xref: /openbmc/linux/arch/powerpc/lib/sstep.c (revision 842ed298)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17 
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20 
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK	0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK	0x87c0ffff
26 #endif
27 
28 /* Bits in XER */
29 #define XER_SO		0x80000000U
30 #define XER_OV		0x40000000U
31 #define XER_CA		0x20000000U
32 #define XER_OV32	0x00080000U
33 #define XER_CA32	0x00040000U
34 
35 #ifdef CONFIG_VSX
36 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
37 #endif
38 
39 #ifdef CONFIG_PPC_FPU
40 /*
41  * Functions in ldstfp.S
42  */
43 extern void get_fpr(int rn, double *p);
44 extern void put_fpr(int rn, const double *p);
45 extern void get_vr(int rn, __vector128 *p);
46 extern void put_vr(int rn, __vector128 *p);
47 extern void load_vsrn(int vsr, const void *p);
48 extern void store_vsrn(int vsr, void *p);
49 extern void conv_sp_to_dp(const float *sp, double *dp);
50 extern void conv_dp_to_sp(const double *dp, float *sp);
51 #endif
52 
53 #ifdef __powerpc64__
54 /*
55  * Functions in quad.S
56  */
57 extern int do_lq(unsigned long ea, unsigned long *regs);
58 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
59 extern int do_lqarx(unsigned long ea, unsigned long *regs);
60 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
61 		    unsigned int *crp);
62 #endif
63 
64 #ifdef __LITTLE_ENDIAN__
65 #define IS_LE	1
66 #define IS_BE	0
67 #else
68 #define IS_LE	0
69 #define IS_BE	1
70 #endif
71 
72 /*
73  * Emulate the truncation of 64 bit values in 32-bit mode.
74  */
75 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
76 							unsigned long val)
77 {
78 #ifdef __powerpc64__
79 	if ((msr & MSR_64BIT) == 0)
80 		val &= 0xffffffffUL;
81 #endif
82 	return val;
83 }
84 
85 /*
86  * Determine whether a conditional branch instruction would branch.
87  */
88 static nokprobe_inline int branch_taken(unsigned int instr,
89 					const struct pt_regs *regs,
90 					struct instruction_op *op)
91 {
92 	unsigned int bo = (instr >> 21) & 0x1f;
93 	unsigned int bi;
94 
95 	if ((bo & 4) == 0) {
96 		/* decrement counter */
97 		op->type |= DECCTR;
98 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
99 			return 0;
100 	}
101 	if ((bo & 0x10) == 0) {
102 		/* check bit from CR */
103 		bi = (instr >> 16) & 0x1f;
104 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
105 			return 0;
106 	}
107 	return 1;
108 }
109 
110 static nokprobe_inline long address_ok(struct pt_regs *regs,
111 				       unsigned long ea, int nb)
112 {
113 	if (!user_mode(regs))
114 		return 1;
115 	if (__access_ok(ea, nb))
116 		return 1;
117 	if (__access_ok(ea, 1))
118 		/* Access overlaps the end of the user region */
119 		regs->dar = TASK_SIZE_MAX - 1;
120 	else
121 		regs->dar = ea;
122 	return 0;
123 }
124 
125 /*
126  * Calculate effective address for a D-form instruction
127  */
128 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
129 					      const struct pt_regs *regs)
130 {
131 	int ra;
132 	unsigned long ea;
133 
134 	ra = (instr >> 16) & 0x1f;
135 	ea = (signed short) instr;		/* sign-extend */
136 	if (ra)
137 		ea += regs->gpr[ra];
138 
139 	return ea;
140 }
141 
142 #ifdef __powerpc64__
143 /*
144  * Calculate effective address for a DS-form instruction
145  */
146 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
147 					       const struct pt_regs *regs)
148 {
149 	int ra;
150 	unsigned long ea;
151 
152 	ra = (instr >> 16) & 0x1f;
153 	ea = (signed short) (instr & ~3);	/* sign-extend */
154 	if (ra)
155 		ea += regs->gpr[ra];
156 
157 	return ea;
158 }
159 
160 /*
161  * Calculate effective address for a DQ-form instruction
162  */
163 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
164 					       const struct pt_regs *regs)
165 {
166 	int ra;
167 	unsigned long ea;
168 
169 	ra = (instr >> 16) & 0x1f;
170 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
171 	if (ra)
172 		ea += regs->gpr[ra];
173 
174 	return ea;
175 }
176 #endif /* __powerpc64 */
177 
178 /*
179  * Calculate effective address for an X-form instruction
180  */
181 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
182 					      const struct pt_regs *regs)
183 {
184 	int ra, rb;
185 	unsigned long ea;
186 
187 	ra = (instr >> 16) & 0x1f;
188 	rb = (instr >> 11) & 0x1f;
189 	ea = regs->gpr[rb];
190 	if (ra)
191 		ea += regs->gpr[ra];
192 
193 	return ea;
194 }
195 
196 /*
197  * Calculate effective address for a MLS:D-form / 8LS:D-form
198  * prefixed instruction
199  */
200 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
201 						  unsigned int suffix,
202 						  const struct pt_regs *regs)
203 {
204 	int ra, prefix_r;
205 	unsigned int  dd;
206 	unsigned long ea, d0, d1, d;
207 
208 	prefix_r = GET_PREFIX_R(instr);
209 	ra = GET_PREFIX_RA(suffix);
210 
211 	d0 = instr & 0x3ffff;
212 	d1 = suffix & 0xffff;
213 	d = (d0 << 16) | d1;
214 
215 	/*
216 	 * sign extend a 34 bit number
217 	 */
218 	dd = (unsigned int)(d >> 2);
219 	ea = (signed int)dd;
220 	ea = (ea << 2) | (d & 0x3);
221 
222 	if (!prefix_r && ra)
223 		ea += regs->gpr[ra];
224 	else if (!prefix_r && !ra)
225 		; /* Leave ea as is */
226 	else if (prefix_r)
227 		ea += regs->nip;
228 
229 	/*
230 	 * (prefix_r && ra) is an invalid form. Should already be
231 	 * checked for by caller!
232 	 */
233 
234 	return ea;
235 }
236 
237 /*
238  * Return the largest power of 2, not greater than sizeof(unsigned long),
239  * such that x is a multiple of it.
240  */
241 static nokprobe_inline unsigned long max_align(unsigned long x)
242 {
243 	x |= sizeof(unsigned long);
244 	return x & -x;		/* isolates rightmost bit */
245 }
246 
247 static nokprobe_inline unsigned long byterev_2(unsigned long x)
248 {
249 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
250 }
251 
252 static nokprobe_inline unsigned long byterev_4(unsigned long x)
253 {
254 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
255 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
256 }
257 
258 #ifdef __powerpc64__
259 static nokprobe_inline unsigned long byterev_8(unsigned long x)
260 {
261 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
262 }
263 #endif
264 
265 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
266 {
267 	switch (nb) {
268 	case 2:
269 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
270 		break;
271 	case 4:
272 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
273 		break;
274 #ifdef __powerpc64__
275 	case 8:
276 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
277 		break;
278 	case 16: {
279 		unsigned long *up = (unsigned long *)ptr;
280 		unsigned long tmp;
281 		tmp = byterev_8(up[0]);
282 		up[0] = byterev_8(up[1]);
283 		up[1] = tmp;
284 		break;
285 	}
286 	case 32: {
287 		unsigned long *up = (unsigned long *)ptr;
288 		unsigned long tmp;
289 
290 		tmp = byterev_8(up[0]);
291 		up[0] = byterev_8(up[3]);
292 		up[3] = tmp;
293 		tmp = byterev_8(up[2]);
294 		up[2] = byterev_8(up[1]);
295 		up[1] = tmp;
296 		break;
297 	}
298 
299 #endif
300 	default:
301 		WARN_ON_ONCE(1);
302 	}
303 }
304 
305 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
306 					    unsigned long ea, int nb,
307 					    struct pt_regs *regs)
308 {
309 	int err = 0;
310 	unsigned long x = 0;
311 
312 	switch (nb) {
313 	case 1:
314 		err = __get_user(x, (unsigned char __user *) ea);
315 		break;
316 	case 2:
317 		err = __get_user(x, (unsigned short __user *) ea);
318 		break;
319 	case 4:
320 		err = __get_user(x, (unsigned int __user *) ea);
321 		break;
322 #ifdef __powerpc64__
323 	case 8:
324 		err = __get_user(x, (unsigned long __user *) ea);
325 		break;
326 #endif
327 	}
328 	if (!err)
329 		*dest = x;
330 	else
331 		regs->dar = ea;
332 	return err;
333 }
334 
335 /*
336  * Copy from userspace to a buffer, using the largest possible
337  * aligned accesses, up to sizeof(long).
338  */
339 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
340 				       struct pt_regs *regs)
341 {
342 	int err = 0;
343 	int c;
344 
345 	for (; nb > 0; nb -= c) {
346 		c = max_align(ea);
347 		if (c > nb)
348 			c = max_align(nb);
349 		switch (c) {
350 		case 1:
351 			err = __get_user(*dest, (unsigned char __user *) ea);
352 			break;
353 		case 2:
354 			err = __get_user(*(u16 *)dest,
355 					 (unsigned short __user *) ea);
356 			break;
357 		case 4:
358 			err = __get_user(*(u32 *)dest,
359 					 (unsigned int __user *) ea);
360 			break;
361 #ifdef __powerpc64__
362 		case 8:
363 			err = __get_user(*(unsigned long *)dest,
364 					 (unsigned long __user *) ea);
365 			break;
366 #endif
367 		}
368 		if (err) {
369 			regs->dar = ea;
370 			return err;
371 		}
372 		dest += c;
373 		ea += c;
374 	}
375 	return 0;
376 }
377 
378 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
379 					      unsigned long ea, int nb,
380 					      struct pt_regs *regs)
381 {
382 	union {
383 		unsigned long ul;
384 		u8 b[sizeof(unsigned long)];
385 	} u;
386 	int i;
387 	int err;
388 
389 	u.ul = 0;
390 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
391 	err = copy_mem_in(&u.b[i], ea, nb, regs);
392 	if (!err)
393 		*dest = u.ul;
394 	return err;
395 }
396 
397 /*
398  * Read memory at address ea for nb bytes, return 0 for success
399  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
400  * If nb < sizeof(long), the result is right-justified on BE systems.
401  */
402 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
403 			      struct pt_regs *regs)
404 {
405 	if (!address_ok(regs, ea, nb))
406 		return -EFAULT;
407 	if ((ea & (nb - 1)) == 0)
408 		return read_mem_aligned(dest, ea, nb, regs);
409 	return read_mem_unaligned(dest, ea, nb, regs);
410 }
411 NOKPROBE_SYMBOL(read_mem);
412 
413 static nokprobe_inline int write_mem_aligned(unsigned long val,
414 					     unsigned long ea, int nb,
415 					     struct pt_regs *regs)
416 {
417 	int err = 0;
418 
419 	switch (nb) {
420 	case 1:
421 		err = __put_user(val, (unsigned char __user *) ea);
422 		break;
423 	case 2:
424 		err = __put_user(val, (unsigned short __user *) ea);
425 		break;
426 	case 4:
427 		err = __put_user(val, (unsigned int __user *) ea);
428 		break;
429 #ifdef __powerpc64__
430 	case 8:
431 		err = __put_user(val, (unsigned long __user *) ea);
432 		break;
433 #endif
434 	}
435 	if (err)
436 		regs->dar = ea;
437 	return err;
438 }
439 
440 /*
441  * Copy from a buffer to userspace, using the largest possible
442  * aligned accesses, up to sizeof(long).
443  */
444 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
445 					struct pt_regs *regs)
446 {
447 	int err = 0;
448 	int c;
449 
450 	for (; nb > 0; nb -= c) {
451 		c = max_align(ea);
452 		if (c > nb)
453 			c = max_align(nb);
454 		switch (c) {
455 		case 1:
456 			err = __put_user(*dest, (unsigned char __user *) ea);
457 			break;
458 		case 2:
459 			err = __put_user(*(u16 *)dest,
460 					 (unsigned short __user *) ea);
461 			break;
462 		case 4:
463 			err = __put_user(*(u32 *)dest,
464 					 (unsigned int __user *) ea);
465 			break;
466 #ifdef __powerpc64__
467 		case 8:
468 			err = __put_user(*(unsigned long *)dest,
469 					 (unsigned long __user *) ea);
470 			break;
471 #endif
472 		}
473 		if (err) {
474 			regs->dar = ea;
475 			return err;
476 		}
477 		dest += c;
478 		ea += c;
479 	}
480 	return 0;
481 }
482 
483 static nokprobe_inline int write_mem_unaligned(unsigned long val,
484 					       unsigned long ea, int nb,
485 					       struct pt_regs *regs)
486 {
487 	union {
488 		unsigned long ul;
489 		u8 b[sizeof(unsigned long)];
490 	} u;
491 	int i;
492 
493 	u.ul = val;
494 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
495 	return copy_mem_out(&u.b[i], ea, nb, regs);
496 }
497 
498 /*
499  * Write memory at address ea for nb bytes, return 0 for success
500  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
501  */
502 static int write_mem(unsigned long val, unsigned long ea, int nb,
503 			       struct pt_regs *regs)
504 {
505 	if (!address_ok(regs, ea, nb))
506 		return -EFAULT;
507 	if ((ea & (nb - 1)) == 0)
508 		return write_mem_aligned(val, ea, nb, regs);
509 	return write_mem_unaligned(val, ea, nb, regs);
510 }
511 NOKPROBE_SYMBOL(write_mem);
512 
513 #ifdef CONFIG_PPC_FPU
514 /*
515  * These access either the real FP register or the image in the
516  * thread_struct, depending on regs->msr & MSR_FP.
