1 /* 2 * Single-step support. 3 * 4 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/kprobes.h> 13 #include <linux/ptrace.h> 14 #include <linux/prefetch.h> 15 #include <asm/sstep.h> 16 #include <asm/processor.h> 17 #include <linux/uaccess.h> 18 #include <asm/cpu_has_feature.h> 19 #include <asm/cputable.h> 20 21 extern char system_call_common[]; 22 23 #ifdef CONFIG_PPC64 24 /* Bits in SRR1 that are copied from MSR */ 25 #define MSR_MASK 0xffffffff87c0ffffUL 26 #else 27 #define MSR_MASK 0x87c0ffff 28 #endif 29 30 /* Bits in XER */ 31 #define XER_SO 0x80000000U 32 #define XER_OV 0x40000000U 33 #define XER_CA 0x20000000U 34 35 #ifdef CONFIG_PPC_FPU 36 /* 37 * Functions in ldstfp.S 38 */ 39 extern void get_fpr(int rn, double *p); 40 extern void put_fpr(int rn, const double *p); 41 extern void get_vr(int rn, __vector128 *p); 42 extern void put_vr(int rn, __vector128 *p); 43 extern void load_vsrn(int vsr, const void *p); 44 extern void store_vsrn(int vsr, void *p); 45 extern void conv_sp_to_dp(const float *sp, double *dp); 46 extern void conv_dp_to_sp(const double *dp, float *sp); 47 #endif 48 49 #ifdef __powerpc64__ 50 /* 51 * Functions in quad.S 52 */ 53 extern int do_lq(unsigned long ea, unsigned long *regs); 54 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1); 55 extern int do_lqarx(unsigned long ea, unsigned long *regs); 56 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1, 57 unsigned int *crp); 58 #endif 59 60 #ifdef __LITTLE_ENDIAN__ 61 #define IS_LE 1 62 #define IS_BE 0 63 #else 64 #define IS_LE 0 65 #define IS_BE 1 66 #endif 67 68 /* 69 * Emulate the truncation of 64 bit values in 32-bit mode. 70 */ 71 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr, 72 unsigned long val) 73 { 74 #ifdef __powerpc64__ 75 if ((msr & MSR_64BIT) == 0) 76 val &= 0xffffffffUL; 77 #endif 78 return val; 79 } 80 81 /* 82 * Determine whether a conditional branch instruction would branch. 83 */ 84 static nokprobe_inline int branch_taken(unsigned int instr, 85 const struct pt_regs *regs, 86 struct instruction_op *op) 87 { 88 unsigned int bo = (instr >> 21) & 0x1f; 89 unsigned int bi; 90 91 if ((bo & 4) == 0) { 92 /* decrement counter */ 93 op->type |= DECCTR; 94 if (((bo >> 1) & 1) ^ (regs->ctr == 1)) 95 return 0; 96 } 97 if ((bo & 0x10) == 0) { 98 /* check bit from CR */ 99 bi = (instr >> 16) & 0x1f; 100 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1)) 101 return 0; 102 } 103 return 1; 104 } 105 106 static nokprobe_inline long address_ok(struct pt_regs *regs, 107 unsigned long ea, int nb) 108 { 109 if (!user_mode(regs)) 110 return 1; 111 if (__access_ok(ea, nb, USER_DS)) 112 return 1; 113 if (__access_ok(ea, 1, USER_DS)) 114 /* Access overlaps the end of the user region */ 115 regs->dar = USER_DS.seg; 116 else 117 regs->dar = ea; 118 return 0; 119 } 120 121 /* 122 * Calculate effective address for a D-form instruction 123 */ 124 static nokprobe_inline unsigned long dform_ea(unsigned int instr, 125 const struct pt_regs *regs) 126 { 127 int ra; 128 unsigned long ea; 129 130 ra = (instr >> 16) & 0x1f; 131 ea = (signed short) instr; /* sign-extend */ 132 if (ra) 133 ea += regs->gpr[ra]; 134 135 return ea; 136 } 137 138 #ifdef __powerpc64__ 139 /* 140 * Calculate effective address for a DS-form instruction 141 */ 142 static nokprobe_inline unsigned long dsform_ea(unsigned int instr, 143 const struct pt_regs *regs) 144 { 145 int ra; 146 unsigned long ea; 147 148 ra = (instr >> 16) & 0x1f; 149 ea = (signed short) (instr & ~3); /* sign-extend */ 150 if (ra) 151 ea += regs->gpr[ra]; 152 153 return ea; 154 } 155 156 /* 157 * Calculate effective address for a DQ-form