_size = (size >= 8) ? 8 : size;
686 		i = IS_LE ? 8 : 8 - read_size;
687 		memcpy(&reg->b[i], mem, read_size);
688 		if (rev)
689 			do_byte_reverse(&reg->b[i], 8);
690 		if (size < 8) {
691 			if (op->type & SIGNEXT) {
692 				/* size == 4 is the only case here */
693 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
694 			} else if (op->vsx_flags & VSX_FPCONV) {
695 				preempt_disable();
696 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
697 					      &reg->dp[IS_LE]);
698 				preempt_enable();
699 			}
700 		} else {
701 			if (size == 16) {
702 				unsigned long v = *(unsigned long *)(mem + 8);
703 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
704 			} else if (op->vsx_flags & VSX_SPLAT)
705 				reg->d[IS_BE] = reg->d[IS_LE];
706 		}
707 		break;
708 	case 4:
709 		/* lxvw4x, lxvwsx */
710 		wp = mem;
711 		for (j = 0; j < size / 4; ++j) {
712 			i = IS_LE ? 3 - j : j;
713 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
714 		}
715 		if (op->vsx_flags & VSX_SPLAT) {
716 			u32 val = reg->w[IS_LE ? 3 : 0];
717 			for (; j < 4; ++j) {
718 				i = IS_LE ? 3 - j : j;
719 				reg->w[i] = val;
720 			}
721 		}
722 		break;
723 	case 2:
724 		/* lxvh8x */
725 		hp = mem;
726 		for (j = 0; j < size / 2; ++j) {
727 			i = IS_LE ? 7 - j : j;
728 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
729 		}
730 		break;
731 	case 1:
732 		/* lxvb16x */
733 		bp = mem;
734 		for (j = 0; j < size; ++j) {
735 			i = IS_LE ? 15 - j : j;
736 			reg->b[i] = *bp++;
737 		}
738 		break;
739 	}
740 }
741 EXPORT_SYMBOL_GPL(emulate_vsx_load);
742 NOKPROBE_SYMBOL(emulate_vsx_load);
743 
744 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
745 		       void *mem, bool rev)
746 {
747 	int size, write_size;
748 	int i, j;
749 	union vsx_reg buf;
750 	unsigned int *wp;
751 	unsigned short *hp;
752 	unsigned char *bp;
753 
754 	size = GETSIZE(op->type);
755 
756 	switch (op->element_size) {
757 	case 16:
758 		/* stxv, stxvx, stxvl, stxvll */
759 		if (size == 0)
760 			break;
761 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
762 			rev = !rev;
763 		if (rev) {
764 			/* reverse 16 bytes */
765 			buf.d[0] = byterev_8(reg->d[1]);
766 			buf.d[1] = byterev_8(reg->d[0]);
767 			reg = &buf;
768 		}
769 		memcpy(mem, reg, size);
770 		break;
771 	case 8:
772 		/* scalar stores, stxvd2x */
773 		write_size = (size >= 8) ? 8 : size;
774 		i = IS_LE ? 8 : 8 - write_size;
775 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
776 			buf.d[0] = buf.d[1] = 0;
777 			preempt_disable();
778 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
779 			preempt_enable();
780 			reg = &buf;
781 		}
782 		memcpy(mem, &reg->b[i], write_size);
783 		if (size == 16)
784 			memcpy(mem + 8, &reg->d[IS_BE], 8);
785 		if (unlikely(rev)) {
786 			do_byte_reverse(mem, write_size);
787 			if (size == 16)
788 				do_byte_reverse(mem + 8, 8);
789 		}
790 		break;
791 	case 4:
792 		/* stxvw4x */
793 		wp = mem;
794 		for (j = 0; j < size / 4; ++j) {
795 			i = IS_LE ? 3 - j : j;
796 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
797 		}
798 		break;
799 	case 2:
800 		/* stxvh8x */
801 		hp = mem;
802 		for (j = 0; j < size / 2; ++j) {
803 			i = IS_LE ? 7 - j : j;
804 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
805 		}
806 		break;
807 	case 1:
808 		/* stvxb16x */
809 		bp = mem;
810 		for (j = 0; j < size; ++j) {
811 			i = IS_LE ? 15 - j : j;
812 			*bp++ = reg->b[i];
813 		}
814 		break;
815 	}
816 }
817 EXPORT_SYMBOL_GPL(emulate_vsx_store);
818 NOKPROBE_SYMBOL(emulate_vsx_store);
819 
820 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
821 				       unsigned long ea, struct pt_regs *regs,
822 				       bool cross_endian)
823 {
824 	int reg = op->reg;
825 	u8 mem[16];
826 	union vsx_reg buf;
827 	int size = GETSIZE(op->type);
828 
829 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
830 		return -EFAULT;
831 
832 	emulate_vsx_load(op, &buf, mem, cross_endian);
833 	preempt_disable();
834 	if (reg < 32) {
835 		/* FP regs + extensions */
836 		if (regs->msr & MSR_FP) {
837 			load_vsrn(reg, &buf);
838 		} else {
839 			current->thread.fp_state.fpr[reg][0] = buf.d[0];
840 			current->thread.fp_state.fpr[reg][1] = buf.d[1];
841 		}
842 	} else {
843 		if (regs->msr & MSR_VEC)
844 			load_vsrn(reg, &buf);
845 		else
846 			current->thread.vr_state.vr[reg - 32] = buf.v;
847 	}
848 	preempt_enable();
849 	return 0;
850 }
851 
852 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
853 					unsigned long ea, struct pt_regs *regs,
854 					bool cross_endian)
855 {
856 	int reg = op->reg;
857 	u8 mem[16];
858 	union vsx_reg buf;
859 	int size = GETSIZE(op->type);
860 
861 	if (!address_ok(regs, ea, size))
862 		return -EFAULT;
863 
864 	preempt_disable();
865 	if (reg < 32) {
866 		/* FP regs + extensions */
867 		if (regs->msr & MSR_FP) {
868 			store_vsrn(reg, &buf);
869 		} else {
870 			buf.d[0] = current->thread.fp_state.fpr[reg][0];
871 			buf.d[1] = current->thread.fp_state.fpr[reg][1];
872 		}
873 	} else {
874 		if (regs->msr & MSR_VEC)
875 			store_vsrn(reg, &buf);
876 		else
877 			buf.v = current->thread.vr_state.vr[reg - 32];
878 	}
879 	preempt_enable();
880 	emulate_vsx_store(op, &buf, mem, cross_endian);
881 	return  copy_mem_out(mem, ea, size, regs);
882 }
883 #endif /* CONFIG_VSX */
884 
885 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
886 {
887 	int err;
888 	unsigned long i, size;
889 
890 #ifdef __powerpc64__
891 	size = ppc64_caches.l1d.block_size;
892 	if (!(regs->msr & MSR_64BIT))
893 		ea &= 0xffffffffUL;
894 #else
895 	size = L1_CACHE_BYTES;
896 #endif
897 	ea &= ~(size - 1);
898 	if (!address_ok(regs, ea, size))
899 		return -EFAULT;
900 	for (i = 0; i < size; i += sizeof(long)) {
901 		err = __put_user(0, (unsigned long __user *) (ea + i));
902 		if (err) {
903 			regs->dar = ea;
904 			return err;
905 		}
906 	}
907 	return 0;
908 }
909 NOKPROBE_SYMBOL(emulate_dcbz);
910 
911 #define __put_user_asmx(x, addr, err, op, cr)		\
912 	__asm__ __volatile__(				\
913 		"1:	" op " %2,0,%3\n"		\
914 		"	mfcr	%1\n"			\
915 		"2:\n"					\
916 		".section .fixup,\"ax\"\n"		\
917 		"3:	li	%0,%4\n"		\
918 		"	b	2b\n"			\
919 		".previous\n"				\
920 		EX_TABLE(1b, 3b)			\
921 		: "=r" (err), "=r" (cr)			\
922 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
923 
924 #define __get_user_asmx(x, addr, err, op)		\
925 	__asm__ __volatile__(				\
926 		"1:	"op" %1,0,%2\n"			\
927 		"2:\n"					\
928 		".section .fixup,\"ax\"\n"		\
929 		"3:	li	%0,%3\n"		\
930 		"	b	2b\n"			\
931 		".previous\n"				\
932 		EX_TABLE(1b, 3b)			\
933 		: "=r" (err), "=r" (x)			\
934 		: "r" (addr), "i" (-EFAULT), "0" (err))
935 
936 #define __cacheop_user_asmx(addr, err, op)		\
937 	__asm__ __volatile__(				\
938 		"1:	"op" 0,%1\n"			\
939 		"2:\n"					\
940 		".section .fixup,\"ax\"\n"		\
941 		"3:	li	%0,%3\n"		\
942 		"	b	2b\n"			\
943 		".previous\n"				\
944 		EX_TABLE(1b, 3b)			\
945 		: "=r" (err)				\
946 		: "r" (addr), "i" (-EFAULT), "0" (err))
947 
948 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
949 				    struct instruction_op *op)
950 {
951 	long val = op->val;
952 
953 	op->type |= SETCC;
954 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
955 #ifdef __powerpc64__
956 	if (!(regs->msr & MSR_64BIT))
957 		val = (int) val;
958 #endif
959 	if (val < 0)
960 		op->ccval |= 0x80000000;
961 	else if (val > 0)
962 		op->ccval |= 0x40000000;
963 	else
964 		op->ccval |= 0x20000000;
965 }
966 
967 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
968 {
969 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
970 		if (val)
971 			op->xerval |= XER_CA32;
972 		else
973 			op->xerval &= ~XER_CA32;
974 	}
975 }
976 
977 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
978 				     struct instruction_op *op, int rd,
979 				     unsigned long val1, unsigned long val2,
980 				     unsigned long carry_in)
981 {
982 	unsigned long val = val1 + val2;
983 
984 	if (carry_in)
985 		++val;
986 	op->type = COMPUTE + SETREG + SETXER;
987 	op->reg = rd;
988 	op->val = val;
989 #ifdef __powerpc64__
990 	if (!(regs->msr & MSR_64BIT)) {
991 		val = (unsigned int) val;
992 		val1 = (unsigned int) val1;
993 	}
994 #endif
995 	op->xerval = regs->xer;
996 	if (val < val1 || (carry_in && val == val1))
997 		op->xerval |= XER_CA;
998 	else
999 		op->xerval &= ~XER_CA;
1000 
1001 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1002 			(carry_in && (unsigned int)val == (unsigned int)val1));
1003 }
1004 
1005 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1006 					  struct instruction_op *op,
1007 					  long v1, long v2, int crfld)
1008 {
1009 	unsigned int crval, shift;
1010 
1011 	op->type = COMPUTE + SETCC;
1012 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1013 	if (v1 < v2)
1014 		crval |= 8;
1015 	else if (v1 > v2)
1016 		crval |= 4;
1017 	else
1018 		crval |= 2;
1019 	shift = (7 - crfld) * 4;
1020 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1021 }
1022 
1023 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1024 					    struct instruction_op *op,
1025 					    unsigned long v1,
1026 					    unsigned long v2, int crfld)
1027 {
1028 	unsigned int crval, shift;
1029 
1030 	op->type = COMPUTE + SETCC;
1031 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1032 	if (v1 < v2)
1033 		crval |= 8;
1034 	else if (v1 > v2)
1035 		crval |= 4;
1036 	else
1037 		crval |= 2;
1038 	shift = (7 - crfld) * 4;
1039 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1040 }
1041 
1042 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1043 				    struct instruction_op *op,
1044 				    unsigned long v1, unsigned long v2)
1045 {
1046 	unsigned long long out_val, mask;
1047 	int i;
1048 
1049 	out_val = 0;
1050 	for (i = 0; i < 8; i++) {
1051 		mask = 0xffUL << (i * 8);
1052 		if ((v1 & mask) == (v2 & mask))
1053 			out_val |= mask;
1054 	}
1055 	op->val = out_val;
1056 }
1057 
1058 /*
1059  * The size parameter is used to adjust the equivalent popcnt instruction.