517  */
518 static int do_fp_load(struct instruction_op *op, unsigned long ea,
519 		      struct pt_regs *regs, bool cross_endian)
520 {
521 	int err, rn, nb;
522 	union {
523 		int i;
524 		unsigned int u;
525 		float f;
526 		double d[2];
527 		unsigned long l[2];
528 		u8 b[2 * sizeof(double)];
529 	} u;
530 
531 	nb = GETSIZE(op->type);
532 	if (!address_ok(regs, ea, nb))
533 		return -EFAULT;
534 	rn = op->reg;
535 	err = copy_mem_in(u.b, ea, nb, regs);
536 	if (err)
537 		return err;
538 	if (unlikely(cross_endian)) {
539 		do_byte_reverse(u.b, min(nb, 8));
540 		if (nb == 16)
541 			do_byte_reverse(&u.b[8], 8);
542 	}
543 	preempt_disable();
544 	if (nb == 4) {
545 		if (op->type & FPCONV)
546 			conv_sp_to_dp(&u.f, &u.d[0]);
547 		else if (op->type & SIGNEXT)
548 			u.l[0] = u.i;
549 		else
550 			u.l[0] = u.u;
551 	}
552 	if (regs->msr & MSR_FP)
553 		put_fpr(rn, &u.d[0]);
554 	else
555 		current->thread.TS_FPR(rn) = u.l[0];
556 	if (nb == 16) {
557 		/* lfdp */
558 		rn |= 1;
559 		if (regs->msr & MSR_FP)
560 			put_fpr(rn, &u.d[1]);
561 		else
562 			current->thread.TS_FPR(rn) = u.l[1];
563 	}
564 	preempt_enable();
565 	return 0;
566 }
567 NOKPROBE_SYMBOL(do_fp_load);
568 
569 static int do_fp_store(struct instruction_op *op, unsigned long ea,
570 		       struct pt_regs *regs, bool cross_endian)
571 {
572 	int rn, nb;
573 	union {
574 		unsigned int u;
575 		float f;
576 		double d[2];
577 		unsigned long l[2];
578 		u8 b[2 * sizeof(double)];
579 	} u;
580 
581 	nb = GETSIZE(op->type);
582 	if (!address_ok(regs, ea, nb))
583 		return -EFAULT;
584 	rn = op->reg;
585 	preempt_disable();
586 	if (regs->msr & MSR_FP)
587 		get_fpr(rn, &u.d[0]);
588 	else
589 		u.l[0] = current->thread.TS_FPR(rn);
590 	if (nb == 4) {
591 		if (op->type & FPCONV)
592 			conv_dp_to_sp(&u.d[0], &u.f);
593 		else
594 			u.u = u.l[0];
595 	}
596 	if (nb == 16) {
597 		rn |= 1;
598 		if (regs->msr & MSR_FP)
599 			get_fpr(rn, &u.d[1]);
600 		else
601 			u.l[1] = current->thread.TS_FPR(rn);
602 	}
603 	preempt_enable();
604 	if (unlikely(cross_endian)) {
605 		do_byte_reverse(u.b, min(nb, 8));
606 		if (nb == 16)
607 			do_byte_reverse(&u.b[8], 8);
608 	}
609 	return copy_mem_out(u.b, ea, nb, regs);
610 }
611 NOKPROBE_SYMBOL(do_fp_store);
612 #endif
613 
614 #ifdef CONFIG_ALTIVEC
615 /* For Altivec/VMX, no need to worry about alignment */
616 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
617 				       int size, struct pt_regs *regs,
618 				       bool cross_endian)
619 {
620 	int err;
621 	union {
622 		__vector128 v;
623 		u8 b[sizeof(__vector128)];
624 	} u = {};
625 
626 	if (!address_ok(regs, ea & ~0xfUL, 16))
627 		return -EFAULT;
628 	/* align to multiple of size */
629 	ea &= ~(size - 1);
630 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
631 	if (err)
632 		return err;
633 	if (unlikely(cross_endian))
634 		do_byte_reverse(&u.b[ea & 0xf], size);
635 	preempt_disable();
636 	if (regs->msr & MSR_VEC)
637 		put_vr(rn, &u.v);
638 	else
639 		current->thread.vr_state.vr[rn] = u.v;
640 	preempt_enable();
641 	return 0;
642 }
643 
644 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
645 					int size, struct pt_regs *regs,
646 					bool cross_endian)
647 {
648 	union {
649 		__vector128 v;
650 		u8 b[sizeof(__vector128)];
651 	} u;
652 
653 	if (!address_ok(regs, ea & ~0xfUL, 16))
654 		return -EFAULT;
655 	/* align to multiple of size */
656 	ea &= ~(size - 1);
657 
658 	preempt_disable();
659 	if (regs->msr & MSR_VEC)
660 		get_vr(rn, &u.v);
661 	else
662 		u.v = current->thread.vr_state.vr[rn];
663 	preempt_enable();
664 	if (unlikely(cross_endian))
665 		do_byte_reverse(&u.b[ea & 0xf], size);
666 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
667 }
668 #endif /* CONFIG_ALTIVEC */
669 
670 #ifdef __powerpc64__
671 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
672 				      int reg, bool cross_endian)
673 {
674 	int err;
675 
676 	if (!address_ok(regs, ea, 16))
677 		return -EFAULT;
678 	/* if aligned, should be atomic */
679 	if ((ea & 0xf) == 0) {
680 		err = do_lq(ea, &regs->gpr[reg]);
681 	} else {
682 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
683 		if (!err)
684 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
685 	}
686 	if (!err && unlikely(cross_endian))
687 		do_byte_reverse(&regs->gpr[reg], 16);
688 	return err;
689 }
690 
691 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
692 				       int reg, bool cross_endian)
693 {
694 	int err;
695 	unsigned long vals[2];
696 
697 	if (!address_ok(regs, ea, 16))
698 		return -EFAULT;
699 	vals[0] = regs->gpr[reg];
700 	vals[1] = regs->gpr[reg + 1];
701 	if (unlikely(cross_endian))
702 		do_byte_reverse(vals, 16);
703 
704 	/* if aligned, should be atomic */
705 	if ((ea & 0xf) == 0)
706 		return do_stq(ea, vals[0], vals[1]);
707 
708 	err = write_mem(vals[IS_LE], ea, 8, regs);
709 	if (!err)
710 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
711 	return err;
712 }
713 #endif /* __powerpc64 */
714 
715 #ifdef CONFIG_VSX
716 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
717 		      const void *mem, bool rev)
718 {
719 	int size, read_size;
720 	int i, j;
721 	const unsigned int *wp;
722 	const unsigned short *hp;
723 	const unsigned char *bp;
724 
725 	size = GETSIZE(op->type);
726 	reg->d[0] = reg->d[1] = 0;
727 
728 	switch (op->element_size) {
729 	case 32:
730 		/* [p]lxvp[x] */
731 	case 16:
732 		/* whole vector; lxv[x] or lxvl[l] */
733 		if (size == 0)
734 			break;
735 		memcpy(reg, mem, size);
736 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
737 			rev = !rev;
738 		if (rev)
739 			do_byte_reverse(reg, size);
740 		break;
741 	case 8:
742 		/* scalar loads, lxvd2x, lxvdsx */
743 		read_size = (size >= 8) ? 8 : size;
744 		i = IS_LE ? 8 : 8 - read_size;
745 		memcpy(&reg->b[i], mem, read_size);
746 		if (rev)
747 			do_byte_reverse(&reg->b[i], 8);
748 		if (size < 8) {
749 			if (op->type & SIGNEXT) {
750 				/* size == 4 is the only case here */
751 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
752 			} else if (op->vsx_flags & VSX_FPCONV) {
753 				preempt_disable();
754 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
755 					      &reg->dp[IS_LE]);
756 				preempt_enable();
757 			}
758 		} else {
759 			if (size == 16) {
760 				unsigned long v = *(unsigned long *)(mem + 8);
761 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
762 			} else if (op->vsx_flags & VSX_SPLAT)
763 				reg->d[IS_BE] = reg->d[IS_LE];
764 		}
765 		break;
766 	case 4:
767 		/* lxvw4x, lxvwsx */
768 		wp = mem;
769 		for (j = 0; j < size / 4; ++j) {
770 			i = IS_LE ? 3 - j : j;
771 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
772 		}
773 		if (op->vsx_flags & VSX_SPLAT) {
774 			u32 val = reg->w[IS_LE ? 3 : 0];
775 			for (; j < 4; ++j) {
776 				i = IS_LE ? 3 - j : j;
777 				reg->w[i] = val;
778 			}
779 		}
780 		break;
781 	case 2:
782 		/* lxvh8x */
783 		hp = mem;
784 		for (j = 0; j < size / 2; ++j) {
785 			i = IS_LE ? 7 - j : j;
786 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
787 		}
788 		break;
789 	case 1:
790 		/* lxvb16x */
791 		bp = mem;
792 		for (j = 0; j < size; ++j) {
793 			i = IS_LE ? 15 - j : j;
794 			reg->b[i] = *bp++;
795 		}
796 		break;
797 	}
798 }
799 EXPORT_SYMBOL_GPL(emulate_vsx_load);
800 NOKPROBE_SYMBOL(emulate_vsx_load);
801 
802 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
803 		       void *mem, bool rev)
804 {
805 	int size, write_size;
806 	int i, j;
807 	union vsx_reg buf;
808 	unsigned int *wp;
809 	unsigned short *hp;
810 	unsigned char *bp;
811 
812 	size = GETSIZE(op->type);
813 
814 	switch (op->element_size) {
815 	case 32:
816 		/* [p]stxvp[x] */
817 		if (size == 0)
818 			break;
819 		if (rev) {
820 			/* reverse 32 bytes */
821 			union vsx_reg buf32[2];
822 			buf32[0].d[0] = byterev_8(reg[1].d[1]);
823 			buf32[0].d[1] = byterev_8(reg[1].d[0]);
824 			buf32[1].d[0] = byterev_8(reg[0].d[1]);
825 			buf32[1].d[1] = byterev_8(reg[0].d[0]);
826 			memcpy(mem, buf32, size);
827 		} else {
828 			memcpy(mem, reg, size);
829 		}
830 		break;
831 	case 16:
832 		/* stxv, stxvx, stxvl, stxvll */
833 		if (size == 0)
834 			break;
835 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
836 			rev = !rev;
837 		if (rev) {
838 			/* reverse 16 bytes */
839 			buf.d[0] = byterev_8(reg->d[1]);
840 			buf.d[1] = byterev_8(reg->d[0]);
841 			reg = &buf;
842 		}
843 		memcpy(mem, reg, size);
844 		break;
845 	case 8:
846 		/* scalar stores, stxvd2x */
847 		write_size = (size >= 8) ? 8 : size;
848 		i = IS_LE ? 8 : 8 - write_size;
849 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
850 			buf.d[0] = buf.d[1] = 0;
851 			preempt_disable();
852 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
853 			preempt_enable();
854 			reg = &buf;
855 		}
856 		memcpy(mem, &reg->b[i], write_size);
857 		if (size == 16)
858 			memcpy(mem + 8, &reg->d[IS_BE], 8);
859 		if (unlikely(rev)) {
860 			do_byte_reverse(mem, write_size);
861 			if (size == 16)
862 				do_byte_reverse(mem + 8, 8);
863 		}
864 		break;
865 	case 4:
866 		/* stxvw4x */
867 		wp = mem;
868 		for (j = 0; j < size / 4; ++j) {
869 			i = IS_LE ? 3 - j : j;
870 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
871 		}
872 		break;
873 	case 2:
874 		/* stxvh8x */
875 		hp = mem;
876 		for (j = 0; j < size / 2; ++j) {
877 			i = IS_LE ? 7 - j : j;
878 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
879 		}
880 		break;
881 	case 1:
882 		/* stvxb16x */
883 		bp = mem;
884 		for (j = 0; j < size; ++j) {
885 			i = IS_LE ? 15 - j : j;
886 			*bp++ = reg->b[i];
887 		}
888 		break;
889 	}
890 }
891 EXPORT_SYMBOL_GPL(emulate_vsx_store);
892 NOKPROBE_SYMBOL(emulate_vsx_store);
893 
894 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
895 				       unsigned long ea, struct pt_regs *regs,
896 				       bool cross_endian)
897 {
898 	int reg = op->reg;
899 	int i, j, nr_vsx_regs;
900 	u8 mem[32];
901 	union vsx_reg buf[2];
902 	int size = GETSIZE(op->type);
903 
904 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
905 		return -EFAULT;
906 
907 	nr_vsx_regs = size / sizeof(__vector128);
908 	emulate_vsx_load(op, buf, mem, cross_endian);
909 	preempt_disable();
910 	if (reg < 32) {
911 		/* FP regs + extensions */
912 		if (regs->msr & MSR_FP) {
913 			for (i = 0; i < nr_vsx_regs; i++) {
914 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
915 				load_vsrn(reg + i, &buf[j].v);
916 			}
917 		} else {
918 			for (i = 0; i < nr_vsx_regs; i++) {
919 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
920 				current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
921 				current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
922 			}
923 		}
924 	} else {
925 		if (regs->msr & MSR_VEC) {
926 			for (i = 0; i < nr_vsx_regs; i++) {
927 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
928 				load_vsrn(reg + i, &buf[j].v);
929 			}
930 		} else {
931 			for (i = 0; i < nr_vsx_regs; i++) {
932 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
933 				current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
934 			}
935 		}
936 	}
937 	preempt_enable();
938 	return 0;
939 }
940 
941 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
942 					unsigned long ea, struct pt_regs *regs,
943 					bool cross_endian)
944 {
945 	int reg = op->reg;
946 	int i, j, nr_vsx_regs;
947 	u8 mem[32];
948 	union vsx_reg buf[2];
949 	int size = GETSIZE(op->type);
950 
951 	if (!address_ok(regs, ea, size))
952 		return -EFAULT;
953 
954 	nr_vsx_regs = size / sizeof(__vector128);
955 	preempt_disable();
956 	if (reg < 32) {
957 		/* FP regs + extensions */
958 		if (regs->msr & MSR_FP) {
959 			for (i = 0; i < nr_vsx_regs; i++) {
960 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
961 				store_vsrn(reg + i, &buf[j].v);
962 			}
963 		} else {
964 			for (i = 0; i < nr_vsx_regs; i++) {
965 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
966 				buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
967 				buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
968 			}
969 		}
970 	} else {
971 		if (regs->msr & MSR_VEC) {
972 			for (i = 0; i < nr_vsx_regs; i++) {
973 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
974 				store_vsrn(reg + i, &buf[j].v);
975 			}
976 		} else {
977 			for (i = 0; i < nr_vsx_regs; i++) {
978 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
979 				buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
980 			}
981 		}
982 	}
983 	preempt_enable();
984 	emulate_vsx_store(op, buf, mem, cross_endian);
985 	return  copy_mem_out(mem, ea, size, regs);
986 }
987 #endif /* CONFIG_VSX */
988 
989 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
990 {
991 	int err;
992 	unsigned long i, size;
993 
994 #ifdef __powerpc64__
995 	size = ppc64_caches.l1d.block_size;
996 	if (!(regs->msr & MSR_64BIT))
997 		ea &= 0xffffffffUL;
998 #else
999 	size = L1_CACHE_BYTES;
1000 #endif
1001 	ea &= ~(size - 1);
1002 	if (!address_ok(regs, ea, size))
1003 		return -EFAULT;
1004 	for (i = 0; i < size; i += sizeof(long)) {
1005 		err = __put_user(0, (unsigned long __user *) (ea + i));
1006 		if (err) {
1007 			regs->dar = ea;
1008 			return err;
1009 		}
1010 	}
1011 	return 0;
1012 }