instruction 158 */ 159 static nokprobe_inline unsigned long dqform_ea(unsigned int instr, 160 const struct pt_regs *regs) 161 { 162 int ra; 163 unsigned long ea; 164 165 ra = (instr >> 16) & 0x1f; 166 ea = (signed short) (instr & ~0xf); /* sign-extend */ 167 if (ra) 168 ea += regs->gpr[ra]; 169 170 return ea; 171 } 172 #endif /* __powerpc64 */ 173 174 /* 175 * Calculate effective address for an X-form instruction 176 */ 177 static nokprobe_inline unsigned long xform_ea(unsigned int instr, 178 const struct pt_regs *regs) 179 { 180 int ra, rb; 181 unsigned long ea; 182 183 ra = (instr >> 16) & 0x1f; 184 rb = (instr >> 11) & 0x1f; 185 ea = regs->gpr[rb]; 186 if (ra) 187 ea += regs->gpr[ra]; 188 189 return ea; 190 } 191 192 /* 193 * Return the largest power of 2, not greater than sizeof(unsigned long), 194 * such that x is a multiple of it. 195 */ 196 static nokprobe_inline unsigned long max_align(unsigned long x) 197 { 198 x |= sizeof(unsigned long); 199 return x & -x; /* isolates rightmost bit */ 200 } 201 202 static nokprobe_inline unsigned long byterev_2(unsigned long x) 203 { 204 return ((x >> 8) & 0xff) | ((x & 0xff) << 8); 205 } 206 207 static nokprobe_inline unsigned long byterev_4(unsigned long x) 208 { 209 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) | 210 ((x & 0xff00) << 8) | ((x & 0xff) << 24); 211 } 212 213 #ifdef __powerpc64__ 214 static nokprobe_inline unsigned long byterev_8(unsigned long x) 215 { 216 return (byterev_4(x) << 32) | byterev_4(x >> 32); 217 } 218 #endif 219 220 static nokprobe_inline void do_byte_reverse(void *ptr, int nb) 221 { 222 switch (nb) { 223 case 2: 224 *(u16 *)ptr = byterev_2(*(u16 *)ptr); 225 break; 226 case 4: 227 *(u32 *)ptr = byterev_4(*(u32 *)ptr); 228 break; 229 #ifdef __powerpc64__ 230 case 8: 231 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr); 232 break; 233 case 16: { 234 unsigned long *up = (unsigned long *)ptr; 235 unsigned long tmp; 236 tmp = byterev_8(up[0]); 237 up[0] = byterev_8(up[1]); 238 up[1] = tmp; 239 break; 240 } 241 #endif 242 default: 243 WARN_ON_ONCE(1); 244 } 245 } 246 247 static nokprobe_inline int read_mem_aligned(unsigned long *dest, 248 unsigned long ea, int nb, 249 struct pt_regs *regs) 250 { 251 int err = 0; 252 unsigned long x = 0; 253 254 switch (nb) { 255 case 1: 256 err = __get_user(x, (unsigned char __user *) ea); 257 break; 258 case 2: 259 err = __get_user(x, (unsigned short __user *) ea); 260 break; 261 case 4: 262 err = __get_user(x, (unsigned int __user *) ea); 263 break; 264 #ifdef __powerpc64__ 265 case 8: 266 err = __get_user(x, (unsigned long __user *) ea); 267 break; 268 #endif 269 } 270 if (!err) 271 *dest = x; 272 else 273 regs->dar = ea; 274 return err; 275 } 276 277 /* 278 * Copy from userspace to a buffer, using the largest possible 279 * aligned accesses, up to sizeof(long). 280 */ 281 static int nokprobe_inline copy_mem_in(u8 *dest, unsigned long ea, int nb, 282 struct pt_regs *regs) 283 { 284 int err = 0; 285 int c; 286 287 for (; nb > 0; nb -= c) { 288 c = max_align(ea); 289 if (c > nb) 290 c = max_align(nb); 291 switch (c) { 292 case 1: 293 err = __get_user(*dest, (unsigned char __user *) ea); 294 break; 295 case 2: 296 err = __get_user(*(u16 *)dest, 297 (unsigned short __user *) ea); 298 break; 299 case 4: 300 err = __get_user(*(u32 *)dest, 301 (unsigned int __user *) ea); 302 break; 303 #ifdef __powerpc64__ 304 case 8: 305 err = __get_user(*(unsigned long *)dest, 306 (unsigned long __user *) ea); 307 break; 308 #endif 309 } 310 if (err) { 311 regs->dar = ea; 312 return err; 313 } 314 dest += c; 315 ea += c; 316 } 317 return 0; 318 } 319 320 static nokprobe_inline int read_mem_unaligned(unsigned long *dest, 321 unsigned long ea, int nb, 322 struct pt_regs *regs) 323 { 324 union { 325 unsigned long ul; 326 u8 b[sizeof(unsigned long)]; 327 } u; 328 int i; 329 int err; 330 331 u.ul = 0; 332 i = IS_BE ? sizeof(unsigned long) - nb : 0; 333 err = copy_mem_in(&u.b[i], ea, nb, regs); 334 if (!err) 335 *dest = u.ul; 336 return err; 337 } 338 339 /* 340 * Read memory at address ea for nb bytes, return 0 for success 341 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. 