1 /* 2 * Single-step support. 3 * 4 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/kprobes.h> 13 #include <linux/ptrace.h> 14 #include <linux/prefetch.h> 15 #include <asm/sstep.h> 16 #include <asm/processor.h> 17 #include <asm/uaccess.h> 18 #include <asm/cputable.h> 19 20 extern char system_call_common[]; 21 22 #ifdef CONFIG_PPC64 23 /* Bits in SRR1 that are copied from MSR */ 24 #define MSR_MASK 0xffffffff87c0ffffUL 25 #else 26 #define MSR_MASK 0x87c0ffff 27 #endif 28 29 /* Bits in XER */ 30 #define XER_SO 0x80000000U 31 #define XER_OV 0x40000000U 32 #define XER_CA 0x20000000U 33 34 #ifdef CONFIG_PPC_FPU 35 /* 36 * Functions in ldstfp.S 37 */ 38 extern int do_lfs(int rn, unsigned long ea); 39 extern int do_lfd(int rn, unsigned long ea); 40 extern int do_stfs(int rn, unsigned long ea); 41 extern int do_stfd(int rn, unsigned long ea); 42 extern int do_lvx(int rn, unsigned long ea); 43 extern int do_stvx(int rn, unsigned long ea); 44 extern int do_lxvd2x(int rn, unsigned long ea); 45 extern int do_stxvd2x(int rn, unsigned long ea); 46 #endif 47 48 /* 49 * Emulate the truncation of 64 bit values in 32-bit mode. 50 */ 51 static unsigned long truncate_if_32bit(unsigned long msr, unsigned long val) 52 { 53 #ifdef __powerpc64__ 54 if ((msr & MSR_64BIT) == 0) 55 val &= 0xffffffffUL; 56 #endif 57 return val; 58 } 59 60 /* 61 * Determine whether a conditional branch instruction would branch. 62 */ 63 static int __kprobes branch_taken(unsigned int instr, struct pt_regs *regs) 64 { 65 unsigned int bo = (instr >> 21) & 0x1f; 66 unsigned int bi; 67 68 if ((bo & 4) == 0) { 69 /* decrement counter */ 70 --regs->ctr; 71 if (((bo >> 1) & 1) ^ (regs->ctr == 0)) 72 return 0; 73 } 74 if ((bo & 0x10) == 0) { 75 /* check bit from CR */ 76 bi = (instr >> 16) & 0x1f; 77 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1)) 78 return 0; 79 } 80 return 1; 81 } 82 83 84 static long __kprobes address_ok(struct pt_regs *regs, unsigned long ea, int nb) 85 { 86 if (!user_mode(regs)) 87 return 1; 88 return __access_ok(ea, nb, USER_DS); 89 } 90 91 /* 92 * Calculate effective address for a D-form instruction 93 */ 94 static unsigned long __kprobes dform_ea(unsigned int instr, struct pt_regs *regs) 95 { 96 int ra; 97 unsigned long ea; 98 99 ra = (instr >> 16) & 0x1f; 100 ea = (signed short) instr; /* sign-extend */ 101 if (ra) { 102 ea += regs->gpr[ra]; 103 if (instr & 0x04000000) { /* update forms */ 104 if ((instr>>26) != 47) /* stmw is not an update form */ 105 regs->gpr[ra] = ea; 106 } 107 } 108 109 return truncate_if_32bit(regs->msr, ea); 110 } 111 112 #ifdef __powerpc64__ 113 /* 114 * Calculate effective address for a DS-form instruction 115 */ 116 static unsigned long __kprobes dsform_ea(unsigned int instr, struct pt_regs *regs) 117 { 118 int ra; 119 unsigned long ea; 120 121 ra = (instr >> 16) & 0x1f; 122 ea = (signed short) (instr & ~3); /* sign-extend */ 123 if (ra) { 124 ea += regs->gpr[ra]; 125 if ((instr & 3) == 1) /* update forms */ 126 regs->gpr[ra] = ea; 127 } 128 129 return truncate_if_32bit(regs->msr, ea); 130 } 131 #endif /* __powerpc64 */ 132 133 /* 134 * Calculate effective address for an X-form instruction 135 */ 136 static unsigned long __kprobes xform_ea(unsigned int instr, struct pt_regs *regs, 137 int do_update) 138 { 139 int ra, rb; 140 unsigned long ea; 141 142 ra = (instr >> 16) & 0x1f; 143 rb = (instr >> 11) & 0x1f; 144 ea = regs->gpr[rb]; 145 if (ra) { 146 ea += regs->gpr[ra]; 147 if (do_update) /* update forms */ 148 regs->gpr[ra] = ea; 149 } 150 151 return truncate_if_32bit(regs->msr, ea); 152 } 153 154 /* 155 * Return the largest power of 2, not greater than sizeof(unsigned long), 156 * such that x is a multiple of it. 157 */ 158 static inline unsigned long max_align(unsigned long x) 159 { 160 x |= sizeof(unsigned long); 161 return x & -x; /* isolates rightmost bit */ 162 } 163 164 165 static inline unsigned long byterev_2(unsigned long x) 166 { 167 return ((x >> 8) & 0xff) | ((x & 0xff) << 8); 168 } 169 170 static inline unsigned long byterev_4(unsigned long x) 171 { 172 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) | 173 ((x & 0xff00) << 8) | ((x & 0xff) << 24); 174 } 175 176 #ifdef __powerpc64__ 177 static inline unsigned long byterev_8(unsigned long x) 178 { 179 return (byterev_4(x) << 32) | byterev_4(x >> 32); 180 } 181 #endif 182 183 static int __kprobes read_mem_aligned(unsigned long *dest, unsigned long ea, 184 int nb) 185 { 186 int err = 0; 187 unsigned long x = 0; 188 189 switch (nb) { 190 case 1: 191 err = __get_user(x, (unsigned char __user *) ea); 192 break; 193 case 2: 194 err = __get_user(x, (unsigned short __user *) ea); 195 break; 196 case 4: 197 err = __get_user(x, (unsigned int __user *) ea); 198 break; 199 #ifdef __powerpc64__ 200 case 8: 201 err = __get_user(x, (unsigned long __user *) ea); 202 break; 203 #endif 204 } 205 if (!err) 206 *dest = x; 207 return err; 208 } 209 210 static int __kprobes read_mem_unaligned(unsigned long *dest, unsigned long ea, 211 int nb, struct pt_regs *regs) 212 { 213 int err; 214 unsigned long x, b, c; 215 #ifdef __LITTLE_ENDIAN__ 216 int len = nb; /* save a copy of the length for byte reversal */ 217 #endif 218 219 /* unaligned, do this in pieces */ 220 x = 0; 221 for (; nb > 0; nb -= c) { 222 #ifdef __LITTLE_ENDIAN__ 223 c = 1; 224 #endif 225 #ifdef __BIG_ENDIAN__ 226 c = max_align(ea); 227 #endif 228 if (c > nb) 229 c = max_align(nb); 230 err = read_mem_aligned(&b, ea, c); 231 if (err) 232 return err; 233 x = (x << (8 * c)) + b; 234 ea += c; 235 } 236 #ifdef __LITTLE_ENDIAN__ 237 switch (len) { 238 case 2: 239 *dest = byterev_2(x); 240 break; 241 case 4: 242 *dest = byterev_4(x); 243 break; 244 #ifdef __powerpc64__ 245 case 8: 246 *dest = byterev_8(x); 247 break; 248 #endif 249 } 250 #endif 251 #ifdef __BIG_ENDIAN__ 252 *dest = x; 253 #endif 254 return 0; 255 } 256 257 /* 258 * Read memory at address ea for nb bytes, return 0 for success 259 * or -EFAULT if an error occurred. 