1060  * popcntb = 8, popcntw = 32, popcntd = 64
1061  */
1062 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1063 				      struct instruction_op *op,
1064 				      unsigned long v1, int size)
1065 {
1066 	unsigned long long out = v1;
1067 
1068 	out -= (out >> 1) & 0x5555555555555555ULL;
1069 	out = (0x3333333333333333ULL & out) +
1070 	      (0x3333333333333333ULL & (out >> 2));
1071 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1072 
1073 	if (size == 8) {	/* popcntb */
1074 		op->val = out;
1075 		return;
1076 	}
1077 	out += out >> 8;
1078 	out += out >> 16;
1079 	if (size == 32) {	/* popcntw */
1080 		op->val = out & 0x0000003f0000003fULL;
1081 		return;
1082 	}
1083 
1084 	out = (out + (out >> 32)) & 0x7f;
1085 	op->val = out;	/* popcntd */
1086 }
1087 
1088 #ifdef CONFIG_PPC64
1089 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1090 				      struct instruction_op *op,
1091 				      unsigned long v1, unsigned long v2)
1092 {
1093 	unsigned char perm, idx;
1094 	unsigned int i;
1095 
1096 	perm = 0;
1097 	for (i = 0; i < 8; i++) {
1098 		idx = (v1 >> (i * 8)) & 0xff;
1099 		if (idx < 64)
1100 			if (v2 & PPC_BIT(idx))
1101 				perm |= 1 << i;
1102 	}
1103 	op->val = perm;
1104 }
1105 #endif /* CONFIG_PPC64 */
1106 /*
1107  * The size parameter adjusts the equivalent prty instruction.
1108  * prtyw = 32, prtyd = 64
1109  */
1110 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1111 				    struct instruction_op *op,
1112 				    unsigned long v, int size)
1113 {
1114 	unsigned long long res = v ^ (v >> 8);
1115 
1116 	res ^= res >> 16;
1117 	if (size == 32) {		/* prtyw */
1118 		op->val = res & 0x0000000100000001ULL;
1119 		return;
1120 	}
1121 
1122 	res ^= res >> 32;
1123 	op->val = res & 1;	/*prtyd */
1124 }
1125 
1126 static nokprobe_inline int trap_compare(long v1, long v2)
1127 {
1128 	int ret = 0;
1129 
1130 	if (v1 < v2)
1131 		ret |= 0x10;
1132 	else if (v1 > v2)
1133 		ret |= 0x08;
1134 	else
1135 		ret |= 0x04;
1136 	if ((unsigned long)v1 < (unsigned long)v2)
1137 		ret |= 0x02;
1138 	else if ((unsigned long)v1 > (unsigned long)v2)
1139 		ret |= 0x01;
1140 	return ret;
1141 }
1142 
1143 /*
1144  * Elements of 32-bit rotate and mask instructions.
1145  */
1146 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1147 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1148 #ifdef __powerpc64__
1149 #define MASK64_L(mb)	(~0UL >> (mb))
1150 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1151 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1152 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1153 #else
1154 #define DATA32(x)	(x)
1155 #endif
1156 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1157 
1158 /*
1159  * Decode an instruction, and return information about it in *op
1160  * without changing *regs.
1161  * Integer arithmetic and logical instructions, branches, and barrier
1162  * instructions can be emulated just using the information in *op.
1163  *
1164  * Return value is 1 if the instruction can be emulated just by
1165  * updating *regs with the information in *op, -1 if we need the
1166  * GPRs but *regs doesn't contain the full register set, or 0
1167  * otherwise.
1168  */
1169 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1170 		  unsigned int instr)
1171 {
1172 	unsigned int opcode, ra, rb, rd, spr, u;
1173 	unsigned long int imm;
1174 	unsigned long int val, val2;
1175 	unsigned int mb, me, sh;
1176 	long ival;
1177 
1178 	op->type = COMPUTE;
1179 
1180 	opcode = instr >> 26;
1181 	switch (opcode) {
1182 	case 16:	/* bc */
1183 		op->type = BRANCH;
1184 		imm = (signed short)(instr & 0xfffc);
1185 		if ((instr & 2) == 0)
1186 			imm += regs->nip;
1187 		op->val = truncate_if_32bit(regs->msr, imm);
1188 		if (instr & 1)
1189 			op->type |= SETLK;
1190 		if (branch_taken(instr, regs, op))
1191 			op->type |= BRTAKEN;
1192 		return 1;
1193 #ifdef CONFIG_PPC64
1194 	case 17:	/* sc */
1195 		if ((instr & 0xfe2) == 2)
1196 			op->type = SYSCALL;
1197 		else
1198 			op->type = UNKNOWN;
1199 		return 0;
1200 #endif
1201 	case 18:	/* b */
1202 		op->type = BRANCH | BRTAKEN;
1203 		imm = instr & 0x03fffffc;
1204 		if (imm & 0x02000000)
1205 			imm -= 0x04000000;
1206 		if ((instr & 2) == 0)
1207 			imm += regs->nip;
1208 		op->val = truncate_if_32bit(regs->msr, imm);
1209 		if (instr & 1)
1210 			op->type |= SETLK;
1211 		return 1;
1212 	case 19:
1213 		switch ((instr >> 1) & 0x3ff) {
1214 		case 0:		/* mcrf */
1215 			op->type = COMPUTE + SETCC;
1216 			rd = 7 - ((instr >> 23) & 0x7);
1217 			ra = 7 - ((instr >> 18) & 0x7);
1218 			rd *= 4;
1219 			ra *= 4;
1220 			val = (regs->ccr >> ra) & 0xf;
1221 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1222 			return 1;
1223 
1224 		case 16:	/* bclr */
1225 		case 528:	/* bcctr */
1226 			op->type = BRANCH;
1227 			imm = (instr & 0x400)? regs->ctr: regs->link;
1228 			op->val = truncate_if_32bit(regs->msr, imm);
1229 			if (instr & 1)
1230 				op->type |= SETLK;
1231 			if (branch_taken(instr, regs, op))
1232 				op->type |= BRTAKEN;
1233 			return 1;
1234 
1235 		case 18:	/* rfid, scary */
1236 			if (regs->msr & MSR_PR)
1237 				goto priv;
1238 			op->type = RFI;
1239 			return 0;
1240 
1241 		case 150:	/* isync */
1242 			op->type = BARRIER | BARRIER_ISYNC;
1243 			return 1;
1244 
1245 		case 33:	/* crnor */
1246 		case 129:	/* crandc */
1247 		case 193:	/* crxor */
1248 		case 225:	/* crnand */
1249 		case 257:	/* crand */
1250 		case 289:	/* creqv */
1251 		case 417:	/* crorc */
1252 		case 449:	/* cror */
1253 			op->type = COMPUTE + SETCC;
1254 			ra = (instr >> 16) & 0x1f;
1255 			rb = (instr >> 11) & 0x1f;
1256 			rd = (instr >> 21) & 0x1f;
1257 			ra = (regs->ccr >> (31 - ra)) & 1;
1258 			rb = (regs->ccr >> (31 - rb)) & 1;
1259 			val = (instr >> (6 + ra * 2 + rb)) & 1;
1260 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1261 				(val << (31 - rd));
1262 			return 1;
1263 		}
1264 		break;
1265 	case 31:
1266 		switch ((instr >> 1) & 0x3ff) {
1267 		case 598:	/* sync */
1268 			op->type = BARRIER + BARRIER_SYNC;
1269 #ifdef __powerpc64__
1270 			switch ((instr >> 21) & 3) {
1271 			case 1:		/* lwsync */
1272 				op->type = BARRIER + BARRIER_LWSYNC;
1273 				break;
1274 			case 2:		/* ptesync */
1275 				op->type = BARRIER + BARRIER_PTESYNC;
1276 				break;
1277 			}
1278 #endif
1279 			return 1;
1280 
1281 		case 854:	/* eieio */
1282 			op->type = BARRIER + BARRIER_EIEIO;
1283 			return 1;
1284 		}
1285 		break;
1286 	}
1287 
1288 	/* Following cases refer to regs->gpr[], so we need all regs */
1289 	if (!FULL_REGS(regs))
1290 		return -1;
1291 
1292 	rd = (instr >> 21) & 0x1f;
1293 	ra = (instr >> 16) & 0x1f;
1294 	rb = (instr >> 11) & 0x1f;
1295 
1296 	switch (opcode) {
1297 #ifdef __powerpc64__
1298 	case 2:		/* tdi */
1299 		if (rd & trap_compare(regs->gpr[ra], (short) instr))
1300 			goto trap;
1301 		return 1;
1302 #endif
1303 	case 3:		/* twi */
1304 		if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1305 			goto trap;
1306 		return 1;
1307 
1308 	case 7:		/* mulli */
1309 		op->val = regs->gpr[ra] * (short) instr;
1310 		goto compute_done;
1311 
1312 	case 8:		/* subfic */
1313 		imm = (short) instr;
1314 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1315 		return 1;
1316 
1317 	case 10:	/* cmpli */
1318 		imm = (unsigned short) instr;
1319 		val = regs->gpr[ra];
1320 #ifdef __powerpc64__
1321 		if ((rd & 1) == 0)
1322 			val = (unsigned int) val;
1323 #endif
1324 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1325 		return 1;
1326 
1327 	case 11:	/* cmpi */
1328 		imm = (short) instr;
1329 		val = regs->gpr[ra];
1330 #ifdef __powerpc64__
1331 		if ((rd & 1) == 0)
1332 			val = (int) val;
1333 #endif
1334 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1335 		return 1;
1336 
1337 	case 12:	/* addic */
1338 		imm = (short) instr;
1339 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1340 		return 1;
1341 
1342 	case 13:	/* addic. */
1343 		imm = (short) instr;
1344 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1345 		set_cr0(regs, op);
1346 		return 1;