1013 NOKPROBE_SYMBOL(emulate_dcbz);
1014 
1015 #define __put_user_asmx(x, addr, err, op, cr)		\
1016 	__asm__ __volatile__(				\
1017 		"1:	" op " %2,0,%3\n"		\
1018 		"	mfcr	%1\n"			\
1019 		"2:\n"					\
1020 		".section .fixup,\"ax\"\n"		\
1021 		"3:	li	%0,%4\n"		\
1022 		"	b	2b\n"			\
1023 		".previous\n"				\
1024 		EX_TABLE(1b, 3b)			\
1025 		: "=r" (err), "=r" (cr)			\
1026 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1027 
1028 #define __get_user_asmx(x, addr, err, op)		\
1029 	__asm__ __volatile__(				\
1030 		"1:	"op" %1,0,%2\n"			\
1031 		"2:\n"					\
1032 		".section .fixup,\"ax\"\n"		\
1033 		"3:	li	%0,%3\n"		\
1034 		"	b	2b\n"			\
1035 		".previous\n"				\
1036 		EX_TABLE(1b, 3b)			\
1037 		: "=r" (err), "=r" (x)			\
1038 		: "r" (addr), "i" (-EFAULT), "0" (err))
1039 
1040 #define __cacheop_user_asmx(addr, err, op)		\
1041 	__asm__ __volatile__(				\
1042 		"1:	"op" 0,%1\n"			\
1043 		"2:\n"					\
1044 		".section .fixup,\"ax\"\n"		\
1045 		"3:	li	%0,%3\n"		\
1046 		"	b	2b\n"			\
1047 		".previous\n"				\
1048 		EX_TABLE(1b, 3b)			\
1049 		: "=r" (err)				\
1050 		: "r" (addr), "i" (-EFAULT), "0" (err))
1051 
1052 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1053 				    struct instruction_op *op)
1054 {
1055 	long val = op->val;
1056 
1057 	op->type |= SETCC;
1058 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1059 #ifdef __powerpc64__
1060 	if (!(regs->msr & MSR_64BIT))
1061 		val = (int) val;
1062 #endif
1063 	if (val < 0)
1064 		op->ccval |= 0x80000000;
1065 	else if (val > 0)
1066 		op->ccval |= 0x40000000;
1067 	else
1068 		op->ccval |= 0x20000000;
1069 }
1070 
1071 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1072 {
1073 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1074 		if (val)
1075 			op->xerval |= XER_CA32;
1076 		else
1077 			op->xerval &= ~XER_CA32;
1078 	}
1079 }
1080 
1081 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1082 				     struct instruction_op *op, int rd,
1083 				     unsigned long val1, unsigned long val2,
1084 				     unsigned long carry_in)
1085 {
1086 	unsigned long val = val1 + val2;
1087 
1088 	if (carry_in)
1089 		++val;
1090 	op->type = COMPUTE + SETREG + SETXER;
1091 	op->reg = rd;
1092 	op->val = val;
1093 #ifdef __powerpc64__
1094 	if (!(regs->msr & MSR_64BIT)) {
1095 		val = (unsigned int) val;
1096 		val1 = (unsigned int) val1;
1097 	}
1098 #endif
1099 	op->xerval = regs->xer;
1100 	if (val < val1 || (carry_in && val == val1))
1101 		op->xerval |= XER_CA;
1102 	else
1103 		op->xerval &= ~XER_CA;
1104 
1105 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1106 			(carry_in && (unsigned int)val == (unsigned int)val1));
1107 }
1108 
1109 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1110 					  struct instruction_op *op,
1111 					  long v1, long v2, int crfld)
1112 {
1113 	unsigned int crval, shift;
1114 
1115 	op->type = COMPUTE + SETCC;
1116 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1117 	if (v1 < v2)
1118 		crval |= 8;
1119 	else if (v1 > v2)
1120 		crval |= 4;
1121 	else
1122 		crval |= 2;
1123 	shift = (7 - crfld) * 4;
1124 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1125 }
1126 
1127 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1128 					    struct instruction_op *op,
1129 					    unsigned long v1,
1130 					    unsigned long v2, int crfld)
1131 {
1132 	unsigned int crval, shift;
1133 
1134 	op->type = COMPUTE + SETCC;
1135 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1136 	if (v1 < v2)
1137 		crval |= 8;
1138 	else if (v1 > v2)
1139 		crval |= 4;
1140 	else
1141 		crval |= 2;
1142 	shift = (7 - crfld) * 4;
1143 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1144 }
1145 
1146 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1147 				    struct instruction_op *op,
1148 				    unsigned long v1, unsigned long v2)
1149 {
1150 	unsigned long long out_val, mask;
1151 	int i;
1152 
1153 	out_val = 0;
1154 	for (i = 0; i < 8; i++) {
1155 		mask = 0xffUL << (i * 8);
1156 		if ((v1 & mask) == (v2 & mask))
1157 			out_val |= mask;
1158 	}
1159 	op->val = out_val;
1160 }
1161 
1162 /*
1163  * The size parameter is used to adjust the equivalent popcnt instruction.
1164  * popcntb = 8, popcntw = 32, popcntd = 64
1165  */
1166 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1167 				      struct instruction_op *op,
1168 				      unsigned long v1, int size)
1169 {
1170 	unsigned long long out = v1;
1171 
1172 	out -= (out >> 1) & 0x5555555555555555ULL;
1173 	out = (0x3333333333333333ULL & out) +
1174 	      (0x3333333333333333ULL & (out >> 2));
1175 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1176 
1177 	if (size == 8) {	/* popcntb */
1178 		op->val = out;
1179 		return;
1180 	}
1181 	out += out >> 8;
1182 	out += out >> 16;
1183 	if (size == 32) {	/* popcntw */
1184 		op->val = out & 0x0000003f0000003fULL;
1185 		return;
1186 	}
1187 
1188 	out = (out + (out >> 32)) & 0x7f;
1189 	op->val = out;	/* popcntd */
1190 }
1191 
1192 #ifdef CONFIG_PPC64
1193 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1194 				      struct instruction_op *op,
1195 				      unsigned long v1, unsigned long v2)
1196 {
1197 	unsigned char perm, idx;
1198 	unsigned int i;
1199 
1200 	perm = 0;
1201 	for (i = 0; i < 8; i++) {
1202 		idx = (v1 >> (i * 8)) & 0xff;
1203 		if (idx < 64)
1204 			if (v2 & PPC_BIT(idx))
1205 				perm |= 1 << i;
1206 	}
1207 	op->val = perm;
1208 }
1209 #endif /* CONFIG_PPC64 */
1210 /*
1211  * The size parameter adjusts the equivalent prty instruction.
1212  * prtyw = 32, prtyd = 64
1213  */
1214 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1215 				    struct instruction_op *op,
1216 				    unsigned long v, int size)
1217 {
1218 	unsigned long long res = v ^ (v >> 8);
1219 
1220 	res ^= res >> 16;
1221 	if (size == 32) {		/* prtyw */
1222 		op->val = res & 0x0000000100000001ULL;
1223 		return;
1224 	}
1225 
1226 	res ^= res >> 32;
1227 	op->val = res & 1;	/*prtyd */
1228 }
1229 
1230 static nokprobe_inline int trap_compare(long v1, long v2)
1231 {
1232 	int ret = 0;
1233 
1234 	if (v1 < v2)
1235 		ret |= 0x10;
1236 	else if (v1 > v2)
1237 		ret |= 0x08;
1238 	else
1239 		ret |= 0x04;
1240 	if ((unsigned long)v1 < (unsigned long)v2)
1241 		ret |= 0x02;
1242 	else if ((unsigned long)v1 > (unsigned long)v2)
1243 		ret |= 0x01;
1244 	return ret;
1245 }
1246 
1247 /*
1248  * Elements of 32-bit rotate and mask instructions.
1249  */
1250 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1251 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1252 #ifdef __powerpc64__
1253 #define MASK64_L(mb)	(~0UL >> (mb))
1254 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1255 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1256 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1257 #else
1258 #define DATA32(x)	(x)
1259 #endif
1260 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1261 
1262 /*
1263  * Decode an instruction, and return information about it in *op
1264  * without changing *regs.
1265  * Integer arithmetic and logical instructions, branches, and barrier
1266  * instructions can be emulated just using the information in *op.
1267  *
1268  * Return value is 1 if the instruction can be emulated just by
1269  * updating *regs with the information in *op, -1 if we need the
1270  * GPRs but *regs doesn't contain the full register set, or 0
1271  * otherwise.
1272  */
1273 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1274 		  struct ppc_inst instr)
1275 {
1276 #ifdef CONFIG_PPC64
1277 	unsigned int suffixopcode, prefixtype, prefix_r;
1278 #endif
1279 	unsigned int opcode, ra, rb, rc, rd, spr, u;
1280 	unsigned long int imm;
1281 	unsigned long int val, val2;
1282 	unsigned int mb, me, sh;
1283 	unsigned int word, suffix;
1284 	long ival;
1285 
1286 	word = ppc_inst_val(instr);
1287 	suffix = ppc_inst_suffix(instr);
1288 
1289 	op->type = COMPUTE;
1290 
1291 	opcode = ppc_inst_primary_opcode(instr);
1292 	switch (opcode) {
1293 	case 16:	/* bc */
1294 		op->type = BRANCH;
1295 		imm = (signed short)(word & 0xfffc);
1296 		if ((word & 2) == 0)
1297 			imm += regs->nip;
1298 		op->val = truncate_if_32bit(regs->msr, imm);
1299 		if (word & 1)
1300 			op->type |= SETLK;
1301 		if (branch_taken(word, regs, op))
1302 			op->type |= BRTAKEN;
1303 		return 1;
1304 #ifdef CONFIG_PPC64
1305 	case 17:	/* sc */
1306 		if ((word & 0xfe2) == 2)
1307 			op->type = SYSCALL;
1308 		else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1309 				(word & 0xfe3) == 1)
1310 			op->type = SYSCALL_VECTORED_0;
1311 		else
1312 			op->type = UNKNOWN;
1313 		return 0;
1314 #endif
1315 	case 18:	/* b */
1316 		op->type = BRANCH | BRTAKEN;
1317 		imm = word & 0x03fffffc;
1318 		if (imm & 0x02000000)
1319 			imm -= 0x04000000;
1320 		if ((word & 2) == 0)
1321 			imm += regs->nip;
1322 		op->val = truncate_if_32bit(regs->msr, imm);
1323 		if (word & 1)
1324 			op->type |= SETLK;
1325 		return 1;
1326 	case 19:
1327 		switch ((word >> 1) & 0x3ff) {
1328 		case 0:		/* mcrf */
1329 			op->type = COMPUTE + SETCC;
1330 			rd = 7 - ((word >> 23) & 0x7);
1331 			ra = 7 - ((word >> 18) & 0x7);
1332 			rd *= 4;
1333 			ra *= 4;
1334 			val = (regs->ccr >> ra) & 0xf;
1335 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1336 			return 1;
1337 
1338 		case 16:	/* bclr */
1339 		case 528:	/* bcctr */
1340 			op->type = BRANCH;
1341 			imm = (word & 0x400)? regs->ctr: regs->link;
1342 			op->val = truncate_if_32bit(regs->msr, imm);
1343 			if (word & 1)
1344 				op->type |= SETLK;
1345 			if (branch_taken(word, regs, op))
1346 				op->type |= BRTAKEN;
1347 			return 1;
1348 
1349 		case 18:	/* rfid, scary */
1350 			if (regs->msr & MSR_PR)
1351 				goto priv;
1352 			op->type = RFI;
1353 			return 0;
1354 
1355 		case 150:	/* isync */
1356 			op->type = BARRIER | BARRIER_ISYNC;
1357 			return 1;
1358 
1359 		case 33:	/* crnor */
1360 		case 129:	/* crandc */
1361 		case 193:	/* crxor */
1362 		case 225:	/* crnand */
1363 		case 257:	/* crand */
1364 		case 289:	/* creqv */
1365 		case 417:	/* crorc */
1366 		case 449:	/* cror */
1367 			op->type = COMPUTE + SETCC;
1368 			ra = (word >> 16) & 0x1f;
1369 			rb = (word >> 11) & 0x1f;
1370 			rd = (word >> 21) & 0x1f;
1371 			ra = (regs->ccr >> (31 - ra)) & 1;
1372 			rb = (regs->ccr >> (31 - rb)) & 1;
1373 			val = (word >> (6 + ra * 2 + rb)) & 1;
1374 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1375 				(val << (31 - rd));
1376 			return 1;
1377 		}
1378 		break;
1379 	case 31:
1380 		switch ((word >> 1) & 0x3ff) {
1381 		case 598:	/* sync */
1382 			op->type = BARRIER + BARRIER_SYNC;
1383 #ifdef __powerpc64__
1384 			switch ((word >> 21) & 3) {
1385 			case 1:		/* lwsync */
1386 				op->type = BARRIER + BARRIER_LWSYNC;
1387 				break;
1388 			case 2:		/* ptesync */
1389 				op->type = BARRIER + BARRIER_PTESYNC;
1390 				break;
1391 			}
1392 #endif
1393 			return 1;
1394 
1395 		case 854:	/* eieio */
1396 			op->type = BARRIER + BARRIER_EIEIO;
1397 			return 1;
1398 		}
1399 		break;
1400 	}
1401 
1402 	/* Following cases refer to regs->gpr[], so we need all regs */
1403 	if (!FULL_REGS(regs))
1404 		return -1;
1405 
1406 	rd = (word >> 21) & 0x1f;
1407 	ra = (word >> 16) & 0x1f;
1408 	rb = (word >> 11) & 0x1f;
1409 	rc = (word >> 6) & 0x1f;
1410 
1411 	switch (opcode) {
1412 #ifdef __powerpc64__
1413 	case 1:
1414 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
1415 			return -1;
1416 
1417 		prefix_r = GET_PREFIX_R(word);
1418 		ra = GET_PREFIX_RA(suffix);
1419 		rd = (suffix >> 21) & 0x1f;
1420 		op->reg = rd;
1421 		op->val = regs->gpr[rd];
1422 		suffixopcode = get_op(suffix);
1423 		prefixtype = (word >> 24) & 0x3;
1424 		switch (prefixtype) {
1425 		case 2:
1426 			if (prefix_r && ra)
1427 				return 0;
1428 			switch (suffixopcode) {
1429 			case 14:	/* paddi */
1430 				op->type = COMPUTE | PREFIXED;
1431 				op->val = mlsd_8lsd_ea(word, suffix, regs);
1432 				goto compute_done;
1433 			}
1434 		}
1435 		break;
1436 	case 2:		/* tdi */
1437 		if (rd & trap_compare(regs->gpr[ra], (short) word))
1438 			goto trap;
1439 		return 1;
1440 #endif
1441 	case 3:		/* twi */
1442 		if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1443 			goto trap;
1444 		return 1;
1445 
1446 #ifdef __powerpc64__
1447 	case 4:
1448 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1449 			return -1;
1450 
1451 		switch (word & 0x3f) {
1452 		case 48:	/* maddhd */
1453 			asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1454 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1455 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1456 			goto compute_done;
1457 
1458 		case 49:	/* maddhdu */
1459 			asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1460 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1461 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1462 			goto compute_done;
1463 
1464 		case 51:	/* maddld */
1465 			asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1466 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1467 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1468 			goto compute_done;
1469 		}
1470 
1471 		/*
1472 		 * There are other instructions from ISA 3.0 with the same
1473 		 * primary opcode which do not have emulation support yet.