260 */ 261 static int __kprobes read_mem(unsigned long *dest, unsigned long ea, int nb, 262 struct pt_regs *regs) 263 { 264 if (!address_ok(regs, ea, nb)) 265 return -EFAULT; 266 if ((ea & (nb - 1)) == 0) 267 return read_mem_aligned(dest, ea, nb); 268 return read_mem_unaligned(dest, ea, nb, regs); 269 } 270 271 static int __kprobes write_mem_aligned(unsigned long val, unsigned long ea, 272 int nb) 273 { 274 int err = 0; 275 276 switch (nb) { 277 case 1: 278 err = __put_user(val, (unsigned char __user *) ea); 279 break; 280 case 2: 281 err = __put_user(val, (unsigned short __user *) ea); 282 break; 283 case 4: 284 err = __put_user(val, (unsigned int __user *) ea); 285 break; 286 #ifdef __powerpc64__ 287 case 8: 288 err = __put_user(val, (unsigned long __user *) ea); 289 break; 290 #endif 291 } 292 return err; 293 } 294 295 static int __kprobes write_mem_unaligned(unsigned long val, unsigned long ea, 296 int nb, struct pt_regs *regs) 297 { 298 int err; 299 unsigned long c; 300 301 #ifdef __LITTLE_ENDIAN__ 302 switch (nb) { 303 case 2: 304 val = byterev_2(val); 305 break; 306 case 4: 307 val = byterev_4(val); 308 break; 309 #ifdef __powerpc64__ 310 case 8: 311 val = byterev_8(val); 312 break; 313 #endif 314 } 315 #endif 316 /* unaligned or little-endian, do this in pieces */ 317 for (; nb > 0; nb -= c) { 318 #ifdef __LITTLE_ENDIAN__ 319 c = 1; 320 #endif 321 #ifdef __BIG_ENDIAN__ 322 c = max_align(ea); 323 #endif 324 if (c > nb) 325 c = max_align(nb); 326 err = write_mem_aligned(val >> (nb - c) * 8, ea, c); 327 if (err) 328 return err; 329 ea += c; 330 } 331 return 0; 332 } 333 334 /* 335 * Write memory at address ea for nb bytes, return 0 for success 336 * or -EFAULT if an error occurred. 337 */ 338 static int __kprobes write_mem(unsigned long val, unsigned long ea, int nb, 339 struct pt_regs *regs) 340 { 341 if (!address_ok(regs, ea, nb)) 342 return -EFAULT; 343 if ((ea & (nb - 1)) == 0) 344 return write_mem_aligned(val, ea, nb); 345 return write_mem_unaligned(val, ea, nb, regs); 346 } 347 348 #ifdef CONFIG_PPC_FPU 349 /* 350 * Check the address and alignment, and call func to do the actual 351 * load or store. 352 */ 353 static int __kprobes do_fp_load(int rn, int (*func)(int, unsigned long), 354 unsigned long ea, int nb, 355 struct pt_regs *regs) 356 { 357 int err; 358 union { 359 double dbl; 360 unsigned long ul[2]; 361 struct { 362 #ifdef __BIG_ENDIAN__ 363 unsigned _pad_; 364 unsigned word; 365 #endif 366 #ifdef __LITTLE_ENDIAN__ 367 unsigned word; 368 unsigned _pad_; 369 #endif 370 } single; 371 } data; 372 unsigned long ptr; 373 374 if (!address_ok(regs, ea, nb)) 375 return -EFAULT; 376 if ((ea & 3) == 0) 377 return (*func)(rn, ea); 378 ptr = (unsigned long) &data.ul; 379 if (sizeof(unsigned long) == 8 || nb == 4) { 380 err = read_mem_unaligned(&data.ul[0], ea, nb, regs); 381 if (nb == 4) 382 ptr = (unsigned long)&(data.single.word); 383 } else { 384 /* reading a double on 32-bit */ 385 err = read_mem_unaligned(&data.ul[0], ea, 4, regs); 386 if (!err) 387 err = read_mem_unaligned(&data.ul[1], ea + 4, 4, regs); 388 } 389 if (err) 390 return err; 391 return (*func)(rn, ptr); 392 } 393 394 static int __kprobes do_fp_store(int rn, int (*func)(int, unsigned long), 395 unsigned long ea, int nb, 396 struct pt_regs *regs) 397 { 398 int err; 399 union { 400 double dbl; 401 unsigned long ul[2]; 402 struct { 403 #ifdef __BIG_ENDIAN__ 404 unsigned _pad_; 405 unsigned word; 406 #endif 407 #ifdef __LITTLE_ENDIAN__ 408 unsigned word; 409 unsigned _pad_; 410 #endif 411 } single; 412 } data; 413 unsigned long ptr; 414 415 if (!address_ok(regs, ea, nb)) 416 return -EFAULT; 417 if ((ea & 3) == 0) 418 return (*func)(rn, ea); 419 ptr = (unsigned long) &data.ul[0]; 420 if (sizeof(unsigned long) == 8 || nb == 4) { 421 if (nb == 4) 422 ptr = (unsigned long)&(data.single.word); 423 err = (*func)(rn, ptr); 424 if (err) 425 return err; 426 err = write_mem_unaligned(data.ul[0], ea, nb, regs); 427 } else { 428 /* writing a double on 32-bit */ 429 err = (*func)(rn, ptr); 430 if (err) 431 return err; 432 err = write_mem_unaligned(data.ul[0], ea, 4, regs); 433 if (!err) 434 err = write_mem_unaligned(data.ul[1], ea + 4, 4, regs); 435 } 436 return err; 437 } 438 #endif 439 440 #ifdef CONFIG_ALTIVEC 441 /* For Altivec/VMX, no need to worry about alignment */ 442 static int __kprobes do_vec_load(int rn, int (*func)(int, unsigned long), 443 unsigned long ea, struct pt_regs *regs) 444 { 445 if (!address_ok(regs, ea & ~0xfUL, 16)) 446 return -EFAULT; 447 return (*func)(rn, ea); 448 } 449 450 static int __kprobes do_vec_store(int rn, int (*func)(int, unsigned long), 451 unsigned long ea, struct pt_regs *regs) 452 { 453 if (!address_ok(regs, ea & ~0xfUL, 16)) 454 return -EFAULT; 455 return (*func)(rn, ea); 456 } 457 #endif /* CONFIG_ALTIVEC */ 458 459 #ifdef CONFIG_VSX 460 static int __kprobes do_vsx_load(int rn, int (*func)(int, unsigned long), 461 unsigned long ea, struct pt_regs *regs) 462 { 463 int err; 464 unsigned long val[2]; 465 466 if (!address_ok(regs, ea, 16)) 467 return -EFAULT; 468 if ((ea & 3) == 0) 469 return (*func)(rn, ea); 470 