1347 
1348 	case 14:	/* addi */
1349 		imm = (short) instr;
1350 		if (ra)
1351 			imm += regs->gpr[ra];
1352 		op->val = imm;
1353 		goto compute_done;
1354 
1355 	case 15:	/* addis */
1356 		imm = ((short) instr) << 16;
1357 		if (ra)
1358 			imm += regs->gpr[ra];
1359 		op->val = imm;
1360 		goto compute_done;
1361 
1362 	case 19:
1363 		if (((instr >> 1) & 0x1f) == 2) {
1364 			/* addpcis */
1365 			imm = (short) (instr & 0xffc1);	/* d0 + d2 fields */
1366 			imm |= (instr >> 15) & 0x3e;	/* d1 field */
1367 			op->val = regs->nip + (imm << 16) + 4;
1368 			goto compute_done;
1369 		}
1370 		op->type = UNKNOWN;
1371 		return 0;
1372 
1373 	case 20:	/* rlwimi */
1374 		mb = (instr >> 6) & 0x1f;
1375 		me = (instr >> 1) & 0x1f;
1376 		val = DATA32(regs->gpr[rd]);
1377 		imm = MASK32(mb, me);
1378 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1379 		goto logical_done;
1380 
1381 	case 21:	/* rlwinm */
1382 		mb = (instr >> 6) & 0x1f;
1383 		me = (instr >> 1) & 0x1f;
1384 		val = DATA32(regs->gpr[rd]);
1385 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1386 		goto logical_done;
1387 
1388 	case 23:	/* rlwnm */
1389 		mb = (instr >> 6) & 0x1f;
1390 		me = (instr >> 1) & 0x1f;
1391 		rb = regs->gpr[rb] & 0x1f;
1392 		val = DATA32(regs->gpr[rd]);
1393 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1394 		goto logical_done;
1395 
1396 	case 24:	/* ori */
1397 		op->val = regs->gpr[rd] | (unsigned short) instr;
1398 		goto logical_done_nocc;
1399 
1400 	case 25:	/* oris */
1401 		imm = (unsigned short) instr;
1402 		op->val = regs->gpr[rd] | (imm << 16);
1403 		goto logical_done_nocc;
1404 
1405 	case 26:	/* xori */
1406 		op->val = regs->gpr[rd] ^ (unsigned short) instr;
1407 		goto logical_done_nocc;
1408 
1409 	case 27:	/* xoris */
1410 		imm = (unsigned short) instr;
1411 		op->val = regs->gpr[rd] ^ (imm << 16);
1412 		goto logical_done_nocc;
1413 
1414 	case 28:	/* andi. */
1415 		op->val = regs->gpr[rd] & (unsigned short) instr;
1416 		set_cr0(regs, op);
1417 		goto logical_done_nocc;
1418 
1419 	case 29:	/* andis. */
1420 		imm = (unsigned short) instr;
1421 		op->val = regs->gpr[rd] & (imm << 16);
1422 		set_cr0(regs, op);
1423 		goto logical_done_nocc;
1424 
1425 #ifdef __powerpc64__
1426 	case 30:	/* rld* */
1427 		mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1428 		val = regs->gpr[rd];
1429 		if ((instr & 0x10) == 0) {
1430 			sh = rb | ((instr & 2) << 4);
1431 			val = ROTATE(val, sh);
1432 			switch ((instr >> 2) & 3) {
1433 			case 0:		/* rldicl */
1434 				val &= MASK64_L(mb);
1435 				break;
1436 			case 1:		/* rldicr */
1437 				val &= MASK64_R(mb);
1438 				break;
1439 			case 2:		/* rldic */
1440 				val &= MASK64(mb, 63 - sh);
1441 				break;
1442 			case 3:		/* rldimi */
1443 				imm = MASK64(mb, 63 - sh);
1444 				val = (regs->gpr[ra] & ~imm) |
1445 					(val & imm);
1446 			}
1447 			op->val = val;
1448 			goto logical_done;
1449 		} else {
1450 			sh = regs->gpr[rb] & 0x3f;
1451 			val = ROTATE(val, sh);
1452 			switch ((instr >> 1) & 7) {
1453 			case 0:		/* rldcl */
1454 				op->val = val & MASK64_L(mb);
1455 				goto logical_done;
1456 			case 1:		/* rldcr */
1457 				op->val = val & MASK64_R(mb);
1458 				goto logical_done;
1459 			}
1460 		}
1461 #endif
1462 		op->type = UNKNOWN;	/* illegal instruction */
1463 		return 0;
1464 
1465 	case 31:
1466 		/* isel occupies 32 minor opcodes */
1467 		if (((instr >> 1) & 0x1f) == 15) {
1468 			mb = (instr >> 6) & 0x1f; /* bc field */
1469 			val = (regs->ccr >> (31 - mb)) & 1;
1470 			val2 = (ra) ? regs->gpr[ra] : 0;
1471 
1472 			op->val = (val) ? val2 : regs->gpr[rb];
1473 			goto compute_done;
1474 		}
1475 
1476 		switch ((instr >> 1) & 0x3ff) {
1477 		case 4:		/* tw */
1478 			if (rd == 0x1f ||
1479 			    (rd & trap_compare((int)regs->gpr[ra],
1480 					       (int)regs->gpr[rb])))
1481 				goto trap;
1482 			return 1;
1483 #ifdef __powerpc64__
1484 		case 68:	/* td */
1485 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1486 				goto trap;
1487 			return 1;
1488 #endif
1489 		case 83:	/* mfmsr */
1490 			if (regs->msr & MSR_PR)
1491 				goto priv;
1492 			op->type = MFMSR;
1493 			op->reg = rd;
1494 			return 0;
1495 		case 146:	/* mtmsr */
1496 			if (regs->msr & MSR_PR)
1497 				goto priv;
1498 			op->type = MTMSR;
1499 			op->reg = rd;
1500 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1501 			return 0;
1502 #ifdef CONFIG_PPC64
1503 		case 178:	/* mtmsrd */
1504 			if (regs->msr & MSR_PR)
1505 				goto priv;
1506 			op->type = MTMSR;
1507 			op->reg = rd;
1508 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1509 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1510 			imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1511 			op->val = imm;
1512 			return 0;
1513 #endif
1514 
1515 		case 19:	/* mfcr */
1516 			imm = 0xffffffffUL;
1517 			if ((instr >> 20) & 1) {
1518 				imm = 0xf0000000UL;
1519 				for (sh = 0; sh < 8; ++sh) {
1520 					if (instr & (0x80000 >> sh))
1521 						break;
1522 					imm >>= 4;
1523 				}
1524 			}
1525 			op->val = regs->ccr & imm;
1526 			goto compute_done;
1527 
1528 		case 144:	/* mtcrf */
1529 			op->type = COMPUTE + SETCC;
1530 			imm = 0xf0000000UL;
1531 			val = regs->gpr[rd];
1532 			op->ccval = regs->ccr;
1533 			for (sh = 0; sh < 8; ++sh) {
1534 				if (instr & (0x80000 >> sh))
1535 					op->ccval = (op->ccval & ~imm) |
1536 						(val & imm);
1537 				imm >>= 4;
1538 			}
1539 			return 1;
1540 
1541 		case 339:	/* mfspr */
1542 			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1543 			op->type = MFSPR;
1544 			op->reg = rd;
1545 			op->spr = spr;
1546 			if (spr == SPRN_XER || spr == SPRN_LR ||
1547 			    spr == SPRN_CTR)
1548 				return 1;
1549 			return 0;
1550 
1551 		case 467:	/* mtspr */
1552 			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1553 			op->type = MTSPR;
1554 			op->val = regs->gpr[rd];
1555 			op->spr = spr;
1556 			if (spr == SPRN_XER || spr == SPRN_LR ||
1557 			    spr == SPRN_CTR)
1558 				return 1;
1559 			return 0;
1560 
1561 /*
1562  * Compare instructions
1563  */
1564 		case 0:	/* cmp */
1565 			val = regs->gpr[ra];
1566 			val2 = regs->gpr[rb];
1567 #ifdef __powerpc64__
1568 			if ((rd & 1) == 0) {
1569 				/* word (32-bit) compare */
1570 				val = (int) val;
1571 				val2 = (int) val2;
1572 			}
1573 #endif
1574 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1575 			return 1;
1576 
1577 		case 32:	/* cmpl */
1578 			val = regs->gpr[ra];
1579 			val2 = regs->gpr[rb];
1580 #ifdef __powerpc64__
1581 			if ((rd & 1) == 0) {
1582 				/* word (32-bit) compare */
1583 				val = (unsigned int) val;
1584 				val2 = (unsigned int) val2;
1585 			}
1586 #endif
1587 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1588 			return 1;
1589 
1590 		case 508: /* cmpb */
1591 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1592 			goto logical_done_nocc;
1593 
1594 /*
1595  * Arithmetic instructions
1596  */
1597 		case 8:	/* subfc */
1598 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1599 				       regs->gpr[rb], 1);
1600 			goto arith_done;
1601 #ifdef __powerpc64__
1602 		case 9:	/* mulhdu */
1603 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1604 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1605 			goto arith_done;
1606 #endif
1607 		case 10:	/* addc */
1608 			add_with_carry(regs, op, rd, regs->gpr[ra],
1609 				       regs->gpr[rb], 0);
1610 			goto arith_done;
1611 
1612 		case 11:	/* mulhwu */
1613 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1614 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1615 			goto arith_done;
1616 
1617 		case 40:	/* subf */
1618 			op->val = regs->gpr[rb] - regs->gpr[ra];
1619 			goto arith_done;
1620 #ifdef __powerpc64__
1621 		case 73:	/* mulhd */
1622 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1623 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1624 			goto arith_done;
1625 #endif
1626 		case 75:	/* mulhw */
1627 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1628 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1629 			goto arith_done;