1474 		 */
1475 		return -1;
1476 #endif
1477 
1478 	case 7:		/* mulli */
1479 		op->val = regs->gpr[ra] * (short) word;
1480 		goto compute_done;
1481 
1482 	case 8:		/* subfic */
1483 		imm = (short) word;
1484 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1485 		return 1;
1486 
1487 	case 10:	/* cmpli */
1488 		imm = (unsigned short) word;
1489 		val = regs->gpr[ra];
1490 #ifdef __powerpc64__
1491 		if ((rd & 1) == 0)
1492 			val = (unsigned int) val;
1493 #endif
1494 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1495 		return 1;
1496 
1497 	case 11:	/* cmpi */
1498 		imm = (short) word;
1499 		val = regs->gpr[ra];
1500 #ifdef __powerpc64__
1501 		if ((rd & 1) == 0)
1502 			val = (int) val;
1503 #endif
1504 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1505 		return 1;
1506 
1507 	case 12:	/* addic */
1508 		imm = (short) word;
1509 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1510 		return 1;
1511 
1512 	case 13:	/* addic. */
1513 		imm = (short) word;
1514 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1515 		set_cr0(regs, op);
1516 		return 1;
1517 
1518 	case 14:	/* addi */
1519 		imm = (short) word;
1520 		if (ra)
1521 			imm += regs->gpr[ra];
1522 		op->val = imm;
1523 		goto compute_done;
1524 
1525 	case 15:	/* addis */
1526 		imm = ((short) word) << 16;
1527 		if (ra)
1528 			imm += regs->gpr[ra];
1529 		op->val = imm;
1530 		goto compute_done;
1531 
1532 	case 19:
1533 		if (((word >> 1) & 0x1f) == 2) {
1534 			/* addpcis */
1535 			imm = (short) (word & 0xffc1);	/* d0 + d2 fields */
1536 			imm |= (word >> 15) & 0x3e;	/* d1 field */
1537 			op->val = regs->nip + (imm << 16) + 4;
1538 			goto compute_done;
1539 		}
1540 		op->type = UNKNOWN;
1541 		return 0;
1542 
1543 	case 20:	/* rlwimi */
1544 		mb = (word >> 6) & 0x1f;
1545 		me = (word >> 1) & 0x1f;
1546 		val = DATA32(regs->gpr[rd]);
1547 		imm = MASK32(mb, me);
1548 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1549 		goto logical_done;
1550 
1551 	case 21:	/* rlwinm */
1552 		mb = (word >> 6) & 0x1f;
1553 		me = (word >> 1) & 0x1f;
1554 		val = DATA32(regs->gpr[rd]);
1555 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1556 		goto logical_done;
1557 
1558 	case 23:	/* rlwnm */
1559 		mb = (word >> 6) & 0x1f;
1560 		me = (word >> 1) & 0x1f;
1561 		rb = regs->gpr[rb] & 0x1f;
1562 		val = DATA32(regs->gpr[rd]);
1563 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1564 		goto logical_done;
1565 
1566 	case 24:	/* ori */
1567 		op->val = regs->gpr[rd] | (unsigned short) word;
1568 		goto logical_done_nocc;
1569 
1570 	case 25:	/* oris */
1571 		imm = (unsigned short) word;
1572 		op->val = regs->gpr[rd] | (imm << 16);
1573 		goto logical_done_nocc;
1574 
1575 	case 26:	/* xori */
1576 		op->val = regs->gpr[rd] ^ (unsigned short) word;
1577 		goto logical_done_nocc;
1578 
1579 	case 27:	/* xoris */
1580 		imm = (unsigned short) word;
1581 		op->val = regs->gpr[rd] ^ (imm << 16);
1582 		goto logical_done_nocc;
1583 
1584 	case 28:	/* andi. */
1585 		op->val = regs->gpr[rd] & (unsigned short) word;
1586 		set_cr0(regs, op);
1587 		goto logical_done_nocc;
1588 
1589 	case 29:	/* andis. */
1590 		imm = (unsigned short) word;
1591 		op->val = regs->gpr[rd] & (imm << 16);
1592 		set_cr0(regs, op);
1593 		goto logical_done_nocc;
1594 
1595 #ifdef __powerpc64__
1596 	case 30:	/* rld* */
1597 		mb = ((word >> 6) & 0x1f) | (word & 0x20);
1598 		val = regs->gpr[rd];
1599 		if ((word & 0x10) == 0) {
1600 			sh = rb | ((word & 2) << 4);
1601 			val = ROTATE(val, sh);
1602 			switch ((word >> 2) & 3) {
1603 			case 0:		/* rldicl */
1604 				val &= MASK64_L(mb);
1605 				break;
1606 			case 1:		/* rldicr */
1607 				val &= MASK64_R(mb);
1608 				break;
1609 			case 2:		/* rldic */
1610 				val &= MASK64(mb, 63 - sh);
1611 				break;
1612 			case 3:		/* rldimi */
1613 				imm = MASK64(mb, 63 - sh);
1614 				val = (regs->gpr[ra] & ~imm) |
1615 					(val & imm);
1616 			}
1617 			op->val = val;
1618 			goto logical_done;
1619 		} else {
1620 			sh = regs->gpr[rb] & 0x3f;
1621 			val = ROTATE(val, sh);
1622 			switch ((word >> 1) & 7) {
1623 			case 0:		/* rldcl */
1624 				op->val = val & MASK64_L(mb);
1625 				goto logical_done;
1626 			case 1:		/* rldcr */
1627 				op->val = val & MASK64_R(mb);
1628 				goto logical_done;
1629 			}
1630 		}
1631 #endif
1632 		op->type = UNKNOWN;	/* illegal instruction */
1633 		return 0;
1634 
1635 	case 31:
1636 		/* isel occupies 32 minor opcodes */
1637 		if (((word >> 1) & 0x1f) == 15) {
1638 			mb = (word >> 6) & 0x1f; /* bc field */
1639 			val = (regs->ccr >> (31 - mb)) & 1;
1640 			val2 = (ra) ? regs->gpr[ra] : 0;
1641 
1642 			op->val = (val) ? val2 : regs->gpr[rb];
1643 			goto compute_done;
1644 		}
1645 
1646 		switch ((word >> 1) & 0x3ff) {
1647 		case 4:		/* tw */
1648 			if (rd == 0x1f ||
1649 			    (rd & trap_compare((int)regs->gpr[ra],
1650 					       (int)regs->gpr[rb])))
1651 				goto trap;
1652 			return 1;
1653 #ifdef __powerpc64__
1654 		case 68:	/* td */
1655 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1656 				goto trap;
1657 			return 1;
1658 #endif
1659 		case 83:	/* mfmsr */
1660 			if (regs->msr & MSR_PR)
1661 				goto priv;
1662 			op->type = MFMSR;
1663 			op->reg = rd;
1664 			return 0;
1665 		case 146:	/* mtmsr */
1666 			if (regs->msr & MSR_PR)
1667 				goto priv;
1668 			op->type = MTMSR;
1669 			op->reg = rd;
1670 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1671 			return 0;
1672 #ifdef CONFIG_PPC64
1673 		case 178:	/* mtmsrd */
1674 			if (regs->msr & MSR_PR)
1675 				goto priv;
1676 			op->type = MTMSR;
1677 			op->reg = rd;
1678 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1679 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1680 			imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1681 			op->val = imm;
1682 			return 0;
1683 #endif
1684 
1685 		case 19:	/* mfcr */
1686 			imm = 0xffffffffUL;
1687 			if ((word >> 20) & 1) {
1688 				imm = 0xf0000000UL;
1689 				for (sh = 0; sh < 8; ++sh) {
1690 					if (word & (0x80000 >> sh))
1691 						break;
1692 					imm >>= 4;
1693 				}
1694 			}
1695 			op->val = regs->ccr & imm;
1696 			goto compute_done;
1697 
1698 		case 144:	/* mtcrf */
1699 			op->type = COMPUTE + SETCC;
1700 			imm = 0xf0000000UL;
1701 			val = regs->gpr[rd];
1702 			op->ccval = regs->ccr;
1703 			for (sh = 0; sh < 8; ++sh) {
1704 				if (word & (0x80000 >> sh))
1705 					op->ccval = (op->ccval & ~imm) |
1706 						(val & imm);
1707 				imm >>= 4;
1708 			}
1709 			return 1;
1710 
1711 		case 339:	/* mfspr */
1712 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1713 			op->type = MFSPR;
1714 			op->reg = rd;
1715 			op->spr = spr;
1716 			if (spr == SPRN_XER || spr == SPRN_LR ||
1717 			    spr == SPRN_CTR)
1718 				return 1;
1719 			return 0;
1720 
1721 		case 467:	/* mtspr */
1722 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1723 			op->type = MTSPR;
1724 			op->val = regs->gpr[rd];
1725 			op->spr = spr;
1726 			if (spr == SPRN_XER || spr == SPRN_LR ||
1727 			    spr == SPRN_CTR)
1728 				return 1;
1729 			return 0;
1730 
1731 /*
1732  * Compare instructions
1733  */
1734 		case 0:	/* cmp */
1735 			val = regs->gpr[ra];
1736 			val2 = regs->gpr[rb];
1737 #ifdef __powerpc64__
1738 			if ((rd & 1) == 0) {
1739 				/* word (32-bit) compare */
1740 				val = (int) val;
1741 				val2 = (int) val2;
1742 			}
1743 #endif
1744 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1745 			return 1;
1746 
1747 		case 32:	/* cmpl */
1748 			val = regs->gpr[ra];
1749 			val2 = regs->gpr[rb];
1750 #ifdef __powerpc64__
1751 			if ((rd & 1) == 0) {
1752 				/* word (32-bit) compare */
1753 				val = (unsigned int) val;
1754 				val2 = (unsigned int) val2;
1755 			}
1756 #endif
1757 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1758 			return 1;
1759 
1760 		case 508: /* cmpb */
1761 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1762 			goto logical_done_nocc;
1763 
1764 /*
1765  * Arithmetic instructions
1766  */
1767 		case 8:	/* subfc */
1768 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1769 				       regs->gpr[rb], 1);
1770 			goto arith_done;
1771 #ifdef __powerpc64__
1772 		case 9:	/* mulhdu */
1773 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1774 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1775 			goto arith_done;
1776 #endif
1777 		case 10:	/* addc */
1778 			add_with_carry(regs, op, rd, regs->gpr[ra],
1779 				       regs->gpr[rb], 0);
1780 			goto arith_done;
1781 
1782 		case 11:	/* mulhwu */
1783 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1784 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1785 			goto arith_done;
1786 
1787 		case 40:	/* subf */
1788 			op->val = regs->gpr[rb] - regs->gpr[ra];
1789 			goto arith_done;
1790 #ifdef __powerpc64__
1791 		case 73:	/* mulhd */
1792 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1793 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1794 			goto arith_done;
1795 #endif
1796 		case 75:	/* mulhw */
1797 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1798 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1799 			goto arith_done;
1800 
1801 		case 104:	/* neg */
1802 			op->val = -regs->gpr[ra];
1803 			goto arith_done;
1804 
1805 		case 136:	/* subfe */
1806 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1807 				       regs->gpr[rb], regs->xer & XER_CA);
1808 			goto arith_done;
1809 
1810 		case 138:	/* adde */
1811 			add_with_carry(regs, op, rd, regs->gpr[ra],
1812 				       regs->gpr[rb], regs->xer & XER_CA);
1813 			goto arith_done;
1814 
1815 		case 200:	/* subfze */
1816 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1817 				       regs->xer & XER_CA);
1818 			goto arith_done;
1819 
1820 		case 202:	/* addze */
1821 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1822 				       regs->xer & XER_CA);
1823 			goto arith_done;
1824 
1825 		case 232:	/* subfme */
1826 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1827 				       regs->xer & XER_CA);
1828 			goto arith_done;
1829 #ifdef __powerpc64__
1830 		case 233:	/* mulld */
1831 			op->val = regs->gpr[ra] * regs->gpr[rb];
1832 			goto arith_done;
1833 #endif
1834 		case 234:	/* addme */
1835 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1836 				       regs->xer & XER_CA);
1837 			goto arith_done;
1838 
1839 		case 235:	/* mullw */
1840 			op->val = (long)(int) regs->gpr[ra] *
1841 				(int) regs->gpr[rb];
1842 
1843 			goto arith_done;
1844 #ifdef __powerpc64__
1845 		case 265:	/* modud */
1846 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1847 				return -1;
1848 			op->val = regs->gpr[ra] % regs->gpr[rb];
1849 			goto compute_done;
1850 #endif
1851 		case 266:	/* add */
1852 			op->val = regs->gpr[ra] + regs->gpr[rb];
1853 			goto arith_done;
1854 
1855 		case 267:	/* moduw */
1856 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1857 				return -1;