err = read_mem_unaligned(&val[0], ea, 8, regs); 471 if (!err) 472 err = read_mem_unaligned(&val[1], ea + 8, 8, regs); 473 if (!err) 474 err = (*func)(rn, (unsigned long) &val[0]); 475 return err; 476 } 477 478 static int __kprobes do_vsx_store(int rn, int (*func)(int, unsigned long), 479 unsigned long ea, struct pt_regs *regs) 480 { 481 int err; 482 unsigned long val[2]; 483 484 if (!address_ok(regs, ea, 16)) 485 return -EFAULT; 486 if ((ea & 3) == 0) 487 return (*func)(rn, ea); 488 err = (*func)(rn, (unsigned long) &val[0]); 489 if (err) 490 return err; 491 err = write_mem_unaligned(val[0], ea, 8, regs); 492 if (!err) 493 err = write_mem_unaligned(val[1], ea + 8, 8, regs); 494 return err; 495 } 496 #endif /* CONFIG_VSX */ 497 498 #define __put_user_asmx(x, addr, err, op, cr) \ 499 __asm__ __volatile__( \ 500 "1: " op " %2,0,%3\n" \ 501 " mfcr %1\n" \ 502 "2:\n" \ 503 ".section .fixup,\"ax\"\n" \ 504 "3: li %0,%4\n" \ 505 " b 2b\n" \ 506 ".previous\n" \ 507 ".section __ex_table,\"a\"\n" \ 508 PPC_LONG_ALIGN "\n" \ 509 PPC_LONG "1b,3b\n" \ 510 ".previous" \ 511 : "=r" (err), "=r" (cr) \ 512 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err)) 513 514 #define __get_user_asmx(x, addr, err, op) \ 515 __asm__ __volatile__( \ 516 "1: "op" %1,0,%2\n" \ 517 "2:\n" \ 518 ".section .fixup,\"ax\"\n" \ 519 "3: li %0,%3\n" \ 520 " b 2b\n" \ 521 ".previous\n" \ 522 ".section __ex_table,\"a\"\n" \ 523 PPC_LONG_ALIGN "\n" \ 524 PPC_LONG "1b,3b\n" \ 525 ".previous" \ 526 : "=r" (err), "=r" (x) \ 527 : "r" (addr), "i" (-EFAULT), "0" (err)) 528 529 #define __cacheop_user_asmx(addr, err, op) \ 530 __asm__ __volatile__( \ 531 "1: "op" 0,%1\n" \ 532 "2:\n" \ 533 ".section .fixup,\"ax\"\n" \ 534 "3: li %0,%3\n" \ 535 " b 2b\n" \ 536 ".previous\n" \ 537 ".section __ex_table,\"a\"\n" \ 538 PPC_LONG_ALIGN "\n" \ 539 PPC_LONG "1b,3b\n" \ 540 ".previous" \ 541 : "=r" (err) \ 542 : "r" (addr), "i" (-EFAULT), "0" (err)) 543 544 static void __kprobes set_cr0(struct pt_regs *regs, int rd) 545 { 546 long val = regs->gpr[rd]; 547 548 regs->ccr = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000); 549 #ifdef __powerpc64__ 550 if (!(regs->msr & MSR_64BIT)) 551 val = (int) val; 552 #endif 553 if (val < 0) 554 regs->ccr |= 0x80000000; 555 else if (val > 0) 556 regs->ccr |= 0x40000000; 557 else 558 regs->ccr |= 0x20000000; 559 } 560 561 static void __kprobes add_with_carry(struct pt_regs *regs, int rd, 562 unsigned long val1, unsigned long val2, 563 unsigned long carry_in) 564 { 565 unsigned long val = val1 + val2; 566 567 if (carry_in) 568 ++val; 569 regs->gpr[rd] = val; 570 #ifdef __powerpc64__ 571 if (!(regs->msr & MSR_64BIT)) { 572 val = (unsigned int) val; 573 val1 = (unsigned int) val1; 574 } 575 #endif 576 if (val < val1 || (carry_in && val == val1)) 577 regs->xer |= XER_CA; 578 else 579 regs->xer &= ~XER_CA; 580 } 581 582 static void __kprobes do_cmp_signed(struct pt_regs *regs, long v1, long v2, 583 int crfld) 584 { 585 unsigned int crval, shift; 586 587 crval = (regs->xer >> 31) & 1; /* get SO bit */ 588 if (v1 < v2) 589 crval |= 8; 590 else if (v1 > v2) 591 crval |= 4; 592 else 593 crval |= 2; 594 shift = (7 - crfld) * 4; 595 regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift); 596 } 597 598 static void __kprobes do_cmp_unsigned(struct pt_regs *regs, unsigned long v1, 599 unsigned long v2, int crfld) 600 { 601 unsigned int crval, shift; 602 603 crval = (regs->xer >> 31) & 1; /* get SO bit */ 604 if (v1 < v2) 605 crval |= 8; 606 else if (v1 > v2) 607 crval |= 4; 608 else 609 crval |= 2; 610 shift = (7 - crfld) * 4; 611 regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift); 612 } 613 614 /* 615 * Elements of 32-bit rotate and mask instructions. 616 */ 617 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \ 618 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb))) 619 #ifdef __powerpc64__ 620 #define MASK64_L(mb) (~0UL >> (mb)) 621 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me)) 622 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb))) 623 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32)) 624 #else 625 #define DATA32(x) (x) 626 #endif 627 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x)) 628 629 /* 630 * Emulate instructions that cause a transfer of control, 631 * loads and stores, and a few other instructions. 632 * Returns 1 if the step was emulated, 0 if not, 633 * or -1 if the instruction is one that should not be stepped, 634 * such as an rfid, or a mtmsrd that would clear MSR_RI. 635 */ 636 int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr) 637 { 638 unsigned int opcode, ra, rb, rd, spr, u; 639 unsigned long int imm; 640 unsigned long int val, val2; 641 unsigned long int ea; 642 unsigned int cr, mb, me, sh; 643 int err; 644 unsigned long old_ra, val3; 645 long ival; 646 647 opcode = instr >> 26; 648 switch (opcode) { 649 case 16: /* bc */ 650 imm = (signed short)(instr & 0xfffc); 651 if ((instr & 2) == 0) 652 imm += regs->nip; 653 regs->nip += 4; 654 regs->nip = truncate_if_32bit(regs->msr, regs->nip); 655 if (instr & 1) 656 regs->link = regs->nip; 657 if (branch_taken(instr, regs)) 658 regs->nip = truncate_if_32bit(regs->msr, imm); 659 return 1; 660 #ifdef CONFIG_PPC64 661 case 17: /* sc */ 662 /* 663 * N.B. this uses knowledge about how the syscall 664 * entry code works. If that is changed, this will 665 * need to be changed also. 666 */ 667 if (regs->gpr[0] == 0x1ebe && 668 cpu_has_feature(CPU_FTR_REAL_LE)) { 669 regs->msr ^= MSR_LE; 670 goto instr_done; 671 } 672 