1630 
1631 		case 104:	/* neg */
1632 			op->val = -regs->gpr[ra];
1633 			goto arith_done;
1634 
1635 		case 136:	/* subfe */
1636 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1637 				       regs->gpr[rb], regs->xer & XER_CA);
1638 			goto arith_done;
1639 
1640 		case 138:	/* adde */
1641 			add_with_carry(regs, op, rd, regs->gpr[ra],
1642 				       regs->gpr[rb], regs->xer & XER_CA);
1643 			goto arith_done;
1644 
1645 		case 200:	/* subfze */
1646 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1647 				       regs->xer & XER_CA);
1648 			goto arith_done;
1649 
1650 		case 202:	/* addze */
1651 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1652 				       regs->xer & XER_CA);
1653 			goto arith_done;
1654 
1655 		case 232:	/* subfme */
1656 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1657 				       regs->xer & XER_CA);
1658 			goto arith_done;
1659 #ifdef __powerpc64__
1660 		case 233:	/* mulld */
1661 			op->val = regs->gpr[ra] * regs->gpr[rb];
1662 			goto arith_done;
1663 #endif
1664 		case 234:	/* addme */
1665 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1666 				       regs->xer & XER_CA);
1667 			goto arith_done;
1668 
1669 		case 235:	/* mullw */
1670 			op->val = (long)(int) regs->gpr[ra] *
1671 				(int) regs->gpr[rb];
1672 
1673 			goto arith_done;
1674 
1675 		case 266:	/* add */
1676 			op->val = regs->gpr[ra] + regs->gpr[rb];
1677 			goto arith_done;
1678 #ifdef __powerpc64__
1679 		case 457:	/* divdu */
1680 			op->val = regs->gpr[ra] / regs->gpr[rb];
1681 			goto arith_done;
1682 #endif
1683 		case 459:	/* divwu */
1684 			op->val = (unsigned int) regs->gpr[ra] /
1685 				(unsigned int) regs->gpr[rb];
1686 			goto arith_done;
1687 #ifdef __powerpc64__
1688 		case 489:	/* divd */
1689 			op->val = (long int) regs->gpr[ra] /
1690 				(long int) regs->gpr[rb];
1691 			goto arith_done;
1692 #endif
1693 		case 491:	/* divw */
1694 			op->val = (int) regs->gpr[ra] /
1695 				(int) regs->gpr[rb];
1696 			goto arith_done;
1697 
1698 
1699 /*
1700  * Logical instructions
1701  */
1702 		case 26:	/* cntlzw */
1703 			val = (unsigned int) regs->gpr[rd];
1704 			op->val = ( val ? __builtin_clz(val) : 32 );
1705 			goto logical_done;
1706 #ifdef __powerpc64__
1707 		case 58:	/* cntlzd */
1708 			val = regs->gpr[rd];
1709 			op->val = ( val ? __builtin_clzl(val) : 64 );
1710 			goto logical_done;
1711 #endif
1712 		case 28:	/* and */
1713 			op->val = regs->gpr[rd] & regs->gpr[rb];
1714 			goto logical_done;
1715 
1716 		case 60:	/* andc */
1717 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
1718 			goto logical_done;
1719 
1720 		case 122:	/* popcntb */
1721 			do_popcnt(regs, op, regs->gpr[rd], 8);
1722 			goto logical_done_nocc;
1723 
1724 		case 124:	/* nor */
1725 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1726 			goto logical_done;
1727 
1728 		case 154:	/* prtyw */
1729 			do_prty(regs, op, regs->gpr[rd], 32);
1730 			goto logical_done_nocc;
1731 
1732 		case 186:	/* prtyd */
1733 			do_prty(regs, op, regs->gpr[rd], 64);
1734 			goto logical_done_nocc;
1735 #ifdef CONFIG_PPC64
1736 		case 252:	/* bpermd */
1737 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1738 			goto logical_done_nocc;
1739 #endif
1740 		case 284:	/* xor */
1741 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1742 			goto logical_done;
1743 
1744 		case 316:	/* xor */
1745 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
1746 			goto logical_done;
1747 
1748 		case 378:	/* popcntw */
1749 			do_popcnt(regs, op, regs->gpr[rd], 32);
1750 			goto logical_done_nocc;
1751 
1752 		case 412:	/* orc */
1753 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
1754 			goto logical_done;
1755 
1756 		case 444:	/* or */
1757 			op->val = regs->gpr[rd] | regs->gpr[rb];
1758 			goto logical_done;
1759 
1760 		case 476:	/* nand */
1761 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1762 			goto logical_done;
1763 #ifdef CONFIG_PPC64
1764 		case 506:	/* popcntd */
1765 			do_popcnt(regs, op, regs->gpr[rd], 64);
1766 			goto logical_done_nocc;
1767 #endif
1768 		case 922:	/* extsh */
1769 			op->val = (signed short) regs->gpr[rd];
1770 			goto logical_done;
1771 
1772 		case 954:	/* extsb */
1773 			op->val = (signed char) regs->gpr[rd];
1774 			goto logical_done;
1775 #ifdef __powerpc64__
1776 		case 986:	/* extsw */
1777 			op->val = (signed int) regs->gpr[rd];
1778 			goto logical_done;
1779 #endif
1780 
1781 /*
1782  * Shift instructions
1783  */
1784 		case 24:	/* slw */
1785 			sh = regs->gpr[rb] & 0x3f;
1786 			if (sh < 32)
1787 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1788 			else
1789 				op->val = 0;
1790 			goto logical_done;
1791 
1792 		case 536:	/* srw */
1793 			sh = regs->gpr[rb] & 0x3f;
1794 			if (sh < 32)
1795 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1796 			else
1797 				op->val = 0;
1798 			goto logical_done;
1799 
1800 		case 792:	/* sraw */
1801 			op->type = COMPUTE + SETREG + SETXER;
1802 			sh = regs->gpr[rb] & 0x3f;
1803 			ival = (signed int) regs->gpr[rd];
1804 			op->val = ival >> (sh < 32 ? sh : 31);
1805 			op->xerval = regs->xer;
1806 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1807 				op->xerval |= XER_CA;
1808 			else
1809 				op->xerval &= ~XER_CA;
1810 			set_ca32(op, op->xerval & XER_CA);
1811 			goto logical_done;
1812 
1813 		case 824:	/* srawi */
1814 			op->type = COMPUTE + SETREG + SETXER;
1815 			sh = rb;
1816 			ival = (signed int) regs->gpr[rd];
1817 			op->val = ival >> sh;
1818 			op->xerval = regs->xer;
1819 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1820 				op->xerval |= XER_CA;
1821 			else
1822 				op->xerval &= ~XER_CA;
1823 			set_ca32(op, op->xerval & XER_CA);
1824 			goto logical_done;
1825 
1826 #ifdef __powerpc64__
1827 		case 27:	/* sld */
1828 			sh = regs->gpr[rb] & 0x7f;
1829 			if (sh < 64)
1830 				op->val = regs->gpr[rd] << sh;
1831 			else
1832 				op->val = 0;
1833 			goto logical_done;
1834 
1835 		case 539:	/* srd */
1836 			sh = regs->gpr[rb] & 0x7f;
1837 			if (sh < 64)
1838 				op->val = regs->gpr[rd] >> sh;
1839 			else
1840 				op->val = 0;
1841 			goto logical_done;
1842 
1843 		case 794:	/* srad */
1844 			op->type = COMPUTE + SETREG + SETXER;
1845 			sh = regs->gpr[rb] & 0x7f;
1846 			ival = (signed long int) regs->gpr[rd];
1847 			op->val = ival >> (sh < 64 ? sh : 63);
1848 			op->xerval = regs->xer;
1849 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1850 				op->xerval |= XER_CA;
1851 			else
1852 				op->xerval &= ~XER_CA;
1853 			set_ca32(op, op->xerval & XER_CA);
1854 			goto logical_done;
1855 
1856 		case 826:	/* sradi with sh_5 = 0 */
1857 		case 827:	/* sradi with sh_5 = 1 */
1858 			op->type = COMPUTE + SETREG + SETXER;
1859 			sh = rb | ((instr & 2) << 4);
1860 			ival = (signed long int) regs->gpr[rd];
1861 			op->val = ival >> sh;
1862 			op->xerval = regs->xer;
1863 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1864 				op->xerval |= XER_CA;
1865 			else
1866 				op->xerval &= ~XER_CA;
1867 			set_ca32(op, op->xerval & XER_CA);
1868 			goto logical_done;
1869 #endif /* __powerpc64__ */
1870 
1871 /*
1872  * Cache instructions
1873  */
1874 		case 54:	/* dcbst */
1875 			op->type = MKOP(CACHEOP, DCBST, 0);
1876 			op->ea = xform_ea(instr, regs);
1877 			return 0;
1878 
1879 		case 86:	/* dcbf */
1880 			op->type = MKOP(CACHEOP, DCBF, 0);
1881 			op->ea = xform_ea(instr, regs);
1882 			return 0;
1883 
1884 		case 246:	/* dcbtst */
1885 			op->type = MKOP(CACHEOP, DCBTST, 0);
1886 			op->ea = xform_ea(instr, regs);
1887 			op->reg = rd;
1888 			return 0;
1889 
1890 		case 278:	/* dcbt */
1891 			op->type = MKOP(CACHEOP, DCBTST, 0);
1892 			op->ea = xform_ea(instr, regs);
1893 			op->reg = rd;
1894 			return 0;
1895 
1896 		case 982:	/* icbi */
1897 			op->type = MKOP(CACHEOP, ICBI, 0);
1898 			op->ea = xform_ea(instr, regs);
1899 			return 0;
1900 
1901 		case 1014:	/* dcbz */
1902 			op->type = MKOP(CACHEOP, DCBZ, 0);
1903 			op->ea = xform_ea(instr, regs);
1904 			return 0;
1905 		}
1906 		break;
1907 	}
1908 
1909 /*
1910  * Loads and stores.