1858 			op->val = (unsigned int) regs->gpr[ra] %
1859 				(unsigned int) regs->gpr[rb];
1860 			goto compute_done;
1861 #ifdef __powerpc64__
1862 		case 457:	/* divdu */
1863 			op->val = regs->gpr[ra] / regs->gpr[rb];
1864 			goto arith_done;
1865 #endif
1866 		case 459:	/* divwu */
1867 			op->val = (unsigned int) regs->gpr[ra] /
1868 				(unsigned int) regs->gpr[rb];
1869 			goto arith_done;
1870 #ifdef __powerpc64__
1871 		case 489:	/* divd */
1872 			op->val = (long int) regs->gpr[ra] /
1873 				(long int) regs->gpr[rb];
1874 			goto arith_done;
1875 #endif
1876 		case 491:	/* divw */
1877 			op->val = (int) regs->gpr[ra] /
1878 				(int) regs->gpr[rb];
1879 			goto arith_done;
1880 #ifdef __powerpc64__
1881 		case 425:	/* divde[.] */
1882 			asm volatile(PPC_DIVDE(%0, %1, %2) :
1883 				"=r" (op->val) : "r" (regs->gpr[ra]),
1884 				"r" (regs->gpr[rb]));
1885 			goto arith_done;
1886 		case 393:	/* divdeu[.] */
1887 			asm volatile(PPC_DIVDEU(%0, %1, %2) :
1888 				"=r" (op->val) : "r" (regs->gpr[ra]),
1889 				"r" (regs->gpr[rb]));
1890 			goto arith_done;
1891 #endif
1892 		case 755:	/* darn */
1893 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1894 				return -1;
1895 			switch (ra & 0x3) {
1896 			case 0:
1897 				/* 32-bit conditioned */
1898 				asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1899 				goto compute_done;
1900 
1901 			case 1:
1902 				/* 64-bit conditioned */
1903 				asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1904 				goto compute_done;
1905 
1906 			case 2:
1907 				/* 64-bit raw */
1908 				asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1909 				goto compute_done;
1910 			}
1911 
1912 			return -1;
1913 #ifdef __powerpc64__
1914 		case 777:	/* modsd */
1915 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1916 				return -1;
1917 			op->val = (long int) regs->gpr[ra] %
1918 				(long int) regs->gpr[rb];
1919 			goto compute_done;
1920 #endif
1921 		case 779:	/* modsw */
1922 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1923 				return -1;
1924 			op->val = (int) regs->gpr[ra] %
1925 				(int) regs->gpr[rb];
1926 			goto compute_done;
1927 
1928 
1929 /*
1930  * Logical instructions
1931  */
1932 		case 26:	/* cntlzw */
1933 			val = (unsigned int) regs->gpr[rd];
1934 			op->val = ( val ? __builtin_clz(val) : 32 );
1935 			goto logical_done;
1936 #ifdef __powerpc64__
1937 		case 58:	/* cntlzd */
1938 			val = regs->gpr[rd];
1939 			op->val = ( val ? __builtin_clzl(val) : 64 );
1940 			goto logical_done;
1941 #endif
1942 		case 28:	/* and */
1943 			op->val = regs->gpr[rd] & regs->gpr[rb];
1944 			goto logical_done;
1945 
1946 		case 60:	/* andc */
1947 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
1948 			goto logical_done;
1949 
1950 		case 122:	/* popcntb */
1951 			do_popcnt(regs, op, regs->gpr[rd], 8);
1952 			goto logical_done_nocc;
1953 
1954 		case 124:	/* nor */
1955 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1956 			goto logical_done;
1957 
1958 		case 154:	/* prtyw */
1959 			do_prty(regs, op, regs->gpr[rd], 32);
1960 			goto logical_done_nocc;
1961 
1962 		case 186:	/* prtyd */
1963 			do_prty(regs, op, regs->gpr[rd], 64);
1964 			goto logical_done_nocc;
1965 #ifdef CONFIG_PPC64
1966 		case 252:	/* bpermd */
1967 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1968 			goto logical_done_nocc;
1969 #endif
1970 		case 284:	/* xor */
1971 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1972 			goto logical_done;
1973 
1974 		case 316:	/* xor */
1975 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
1976 			goto logical_done;
1977 
1978 		case 378:	/* popcntw */
1979 			do_popcnt(regs, op, regs->gpr[rd], 32);
1980 			goto logical_done_nocc;
1981 
1982 		case 412:	/* orc */
1983 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
1984 			goto logical_done;
1985 
1986 		case 444:	/* or */
1987 			op->val = regs->gpr[rd] | regs->gpr[rb];
1988 			goto logical_done;
1989 
1990 		case 476:	/* nand */
1991 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1992 			goto logical_done;
1993 #ifdef CONFIG_PPC64
1994 		case 506:	/* popcntd */
1995 			do_popcnt(regs, op, regs->gpr[rd], 64);
1996 			goto logical_done_nocc;
1997 #endif
1998 		case 538:	/* cnttzw */
1999 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2000 				return -1;
2001 			val = (unsigned int) regs->gpr[rd];
2002 			op->val = (val ? __builtin_ctz(val) : 32);
2003 			goto logical_done;
2004 #ifdef __powerpc64__
2005 		case 570:	/* cnttzd */
2006 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2007 				return -1;
2008 			val = regs->gpr[rd];
2009 			op->val = (val ? __builtin_ctzl(val) : 64);
2010 			goto logical_done;
2011 #endif
2012 		case 922:	/* extsh */
2013 			op->val = (signed short) regs->gpr[rd];
2014 			goto logical_done;
2015 
2016 		case 954:	/* extsb */
2017 			op->val = (signed char) regs->gpr[rd];
2018 			goto logical_done;
2019 #ifdef __powerpc64__
2020 		case 986:	/* extsw */
2021 			op->val = (signed int) regs->gpr[rd];
2022 			goto logical_done;
2023 #endif
2024 
2025 /*
2026  * Shift instructions
2027  */
2028 		case 24:	/* slw */
2029 			sh = regs->gpr[rb] & 0x3f;
2030 			if (sh < 32)
2031 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2032 			else
2033 				op->val = 0;
2034 			goto logical_done;
2035 
2036 		case 536:	/* srw */
2037 			sh = regs->gpr[rb] & 0x3f;
2038 			if (sh < 32)
2039 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2040 			else
2041 				op->val = 0;
2042 			goto logical_done;
2043 
2044 		case 792:	/* sraw */
2045 			op->type = COMPUTE + SETREG + SETXER;
2046 			sh = regs->gpr[rb] & 0x3f;
2047 			ival = (signed int) regs->gpr[rd];
2048 			op->val = ival >> (sh < 32 ? sh : 31);
2049 			op->xerval = regs->xer;
2050 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2051 				op->xerval |= XER_CA;
2052 			else
2053 				op->xerval &= ~XER_CA;
2054 			set_ca32(op, op->xerval & XER_CA);
2055 			goto logical_done;
2056 
2057 		case 824:	/* srawi */
2058 			op->type = COMPUTE + SETREG + SETXER;
2059 			sh = rb;
2060 			ival = (signed int) regs->gpr[rd];
2061 			op->val = ival >> sh;
2062 			op->xerval = regs->xer;
2063 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2064 				op->xerval |= XER_CA;
2065 			else
2066 				op->xerval &= ~XER_CA;
2067 			set_ca32(op, op->xerval & XER_CA);
2068 			goto logical_done;
2069 
2070 #ifdef __powerpc64__
2071 		case 27:	/* sld */
2072 			sh = regs->gpr[rb] & 0x7f;
2073 			if (sh < 64)
2074 				op->val = regs->gpr[rd] << sh;
2075 			else
2076 				op->val = 0;
2077 			goto logical_done;
2078 
2079 		case 539:	/* srd */
2080 			sh = regs->gpr[rb] & 0x7f;
2081 			if (sh < 64)
2082 				op->val = regs->gpr[rd] >> sh;
2083 			else
2084 				op->val = 0;
2085 			goto logical_done;
2086 
2087 		case 794:	/* srad */
2088 			op->type = COMPUTE + SETREG + SETXER;
2089 			sh = regs->gpr[rb] & 0x7f;
2090 			ival = (signed long int) regs->gpr[rd];
2091 			op->val = ival >> (sh < 64 ? sh : 63);
2092 			op->xerval = regs->xer;
2093 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2094 				op->xerval |= XER_CA;
2095 			else
2096 				op->xerval &= ~XER_CA;
2097 			set_ca32(op, op->xerval & XER_CA);
2098 			goto logical_done;
2099 
2100 		case 826:	/* sradi with sh_5 = 0 */
2101 		case 827:	/* sradi with sh_5 = 1 */
2102 			op->type = COMPUTE + SETREG + SETXER;
2103 			sh = rb | ((word & 2) << 4);
2104 			ival = (signed long int) regs->gpr[rd];
2105 			op->val = ival >> sh;
2106 			op->xerval = regs->xer;
2107 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2108 				op->xerval |= XER_CA;
2109 			else
2110 				op->xerval &= ~XER_CA;
2111 			set_ca32(op, op->xerval & XER_CA);
2112 			goto logical_done;
2113 
2114 		case 890:	/* extswsli with sh_5 = 0 */
2115 		case 891:	/* extswsli with sh_5 = 1 */
2116 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2117 				return -1;
2118 			op->type = COMPUTE + SETREG;
2119 			sh = rb | ((word & 2) << 4);
2120 			val = (signed int) regs->gpr[rd];
2121 			if (sh)
2122 				op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2123 			else
2124 				op->val = val;
2125 			goto logical_done;
2126 
2127 #endif /* __powerpc64__ */
2128 
2129 /*
2130  * Cache instructions
2131  */
2132 		case 54:	/* dcbst */
2133 			op->type = MKOP(CACHEOP, DCBST, 0);
2134 			op->ea = xform_ea(word, regs);
2135 			return 0;
2136 
2137 		case 86:	/* dcbf */
2138 			op->type = MKOP(CACHEOP, DCBF, 0);
2139 			op->ea = xform_ea(word, regs);
2140 			return 0;
2141 
2142 		case 246:	/* dcbtst */
2143 			op->type = MKOP(CACHEOP, DCBTST, 0);
2144 			op->ea = xform_ea(word, regs);
2145 			op->reg = rd;
2146 			return 0;
2147 
2148 		case 278:	/* dcbt */
2149 			op->type = MKOP(CACHEOP, DCBTST, 0);
2150 			op->ea = xform_ea(word, regs);
2151 			op->reg = rd;
2152 			return 0;
2153 
2154 		case 982:	/* icbi */
2155 			op->type = MKOP(CACHEOP, ICBI, 0);
2156 			op->ea = xform_ea(word, regs);
2157 			return 0;
2158 
2159 		case 1014:	/* dcbz */
2160 			op->type = MKOP(CACHEOP, DCBZ, 0);
2161 			op->ea = xform_ea(word, regs);
2162 			return 0;
2163 		}
2164 		break;
2165 	}
2166 
2167 /*
2168  * Loads and stores.
2169  */
2170 	op->type = UNKNOWN;
2171 	op->update_reg = ra;
2172 	op->reg = rd;
2173 	op->val = regs->gpr[rd];
2174 	u = (word >> 20) & UPDATE;
2175 	op->vsx_flags = 0;
2176 
2177 	switch (opcode) {
2178 	case 31:
2179 		u = word & UPDATE;
2180 		op->ea = xform_ea(word, regs);
2181 		switch ((word >> 1) & 0x3ff) {
2182 		case 20:	/* lwarx */
2183 			op->type = MKOP(LARX, 0, 4);
2184 			break;
2185 
2186 		case 150:	/* stwcx. */
2187 			op->type = MKOP(STCX, 0, 4);
2188 			break;
2189 
2190 #ifdef __powerpc64__
2191 		case 84:	/* ldarx */
2192 			op->type = MKOP(LARX, 0, 8);
2193 			break;
2194 
2195 		case 214:	/* stdcx. */
2196 			op->type = MKOP(STCX, 0, 8);
2197 			break;
2198 
2199 		case 52:	/* lbarx */
2200 			op->type = MKOP(LARX, 0, 1);
2201 			break;
2202 
2203 		case 694:	/* stbcx. */
2204 			op->type = MKOP(STCX, 0, 1);
2205 			break;
2206 
2207 		case 116:	/* lharx */
2208 			op->type = MKOP(LARX, 0, 2);
2209 			break;
2210 
2211 		case 726:	/* sthcx. */
2212 			op->type = MKOP(STCX, 0, 2);
2213 			break;
2214 
2215 		case 276:	/* lqarx */
2216 			if (!((rd & 1) || rd == ra || rd == rb))
2217 				op->type = MKOP(LARX, 0, 16);
2218 			break;
2219 
2220 		case 182:	/* stqcx. */
2221 			if (!(rd & 1))
2222 				op->type = MKOP(STCX, 0, 16);
2223 			break;
2224 #endif
2225 
2226 		case 23:	/* lwzx */
2227 		case 55:	/* lwzux */
2228 			op->type = MKOP(LOAD, u, 4);
2229 			break;
2230 
2231 		case 87:	/* lbzx */
2232 		case 119:	/* lbzux */
2233 			op->type = MKOP(LOAD, u, 1);
2234 			break;
2235 
2236 #ifdef CONFIG_ALTIVEC
2237 		/*
2238 		 * Note: for the load/store vector element instructions,
2239 		 * bits of the EA say which field of the VMX register to use.