regs->gpr[9] = regs->gpr[13]; 673 regs->gpr[10] = MSR_KERNEL; 674 regs->gpr[11] = regs->nip + 4; 675 regs->gpr[12] = regs->msr & MSR_MASK; 676 regs->gpr[13] = (unsigned long) get_paca(); 677 regs->nip = (unsigned long) &system_call_common; 678 regs->msr = MSR_KERNEL; 679 return 1; 680 #endif 681 case 18: /* b */ 682 imm = instr & 0x03fffffc; 683 if (imm & 0x02000000) 684 imm -= 0x04000000; 685 if ((instr & 2) == 0) 686 imm += regs->nip; 687 if (instr & 1) 688 regs->link = truncate_if_32bit(regs->msr, regs->nip + 4); 689 imm = truncate_if_32bit(regs->msr, imm); 690 regs->nip = imm; 691 return 1; 692 case 19: 693 switch ((instr >> 1) & 0x3ff) { 694 case 16: /* bclr */ 695 case 528: /* bcctr */ 696 imm = (instr & 0x400)? regs->ctr: regs->link; 697 regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4); 698 imm = truncate_if_32bit(regs->msr, imm); 699 if (instr & 1) 700 regs->link = regs->nip; 701 if (branch_taken(instr, regs)) 702 regs->nip = imm; 703 return 1; 704 705 case 18: /* rfid, scary */ 706 return -1; 707 708 case 150: /* isync */ 709 isync(); 710 goto instr_done; 711 712 case 33: /* crnor */ 713 case 129: /* crandc */ 714 case 193: /* crxor */ 715 case 225: /* crnand */ 716 case 257: /* crand */ 717 case 289: /* creqv */ 718 case 417: /* crorc */ 719 case 449: /* cror */ 720 ra = (instr >> 16) & 0x1f; 721 rb = (instr >> 11) & 0x1f; 722 rd = (instr >> 21) & 0x1f; 723 ra = (regs->ccr >> (31 - ra)) & 1; 724 rb = (regs->ccr >> (31 - rb)) & 1; 725 val = (instr >> (6 + ra * 2 + rb)) & 1; 726 regs->ccr = (regs->ccr & ~(1UL << (31 - rd))) | 727 (val << (31 - rd)); 728 goto instr_done; 729 } 730 break; 731 case 31: 732 switch ((instr >> 1) & 0x3ff) { 733 case 598: /* sync */ 734 #ifdef __powerpc64__ 735 switch ((instr >> 21) & 3) { 736 case 1: /* lwsync */ 737 asm volatile("lwsync" : : : "memory"); 738 goto instr_done; 739 case 2: /* ptesync */ 740 asm volatile("ptesync" : : : "memory"); 741 goto instr_done; 742 } 743 #endif 744 mb(); 745 goto instr_done; 746 747 case 854: /* eieio */ 748 eieio(); 749 goto instr_done; 750 } 751 break; 752 } 753 754 /* Following cases refer to regs->gpr[], so we need all regs */ 755 if (!FULL_REGS(regs)) 756 return 0; 757 758 rd = (instr >> 21) & 0x1f; 759 ra = (instr >> 16) & 0x1f; 760 rb = (instr >> 11) & 0x1f; 761 762 switch (opcode) { 763 case 7: /* mulli */ 764 regs->gpr[rd] = regs->gpr[ra] * (short) instr; 765 goto instr_done; 766 767 case 8: /* subfic */ 768 imm = (short) instr; 769 add_with_carry(regs, rd, ~regs->gpr[ra], imm, 1); 770 goto instr_done; 771 772 case 10: /* cmpli */ 773 imm = (unsigned short) instr; 774 val = regs->gpr[ra]; 775 #ifdef __powerpc64__ 776 if ((rd & 1) == 0) 777 val = (unsigned int) val; 778 #endif 779 do_cmp_unsigned(regs, val, imm, rd >> 2); 780 goto instr_done; 781 782 case 11: /* cmpi */ 783 imm = (short) instr; 784 val = regs->gpr[ra]; 785 #ifdef __powerpc64__ 786 if ((rd & 1) == 0) 787 val = (int) val; 788 #endif 789 do_cmp_signed(regs, val, imm, rd >> 2); 790 goto instr_done; 791 792 case 12: /* addic */ 793 imm = (short) instr; 794 add_with_carry(regs, rd, regs->gpr[ra], imm, 0); 795 goto instr_done; 796 797 case 13: /* addic. */ 798 imm = (short) instr; 799 add_with_carry(regs, rd, regs->gpr[ra], imm, 0); 800 set_cr0(regs, rd); 801 goto instr_done; 802 803 case 14: /* addi */ 804 imm = (short) instr; 805 if (ra) 806 imm += regs->gpr[ra]; 807 regs->gpr[rd] = imm; 808 goto instr_done; 809 810 case 15: /* addis */ 811 imm = ((short) instr) << 16; 812 if (ra) 813 imm += regs->gpr[ra]; 814 regs->gpr[rd] = imm; 815 goto instr_done; 816 817 case 20: /* rlwimi */ 818 mb = (instr >> 6) & 0x1f; 819 me = (instr >> 1) & 0x1f; 820 val = DATA32(regs->gpr[rd]); 821 imm = MASK32(mb, me); 822 regs->gpr[ra] = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm); 823 goto logical_done; 824 825 case 21: /* rlwinm */ 826 mb = (instr >> 6) & 0x1f; 827 me = (instr >> 1) & 0x1f; 828 val = DATA32(regs->gpr[rd]); 829 regs->gpr[ra] = ROTATE(val, rb) & MASK32(mb, me); 830 goto logical_done; 831 832 case 23: /* rlwnm */ 833 mb = (instr >> 6) & 0x1f; 834 me = (instr >> 1) & 0x1f; 835 rb = regs->gpr[rb] & 0x1f; 836 val = DATA32(regs->gpr[rd]); 837 regs->gpr[ra] = ROTATE(val, rb) & MASK32(mb, me); 838 goto logical_done; 839 840 case 24: /* ori */ 841 imm = (unsigned short) instr; 842 regs->gpr[ra] = regs->gpr[rd] | imm; 843 goto instr_done; 844 845 case 25: /* oris */ 846 imm = (unsigned short) instr; 847 regs->gpr[ra] = regs->gpr[rd] | (imm << 16); 848 goto instr_done; 849 850 case 26: /* xori */ 851 imm = (unsigned short) instr; 852 regs->gpr[ra] = regs->gpr[rd] ^ imm; 853 goto instr_done; 854 855 case 27: /* xoris */ 856 imm = (unsigned short) instr; 857 regs->gpr[ra] = regs->gpr[rd] ^ (imm << 16); 858 goto instr_done; 859 860 case 28: /* andi. */ 861 imm = (unsigned short) instr; 862 regs->gpr[ra] = regs->gpr[rd] & imm; 863 set_cr0(regs, ra); 864 goto instr_done; 865 866 case 29: /* andis. */ 867 imm = (unsigned short) instr; 868 regs->gpr[ra] = regs->gpr[rd] & (imm << 16); 869 set_cr0(regs, ra); 870 goto instr_done; 871 872 #ifdef __powerpc64__ 873 case 30: /* rld* */ 874 mb = ((instr >> 6) & 0x1f) | (instr & 0x20); 875 val = regs->gpr[rd]; 876 if ((instr & 0x10) == 0) { 877 sh = rb | ((instr & 2) << 4); 878 val = ROTATE(val, sh); 879 switch ((instr >> 2) & 3) { 880 case 0: /* rldicl */ 881 regs->gpr[ra] = val & MASK64_L(mb); 882 goto logical_done; 883 case 1: /* rldicr */ 884 regs->gpr[ra] = val & MASK64_R(mb); 885 goto logical_done; 886 case 2: /* rldic */ 887 regs->gpr[ra] = val & MASK64(mb, 63 - sh); 888 goto logical_done; 889 case 3: /* rldimi */ 890 imm = MASK64(mb, 63 - sh); 891 regs->gpr[ra] = (regs->gpr[ra] & ~imm) | 892 (val & imm); 893 goto logical_done; 894 } 895 } else { 896 sh = regs->gpr[rb] & 0x3f; 897 val = ROTATE(val, sh); 898 switch ((instr >> 1) & 7) { 899 case 0: /* rldcl */ 900 regs->gpr[ra] = val & MASK64_L(mb); 901 goto logical_done; 902 case 1: /* rldcr */ 903 regs->gpr[ra] = val & MASK64_R(mb); 904 goto logical_done; 905 } 906 } 907 #endif 908 909 case 31: 910 switch ((instr >> 1) & 0x3ff) { 911 case 83: /* mfmsr */ 912 if (regs->msr & MSR_PR) 913 break; 914 regs->gpr[rd] = regs->msr & MSR_MASK; 915 goto instr_done; 916 case 146: /* mtmsr */ 917 if (regs->msr & MSR_PR) 918 break; 919 imm = regs->gpr[rd]; 920 if ((imm & MSR_RI) == 0) 921 /* can't step mtmsr that would clear MSR_RI */ 922 return -1; 923 regs->msr = imm; 924 goto instr_done; 925 #ifdef CONFIG_PPC64 926 case 178: /* mtmsrd */ 927 /* only MSR_EE and MSR_RI get changed if bit 15 set */ 928 /* mtmsrd doesn't change MSR_HV and MSR_ME */ 929 if (regs->msr & MSR_PR) 930 break; 931 imm = (instr & 0x10000)? 0x8002: 0xefffffffffffefffUL; 932 imm = (regs->msr & MSR_MASK & ~imm) 933 | (regs->gpr[rd] & imm); 934 if ((imm & MSR_RI) == 0) 935 /* can't step mtmsrd that would clear MSR_RI */ 936 return -1; 937 regs->msr = imm; 938 goto instr_done; 939 #endif 940 case 19: /* mfcr */ 941 regs->gpr[rd] = regs->ccr; 942 regs->gpr[rd] &= 0xffffffffUL; 943 goto instr_done; 944 945 case 144: /* mtcrf */ 946 imm = 0xf0000000UL; 947 val = regs->gpr[rd]; 948 for (sh = 0; sh < 8; ++sh) { 949 if (instr & (0x80000 >> sh)) 950 regs->ccr = (regs->ccr & ~imm) | 951 (val & imm); 952 imm >>= 4; 953 } 954 goto instr_done; 955 956 case 339: /* mfspr */ 957 spr = (instr >> 11) & 0x3ff; 958 switch (spr) { 959 case 0x20: /* mfxer */ 960 regs->gpr[rd] = regs->xer; 961 regs->gpr[rd] &= 0xffffffffUL; 962 goto instr_done; 963 case 0x100: /* mflr */ 964 regs->gpr[rd] = regs->link; 965 goto instr_done; 966 case 0x120: /* mfctr */ 967 regs->gpr[rd] = regs->ctr; 968 goto instr_done; 969 } 970 break; 971 972 case 467: /* mtspr */ 973 spr = (instr >> 11) & 0x3ff; 974 switch (spr) { 975 case 0x20: /* mtxer */ 976 regs->xer = (regs->gpr[rd] & 0xffffffffUL); 977 goto instr_done; 978 case 0x100: /* mtlr */ 979 regs->link = regs->gpr[rd]; 980 goto instr_done; 981 case 0x120: /* mtctr */ 982 regs->ctr = regs->gpr[rd]; 983 goto instr_done; 984 } 985 break; 986 987 /* 988 * Compare instructions 989 */ 990 case 0: /* cmp */ 991 val = regs->gpr[ra]; 992 val2 = regs->gpr[rb]; 993 #ifdef __powerpc64__ 994 if ((rd & 1) == 0) { 995 /* word (32-bit) compare */ 996 val = (int) val; 997 val2 = (int) val2; 998 } 999 #endif 1000 do_cmp_signed(regs, val, val2, rd >> 2); 1001 goto instr_done; 1002 1003 case 32: /* cmpl */ 1004 val = regs->gpr[ra]; 1005 val2 = regs->gpr[rb]; 1006 #ifdef __powerpc64__ 1007 if ((rd & 1) == 0) { 1008 /* word (32-bit) compare */ 1009 val = (unsigned int) val; 1010 val2 = (unsigned int) val2; 1011 } 1012 #endif 1013 do_cmp_unsigned(regs, val, val2, rd >> 2); 1014 goto instr_done; 1015 1016 /* 1017 * Arithmetic instructions 1018 */ 1019 case 8: /* subfc */ 1020 add_with_carry(regs, rd, ~regs->gpr[ra], 1021 regs->gpr[rb], 1); 1022 goto arith_done; 1023 #ifdef __powerpc64__ 1024 case 9: /* mulhdu */ 1025 asm("mulhdu %0,%1,%2" : "=r" (regs->gpr[rd]) : 1026 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1027 goto arith_done; 1028 #endif 1029 case 10: /* addc */ 1030 add_with_carry(regs, rd, regs->gpr[ra], 1031 regs->gpr[rb], 0); 1032 goto arith_done; 1033 1034 case 11: /* mulhwu */ 1035 asm("mulhwu %0,%1,%2" : "=r" (regs->gpr[rd]) : 1036 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1037 goto arith_done; 1038 1039 case 40: /* subf */ 1040 regs->gpr[rd] = regs->gpr[rb] - regs->gpr[ra]; 1041 goto arith_done; 1042 #ifdef __powerpc64__ 1043 case 73: /* mulhd */ 1044 asm("mulhd %0,%1,%2" : "=r" (regs->gpr[rd]) : 1045 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1046 goto arith_done; 1047 #endif 1048 case 75: /* mulhw */ 1049 asm("mulhw %0,%1,%2" : "=r" (regs->gpr[rd]) : 1050 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1051 goto arith_done; 1052 1053 case 104: /* neg */ 1054 regs->gpr[rd] = -regs->gpr[ra]; 1055 goto arith_done; 1056 1057 case 136: /* subfe */ 1058 add_with_carry(regs, rd, ~regs->gpr[ra], regs->gpr[rb], 1059 regs->xer & XER_CA); 1060 goto arith_done; 1061 1062 case 138: /* adde */ 1063 add_with_carry(regs, rd, regs->gpr[ra], regs->gpr[rb], 1064 regs->xer & XER_CA); 1065 goto arith_done; 1066 1067 case 200: /* subfze */ 1068 add_with_carry(regs, rd, ~regs->gpr[ra], 0L, 1069 regs->xer & XER_CA); 1070 goto arith_done; 1071 1072 case 202: /* addze */ 1073 add_with_carry(regs, rd, regs->gpr[ra], 0L, 1074 regs->xer & XER_CA); 1075 goto arith_done; 1076 1077 case 232: /* subfme */ 1078 add_with_carry(regs, rd, ~regs->gpr[ra], -1L, 1079 regs->xer & XER_CA); 1080 goto arith_done; 1081 #ifdef __powerpc64__ 1082 case 233: /* mulld */ 1083 regs->gpr[rd] = regs->gpr[ra] * regs->gpr[rb]; 1084 goto arith_done; 1085 #endif 1086 case 234: /* addme */ 1087 add_with_carry(regs, rd, regs->gpr[ra], -1L, 1088 regs->xer & XER_CA); 1089 goto arith_done; 1090 1091 case 235: /* mullw */ 1092 regs->gpr[rd] = (unsigned int) regs->gpr[ra] * 1093 (unsigned int) regs->gpr[rb]; 1094 goto arith_done; 1095 1096 case 266: /* add */ 1097 regs->gpr[rd] = regs->gpr[ra] + regs->gpr[rb]; 1098 goto arith_done; 1099 #ifdef __powerpc64__ 1100 case 457: /* divdu */ 1101 