1911  */
1912 	op->type = UNKNOWN;
1913 	op->update_reg = ra;
1914 	op->reg = rd;
1915 	op->val = regs->gpr[rd];
1916 	u = (instr >> 20) & UPDATE;
1917 	op->vsx_flags = 0;
1918 
1919 	switch (opcode) {
1920 	case 31:
1921 		u = instr & UPDATE;
1922 		op->ea = xform_ea(instr, regs);
1923 		switch ((instr >> 1) & 0x3ff) {
1924 		case 20:	/* lwarx */
1925 			op->type = MKOP(LARX, 0, 4);
1926 			break;
1927 
1928 		case 150:	/* stwcx. */
1929 			op->type = MKOP(STCX, 0, 4);
1930 			break;
1931 
1932 #ifdef __powerpc64__
1933 		case 84:	/* ldarx */
1934 			op->type = MKOP(LARX, 0, 8);
1935 			break;
1936 
1937 		case 214:	/* stdcx. */
1938 			op->type = MKOP(STCX, 0, 8);
1939 			break;
1940 
1941 		case 52:	/* lbarx */
1942 			op->type = MKOP(LARX, 0, 1);
1943 			break;
1944 
1945 		case 694:	/* stbcx. */
1946 			op->type = MKOP(STCX, 0, 1);
1947 			break;
1948 
1949 		case 116:	/* lharx */
1950 			op->type = MKOP(LARX, 0, 2);
1951 			break;
1952 
1953 		case 726:	/* sthcx. */
1954 			op->type = MKOP(STCX, 0, 2);
1955 			break;
1956 
1957 		case 276:	/* lqarx */
1958 			if (!((rd & 1) || rd == ra || rd == rb))
1959 				op->type = MKOP(LARX, 0, 16);
1960 			break;
1961 
1962 		case 182:	/* stqcx. */
1963 			if (!(rd & 1))
1964 				op->type = MKOP(STCX, 0, 16);
1965 			break;
1966 #endif
1967 
1968 		case 23:	/* lwzx */
1969 		case 55:	/* lwzux */
1970 			op->type = MKOP(LOAD, u, 4);
1971 			break;
1972 
1973 		case 87:	/* lbzx */
1974 		case 119:	/* lbzux */
1975 			op->type = MKOP(LOAD, u, 1);
1976 			break;
1977 
1978 #ifdef CONFIG_ALTIVEC
1979 		/*
1980 		 * Note: for the load/store vector element instructions,
1981 		 * bits of the EA say which field of the VMX register to use.
1982 		 */
1983 		case 7:		/* lvebx */
1984 			op->type = MKOP(LOAD_VMX, 0, 1);
1985 			op->element_size = 1;
1986 			break;
1987 
1988 		case 39:	/* lvehx */
1989 			op->type = MKOP(LOAD_VMX, 0, 2);
1990 			op->element_size = 2;
1991 			break;
1992 
1993 		case 71:	/* lvewx */
1994 			op->type = MKOP(LOAD_VMX, 0, 4);
1995 			op->element_size = 4;
1996 			break;
1997 
1998 		case 103:	/* lvx */
1999 		case 359:	/* lvxl */
2000 			op->type = MKOP(LOAD_VMX, 0, 16);
2001 			op->element_size = 16;
2002 			break;
2003 
2004 		case 135:	/* stvebx */
2005 			op->type = MKOP(STORE_VMX, 0, 1);
2006 			op->element_size = 1;
2007 			break;
2008 
2009 		case 167:	/* stvehx */
2010 			op->type = MKOP(STORE_VMX, 0, 2);
2011 			op->element_size = 2;
2012 			break;
2013 
2014 		case 199:	/* stvewx */
2015 			op->type = MKOP(STORE_VMX, 0, 4);
2016 			op->element_size = 4;
2017 			break;
2018 
2019 		case 231:	/* stvx */
2020 		case 487:	/* stvxl */
2021 			op->type = MKOP(STORE_VMX, 0, 16);
2022 			break;
2023 #endif /* CONFIG_ALTIVEC */
2024 
2025 #ifdef __powerpc64__
2026 		case 21:	/* ldx */
2027 		case 53:	/* ldux */
2028 			op->type = MKOP(LOAD, u, 8);
2029 			break;
2030 
2031 		case 149:	/* stdx */
2032 		case 181:	/* stdux */
2033 			op->type = MKOP(STORE, u, 8);
2034 			break;
2035 #endif
2036 
2037 		case 151:	/* stwx */
2038 		case 183:	/* stwux */
2039 			op->type = MKOP(STORE, u, 4);
2040 			break;
2041 
2042 		case 215:	/* stbx */
2043 		case 247:	/* stbux */
2044 			op->type = MKOP(STORE, u, 1);
2045 			break;
2046 
2047 		case 279:	/* lhzx */
2048 		case 311:	/* lhzux */
2049 			op->type = MKOP(LOAD, u, 2);
2050 			break;
2051 
2052 #ifdef __powerpc64__
2053 		case 341:	/* lwax */
2054 		case 373:	/* lwaux */
2055 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2056 			break;
2057 #endif
2058 
2059 		case 343:	/* lhax */
2060 		case 375:	/* lhaux */
2061 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2062 			break;
2063 
2064 		case 407:	/* sthx */
2065 		case 439:	/* sthux */
2066 			op->type = MKOP(STORE, u, 2);
2067 			break;
2068 
2069 #ifdef __powerpc64__
2070 		case 532:	/* ldbrx */
2071 			op->type = MKOP(LOAD, BYTEREV, 8);
2072 			break;
2073 
2074 #endif
2075 		case 533:	/* lswx */
2076 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2077 			break;
2078 
2079 		case 534:	/* lwbrx */
2080 			op->type = MKOP(LOAD, BYTEREV, 4);
2081 			break;
2082 
2083 		case 597:	/* lswi */
2084 			if (rb == 0)
2085 				rb = 32;	/* # bytes to load */
2086 			op->type = MKOP(LOAD_MULTI, 0, rb);
2087 			op->ea = ra ? regs->gpr[ra] : 0;
2088 			break;
2089 
2090 #ifdef CONFIG_PPC_FPU
2091 		case 535:	/* lfsx */
2092 		case 567:	/* lfsux */
2093 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2094 			break;
2095 
2096 		case 599:	/* lfdx */
2097 		case 631:	/* lfdux */
2098 			op->type = MKOP(LOAD_FP, u, 8);
2099 			break;
2100 
2101 		case 663:	/* stfsx */
2102 		case 695:	/* stfsux */
2103 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2104 			break;
2105 
2106 		case 727:	/* stfdx */
2107 		case 759:	/* stfdux */
2108 			op->type = MKOP(STORE_FP, u, 8);
2109 			break;
2110 
2111 #ifdef __powerpc64__
2112 		case 791:	/* lfdpx */
2113 			op->type = MKOP(LOAD_FP, 0, 16);
2114 			break;
2115 
2116 		case 855:	/* lfiwax */
2117 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2118 			break;
2119 
2120 		case 887:	/* lfiwzx */
2121 			op->type = MKOP(LOAD_FP, 0, 4);
2122 			break;
2123 
2124 		case 919:	/* stfdpx */
2125 			op->type = MKOP(STORE_FP, 0, 16);
2126 			break;
2127 
2128 		case 983:	/* stfiwx */
2129 			op->type = MKOP(STORE_FP, 0, 4);
2130 			break;
2131 #endif /* __powerpc64 */
2132 #endif /* CONFIG_PPC_FPU */
2133 
2134 #ifdef __powerpc64__
2135 		case 660:	/* stdbrx */
2136 			op->type = MKOP(STORE, BYTEREV, 8);
2137 			op->val = byterev_8(regs->gpr[rd]);
2138 			break;
2139 
2140 #endif
2141 		case 661:	/* stswx */
2142 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2143 			break;
2144 
2145 		case 662:	/* stwbrx */
2146 			op->type = MKOP(STORE, BYTEREV, 4);
2147 			op->val = byterev_4(regs->gpr[rd]);
2148 			break;
2149 
2150 		case 725:	/* stswi */
2151 			if (rb == 0)
2152 				rb = 32;	/* # bytes to store */
2153 			op->type = MKOP(STORE_MULTI, 0, rb);
2154 			op->ea = ra ? regs->gpr[ra] : 0;
2155 			break;
2156 
2157 		case 790:	/* lhbrx */
2158 			op->type = MKOP(LOAD, BYTEREV, 2);
2159 			break;
2160 
2161 		case 918:	/* sthbrx */
2162 			op->type = MKOP(STORE, BYTEREV, 2);
2163 			op->val = byterev_2(regs->gpr[rd]);
2164 			break;
2165 
2166 #ifdef CONFIG_VSX
2167 		case 12:	/* lxsiwzx */
2168 			op->reg = rd | ((instr & 1) << 5);
2169 			op->type = MKOP(LOAD_VSX, 0, 4);
2170 			op->element_size = 8;
2171 			break;
2172 
2173 		case 76:	/* lxsiwax */
2174 			op->reg = rd | ((instr & 1) << 5);
2175 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2176 			op->element_size = 8;
2177 			break;
2178 
2179 		case 140:	/* stxsiwx */
2180 			op->reg = rd | ((instr & 1) << 5);
2181 			op->type = MKOP(STORE_VSX, 0, 4);
2182 			op->element_size = 8;
2183 			break;
2184 
2185 		case 268:	/* lxvx */
2186 			op->reg = rd | ((instr & 1) << 5);
2187 			op->type = MKOP(LOAD_VSX, 0, 16);
2188 			op->element_size = 16;
2189 			op->vsx_flags = VSX_CHECK_VEC;
2190 			break;
2191 
2192 		case 269:	/* lxvl */
2193 		case 301: {	/* lxvll */
2194 			int nb;
2195 			op->reg = rd | ((instr & 1) << 5);
2196 			op->ea = ra ? regs->gpr[ra] : 0;