2240 		 */
2241 		case 7:		/* lvebx */
2242 			op->type = MKOP(LOAD_VMX, 0, 1);
2243 			op->element_size = 1;
2244 			break;
2245 
2246 		case 39:	/* lvehx */
2247 			op->type = MKOP(LOAD_VMX, 0, 2);
2248 			op->element_size = 2;
2249 			break;
2250 
2251 		case 71:	/* lvewx */
2252 			op->type = MKOP(LOAD_VMX, 0, 4);
2253 			op->element_size = 4;
2254 			break;
2255 
2256 		case 103:	/* lvx */
2257 		case 359:	/* lvxl */
2258 			op->type = MKOP(LOAD_VMX, 0, 16);
2259 			op->element_size = 16;
2260 			break;
2261 
2262 		case 135:	/* stvebx */
2263 			op->type = MKOP(STORE_VMX, 0, 1);
2264 			op->element_size = 1;
2265 			break;
2266 
2267 		case 167:	/* stvehx */
2268 			op->type = MKOP(STORE_VMX, 0, 2);
2269 			op->element_size = 2;
2270 			break;
2271 
2272 		case 199:	/* stvewx */
2273 			op->type = MKOP(STORE_VMX, 0, 4);
2274 			op->element_size = 4;
2275 			break;
2276 
2277 		case 231:	/* stvx */
2278 		case 487:	/* stvxl */
2279 			op->type = MKOP(STORE_VMX, 0, 16);
2280 			break;
2281 #endif /* CONFIG_ALTIVEC */
2282 
2283 #ifdef __powerpc64__
2284 		case 21:	/* ldx */
2285 		case 53:	/* ldux */
2286 			op->type = MKOP(LOAD, u, 8);
2287 			break;
2288 
2289 		case 149:	/* stdx */
2290 		case 181:	/* stdux */
2291 			op->type = MKOP(STORE, u, 8);
2292 			break;
2293 #endif
2294 
2295 		case 151:	/* stwx */
2296 		case 183:	/* stwux */
2297 			op->type = MKOP(STORE, u, 4);
2298 			break;
2299 
2300 		case 215:	/* stbx */
2301 		case 247:	/* stbux */
2302 			op->type = MKOP(STORE, u, 1);
2303 			break;
2304 
2305 		case 279:	/* lhzx */
2306 		case 311:	/* lhzux */
2307 			op->type = MKOP(LOAD, u, 2);
2308 			break;
2309 
2310 #ifdef __powerpc64__
2311 		case 341:	/* lwax */
2312 		case 373:	/* lwaux */
2313 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2314 			break;
2315 #endif
2316 
2317 		case 343:	/* lhax */
2318 		case 375:	/* lhaux */
2319 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2320 			break;
2321 
2322 		case 407:	/* sthx */
2323 		case 439:	/* sthux */
2324 			op->type = MKOP(STORE, u, 2);
2325 			break;
2326 
2327 #ifdef __powerpc64__
2328 		case 532:	/* ldbrx */
2329 			op->type = MKOP(LOAD, BYTEREV, 8);
2330 			break;
2331 
2332 #endif
2333 		case 533:	/* lswx */
2334 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2335 			break;
2336 
2337 		case 534:	/* lwbrx */
2338 			op->type = MKOP(LOAD, BYTEREV, 4);
2339 			break;
2340 
2341 		case 597:	/* lswi */
2342 			if (rb == 0)
2343 				rb = 32;	/* # bytes to load */
2344 			op->type = MKOP(LOAD_MULTI, 0, rb);
2345 			op->ea = ra ? regs->gpr[ra] : 0;
2346 			break;
2347 
2348 #ifdef CONFIG_PPC_FPU
2349 		case 535:	/* lfsx */
2350 		case 567:	/* lfsux */
2351 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2352 			break;
2353 
2354 		case 599:	/* lfdx */
2355 		case 631:	/* lfdux */
2356 			op->type = MKOP(LOAD_FP, u, 8);
2357 			break;
2358 
2359 		case 663:	/* stfsx */
2360 		case 695:	/* stfsux */
2361 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2362 			break;
2363 
2364 		case 727:	/* stfdx */
2365 		case 759:	/* stfdux */
2366 			op->type = MKOP(STORE_FP, u, 8);
2367 			break;
2368 
2369 #ifdef __powerpc64__
2370 		case 791:	/* lfdpx */
2371 			op->type = MKOP(LOAD_FP, 0, 16);
2372 			break;
2373 
2374 		case 855:	/* lfiwax */
2375 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2376 			break;
2377 
2378 		case 887:	/* lfiwzx */
2379 			op->type = MKOP(LOAD_FP, 0, 4);
2380 			break;
2381 
2382 		case 919:	/* stfdpx */
2383 			op->type = MKOP(STORE_FP, 0, 16);
2384 			break;
2385 
2386 		case 983:	/* stfiwx */
2387 			op->type = MKOP(STORE_FP, 0, 4);
2388 			break;
2389 #endif /* __powerpc64 */
2390 #endif /* CONFIG_PPC_FPU */
2391 
2392 #ifdef __powerpc64__
2393 		case 660:	/* stdbrx */
2394 			op->type = MKOP(STORE, BYTEREV, 8);
2395 			op->val = byterev_8(regs->gpr[rd]);
2396 			break;
2397 
2398 #endif
2399 		case 661:	/* stswx */
2400 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2401 			break;
2402 
2403 		case 662:	/* stwbrx */
2404 			op->type = MKOP(STORE, BYTEREV, 4);
2405 			op->val = byterev_4(regs->gpr[rd]);
2406 			break;
2407 
2408 		case 725:	/* stswi */
2409 			if (rb == 0)
2410 				rb = 32;	/* # bytes to store */
2411 			op->type = MKOP(STORE_MULTI, 0, rb);
2412 			op->ea = ra ? regs->gpr[ra] : 0;
2413 			break;
2414 
2415 		case 790:	/* lhbrx */
2416 			op->type = MKOP(LOAD, BYTEREV, 2);
2417 			break;
2418 
2419 		case 918:	/* sthbrx */
2420 			op->type = MKOP(STORE, BYTEREV, 2);
2421 			op->val = byterev_2(regs->gpr[rd]);
2422 			break;
2423 
2424 #ifdef CONFIG_VSX
2425 		case 12:	/* lxsiwzx */
2426 			op->reg = rd | ((word & 1) << 5);
2427 			op->type = MKOP(LOAD_VSX, 0, 4);
2428 			op->element_size = 8;
2429 			break;
2430 
2431 		case 76:	/* lxsiwax */
2432 			op->reg = rd | ((word & 1) << 5);
2433 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2434 			op->element_size = 8;
2435 			break;
2436 
2437 		case 140:	/* stxsiwx */
2438 			op->reg = rd | ((word & 1) << 5);
2439 			op->type = MKOP(STORE_VSX, 0, 4);
2440 			op->element_size = 8;
2441 			break;
2442 
2443 		case 268:	/* lxvx */
2444 			op->reg = rd | ((word & 1) << 5);
2445 			op->type = MKOP(LOAD_VSX, 0, 16);
2446 			op->element_size = 16;
2447 			op->vsx_flags = VSX_CHECK_VEC;
2448 			break;
2449 
2450 		case 269:	/* lxvl */
2451 		case 301: {	/* lxvll */
2452 			int nb;
2453 			op->reg = rd | ((word & 1) << 5);
2454 			op->ea = ra ? regs->gpr[ra] : 0;
2455 			nb = regs->gpr[rb] & 0xff;
2456 			if (nb > 16)
2457 				nb = 16;
2458 			op->type = MKOP(LOAD_VSX, 0, nb);
2459 			op->element_size = 16;
2460 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2461 				VSX_CHECK_VEC;
2462 			break;
2463 		}
2464 		case 332:	/* lxvdsx */
2465 			op->reg = rd | ((word & 1) << 5);
2466 			op->type = MKOP(LOAD_VSX, 0, 8);
2467 			op->element_size = 8;
2468 			op->vsx_flags = VSX_SPLAT;
2469 			break;
2470 
2471 		case 333:       /* lxvpx */
2472 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2473 				return -1;
2474 			op->reg = VSX_REGISTER_XTP(rd);
2475 			op->type = MKOP(LOAD_VSX, 0, 32);
2476 			op->element_size = 32;
2477 			break;
2478 
2479 		case 364:	/* lxvwsx */
2480 			op->reg = rd | ((word & 1) << 5);
2481 			op->type = MKOP(LOAD_VSX, 0, 4);
2482 			op->element_size = 4;
2483 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2484 			break;
2485 
2486 		case 396:	/* stxvx */
2487 			op->reg = rd | ((word & 1) << 5);
2488 			op->type = MKOP(STORE_VSX, 0, 16);
2489 			op->element_size = 16;
2490 			op->vsx_flags = VSX_CHECK_VEC;
2491 			break;
2492 
2493 		case 397:	/* stxvl */
2494 		case 429: {	/* stxvll */
2495 			int nb;
2496 			op->reg = rd | ((word & 1) << 5);
2497 			op->ea = ra ? regs->gpr[ra] : 0;
2498 			nb = regs->gpr[rb] & 0xff;
2499 			if (nb > 16)
2500 				nb = 16;
2501 			op->type = MKOP(STORE_VSX, 0, nb);
2502 			op->element_size = 16;
2503 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2504 				VSX_CHECK_VEC;
2505 			break;
2506 		}
2507 		case 461:       /* stxvpx */
2508 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2509 				return -1;
2510 			op->reg = VSX_REGISTER_XTP(rd);
2511 			op->type = MKOP(STORE_VSX, 0, 32);
2512 			op->element_size = 32;
2513 			break;
2514 		case 524:	/* lxsspx */
2515 			op->reg = rd | ((word & 1) << 5);
2516 			op->type = MKOP(LOAD_VSX, 0, 4);
2517 			op->element_size = 8;
2518 			op->vsx_flags = VSX_FPCONV;
2519 			break;
2520 
2521 		case 588:	/* lxsdx */
2522 			op->reg = rd | ((word & 1) << 5);
2523 			op->type = MKOP(LOAD_VSX, 0, 8);
2524 			op->element_size = 8;
2525 			break;
2526 
2527 		case 652:	/* stxsspx */
2528 			op->reg = rd | ((word & 1) << 5);
2529 			op->type = MKOP(STORE_VSX, 0, 4);
2530 			op->element_size = 8;
2531 			op->vsx_flags = VSX_FPCONV;
2532 			break;
2533 
2534 		case 716:	/* stxsdx */
2535 			op->reg = rd | ((word & 1) << 5);
2536 			op->type = MKOP(STORE_VSX, 0, 8);
2537 			op->element_size = 8;
2538 			break;
2539 
2540 		case 780:	/* lxvw4x */
2541 			op->reg = rd | ((word & 1) << 5);
2542 			op->type = MKOP(LOAD_VSX, 0, 16);
2543 			op->element_size = 4;
2544 			break;
2545 
2546 		case 781:	/* lxsibzx */
2547 			op->reg = rd | ((word & 1) << 5);
2548 			op->type = MKOP(LOAD_VSX, 0, 1);
2549 			op->element_size = 8;
2550 			op->vsx_flags = VSX_CHECK_VEC;
2551 			break;
2552 
2553 		case 812:	/* lxvh8x */
2554 			op->reg = rd | ((word & 1) << 5);
2555 			op->type = MKOP(LOAD_VSX, 0, 16);
2556 			op->element_size = 2;
2557 			op->vsx_flags = VSX_CHECK_VEC;
2558 			break;
2559 
2560 		case 813:	/* lxsihzx */
2561 			op->reg = rd | ((word & 1) << 5);
2562 			op->type = MKOP(LOAD_VSX, 0, 2);
2563 			op->element_size = 8;
2564 			op->vsx_flags = VSX_CHECK_VEC;
2565 			break;
2566 
2567 		case 844:	/* lxvd2x */
2568 			op->reg = rd | ((word & 1) << 5);
2569 			op->type = MKOP(LOAD_VSX, 0, 16);
2570 			op->element_size = 8;
2571 			break;
2572 
2573 		case 876:	/* lxvb16x */
2574 			op->reg = rd | ((word & 1) << 5);
2575 			op->type = MKOP(LOAD_VSX, 0, 16);
2576 			op->element_size = 1;
2577 			op->vsx_flags = VSX_CHECK_VEC;
2578 			break;
2579 
2580 		case 908:	/* stxvw4x */
2581 			op->reg = rd | ((word & 1) << 5);
2582 			op->type = MKOP(STORE_VSX, 0, 16);
2583 			op->element_size = 4;
2584 			break;
2585 
2586 		case 909:	/* stxsibx */
2587 			op->reg = rd | ((word & 1) << 5);
2588 			op->type = MKOP(STORE_VSX, 0, 1);
2589 			op->element_size = 8;
2590 			op->vsx_flags = VSX_CHECK_VEC;
2591 			break;
2592 
2593 		case 940:	/* stxvh8x */
2594 			op->reg = rd | ((word & 1) << 5);
2595 			op->type = MKOP(STORE_VSX, 0, 16);
2596 			op->element_size = 2;
2597 			op->vsx_flags = VSX_CHECK_VEC;
2598 			break;
2599 
2600 		case 941:	/* stxsihx */
2601 			op->reg = rd | ((word & 1) << 5);
2602 			op->type = MKOP(STORE_VSX, 0, 2);
2603 			op->element_size = 8;
2604 			op->vsx_flags = VSX_CHECK_VEC;
2605 			break;
2606 
2607 		case 972:	/* stxvd2x */
2608 			op->reg = rd | ((word & 1) << 5);
2609 			op->type = MKOP(STORE_VSX, 0, 16);
2610 			op->element_size = 8;
2611 			break;
2612 
2613 		case 1004:	/* stxvb16x */
2614 			op->reg = rd | ((word & 1) << 5);
2615 			op->type = MKOP(STORE_VSX, 0, 16);
2616 			op->element_size = 1;
2617 			op->vsx_flags = VSX_CHECK_VEC;
2618 			break;
2619 
2620 #endif /* CONFIG_VSX */
2621 		}
2622 		break;
2623 
2624 	case 32:	/* lwz */
2625 	case 33:	/* lwzu */
2626 		op->type = MKOP(LOAD, u, 4);
2627 		op->ea = dform_ea(word, regs);
2628 		break;
2629 
2630 	case 34:	/* lbz */
2631 	case 35:	/* lbzu */
2632 		op->type = MKOP(LOAD, u, 1);
2633 		op->ea = dform_ea(word, regs);
2634 		break;
2635 
2636 	case 36:	/* stw */
2637 	case 37:	/* stwu */
2638 		op->type = MKOP(STORE, u, 4);
2639 		op->ea = dform_ea(word, regs);
2640 		break;
2641 
2642 	case 38:	/* stb */
2643 	case 39:	/* stbu */
2644 		op->type = MKOP(STORE, u, 1);
2645 		op->ea = dform_ea(word, regs);
2646 		break;
2647 
2648 	case 40:	/* lhz */
2649 	case 41:	/* lhzu */
2650 		op->type = MKOP(LOAD, u, 2);
2651 		op->ea = dform_ea(word, regs);
2652 		break;
2653 
2654 	case 42:	/* lha */
2655 	case 43:	/* lhau */
2656 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2657 		op->ea = dform_ea(word, regs);
2658 		break;
2659 
2660 	case 44:	/* sth */
2661 	case 45:	/* sthu */
2662 		op->type = MKOP(STORE, u, 2);
2663 		op->ea = dform_ea(word, regs);
2664 		break;
2665 
2666 	case 46:	/* lmw */
2667 		if (ra >= rd)
2668 			break;		/* invalid form, ra in range to load */
2669 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2670 		op->ea = dform_ea(word, regs);