regs->gpr[rd] = regs->gpr[ra] / regs->gpr[rb]; 1102 goto arith_done; 1103 #endif 1104 case 459: /* divwu */ 1105 regs->gpr[rd] = (unsigned int) regs->gpr[ra] / 1106 (unsigned int) regs->gpr[rb]; 1107 goto arith_done; 1108 #ifdef __powerpc64__ 1109 case 489: /* divd */ 1110 regs->gpr[rd] = (long int) regs->gpr[ra] / 1111 (long int) regs->gpr[rb]; 1112 goto arith_done; 1113 #endif 1114 case 491: /* divw */ 1115 regs->gpr[rd] = (int) regs->gpr[ra] / 1116 (int) regs->gpr[rb]; 1117 goto arith_done; 1118 1119 1120 /* 1121 * Logical instructions 1122 */ 1123 case 26: /* cntlzw */ 1124 asm("cntlzw %0,%1" : "=r" (regs->gpr[ra]) : 1125 "r" (regs->gpr[rd])); 1126 goto logical_done; 1127 #ifdef __powerpc64__ 1128 case 58: /* cntlzd */ 1129 asm("cntlzd %0,%1" : "=r" (regs->gpr[ra]) : 1130 "r" (regs->gpr[rd])); 1131 goto logical_done; 1132 #endif 1133 case 28: /* and */ 1134 regs->gpr[ra] = regs->gpr[rd] & regs->gpr[rb]; 1135 goto logical_done; 1136 1137 case 60: /* andc */ 1138 regs->gpr[ra] = regs->gpr[rd] & ~regs->gpr[rb]; 1139 goto logical_done; 1140 1141 case 124: /* nor */ 1142 regs->gpr[ra] = ~(regs->gpr[rd] | regs->gpr[rb]); 1143 goto logical_done; 1144 1145 case 284: /* xor */ 1146 regs->gpr[ra] = ~(regs->gpr[rd] ^ regs->gpr[rb]); 1147 goto logical_done; 1148 1149 case 316: /* xor */ 1150 regs->gpr[ra] = regs->gpr[rd] ^ regs->gpr[rb]; 1151 goto logical_done; 1152 1153 case 412: /* orc */ 1154 regs->gpr[ra] = regs->gpr[rd] | ~regs->gpr[rb]; 1155 goto logical_done; 1156 1157 case 444: /* or */ 1158 regs->gpr[ra] = regs->gpr[rd] | regs->gpr[rb]; 1159 goto logical_done; 1160 1161 case 476: /* nand */ 1162 regs->gpr[ra] = ~(regs->gpr[rd] & regs->gpr[rb]); 1163 goto logical_done; 1164 1165 case 922: /* extsh */ 1166 regs->gpr[ra] = (signed short) regs->gpr[rd]; 1167 goto logical_done; 1168 1169 case 954: /* extsb */ 1170 regs->gpr[ra] = (signed char) regs->gpr[rd]; 1171 goto logical_done; 1172 #ifdef __powerpc64__ 1173 case 986: /* extsw */ 1174 regs->gpr[ra] = (signed int) regs->gpr[rd]; 1175 goto logical_done; 1176 #endif 1177 1178 /* 1179 * Shift instructions 1180 */ 1181 case 24: /* slw */ 1182 sh = regs->gpr[rb] & 0x3f; 1183 if (sh < 32) 1184 regs->gpr[ra] = (regs->gpr[rd] << sh) & 0xffffffffUL; 1185 else 1186 regs->gpr[ra] = 0; 1187 goto logical_done; 1188 1189 case 536: /* srw */ 1190 sh = regs->gpr[rb] & 0x3f; 1191 if (sh < 32) 1192 regs->gpr[ra] = (regs->gpr[rd] & 0xffffffffUL) >> sh; 1193 else 1194 regs->gpr[ra] = 0; 1195 goto logical_done; 1196 1197 case 792: /* sraw */ 1198 sh = regs->gpr[rb] & 0x3f; 1199 ival = (signed int) regs->gpr[rd]; 1200 regs->gpr[ra] = ival >> (sh < 32 ? sh : 31); 1201 if (ival < 0 && (sh >= 32 || (ival & ((1 << sh) - 1)) != 0)) 1202 regs->xer |= XER_CA; 1203 else 1204 regs->xer &= ~XER_CA; 1205 goto logical_done; 1206 1207 case 824: /* srawi */ 1208 sh = rb; 1209 ival = (signed int) regs->gpr[rd]; 1210 regs->gpr[ra] = ival >> sh; 1211 if (ival < 0 && (ival & ((1 << sh) - 1)) != 0) 1212 regs->xer |= XER_CA; 1213 else 1214 regs->xer &= ~XER_CA; 1215 goto logical_done; 1216 1217 #ifdef __powerpc64__ 1218 case 27: /* sld */ 1219 sh = regs->gpr[rd] & 0x7f; 1220 if (sh < 64) 1221 regs->gpr[ra] = regs->gpr[rd] << sh; 1222 else 1223 regs->gpr[ra] = 0; 1224 goto logical_done; 1225 1226 case 539: /* srd */ 1227 sh = regs->gpr[rb] & 0x7f; 1228 if (sh < 64) 1229 regs->gpr[ra] = regs->gpr[rd] >> sh; 1230 else 1231 regs->gpr[ra] = 0; 1232 goto logical_done; 1233 1234 case 794: /* srad */ 1235 sh = regs->gpr[rb] & 0x7f; 1236 ival = (signed long int) regs->gpr[rd]; 1237 regs->gpr[ra] = ival >> (sh < 64 ? sh : 63); 1238 if (ival < 0 && (sh >= 64 || (ival & ((1 << sh) - 1)) != 0)) 1239 regs->xer |= XER_CA; 1240 else 1241 regs->xer &= ~XER_CA; 1242 goto logical_done; 1243 1244 case 826: /* sradi with sh_5 = 0 */ 1245 case 827: /* sradi with sh_5 = 1 */ 1246 sh = rb | ((instr & 2) << 4); 1247 ival = (signed long int) regs->gpr[rd]; 1248 regs->gpr[ra] = ival >> sh; 1249 if (ival < 0 && (ival & ((1 << sh) - 1)) != 0) 1250 regs->xer |= XER_CA; 1251 else 1252 regs->xer &= ~XER_CA; 1253 goto logical_done; 1254 #endif /* __powerpc64__ */ 1255 1256 /* 1257 * Cache instructions 1258 */ 1259 case 54: /* dcbst */ 1260 ea = xform_ea(instr, regs, 0); 1261 if (!address_ok(regs, ea, 8)) 1262 return 0; 1263 err = 0; 1264 __cacheop_user_asmx(ea, err, "dcbst"); 1265 if (err) 1266 return 0; 1267 goto instr_done; 1268 1269 case 86: /* dcbf */ 1270 ea = xform_ea(instr, regs, 0); 1271 if (!address_ok(regs, ea, 8)) 1272 return 0; 1273 err = 0; 1274 __cacheop_user_asmx(ea, err, "dcbf"); 1275 if (err) 1276 return 0; 1277 goto instr_done; 1278 1279 case 246: /* dcbtst */ 1280 if (rd == 0) { 1281 ea = xform_ea(instr, regs, 0); 1282 prefetchw((void *) ea); 1283 } 1284 goto instr_done; 1285 1286 case 278: /* dcbt */ 1287 if (rd == 0) { 1288 ea = xform_ea(instr, regs, 0); 1289 prefetch((void *) ea); 1290 } 1291 goto instr_done; 1292 1293 } 1294 break; 1295 } 1296 1297 /* 1298 * Following cases are for loads and stores, so bail out 1299 * if we're in little-endian mode. 1300 */ 1301 if (regs->msr & MSR_LE) 1302 return 0; 1303 1304 /* 1305 * Save register RA in case it's an update form load or store 1306 * and the access faults. 