2197 			nb = regs->gpr[rb] & 0xff;
2198 			if (nb > 16)
2199 				nb = 16;
2200 			op->type = MKOP(LOAD_VSX, 0, nb);
2201 			op->element_size = 16;
2202 			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2203 				VSX_CHECK_VEC;
2204 			break;
2205 		}
2206 		case 332:	/* lxvdsx */
2207 			op->reg = rd | ((instr & 1) << 5);
2208 			op->type = MKOP(LOAD_VSX, 0, 8);
2209 			op->element_size = 8;
2210 			op->vsx_flags = VSX_SPLAT;
2211 			break;
2212 
2213 		case 364:	/* lxvwsx */
2214 			op->reg = rd | ((instr & 1) << 5);
2215 			op->type = MKOP(LOAD_VSX, 0, 4);
2216 			op->element_size = 4;
2217 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2218 			break;
2219 
2220 		case 396:	/* stxvx */
2221 			op->reg = rd | ((instr & 1) << 5);
2222 			op->type = MKOP(STORE_VSX, 0, 16);
2223 			op->element_size = 16;
2224 			op->vsx_flags = VSX_CHECK_VEC;
2225 			break;
2226 
2227 		case 397:	/* stxvl */
2228 		case 429: {	/* stxvll */
2229 			int nb;
2230 			op->reg = rd | ((instr & 1) << 5);
2231 			op->ea = ra ? regs->gpr[ra] : 0;
2232 			nb = regs->gpr[rb] & 0xff;
2233 			if (nb > 16)
2234 				nb = 16;
2235 			op->type = MKOP(STORE_VSX, 0, nb);
2236 			op->element_size = 16;
2237 			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2238 				VSX_CHECK_VEC;
2239 			break;
2240 		}
2241 		case 524:	/* lxsspx */
2242 			op->reg = rd | ((instr & 1) << 5);
2243 			op->type = MKOP(LOAD_VSX, 0, 4);
2244 			op->element_size = 8;
2245 			op->vsx_flags = VSX_FPCONV;
2246 			break;
2247 
2248 		case 588:	/* lxsdx */
2249 			op->reg = rd | ((instr & 1) << 5);
2250 			op->type = MKOP(LOAD_VSX, 0, 8);
2251 			op->element_size = 8;
2252 			break;
2253 
2254 		case 652:	/* stxsspx */
2255 			op->reg = rd | ((instr & 1) << 5);
2256 			op->type = MKOP(STORE_VSX, 0, 4);
2257 			op->element_size = 8;
2258 			op->vsx_flags = VSX_FPCONV;
2259 			break;
2260 
2261 		case 716:	/* stxsdx */
2262 			op->reg = rd | ((instr & 1) << 5);
2263 			op->type = MKOP(STORE_VSX, 0, 8);
2264 			op->element_size = 8;
2265 			break;
2266 
2267 		case 780:	/* lxvw4x */
2268 			op->reg = rd | ((instr & 1) << 5);
2269 			op->type = MKOP(LOAD_VSX, 0, 16);
2270 			op->element_size = 4;
2271 			break;
2272 
2273 		case 781:	/* lxsibzx */
2274 			op->reg = rd | ((instr & 1) << 5);
2275 			op->type = MKOP(LOAD_VSX, 0, 1);
2276 			op->element_size = 8;
2277 			op->vsx_flags = VSX_CHECK_VEC;
2278 			break;
2279 
2280 		case 812:	/* lxvh8x */
2281 			op->reg = rd | ((instr & 1) << 5);
2282 			op->type = MKOP(LOAD_VSX, 0, 16);
2283 			op->element_size = 2;
2284 			op->vsx_flags = VSX_CHECK_VEC;
2285 			break;
2286 
2287 		case 813:	/* lxsihzx */
2288 			op->reg = rd | ((instr & 1) << 5);
2289 			op->type = MKOP(LOAD_VSX, 0, 2);
2290 			op->element_size = 8;
2291 			op->vsx_flags = VSX_CHECK_VEC;
2292 			break;
2293 
2294 		case 844:	/* lxvd2x */
2295 			op->reg = rd | ((instr & 1) << 5);
2296 			op->type = MKOP(LOAD_VSX, 0, 16);
2297 			op->element_size = 8;
2298 			break;
2299 
2300 		case 876:	/* lxvb16x */
2301 			op->reg = rd | ((instr & 1) << 5);
2302 			op->type = MKOP(LOAD_VSX, 0, 16);
2303 			op->element_size = 1;
2304 			op->vsx_flags = VSX_CHECK_VEC;
2305 			break;
2306 
2307 		case 908:	/* stxvw4x */
2308 			op->reg = rd | ((instr & 1) << 5);
2309 			op->type = MKOP(STORE_VSX, 0, 16);
2310 			op->element_size = 4;
2311 			break;
2312 
2313 		case 909:	/* stxsibx */
2314 			op->reg = rd | ((instr & 1) << 5);
2315 			op->type = MKOP(STORE_VSX, 0, 1);
2316 			op->element_size = 8;
2317 			op->vsx_flags = VSX_CHECK_VEC;
2318 			break;
2319 
2320 		case 940:	/* stxvh8x */
2321 			op->reg = rd | ((instr & 1) << 5);
2322 			op->type = MKOP(STORE_VSX, 0, 16);
2323 			op->element_size = 2;
2324 			op->vsx_flags = VSX_CHECK_VEC;
2325 			break;
2326 
2327 		case 941:	/* stxsihx */
2328 			op->reg = rd | ((instr & 1) << 5);
2329 			op->type = MKOP(STORE_VSX, 0, 2);
2330 			op->element_size = 8;
2331 			op->vsx_flags = VSX_CHECK_VEC;
2332 			break;
2333 
2334 		case 972:	/* stxvd2x */
2335 			op->reg = rd | ((instr & 1) << 5);
2336 			op->type = MKOP(STORE_VSX, 0, 16);
2337 			op->element_size = 8;
2338 			break;
2339 
2340 		case 1004:	/* stxvb16x */
2341 			op->reg = rd | ((instr & 1) << 5);
2342 			op->type = MKOP(STORE_VSX, 0, 16);
2343 			op->element_size = 1;
2344 			op->vsx_flags = VSX_CHECK_VEC;
2345 			break;
2346 
2347 #endif /* CONFIG_VSX */
2348 		}
2349 		break;
2350 
2351 	case 32:	/* lwz */
2352 	case 33:	/* lwzu */
2353 		op->type = MKOP(LOAD, u, 4);
2354 		op->ea = dform_ea(instr, regs);
2355 		break;
2356 
2357 	case 34:	/* lbz */
2358 	case 35:	/* lbzu */
2359 		op->type = MKOP(LOAD, u, 1);
2360 		op->ea = dform_ea(instr, regs);
2361 		break;
2362 
2363 	case 36:	/* stw */
2364 	case 37:	/* stwu */
2365 		op->type = MKOP(STORE, u, 4);
2366 		op->ea = dform_ea(instr, regs);
2367 		break;
2368 
2369 	case 38:	/* stb */
2370 	case 39:	/* stbu */
2371 		op->type = MKOP(STORE, u, 1);
2372 		op->ea = dform_ea(instr, regs);
2373 		break;
2374 
2375 	case 40:	/* lhz */
2376 	case 41:	/* lhzu */
2377 		op->type = MKOP(LOAD, u, 2);
2378 		op->ea = dform_ea(instr, regs);
2379 		break;
2380 
2381 	case 42:	/* lha */
2382 	case 43:	/* lhau */
2383 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2384 		op->ea = dform_ea(instr, regs);
2385 		break;
2386 
2387 	case 44:	/* sth */
2388 	case 45:	/* sthu */
2389 		op->type = MKOP(STORE, u, 2);
2390 		op->ea = dform_ea(instr, regs);
2391 		break;
2392 
2393 	case 46:	/* lmw */
2394 		if (ra >= rd)
2395 			break;		/* invalid form, ra in range to load */
2396 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2397 		op->ea = dform_ea(instr, regs);
2398 		break;
2399 
2400 	case 47:	/* stmw */
2401 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2402 		op->ea = dform_ea(instr, regs);
2403 		break;
2404 
2405 #ifdef CONFIG_PPC_FPU
2406 	case 48:	/* lfs */
2407 	case 49:	/* lfsu */
2408 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2409 		op->ea = dform_ea(instr, regs);
2410 		break;
2411 
2412 	case 50:	/* lfd */
2413 	case 51:	/* lfdu */
2414 		op->type = MKOP(LOAD_FP, u, 8);
2415 		op->ea = dform_ea(instr, regs);
2416 		break;
2417 
2418 	case 52:	/* stfs */
2419 	case 53:	/* stfsu */
2420 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2421 		op->ea = dform_ea(instr, regs);
2422 		break;
2423 
2424 	case 54:	/* stfd */
2425 	case 55:	/* stfdu */
2426 		op->type = MKOP(STORE_FP, u, 8);
2427 		op->ea = dform_ea(instr, regs);
2428 		break;
2429 #endif
2430 
2431 #ifdef __powerpc64__
2432 	case 56:	/* lq */
2433 		if (!((rd & 1) || (rd == ra)))
2434 			op->type = MKOP(LOAD, 0, 16);
2435 		op->ea = dqform_ea(instr, regs);
2436 		break;
2437 #endif
2438 
2439 #ifdef CONFIG_VSX
2440 	case 57:	/* lfdp, lxsd, lxssp */
2441 		op->ea = dsform_ea(instr, regs);
2442 		switch (instr & 3) {
2443 		case 0:		/* lfdp */
2444 			if (rd & 1)
2445 				break;		/* reg must be even */
2446 			op->type = MKOP(LOAD_FP, 0, 16);
2447 			break;
2448 		case 2:		/* lxsd */
2449 			op->reg = rd + 32;
2450 			op->type = MKOP(LOAD_VSX, 0, 8);
2451 			op->element_size = 8;
2452 			op->vsx_flags = VSX_CHECK_VEC;
2453 			break;