2671 		break;
2672 
2673 	case 47:	/* stmw */
2674 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2675 		op->ea = dform_ea(word, regs);
2676 		break;
2677 
2678 #ifdef CONFIG_PPC_FPU
2679 	case 48:	/* lfs */
2680 	case 49:	/* lfsu */
2681 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2682 		op->ea = dform_ea(word, regs);
2683 		break;
2684 
2685 	case 50:	/* lfd */
2686 	case 51:	/* lfdu */
2687 		op->type = MKOP(LOAD_FP, u, 8);
2688 		op->ea = dform_ea(word, regs);
2689 		break;
2690 
2691 	case 52:	/* stfs */
2692 	case 53:	/* stfsu */
2693 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2694 		op->ea = dform_ea(word, regs);
2695 		break;
2696 
2697 	case 54:	/* stfd */
2698 	case 55:	/* stfdu */
2699 		op->type = MKOP(STORE_FP, u, 8);
2700 		op->ea = dform_ea(word, regs);
2701 		break;
2702 #endif
2703 
2704 #ifdef __powerpc64__
2705 	case 56:	/* lq */
2706 		if (!((rd & 1) || (rd == ra)))
2707 			op->type = MKOP(LOAD, 0, 16);
2708 		op->ea = dqform_ea(word, regs);
2709 		break;
2710 #endif
2711 
2712 #ifdef CONFIG_VSX
2713 	case 57:	/* lfdp, lxsd, lxssp */
2714 		op->ea = dsform_ea(word, regs);
2715 		switch (word & 3) {
2716 		case 0:		/* lfdp */
2717 			if (rd & 1)
2718 				break;		/* reg must be even */
2719 			op->type = MKOP(LOAD_FP, 0, 16);
2720 			break;
2721 		case 2:		/* lxsd */
2722 			op->reg = rd + 32;
2723 			op->type = MKOP(LOAD_VSX, 0, 8);
2724 			op->element_size = 8;
2725 			op->vsx_flags = VSX_CHECK_VEC;
2726 			break;
2727 		case 3:		/* lxssp */
2728 			op->reg = rd + 32;
2729 			op->type = MKOP(LOAD_VSX, 0, 4);
2730 			op->element_size = 8;
2731 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2732 			break;
2733 		}
2734 		break;
2735 #endif /* CONFIG_VSX */
2736 
2737 #ifdef __powerpc64__
2738 	case 58:	/* ld[u], lwa */
2739 		op->ea = dsform_ea(word, regs);
2740 		switch (word & 3) {
2741 		case 0:		/* ld */
2742 			op->type = MKOP(LOAD, 0, 8);
2743 			break;
2744 		case 1:		/* ldu */
2745 			op->type = MKOP(LOAD, UPDATE, 8);
2746 			break;
2747 		case 2:		/* lwa */
2748 			op->type = MKOP(LOAD, SIGNEXT, 4);
2749 			break;
2750 		}
2751 		break;
2752 #endif
2753 
2754 #ifdef CONFIG_VSX
2755 	case 6:
2756 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2757 			return -1;
2758 		op->ea = dqform_ea(word, regs);
2759 		op->reg = VSX_REGISTER_XTP(rd);
2760 		op->element_size = 32;
2761 		switch (word & 0xf) {
2762 		case 0:         /* lxvp */
2763 			op->type = MKOP(LOAD_VSX, 0, 32);
2764 			break;
2765 		case 1:         /* stxvp */
2766 			op->type = MKOP(STORE_VSX, 0, 32);
2767 			break;
2768 		}
2769 		break;
2770 
2771 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2772 		switch (word & 7) {
2773 		case 0:		/* stfdp with LSB of DS field = 0 */
2774 		case 4:		/* stfdp with LSB of DS field = 1 */
2775 			op->ea = dsform_ea(word, regs);
2776 			op->type = MKOP(STORE_FP, 0, 16);
2777 			break;
2778 
2779 		case 1:		/* lxv */
2780 			op->ea = dqform_ea(word, regs);
2781 			if (word & 8)
2782 				op->reg = rd + 32;
2783 			op->type = MKOP(LOAD_VSX, 0, 16);
2784 			op->element_size = 16;
2785 			op->vsx_flags = VSX_CHECK_VEC;
2786 			break;
2787 
2788 		case 2:		/* stxsd with LSB of DS field = 0 */
2789 		case 6:		/* stxsd with LSB of DS field = 1 */
2790 			op->ea = dsform_ea(word, regs);
2791 			op->reg = rd + 32;
2792 			op->type = MKOP(STORE_VSX, 0, 8);
2793 			op->element_size = 8;
2794 			op->vsx_flags = VSX_CHECK_VEC;
2795 			break;
2796 
2797 		case 3:		/* stxssp with LSB of DS field = 0 */
2798 		case 7:		/* stxssp with LSB of DS field = 1 */
2799 			op->ea = dsform_ea(word, regs);
2800 			op->reg = rd + 32;
2801 			op->type = MKOP(STORE_VSX, 0, 4);
2802 			op->element_size = 8;
2803 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2804 			break;
2805 
2806 		case 5:		/* stxv */
2807 			op->ea = dqform_ea(word, regs);
2808 			if (word & 8)
2809 				op->reg = rd + 32;
2810 			op->type = MKOP(STORE_VSX, 0, 16);
2811 			op->element_size = 16;
2812 			op->vsx_flags = VSX_CHECK_VEC;
2813 			break;
2814 		}
2815 		break;
2816 #endif /* CONFIG_VSX */
2817 
2818 #ifdef __powerpc64__
2819 	case 62:	/* std[u] */
2820 		op->ea = dsform_ea(word, regs);
2821 		switch (word & 3) {
2822 		case 0:		/* std */
2823 			op->type = MKOP(STORE, 0, 8);
2824 			break;
2825 		case 1:		/* stdu */
2826 			op->type = MKOP(STORE, UPDATE, 8);
2827 			break;
2828 		case 2:		/* stq */
2829 			if (!(rd & 1))
2830 				op->type = MKOP(STORE, 0, 16);
2831 			break;
2832 		}
2833 		break;
2834 	case 1: /* Prefixed instructions */
2835 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2836 			return -1;
2837 
2838 		prefix_r = GET_PREFIX_R(word);
2839 		ra = GET_PREFIX_RA(suffix);
2840 		op->update_reg = ra;
2841 		rd = (suffix >> 21) & 0x1f;
2842 		op->reg = rd;
2843 		op->val = regs->gpr[rd];
2844 
2845 		suffixopcode = get_op(suffix);
2846 		prefixtype = (word >> 24) & 0x3;
2847 		switch (prefixtype) {
2848 		case 0: /* Type 00  Eight-Byte Load/Store */
2849 			if (prefix_r && ra)
2850 				break;
2851 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2852 			switch (suffixopcode) {
2853 			case 41:	/* plwa */
2854 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2855 				break;
2856 #ifdef CONFIG_VSX
2857 			case 42:        /* plxsd */
2858 				op->reg = rd + 32;
2859 				op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2860 				op->element_size = 8;
2861 				op->vsx_flags = VSX_CHECK_VEC;
2862 				break;
2863 			case 43:	/* plxssp */
2864 				op->reg = rd + 32;
2865 				op->type = MKOP(LOAD_VSX, PREFIXED, 4);
2866 				op->element_size = 8;
2867 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2868 				break;
2869 			case 46:	/* pstxsd */
2870 				op->reg = rd + 32;
2871 				op->type = MKOP(STORE_VSX, PREFIXED, 8);
2872 				op->element_size = 8;
2873 				op->vsx_flags = VSX_CHECK_VEC;
2874 				break;
2875 			case 47:	/* pstxssp */
2876 				op->reg = rd + 32;
2877 				op->type = MKOP(STORE_VSX, PREFIXED, 4);
2878 				op->element_size = 8;
2879 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2880 				break;
2881 			case 51:	/* plxv1 */
2882 				op->reg += 32;
2883 				fallthrough;
2884 			case 50:	/* plxv0 */
2885 				op->type = MKOP(LOAD_VSX, PREFIXED, 16);
2886 				op->element_size = 16;
2887 				op->vsx_flags = VSX_CHECK_VEC;
2888 				break;
2889 			case 55:	/* pstxv1 */
2890 				op->reg = rd + 32;
2891 				fallthrough;
2892 			case 54:	/* pstxv0 */
2893 				op->type = MKOP(STORE_VSX, PREFIXED, 16);
2894 				op->element_size = 16;
2895 				op->vsx_flags = VSX_CHECK_VEC;
2896 				break;
2897 #endif /* CONFIG_VSX */
2898 			case 56:        /* plq */
2899 				op->type = MKOP(LOAD, PREFIXED, 16);
2900 				break;
2901 			case 57:	/* pld */
2902 				op->type = MKOP(LOAD, PREFIXED, 8);
2903 				break;
2904 #ifdef CONFIG_VSX
2905 			case 58:        /* plxvp */
2906 				op->reg = VSX_REGISTER_XTP(rd);
2907 				op->type = MKOP(LOAD_VSX, PREFIXED, 32);
2908 				op->element_size = 32;
2909 				break;
2910 #endif /* CONFIG_VSX */
2911 			case 60:        /* pstq */
2912 				op->type = MKOP(STORE, PREFIXED, 16);
2913 				break;
2914 			case 61:	/* pstd */
2915 				op->type = MKOP(STORE, PREFIXED, 8);
2916 				break;
2917 #ifdef CONFIG_VSX
2918 			case 62:        /* pstxvp */
2919 				op->reg = VSX_REGISTER_XTP(rd);
2920 				op->type = MKOP(STORE_VSX, PREFIXED, 32);
2921 				op->element_size = 32;
2922 				break;
2923 #endif /* CONFIG_VSX */
2924 			}
2925 			break;
2926 		case 1: /* Type 01 Eight-Byte Register-to-Register */
2927 			break;
2928 		case 2: /* Type 10 Modified Load/Store */
2929 			if (prefix_r && ra)
2930 				break;
2931 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2932 			switch (suffixopcode) {
2933 			case 32:	/* plwz */
2934 				op->type = MKOP(LOAD, PREFIXED, 4);
2935 				break;
2936 			case 34:	/* plbz */
2937 				op->type = MKOP(LOAD, PREFIXED, 1);
2938 				break;
2939 			case 36:	/* pstw */
2940 				op->type = MKOP(STORE, PREFIXED, 4);
2941 				break;
2942 			case 38:	/* pstb */
2943 				op->type = MKOP(STORE, PREFIXED, 1);
2944 				break;
2945 			case 40:	/* plhz */
2946 				op->type = MKOP(LOAD, PREFIXED, 2);
2947 				break;
2948 			case 42:	/* plha */
2949 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
2950 				break;
2951 			case 44:	/* psth */
2952 				op->type = MKOP(STORE, PREFIXED, 2);
2953 				break;
2954 			case 48:        /* plfs */
2955 				op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
2956 				break;
2957 			case 50:        /* plfd */
2958 				op->type = MKOP(LOAD_FP, PREFIXED, 8);
2959 				break;
2960 			case 52:        /* pstfs */
2961 				op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
2962 				break;
2963 			case 54:        /* pstfd */
2964 				op->type = MKOP(STORE_FP, PREFIXED, 8);
2965 				break;
2966 			}
2967 			break;
2968 		case 3: /* Type 11 Modified Register-to-Register */
2969 			break;
2970 		}
2971 #endif /* __powerpc64__ */
2972 
2973 	}
2974 
2975 #ifdef CONFIG_VSX
2976 	if ((GETTYPE(op->type) == LOAD_VSX ||
2977 	     GETTYPE(op->type) == STORE_VSX) &&
2978 	    !cpu_has_feature(CPU_FTR_VSX)) {
2979 		return -1;
2980 	}
2981 #endif /* CONFIG_VSX */
2982 
2983 	return 0;
2984 
2985  logical_done:
2986 	if (word & 1)
2987 		set_cr0(regs, op);
2988  logical_done_nocc:
2989 	op->reg = ra;
2990 	op->type |= SETREG;
2991 	return 1;
2992 
2993  arith_done:
2994 	if (word & 1)
2995 		set_cr0(regs, op);
2996  compute_done:
2997 	op->reg = rd;
2998 	op->type |= SETREG;
2999 	return 1;
3000 
3001  priv:
3002 	op->type = INTERRUPT | 0x700;
3003 	op->val = SRR1_PROGPRIV;
3004 	return 0;
3005 
3006  trap:
3007 	op->type = INTERRUPT | 0x700;
3008 	op->val = SRR1_PROGTRAP;
3009 	return 0;
3010 }
3011 EXPORT_SYMBOL_GPL(analyse_instr);
3012 NOKPROBE_SYMBOL(analyse_instr);
3013 
3014 /*
3015  * For PPC32 we always use stwu with r1 to change the stack pointer.
3016  * So this emulated store may corrupt the exception frame, now we
3017  * have to provide the exception frame trampoline, which is pushed
3018  * below the kprobed function stack. So we only update gpr[1] but
3019  * don't emulate the real store operation. We will do real store
3020  * operation safely in exception return code by checking this flag.
3021  */
3022 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3023 {
3024 #ifdef CONFIG_PPC32
3025 	/*
3026 	 * Check if we will touch kernel stack overflow
3027 	 */
3028 	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
3029 		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
3030 		return -EINVAL;
3031 	}
3032 #endif /* CONFIG_PPC32 */
3033 	/*
3034 	 * Check if we already set since that means we'll
3035 	 * lose the previous value.
3036 	 */
3037 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3038 	set_thread_flag(TIF_EMULATE_STACK_STORE);
3039 	return 0;
3040 }
3041 
3042 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3043 {
3044 	switch (size) {
3045 	case 2:
3046 		*valp = (signed short) *valp;
3047 		break;
3048 	case 4:
3049 		*valp = (signed int) *valp;
3050 		break;
3051 	}
3052 }
3053 
3054 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3055 {
3056 	switch (size) {
3057 	case 2:
3058 		*valp = byterev_2(*valp);
3059 		break;
3060 	case 4:
3061 		*valp = byterev_4(*valp);
3062 		break;
3063 #ifdef __powerpc64__
3064 	case 8:
3065 		*valp = byterev_8(*valp);
3066 		break;
3067 #endif
3068 	}
3069 }
3070 
3071 /*
3072  * Emulate an instruction that can be executed just by updating
3073  * fields in *regs.