1307 */ 1308 old_ra = regs->gpr[ra]; 1309 1310 switch (opcode) { 1311 case 31: 1312 u = instr & 0x40; 1313 switch ((instr >> 1) & 0x3ff) { 1314 case 20: /* lwarx */ 1315 ea = xform_ea(instr, regs, 0); 1316 if (ea & 3) 1317 break; /* can't handle misaligned */ 1318 err = -EFAULT; 1319 if (!address_ok(regs, ea, 4)) 1320 goto ldst_done; 1321 err = 0; 1322 __get_user_asmx(val, ea, err, "lwarx"); 1323 if (!err) 1324 regs->gpr[rd] = val; 1325 goto ldst_done; 1326 1327 case 150: /* stwcx. */ 1328 ea = xform_ea(instr, regs, 0); 1329 if (ea & 3) 1330 break; /* can't handle misaligned */ 1331 err = -EFAULT; 1332 if (!address_ok(regs, ea, 4)) 1333 goto ldst_done; 1334 err = 0; 1335 __put_user_asmx(regs->gpr[rd], ea, err, "stwcx.", cr); 1336 if (!err) 1337 regs->ccr = (regs->ccr & 0x0fffffff) | 1338 (cr & 0xe0000000) | 1339 ((regs->xer >> 3) & 0x10000000); 1340 goto ldst_done; 1341 1342 #ifdef __powerpc64__ 1343 case 84: /* ldarx */ 1344 ea = xform_ea(instr, regs, 0); 1345 if (ea & 7) 1346 break; /* can't handle misaligned */ 1347 err = -EFAULT; 1348 if (!address_ok(regs, ea, 8)) 1349 goto ldst_done; 1350 err = 0; 1351 __get_user_asmx(val, ea, err, "ldarx"); 1352 if (!err) 1353 regs->gpr[rd] = val; 1354 goto ldst_done; 1355 1356 case 214: /* stdcx. */ 1357 ea = xform_ea(instr, regs, 0); 1358 if (ea & 7) 1359 break; /* can't handle misaligned */ 1360 err = -EFAULT; 1361 if (!address_ok(regs, ea, 8)) 1362 goto ldst_done; 1363 err = 0; 1364 __put_user_asmx(regs->gpr[rd], ea, err, "stdcx.", cr); 1365 if (!err) 1366 regs->ccr = (regs->ccr & 0x0fffffff) | 1367 (cr & 0xe0000000) | 1368 ((regs->xer >> 3) & 0x10000000); 1369 goto ldst_done; 1370 1371 case 21: /* ldx */ 1372 case 53: /* ldux */ 1373 err = read_mem(®s->gpr[rd], xform_ea(instr, regs, u), 1374 8, regs); 1375 goto ldst_done; 1376 #endif 1377 1378 case 23: /* lwzx */ 1379 case 55: /* lwzux */ 1380 err = read_mem(®s->gpr[rd], xform_ea(instr, regs, u), 1381 4, regs); 1382 goto ldst_done; 1383 1384 case 87: /* lbzx */ 1385 case 119: /* lbzux */ 1386 err = read_mem(®s->gpr[rd], xform_ea(instr, regs, u), 1387 1, regs); 1388 goto ldst_done; 1389 1390 #ifdef CONFIG_ALTIVEC 1391 case 103: /* lvx */ 1392 case 359: /* lvxl */ 1393 if (!(regs->msr & MSR_VEC)) 1394 break; 1395 ea = xform_ea(instr, regs, 0); 1396 err = do_vec_load(rd, do_lvx, ea, regs); 1397 goto ldst_done; 1398 1399 case 231: /* stvx */ 1400 case 487: /* stvxl */ 1401 if (!(regs->msr & MSR_VEC)) 1402 break; 1403 ea = xform_ea(instr, regs, 0); 1404 err = do_vec_store(rd, do_stvx, ea, regs); 1405 goto ldst_done; 1406 #endif /* CONFIG_ALTIVEC */ 1407 1408 #ifdef __powerpc64__ 1409 case 149: /* stdx */ 1410 case 181: /* stdux */ 1411 val = regs->gpr[rd]; 1412 err = write_mem(val, xform_ea(instr, regs, u), 8, regs); 1413 goto ldst_done; 1414 #endif 1415 1416 case 151: /* stwx */ 1417 case 183: /* stwux */ 1418 val = regs->gpr[rd]; 1419 err = write_mem(val, xform_ea(instr, regs, u), 4, regs); 1420 goto ldst_done; 1421 1422 case 215: /* stbx */ 1423 case 247: /* stbux */ 1424 val = regs->gpr[rd]; 1425 err = write_mem(val, xform_ea(instr, regs, u), 1, regs); 1426 goto ldst_done; 1427 1428 case 279: /* lhzx */ 1429 case 311: /* lhzux */ 1430 err = read_mem(®s->gpr[rd], xform_ea(instr, regs, u), 1431 2, regs); 1432 goto ldst_done; 1433 1434 #ifdef __powerpc64__ 1435 case 341: /* lwax */ 1436 case 373: /* lwaux */ 1437 err = read_mem(®s->gpr[rd], xform_ea(instr, regs, u), 1438 4, regs); 1439 if (!err) 1440 regs->gpr[rd] = (signed int) regs->gpr[rd]; 1441 goto ldst_done; 1442 #endif 1443 1444 case 343: /* lhax */ 1445 case 375: /* lhaux */ 1446 err = read_mem(®s->gpr[rd], xform_ea(instr, regs, u), 1447 2, regs); 1448 if (!err) 1449 regs->gpr[rd] = (signed short) regs->gpr[rd]; 1450 goto ldst_done; 1451 1452 case 407: /* sthx */ 1453 case 439: /* sthux */ 1454 val = regs->gpr[rd]; 1455 err = write_mem(val, xform_ea(instr, regs, u), 2, regs); 1456 goto ldst_done; 1457 1458 #ifdef __powerpc64__ 1459 case 532: /* ldbrx */ 1460 err = read_mem(&val, xform_ea(instr, regs, 0), 8, regs); 1461 if (!err) 1462 regs->gpr[rd] = byterev_8(val); 1463 goto ldst_done; 1464 1465 #endif 1466 1467 case 534: /* lwbrx */ 1468 err = read_mem(&val, xform_ea(instr, regs, 0), 4, regs); 1469 if (!err) 1470 regs->gpr[rd] = byterev_4(val); 1471 goto ldst_done; 1472 1473 #ifdef CONFIG_PPC_CPU 1474 case 535: /* lfsx */ 1475 case 567: /* lfsux */ 1476 if (!(regs->msr & MSR_FP)) 1477 break; 1478 ea = xform_ea(instr, regs, u); 1479 err = do_fp_load(rd, do_lfs, ea, 4, regs); 1480 goto ldst_done; 1481 1482 case 599: /* lfdx */ 1483 case 631: /* lfdux */ 1484 if (!(regs->msr & MSR_FP)) 1485 break; 1486 ea = xform_ea(instr, regs, u); 1487 err = do_fp_load(rd, do_lfd, ea, 8, regs); 1488 goto ldst_done; 1489 1490 case 663: /* stfsx */ 1491 case 695: /* stfsux */ 1492 if (!(regs->msr & MSR_FP)) 1493 break; 1494 ea = xform_ea(instr, regs, u); 1495 err = do_fp_store(rd, do_stfs, ea, 4, regs); 1496 goto ldst_done; 1497 1498 case 727: /* stfdx */ 1499 case 759: /* stfdux */ 1500 if (!(regs->msr & MSR_FP)) 1501 break; 1502 ea = xform_ea(instr, regs, u); 1503 err = do_fp_store(rd, do_stfd, ea, 8, regs); 1504 goto ldst_done; 1505 #endif 1506 1507 #ifdef __powerpc64__ 1508 case 660: /* stdbrx */ 1509 val = byterev_8(regs->gpr[rd]); 1510 err = write_mem(val, xform_ea(instr, regs, 0), 8, regs); 1511 goto ldst_done; 1512 1513 #endif 1514 case 662: /* stwbrx */ 1515 val = byterev_4(regs->gpr[rd]); 1516 err = write_mem(val, xform_ea(instr, regs, 0), 4, regs); 1517 goto ldst_done; 1518 1519 case 790: /* lhbrx */ 1520 err = read_mem(&val, xform_ea(instr, regs, 0), 2, regs); 1521 if (!err) 1522 regs->gpr[rd] = byterev_2(val); 1523 goto ldst_done; 1524 1525 case 918: /* sthbrx */ 1526 val = byterev_2(regs->gpr[rd]); 1527 err = write_mem(val, xform_ea(instr, regs, 0), 2, regs); 1528 goto ldst_done; 1529 1530 #ifdef CONFIG_VSX 1531 case 844: /* lxvd2x */ 1532 case 876: /* lxvd2ux */ 1533 if (!