2454 		case 3:		/* lxssp */
2455 			op->reg = rd + 32;
2456 			op->type = MKOP(LOAD_VSX, 0, 4);
2457 			op->element_size = 8;
2458 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2459 			break;
2460 		}
2461 		break;
2462 #endif /* CONFIG_VSX */
2463 
2464 #ifdef __powerpc64__
2465 	case 58:	/* ld[u], lwa */
2466 		op->ea = dsform_ea(instr, regs);
2467 		switch (instr & 3) {
2468 		case 0:		/* ld */
2469 			op->type = MKOP(LOAD, 0, 8);
2470 			break;
2471 		case 1:		/* ldu */
2472 			op->type = MKOP(LOAD, UPDATE, 8);
2473 			break;
2474 		case 2:		/* lwa */
2475 			op->type = MKOP(LOAD, SIGNEXT, 4);
2476 			break;
2477 		}
2478 		break;
2479 #endif
2480 
2481 #ifdef CONFIG_VSX
2482 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2483 		switch (instr & 7) {
2484 		case 0:		/* stfdp with LSB of DS field = 0 */
2485 		case 4:		/* stfdp with LSB of DS field = 1 */
2486 			op->ea = dsform_ea(instr, regs);
2487 			op->type = MKOP(STORE_FP, 0, 16);
2488 			break;
2489 
2490 		case 1:		/* lxv */
2491 			op->ea = dqform_ea(instr, regs);
2492 			if (instr & 8)
2493 				op->reg = rd + 32;
2494 			op->type = MKOP(LOAD_VSX, 0, 16);
2495 			op->element_size = 16;
2496 			op->vsx_flags = VSX_CHECK_VEC;
2497 			break;
2498 
2499 		case 2:		/* stxsd with LSB of DS field = 0 */
2500 		case 6:		/* stxsd with LSB of DS field = 1 */
2501 			op->ea = dsform_ea(instr, regs);
2502 			op->reg = rd + 32;
2503 			op->type = MKOP(STORE_VSX, 0, 8);
2504 			op->element_size = 8;
2505 			op->vsx_flags = VSX_CHECK_VEC;
2506 			break;
2507 
2508 		case 3:		/* stxssp with LSB of DS field = 0 */
2509 		case 7:		/* stxssp with LSB of DS field = 1 */
2510 			op->ea = dsform_ea(instr, regs);
2511 			op->reg = rd + 32;
2512 			op->type = MKOP(STORE_VSX, 0, 4);
2513 			op->element_size = 8;
2514 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2515 			break;
2516 
2517 		case 5:		/* stxv */
2518 			op->ea = dqform_ea(instr, regs);
2519 			if (instr & 8)
2520 				op->reg = rd + 32;
2521 			op->type = MKOP(STORE_VSX, 0, 16);
2522 			op->element_size = 16;
2523 			op->vsx_flags = VSX_CHECK_VEC;
2524 			break;
2525 		}
2526 		break;
2527 #endif /* CONFIG_VSX */
2528 
2529 #ifdef __powerpc64__
2530 	case 62:	/* std[u] */
2531 		op->ea = dsform_ea(instr, regs);
2532 		switch (instr & 3) {
2533 		case 0:		/* std */
2534 			op->type = MKOP(STORE, 0, 8);
2535 			break;
2536 		case 1:		/* stdu */
2537 			op->type = MKOP(STORE, UPDATE, 8);
2538 			break;
2539 		case 2:		/* stq */
2540 			if (!(rd & 1))
2541 				op->type = MKOP(STORE, 0, 16);
2542 			break;
2543 		}
2544 		break;
2545 #endif /* __powerpc64__ */
2546 
2547 	}
2548 
2549 #ifdef CONFIG_VSX
2550 	if ((GETTYPE(op->type) == LOAD_VSX ||
2551 	     GETTYPE(op->type) == STORE_VSX) &&
2552 	    !cpu_has_feature(CPU_FTR_VSX)) {
2553 		return -1;
2554 	}
2555 #endif /* CONFIG_VSX */
2556 
2557 	return 0;
2558 
2559  logical_done:
2560 	if (instr & 1)
2561 		set_cr0(regs, op);
2562  logical_done_nocc:
2563 	op->reg = ra;
2564 	op->type |= SETREG;
2565 	return 1;
2566 
2567  arith_done:
2568 	if (instr & 1)
2569 		set_cr0(regs, op);
2570  compute_done:
2571 	op->reg = rd;
2572 	op->type |= SETREG;
2573 	return 1;
2574 
2575  priv:
2576 	op->type = INTERRUPT | 0x700;
2577 	op->val = SRR1_PROGPRIV;
2578 	return 0;
2579 
2580  trap:
2581 	op->type = INTERRUPT | 0x700;
2582 	op->val = SRR1_PROGTRAP;
2583 	return 0;
2584 }
2585 EXPORT_SYMBOL_GPL(analyse_instr);
2586 NOKPROBE_SYMBOL(analyse_instr);
2587 
2588 /*
2589  * For PPC32 we always use stwu with r1 to change the stack pointer.
2590  * So this emulated store may corrupt the exception frame, now we
2591  * have to provide the exception frame trampoline, which is pushed
2592  * below the kprobed function stack. So we only update gpr[1] but
2593  * don't emulate the real store operation. We will do real store
2594  * operation safely in exception return code by checking this flag.
2595  */
2596 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2597 {
2598 #ifdef CONFIG_PPC32
2599 	/*
2600 	 * Check if we will touch kernel stack overflow
2601 	 */
2602 	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2603 		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2604 		return -EINVAL;
2605 	}
2606 #endif /* CONFIG_PPC32 */
2607 	/*
2608 	 * Check if we already set since that means we'll
2609 	 * lose the previous value.
2610 	 */
2611 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2612 	set_thread_flag(TIF_EMULATE_STACK_STORE);
2613 	return 0;
2614 }
2615 
2616 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2617 {
2618 	switch (size) {
2619 	case 2:
2620 		*valp = (signed short) *valp;
2621 		break;
2622 	case 4:
2623 		*valp = (signed int) *valp;
2624 		break;
2625 	}
2626 }
2627 
2628 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2629 {
2630 	switch (size) {
2631 	case 2:
2632 		*valp = byterev_2(*valp);
2633 		break;
2634 	case 4:
2635 		*valp = byterev_4(*valp);
2636 		break;
2637 #ifdef __powerpc64__
2638 	case 8:
2639 		*valp = byterev_8(*valp);
2640 		break;
2641 #endif
2642 	}
2643 }
2644 
2645 /*
2646  * Emulate an instruction that can be executed just by updating
2647  * fields in *regs.
2648  */
2649 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2650 {
2651 	unsigned long next_pc;
2652 
2653 	next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2654 	switch (GETTYPE(op->type)) {
2655 	case COMPUTE:
2656 		if (op->type & SETREG)
2657 			regs->gpr[op->reg] = op->val;
2658 		if (op->type & SETCC)
2659 			regs->ccr = op->ccval;
2660 		if (op->type & SETXER)
2661 			regs->xer = op->xerval;
2662 		break;
2663 
2664 	case BRANCH:
2665 		if (op->type & SETLK)
2666 			regs->link = next_pc;
2667 		if (op->type & BRTAKEN)
2668 			next_pc = op->val;
2669 		if (op->type & DECCTR)
2670 			--regs->ctr;
2671 		break;
2672 
2673 	case BARRIER:
2674 		switch (op->type & BARRIER_MASK) {
2675 		case BARRIER_SYNC:
2676 			mb();
2677 			break;
2678 		case BARRIER_ISYNC:
2679 			isync();
2680 			break;
2681 		case BARRIER_EIEIO:
2682 			eieio();
2683 			break;
2684 		case BARRIER_LWSYNC:
2685 			asm volatile("lwsync" : : : "memory");
2686 			break;
2687 		case BARRIER_PTESYNC:
2688 			asm volatile("ptesync" : : : "memory");
2689 			break;
2690 		}
2691 		break;
2692 
2693 	case MFSPR:
2694 		switch (op->spr) {
2695 		case SPRN_XER:
2696 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2697 			break;
2698 		case SPRN_LR:
2699 			regs->gpr[op->reg] = regs->link;
2700 			break;
2701 		case SPRN_CTR:
2702 			regs->gpr[op->reg] = regs->ctr;
2703 			break;
2704 		default:
2705 			WARN_ON_ONCE(1);
2706 		}
2707 		break;
2708 
2709 	case MTSPR:
2710 		switch (op->spr) {
2711 		case SPRN_XER:
2712 			regs->xer = op->val & 0xffffffffUL;
2713 			break;
2714 		case SPRN_LR:
2715 			regs->link = op->val;
2716 			break;
2717 		case SPRN_CTR:
2718 			regs->ctr = op->val;
2719 			break;
2720 		default:
2721 			WARN_ON_ONCE(1);
2722 		}
2723 		break;
2724 
2725 	default:
2726 		WARN_ON_ONCE(1);
2727 	}
2728 	regs->nip = next_pc;
2729 }
2730 NOKPROBE_SYMBOL(emulate_update_regs);
2731 
2732 /*
2733  * Emulate a previously-analysed load or store instruction.