3074  */
3075 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3076 {
3077 	unsigned long next_pc;
3078 
3079 	next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3080 	switch (GETTYPE(op->type)) {
3081 	case COMPUTE:
3082 		if (op->type & SETREG)
3083 			regs->gpr[op->reg] = op->val;
3084 		if (op->type & SETCC)
3085 			regs->ccr = op->ccval;
3086 		if (op->type & SETXER)
3087 			regs->xer = op->xerval;
3088 		break;
3089 
3090 	case BRANCH:
3091 		if (op->type & SETLK)
3092 			regs->link = next_pc;
3093 		if (op->type & BRTAKEN)
3094 			next_pc = op->val;
3095 		if (op->type & DECCTR)
3096 			--regs->ctr;
3097 		break;
3098 
3099 	case BARRIER:
3100 		switch (op->type & BARRIER_MASK) {
3101 		case BARRIER_SYNC:
3102 			mb();
3103 			break;
3104 		case BARRIER_ISYNC:
3105 			isync();
3106 			break;
3107 		case BARRIER_EIEIO:
3108 			eieio();
3109 			break;
3110 		case BARRIER_LWSYNC:
3111 			asm volatile("lwsync" : : : "memory");
3112 			break;
3113 		case BARRIER_PTESYNC:
3114 			asm volatile("ptesync" : : : "memory");
3115 			break;
3116 		}
3117 		break;
3118 
3119 	case MFSPR:
3120 		switch (op->spr) {
3121 		case SPRN_XER:
3122 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3123 			break;
3124 		case SPRN_LR:
3125 			regs->gpr[op->reg] = regs->link;
3126 			break;
3127 		case SPRN_CTR:
3128 			regs->gpr[op->reg] = regs->ctr;
3129 			break;
3130 		default:
3131 			WARN_ON_ONCE(1);
3132 		}
3133 		break;
3134 
3135 	case MTSPR:
3136 		switch (op->spr) {
3137 		case SPRN_XER:
3138 			regs->xer = op->val & 0xffffffffUL;
3139 			break;
3140 		case SPRN_LR:
3141 			regs->link = op->val;
3142 			break;
3143 		case SPRN_CTR:
3144 			regs->ctr = op->val;
3145 			break;
3146 		default:
3147 			WARN_ON_ONCE(1);
3148 		}
3149 		break;
3150 
3151 	default:
3152 		WARN_ON_ONCE(1);
3153 	}
3154 	regs->nip = next_pc;
3155 }
3156 NOKPROBE_SYMBOL(emulate_update_regs);
3157 
3158 /*
3159  * Emulate a previously-analysed load or store instruction.
3160  * Return values are:
3161  * 0 = instruction emulated successfully
3162  * -EFAULT = address out of range or access faulted (regs->dar
3163  *	     contains the faulting address)
3164  * -EACCES = misaligned access, instruction requires alignment
3165  * -EINVAL = unknown operation in *op
3166  */
3167 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3168 {
3169 	int err, size, type;
3170 	int i, rd, nb;
3171 	unsigned int cr;
3172 	unsigned long val;
3173 	unsigned long ea;
3174 	bool cross_endian;
3175 
3176 	err = 0;
3177 	size = GETSIZE(op->type);
3178 	type = GETTYPE(op->type);
3179 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3180 	ea = truncate_if_32bit(regs->msr, op->ea);
3181 
3182 	switch (type) {
3183 	case LARX:
3184 		if (ea & (size - 1))
3185 			return -EACCES;		/* can't handle misaligned */
3186 		if (!address_ok(regs, ea, size))
3187 			return -EFAULT;
3188 		err = 0;
3189 		val = 0;
3190 		switch (size) {
3191 #ifdef __powerpc64__
3192 		case 1:
3193 			__get_user_asmx(val, ea, err, "lbarx");
3194 			break;
3195 		case 2:
3196 			__get_user_asmx(val, ea, err, "lharx");
3197 			break;
3198 #endif
3199 		case 4:
3200 			__get_user_asmx(val, ea, err, "lwarx");
3201 			break;
3202 #ifdef __powerpc64__
3203 		case 8:
3204 			__get_user_asmx(val, ea, err, "ldarx");
3205 			break;
3206 		case 16:
3207 			err = do_lqarx(ea, &regs->gpr[op->reg]);
3208 			break;
3209 #endif
3210 		default:
3211 			return -EINVAL;
3212 		}
3213 		if (err) {
3214 			regs->dar = ea;
3215 			break;
3216 		}
3217 		if (size < 16)
3218 			regs->gpr[op->reg] = val;
3219 		break;
3220 
3221 	case STCX:
3222 		if (ea & (size - 1))
3223 			return -EACCES;		/* can't handle misaligned */
3224 		if (!address_ok(regs, ea, size))
3225 			return -EFAULT;
3226 		err = 0;
3227 		switch (size) {
3228 #ifdef __powerpc64__
3229 		case 1:
3230 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3231 			break;
3232 		case 2:
3233 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3234 			break;
3235 #endif
3236 		case 4:
3237 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
3238 			break;
3239 #ifdef __powerpc64__
3240 		case 8:
3241 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
3242 			break;
3243 		case 16:
3244 			err = do_stqcx(ea, regs->gpr[op->reg],
3245 				       regs->gpr[op->reg + 1], &cr);
3246 			break;
3247 #endif
3248 		default:
3249 			return -EINVAL;
3250 		}
3251 		if (!err)
3252 			regs->ccr = (regs->ccr & 0x0fffffff) |
3253 				(cr & 0xe0000000) |
3254 				((regs->xer >> 3) & 0x10000000);
3255 		else
3256 			regs->dar = ea;
3257 		break;
3258 
3259 	case LOAD:
3260 #ifdef __powerpc64__
3261 		if (size == 16) {
3262 			err = emulate_lq(regs, ea, op->reg, cross_endian);
3263 			break;
3264 		}
3265 #endif
3266 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3267 		if (!err) {
3268 			if (op->type & SIGNEXT)
3269 				do_signext(&regs->gpr[op->reg], size);
3270 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3271 				do_byterev(&regs->gpr[op->reg], size);
3272 		}
3273 		break;
3274 
3275 #ifdef CONFIG_PPC_FPU
3276 	case LOAD_FP:
3277 		/*
3278 		 * If the instruction is in userspace, we can emulate it even
3279 		 * if the VMX state is not live, because we have the state
3280 		 * stored in the thread_struct.  If the instruction is in
3281 		 * the kernel, we must not touch the state in the thread_struct.
3282 		 */
3283 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3284 			return 0;
3285 		err = do_fp_load(op, ea, regs, cross_endian);
3286 		break;
3287 #endif
3288 #ifdef CONFIG_ALTIVEC
3289 	case LOAD_VMX:
3290 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3291 			return 0;
3292 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3293 		break;
3294 #endif
3295 #ifdef CONFIG_VSX
3296 	case LOAD_VSX: {
3297 		unsigned long msrbit = MSR_VSX;
3298 
3299 		/*
3300 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3301 		 * when the target of the instruction is a vector register.
3302 		 */
3303 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3304 			msrbit = MSR_VEC;
3305 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3306 			return 0;
3307 		err = do_vsx_load(op, ea, regs, cross_endian);
3308 		break;
3309 	}
3310 #endif
3311 	case LOAD_MULTI:
3312 		if (!address_ok(regs, ea, size))
3313 			return -EFAULT;
3314 		rd = op->reg;
3315 		for (i = 0; i < size; i += 4) {
3316 			unsigned int v32 = 0;
3317 
3318 			nb = size - i;
3319 			if (nb > 4)
3320 				nb = 4;
3321 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3322 			if (err)
3323 				break;
3324 			if (unlikely(cross_endian))
3325 				v32 = byterev_4(v32);
3326 			regs->gpr[rd] = v32;
3327 			ea += 4;
3328 			/* reg number wraps from 31 to 0 for lsw[ix] */
3329 			rd = (rd + 1) & 0x1f;
3330 		}
3331 		break;
3332 
3333 	case STORE:
3334 #ifdef __powerpc64__
3335 		if (size == 16) {
3336 			err = emulate_stq(regs, ea, op->reg, cross_endian);
3337 			break;
3338 		}
3339 #endif
3340 		if ((op->type & UPDATE) && size == sizeof(long) &&
3341 		    op->reg == 1 && op->update_reg == 1 &&
3342 		    !(regs->msr & MSR_PR) &&
3343 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3344 			err = handle_stack_update(ea, regs);
3345 			break;
3346 		}
3347 		if (unlikely(cross_endian))
3348 			do_byterev(&op->val, size);
3349 		err = write_mem(op->val, ea, size, regs);
3350 		break;
3351 
3352 #ifdef CONFIG_PPC_FPU
3353 	case STORE_FP:
3354 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3355 			return 0;
3356 		err = do_fp_store(op, ea, regs, cross_endian);
3357 		break;
3358 #endif
3359 #ifdef CONFIG_ALTIVEC
3360 	case STORE_VMX:
3361 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3362 			return 0;
3363 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3364 		break;
3365 #endif
3366 #ifdef CONFIG_VSX
3367 	case STORE_VSX: {
3368 		unsigned long msrbit = MSR_VSX;
3369 
3370 		/*
3371 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3372 		 * when the target of the instruction is a vector register.
3373 		 */
3374 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3375 			msrbit = MSR_VEC;
3376 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3377 			return 0;
3378 		err = do_vsx_store(op, ea, regs, cross_endian);
3379 		break;
3380 	}
3381 #endif
3382 	case STORE_MULTI:
3383 		if (!address_ok(regs, ea, size))
3384 			return -EFAULT;
3385 		rd = op->reg;
3386 		for (i = 0; i < size; i += 4) {
3387 			unsigned int v32 = regs->gpr[rd];
3388 
3389 			nb = size - i;
3390 			if (nb > 4)
3391 				nb = 4;
3392 			if (unlikely(cross_endian))
3393 				v32 = byterev_4(v32);
3394 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3395 			if (err)
3396 				break;
3397 			ea += 4;
3398 			/* reg number wraps from 31 to 0 for stsw[ix] */
3399 			rd = (rd + 1) & 0x1f;
3400 		}
3401 		break;
3402 
3403 	default:
3404 		return -EINVAL;
3405 	}
3406 
3407 	if (err)
3408 		return err;
3409 
3410 	if (op->type & UPDATE)
3411 		regs->gpr[op->update_reg] = op->ea;
3412 
3413 	return 0;
3414 }
3415 NOKPROBE_SYMBOL(emulate_loadstore);
3416 
3417 /*
3418  * Emulate instructions that cause a transfer of control,
3419  * loads and stores, and a few other instructions.
3420  * Returns 1 if the step was emulated, 0 if not,
3421  * or -1 if the instruction is one that should not be stepped,
3422  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3423  */
3424 int emulate_step(struct pt_regs *regs, struct ppc_inst instr)
3425 {
3426 	struct instruction_op op;
3427 	int r, err, type;
3428 	unsigned long val;
3429 	unsigned long ea;
3430 
3431 	r = analyse_instr(&op, regs, instr);
3432 	if (r < 0)
3433 		return r;
3434 	if (r > 0) {
3435 		emulate_update_regs(regs, &op);
3436 		return 1;
3437 	}
3438 
3439 	err = 0;
3440 	type = GETTYPE(op.type);
3441 
3442 	if (OP_IS_LOAD_STORE(type)) {
3443 		err = emulate_loadstore(regs, &op);
3444 		if (err)
3445 			return 0;
3446 		goto instr_done;
3447 	}
3448 
3449 	switch (type) {
3450 	case CACHEOP:
3451 		ea = truncate_if_32bit(regs->msr, op.ea);
3452 		if (!address_ok(regs, ea, 8))
3453 			return 0;
3454 		switch (op.type & CACHEOP_MASK) {
3455 		case DCBST:
3456 			__cacheop_user_asmx(ea, err, "dcbst");
3457 			break;
3458 		case DCBF:
3459 			__cacheop_user_asmx(ea, err, "dcbf");
3460 			break;
3461 		case DCBTST:
3462 			if (op.reg == 0)
3463 				prefetchw((void *) ea);
3464 			break;
3465 		case DCBT:
3466 			if (op.reg == 0)
3467 				prefetch((void *) ea);
3468 			break;
3469 		case ICBI:
3470 			__cacheop_user_asmx(ea, err, "icbi");
3471 			break;
3472 		case DCBZ:
3473 			err = emulate_dcbz(ea, regs);
3474 			break;
3475 		}
3476 		if (err) {
3477 			regs->dar = ea;
3478 			return 0;
3479 		}
3480 		goto instr_done;
3481 
3482 	case MFMSR:
3483 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3484 		goto instr_done;
3485 
3486 	case MTMSR:
3487 		val = regs->gpr[op.reg];
3488 		if ((val & MSR_RI) == 0)
3489 			/* can't step mtmsr[d] that would clear MSR_RI */
3490 			return -1;
3491 		/* here op.val is the mask of bits to change */
3492 		regs->msr = (regs->msr & ~op.val) | (val & op.val);
3493 		goto instr_done;
3494 
3495 #ifdef CONFIG_PPC64
3496 	case SYSCALL:	/* sc */
3497 		/*
3498 		 * N.B. this uses knowledge about how the syscall
3499 		 * entry code works.  If that is changed, this will
3500 		 * need to be changed also.
3501 		 */
3502 		if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3503 				cpu_has_feature(CPU_FTR_REAL_LE) &&
3504 				regs->gpr[0] == 0x1ebe) {
3505 			regs->msr ^= MSR_LE;
3506 			goto instr_done;
3507 		}
3508 		regs->gpr[9] = regs->gpr[13];
3509 		regs->gpr[10] = MSR_KERNEL;
3510 		regs->gpr[11] = regs->nip + 4;
3511 		regs->gpr[12] = regs->msr & MSR_MASK;
3512 		regs->gpr[13] = (unsigned long) get_paca();
3513 		regs->nip = (unsigned long) &system_call_common;
3514 		regs->msr = MSR_KERNEL;
3515 		return 1;
3516 
3517 #ifdef CONFIG_PPC_BOOK3S_64
3518 	case SYSCALL_VECTORED_0:	/* scv 0 */
3519 		regs->gpr[9] = regs->gpr[13];
3520 		regs->gpr[10] = MSR_KERNEL;
3521 		regs->gpr[11] = regs->nip + 4;
3522 		regs->gpr[12] = regs->msr & MSR_MASK;
3523 		regs->gpr[13] = (unsigned long) get_paca();
3524 		regs->nip = (unsigned long) &system_call_vectored_emulate;
3525 		regs->msr = MSR_KERNEL;
3526 		return 1;
3527 #endif
3528 
3529 	case RFI:
3530 		return -1;
3531 #endif
3532 	}
3533 	return 0;
3534 
3535  instr_done:
3536 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type));
3537 	return 1;
3538 }
3539 NOKPROBE_SYMBOL(emulate_step);
3540