(regs->msr & MSR_VSX)) 1534 break; 1535 rd |= (instr & 1) << 5; 1536 ea = xform_ea(instr, regs, u); 1537 err = do_vsx_load(rd, do_lxvd2x, ea, regs); 1538 goto ldst_done; 1539 1540 case 972: /* stxvd2x */ 1541 case 1004: /* stxvd2ux */ 1542 if (!(regs->msr & MSR_VSX)) 1543 break; 1544 rd |= (instr & 1) << 5; 1545 ea = xform_ea(instr, regs, u); 1546 err = do_vsx_store(rd, do_stxvd2x, ea, regs); 1547 goto ldst_done; 1548 1549 #endif /* CONFIG_VSX */ 1550 } 1551 break; 1552 1553 case 32: /* lwz */ 1554 case 33: /* lwzu */ 1555 err = read_mem(®s->gpr[rd], dform_ea(instr, regs), 4, regs); 1556 goto ldst_done; 1557 1558 case 34: /* lbz */ 1559 case 35: /* lbzu */ 1560 err = read_mem(®s->gpr[rd], dform_ea(instr, regs), 1, regs); 1561 goto ldst_done; 1562 1563 case 36: /* stw */ 1564 val = regs->gpr[rd]; 1565 err = write_mem(val, dform_ea(instr, regs), 4, regs); 1566 goto ldst_done; 1567 1568 case 37: /* stwu */ 1569 val = regs->gpr[rd]; 1570 val3 = dform_ea(instr, regs); 1571 /* 1572 * For PPC32 we always use stwu to change stack point with r1. So 1573 * this emulated store may corrupt the exception frame, now we 1574 * have to provide the exception frame trampoline, which is pushed 1575 * below the kprobed function stack. So we only update gpr[1] but 1576 * don't emulate the real store operation. We will do real store 1577 * operation safely in exception return code by checking this flag. 1578 */ 1579 if ((ra == 1) && !(regs->msr & MSR_PR) \ 1580 && (val3 >= (regs->gpr[1] - STACK_INT_FRAME_SIZE))) { 1581 #ifdef CONFIG_PPC32 1582 /* 1583 * Check if we will touch kernel sack overflow 1584 */ 1585 if (val3 - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) { 1586 printk(KERN_CRIT "Can't kprobe this since Kernel stack overflow.\n"); 1587 err = -EINVAL; 1588 break; 1589 } 1590 #endif /* CONFIG_PPC32 */ 1591 /* 1592 * Check if we already set since that means we'll 1593 * lose the previous value. 1594 */ 1595 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE)); 1596 set_thread_flag(TIF_EMULATE_STACK_STORE); 1597 err = 0; 1598 } else 1599 err = write_mem(val, val3, 4, regs); 1600 goto ldst_done; 1601 1602 case 38: /* stb */ 1603 case 39: /* stbu */ 1604 val = regs->gpr[rd]; 1605 err = write_mem(val, dform_ea(instr, regs), 1, regs); 1606 goto ldst_done; 1607 1608 case 40: /* lhz */ 1609 case 41: /* lhzu */ 1610 err = read_mem(®s->gpr[rd], dform_ea(instr, regs), 2, regs); 1611 goto ldst_done; 1612 1613 case 42: /* lha */ 1614 case 43: /* lhau */ 1615 err = read_mem(®s->gpr[rd], dform_ea(instr, regs), 2, regs); 1616 if (!err) 1617 regs->gpr[rd] = (signed short) regs->gpr[rd]; 1618 goto ldst_done; 1619 1620 case 44: /* sth */ 1621 case 45: /* sthu */ 1622 val = regs->gpr[rd]; 1623 err = write_mem(val, dform_ea(instr, regs), 2, regs); 1624 goto ldst_done; 1625 1626 case 46: /* lmw */ 1627 ra = (instr >> 16) & 0x1f; 1628 if (ra >= rd) 1629 break; /* invalid form, ra in range to load */ 1630 ea = dform_ea(instr, regs); 1631 do { 1632 err = read_mem(®s->gpr[rd], ea, 4, regs); 1633 if (err) 1634 return 0; 1635 ea += 4; 1636 } while (++rd < 32); 1637 goto instr_done; 1638 1639 case 47: /* stmw */ 1640 ea = dform_ea(instr, regs); 1641 do { 1642 err = write_mem(regs->gpr[rd], ea, 4, regs); 1643 if (err) 1644 return 0; 1645 ea += 4; 1646 } while (++rd < 32); 1647 goto instr_done; 1648 1649 #ifdef CONFIG_PPC_FPU 1650 case 48: /* lfs */ 1651 case 49: /* lfsu */ 1652 if (!(regs->msr & MSR_FP)) 1653 break; 1654 ea = dform_ea(instr, regs); 1655 err = do_fp_load(rd, do_lfs, ea, 4, regs); 1656 goto ldst_done; 1657 1658 case 50: /* lfd */ 1659 case 51: /* lfdu */ 1660 if (!(regs->msr & MSR_FP)) 1661 break; 1662 ea = dform_ea(instr, regs); 1663 err = do_fp_load(rd, do_lfd, ea, 8, regs); 1664 goto ldst_done; 1665 1666 case 52: /* stfs */ 1667 case 53: /* stfsu */ 1668 if (!(regs->msr & MSR_FP)) 1669 break; 1670 ea = dform_ea(instr, regs); 1671 err = do_fp_store(rd, do_stfs, ea, 4, regs); 1672 goto ldst_done; 1673 1674 case 54: /* stfd */ 1675 case 55: /* stfdu */ 1676 if (!(regs->msr & MSR_FP)) 1677 break; 1678 ea = dform_ea(instr, regs); 1679 err = do_fp_store(rd, do_stfd, ea, 8, regs); 1680 goto ldst_done; 1681 #endif 1682 1683 #ifdef __powerpc64__ 1684 case 58: /* ld[u], lwa */ 1685 switch (instr & 3) { 1686 case 0: /* ld */ 1687 err = read_mem(®s->gpr[rd], dsform_ea(instr, regs), 1688 8, regs); 1689 goto ldst_done; 1690 case 1: /* ldu */ 1691 err = read_mem(®s->gpr[rd], dsform_ea(instr, regs), 1692 8, regs); 1693 goto ldst_done; 1694 case 2: /* lwa */ 1695 err = read_mem(®s->gpr[rd], dsform_ea(instr, regs), 1696 4, regs); 1697 if (!err) 1698 regs->gpr[rd] = (signed int) regs->gpr[rd]; 1699 goto ldst_done; 1700 } 1701 break; 1702 1703 case 62: /* std[u] */ 1704 val = regs->gpr[rd]; 1705 switch (instr & 3) { 1706 case 0: /* std */ 1707 err = write_mem(val, dsform_ea(instr, regs), 8, regs); 1708 goto ldst_done; 1709 case 1: /* stdu */ 1710 err = write_mem(val, dsform_ea(instr, regs), 8, regs); 1711 goto ldst_done; 1712 } 1713 break; 1714 #endif /* __powerpc64__ */ 1715 1716 } 1717 err = -EINVAL; 1718 1719 ldst_done: 1720 if (err) { 1721 regs->gpr[ra] = old_ra; 1722 return 0; /* invoke DSI if -EFAULT? */ 1723 } 1724 instr_done: 1725 regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4); 1726 return 1; 1727 1728 logical_done: 1729 if (instr & 1) 1730 set_cr0(regs, ra); 1731 goto instr_done; 1732 1733 arith_done: 1734 if (instr & 1) 1735 set_cr0(regs, rd); 1736 goto instr_done; 1737 } 1738