2734  * Return values are:
2735  * 0 = instruction emulated successfully
2736  * -EFAULT = address out of range or access faulted (regs->dar
2737  *	     contains the faulting address)
2738  * -EACCES = misaligned access, instruction requires alignment
2739  * -EINVAL = unknown operation in *op
2740  */
2741 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2742 {
2743 	int err, size, type;
2744 	int i, rd, nb;
2745 	unsigned int cr;
2746 	unsigned long val;
2747 	unsigned long ea;
2748 	bool cross_endian;
2749 
2750 	err = 0;
2751 	size = GETSIZE(op->type);
2752 	type = GETTYPE(op->type);
2753 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2754 	ea = truncate_if_32bit(regs->msr, op->ea);
2755 
2756 	switch (type) {
2757 	case LARX:
2758 		if (ea & (size - 1))
2759 			return -EACCES;		/* can't handle misaligned */
2760 		if (!address_ok(regs, ea, size))
2761 			return -EFAULT;
2762 		err = 0;
2763 		val = 0;
2764 		switch (size) {
2765 #ifdef __powerpc64__
2766 		case 1:
2767 			__get_user_asmx(val, ea, err, "lbarx");
2768 			break;
2769 		case 2:
2770 			__get_user_asmx(val, ea, err, "lharx");
2771 			break;
2772 #endif
2773 		case 4:
2774 			__get_user_asmx(val, ea, err, "lwarx");
2775 			break;
2776 #ifdef __powerpc64__
2777 		case 8:
2778 			__get_user_asmx(val, ea, err, "ldarx");
2779 			break;
2780 		case 16:
2781 			err = do_lqarx(ea, &regs->gpr[op->reg]);
2782 			break;
2783 #endif
2784 		default:
2785 			return -EINVAL;
2786 		}
2787 		if (err) {
2788 			regs->dar = ea;
2789 			break;
2790 		}
2791 		if (size < 16)
2792 			regs->gpr[op->reg] = val;
2793 		break;
2794 
2795 	case STCX:
2796 		if (ea & (size - 1))
2797 			return -EACCES;		/* can't handle misaligned */
2798 		if (!address_ok(regs, ea, size))
2799 			return -EFAULT;
2800 		err = 0;
2801 		switch (size) {
2802 #ifdef __powerpc64__
2803 		case 1:
2804 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
2805 			break;
2806 		case 2:
2807 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
2808 			break;
2809 #endif
2810 		case 4:
2811 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
2812 			break;
2813 #ifdef __powerpc64__
2814 		case 8:
2815 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
2816 			break;
2817 		case 16:
2818 			err = do_stqcx(ea, regs->gpr[op->reg],
2819 				       regs->gpr[op->reg + 1], &cr);
2820 			break;
2821 #endif
2822 		default:
2823 			return -EINVAL;
2824 		}
2825 		if (!err)
2826 			regs->ccr = (regs->ccr & 0x0fffffff) |
2827 				(cr & 0xe0000000) |
2828 				((regs->xer >> 3) & 0x10000000);
2829 		else
2830 			regs->dar = ea;
2831 		break;
2832 
2833 	case LOAD:
2834 #ifdef __powerpc64__
2835 		if (size == 16) {
2836 			err = emulate_lq(regs, ea, op->reg, cross_endian);
2837 			break;
2838 		}
2839 #endif
2840 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2841 		if (!err) {
2842 			if (op->type & SIGNEXT)
2843 				do_signext(&regs->gpr[op->reg], size);
2844 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2845 				do_byterev(&regs->gpr[op->reg], size);
2846 		}
2847 		break;
2848 
2849 #ifdef CONFIG_PPC_FPU
2850 	case LOAD_FP:
2851 		/*
2852 		 * If the instruction is in userspace, we can emulate it even
2853 		 * if the VMX state is not live, because we have the state
2854 		 * stored in the thread_struct.  If the instruction is in
2855 		 * the kernel, we must not touch the state in the thread_struct.
2856 		 */
2857 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2858 			return 0;
2859 		err = do_fp_load(op, ea, regs, cross_endian);
2860 		break;
2861 #endif
2862 #ifdef CONFIG_ALTIVEC
2863 	case LOAD_VMX:
2864 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2865 			return 0;
2866 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2867 		break;
2868 #endif
2869 #ifdef CONFIG_VSX
2870 	case LOAD_VSX: {
2871 		unsigned long msrbit = MSR_VSX;
2872 
2873 		/*
2874 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2875 		 * when the target of the instruction is a vector register.
2876 		 */
2877 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2878 			msrbit = MSR_VEC;
2879 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2880 			return 0;
2881 		err = do_vsx_load(op, ea, regs, cross_endian);
2882 		break;
2883 	}
2884 #endif
2885 	case LOAD_MULTI:
2886 		if (!address_ok(regs, ea, size))
2887 			return -EFAULT;
2888 		rd = op->reg;
2889 		for (i = 0; i < size; i += 4) {
2890 			unsigned int v32 = 0;
2891 
2892 			nb = size - i;
2893 			if (nb > 4)
2894 				nb = 4;
2895 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
2896 			if (err)
2897 				break;
2898 			if (unlikely(cross_endian))
2899 				v32 = byterev_4(v32);
2900 			regs->gpr[rd] = v32;
2901 			ea += 4;
2902 			/* reg number wraps from 31 to 0 for lsw[ix] */
2903 			rd = (rd + 1) & 0x1f;
2904 		}
2905 		break;
2906 
2907 	case STORE:
2908 #ifdef __powerpc64__
2909 		if (size == 16) {
2910 			err = emulate_stq(regs, ea, op->reg, cross_endian);
2911 			break;
2912 		}
2913 #endif
2914 		if ((op->type & UPDATE) && size == sizeof(long) &&
2915 		    op->reg == 1 && op->update_reg == 1 &&
2916 		    !(regs->msr & MSR_PR) &&
2917 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
2918 			err = handle_stack_update(ea, regs);
2919 			break;
2920 		}
2921 		if (unlikely(cross_endian))
2922 			do_byterev(&op->val, size);
2923 		err = write_mem(op->val, ea, size, regs);
2924 		break;
2925 
2926 #ifdef CONFIG_PPC_FPU
2927 	case STORE_FP:
2928 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2929 			return 0;
2930 		err = do_fp_store(op, ea, regs, cross_endian);
2931 		break;
2932 #endif
2933 #ifdef CONFIG_ALTIVEC
2934 	case STORE_VMX:
2935 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2936 			return 0;
2937 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
2938 		break;
2939 #endif
2940 #ifdef CONFIG_VSX
2941 	case STORE_VSX: {
2942 		unsigned long msrbit = MSR_VSX;
2943 
2944 		/*
2945 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2946 		 * when the target of the instruction is a vector register.
2947 		 */
2948 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2949 			msrbit = MSR_VEC;
2950 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2951 			return 0;
2952 		err = do_vsx_store(op, ea, regs, cross_endian);
2953 		break;
2954 	}
2955 #endif
2956 	case STORE_MULTI:
2957 		if (!address_ok(regs, ea, size))
2958 			return -EFAULT;
2959 		rd = op->reg;
2960 		for (i = 0; i < size; i += 4) {
2961 			unsigned int v32 = regs->gpr[rd];
2962 
2963 			nb = size - i;
2964 			if (nb > 4)
2965 				nb = 4;
2966 			if (unlikely(cross_endian))
2967 				v32 = byterev_4(v32);
2968 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
2969 			if (err)
2970 				break;
2971 			ea += 4;
2972 			/* reg number wraps from 31 to 0 for stsw[ix] */
2973 			rd = (rd + 1) & 0x1f;
2974 		}
2975 		break;
2976 
2977 	default:
2978 		return -EINVAL;
2979 	}
2980 
2981 	if (err)
2982 		return err;
2983 
2984 	if (op->type & UPDATE)
2985 		regs->gpr[op->update_reg] = op->ea;
2986 
2987 	return 0;
2988 }
2989 NOKPROBE_SYMBOL(emulate_loadstore);
2990 
2991 /*
2992  * Emulate instructions that cause a transfer of control,
2993  * loads and stores, and a few other instructions.
2994  * Returns 1 if the step was emulated, 0 if not,
2995  * or -1 if the instruction is one that should not be stepped,
2996  * such as an rfid, or a mtmsrd that would clear MSR_RI.
2997  */
2998 int emulate_step(struct pt_regs *regs, unsigned int instr)
2999 {
3000 	struct instruction_op op;
3001 	int r, err, type;
3002 	unsigned long val;
3003 	unsigned long ea;
3004 
3005 	r = analyse_instr(&op, regs, instr);
3006 	if (r < 0)
3007 		return r;
3008 	if (r > 0) {
3009 		emulate_update_regs(regs, &op);
3010 		return 1;
3011 	}
3012 
3013 	err = 0;
3014 	type = GETTYPE(op.type);
3015 
3016 	if (OP_IS_LOAD_STORE(type)) {
3017 		err = emulate_loadstore(regs, &op);
3018 		if (err)
3019 			return 0;
3020 		goto instr_done;
3021 	}
3022 
3023 	switch (type) {
3024 	case CACHEOP:
3025 		ea = truncate_if_32bit(regs->msr, op.ea);
3026 		if (!address_ok(regs, ea, 8))
3027 			return 0;
3028 		switch (op.type & CACHEOP_MASK) {
3029 		case DCBST:
3030 			__cacheop_user_asmx(ea, err, "dcbst");
3031 			break;
3032 		case DCBF:
3033 			__cacheop_user_asmx(ea, err, "dcbf");
3034 			break;
3035 		case DCBTST:
3036 			if (op.reg == 0)
3037 				prefetchw((void *) ea);
3038 			break;
3039 		case DCBT:
3040 			if (op.reg == 0)
3041 				prefetch((void *) ea);
3042 			break;
3043 		case ICBI:
3044 			__cacheop_user_asmx(ea, err, "icbi");
3045 			break;
3046 		case DCBZ:
3047 			err = emulate_dcbz(ea, regs);
3048 			break;
3049 		}
3050 		if (err) {
3051 			regs->dar = ea;
3052 			return 0;
3053 		}
3054 		goto instr_done;
3055 
3056 	case MFMSR:
3057 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3058 		goto instr_done;
3059 
3060 	case MTMSR:
3061 		val = regs->gpr[op.reg];
3062 		if ((val & MSR_RI) == 0)
3063 			/* can't step mtmsr[d] that would clear MSR_RI */
3064 			return -1;
3065 		/* here op.val is the mask of bits to change */
3066 		regs->msr = (regs->msr & ~op.val) | (val & op.val);
3067 		goto instr_done;
3068 
3069 #ifdef CONFIG_PPC64
3070 	case SYSCALL:	/* sc */
3071 		/*
3072 		 * N.B. this uses knowledge about how the syscall
3073 		 * entry code works.  If that is changed, this will
3074 		 * need to be changed also.
3075 		 */
3076 		if (regs->gpr[0] == 0x1ebe &&
3077 		    cpu_has_feature(CPU_FTR_REAL_LE)) {
3078 			regs->msr ^= MSR_LE;
3079 			goto instr_done;
3080 		}
3081 		regs->gpr[9] = regs->gpr[13];
3082 		regs->gpr[10] = MSR_KERNEL;
3083 		regs->gpr[11] = regs->nip + 4;
3084 		regs->gpr[12] = regs->msr & MSR_MASK;
3085 		regs->gpr[13] = (unsigned long) get_paca();
3086 		regs->nip = (unsigned long) &system_call_common;
3087 		regs->msr = MSR_KERNEL;
3088 		return 1;
3089 
3090 	case RFI:
3091 		return -1;
3092 #endif
3093 	}
3094 	return 0;
3095 
3096  instr_done:
3097 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3098 	return 1;
3099 }
3100 NOKPROBE_SYMBOL(emulate_step);
3101