342 * If nb < sizeof(long), the result is right-justified on BE systems. 343 */ 344 static int read_mem(unsigned long *dest, unsigned long ea, int nb, 345 struct pt_regs *regs) 346 { 347 if (!address_ok(regs, ea, nb)) 348 return -EFAULT; 349 if ((ea & (nb - 1)) == 0) 350 return read_mem_aligned(dest, ea, nb, regs); 351 return read_mem_unaligned(dest, ea, nb, regs); 352 } 353 NOKPROBE_SYMBOL(read_mem); 354 355 static nokprobe_inline int write_mem_aligned(unsigned long val, 356 unsigned long ea, int nb, 357 struct pt_regs *regs) 358 { 359 int err = 0; 360 361 switch (nb) { 362 case 1: 363 err = __put_user(val, (unsigned char __user *) ea); 364 break; 365 case 2: 366 err = __put_user(val, (unsigned short __user *) ea); 367 break; 368 case 4: 369 err = __put_user(val, (unsigned int __user *) ea); 370 break; 371 #ifdef __powerpc64__ 372 case 8: 373 err = __put_user(val, (unsigned long __user *) ea); 374 break; 375 #endif 376 } 377 if (err) 378 regs->dar = ea; 379 return err; 380 } 381 382 /* 383 * Copy from a buffer to userspace, using the largest possible 384 * aligned accesses, up to sizeof(long). 385 */ 386 static int nokprobe_inline copy_mem_out(u8 *dest, unsigned long ea, int nb, 387 struct pt_regs *regs) 388 { 389 int err = 0; 390 int c; 391 392 for (; nb > 0; nb -= c) { 393 c = max_align(ea); 394 if (c > nb) 395 c = max_align(nb); 396 switch (c) { 397 case 1: 398 err = __put_user(*dest, (unsigned char __user *) ea); 399 break; 400 case 2: 401 err = __put_user(*(u16 *)dest, 402 (unsigned short __user *) ea); 403 break; 404 case 4: 405 err = __put_user(*(u32 *)dest, 406 (unsigned int __user *) ea); 407 break; 408 #ifdef __powerpc64__ 409 case 8: 410 err = __put_user(*(unsigned long *)dest, 411 (unsigned long __user *) ea); 412 break; 413 #endif 414 } 415 if (err) { 416 regs->dar = ea; 417 return err; 418 } 419 dest += c; 420 ea += c; 421 } 422 return 0; 423 } 424 425 static nokprobe_inline int write_mem_unaligned(unsigned long val, 426 unsigned long ea, int nb, 427 struct pt_regs *regs) 428 { 429 union { 430 unsigned long ul; 431 u8 b[sizeof(unsigned long)]; 432 } u; 433 int i; 434 435 u.ul = val; 436 i = IS_BE ? sizeof(unsigned long) - nb : 0; 437 return copy_mem_out(&u.b[i], ea, nb, regs); 438 } 439 440 /* 441 * Write memory at address ea for nb bytes, return 0 for success 442 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. 443 */ 444 static int write_mem(unsigned long val, unsigned long ea, int nb, 445 struct pt_regs *regs) 446 { 447 if (!address_ok(regs, ea, nb)) 448 return -EFAULT; 449 if ((ea & (nb - 1)) == 0) 450 return write_mem_aligned(val, ea, nb, regs); 451 return write_mem_unaligned(val, ea, nb, regs); 452 } 453 NOKPROBE_SYMBOL(write_mem); 454 455 #ifdef CONFIG_PPC_FPU 456 /* 457 * These access either the real FP register or the image in the 458 * thread_struct, depending on regs->msr & MSR_FP. 459 */ 460 static int do_fp_load(struct instruction_op *op, unsigned long ea, 461 struct pt_regs *regs, bool cross_endian) 462 { 463 int err, rn, nb; 464 union { 465 int i; 466 unsigned int u; 467 float f; 468 double d[2]; 469 unsigned long l[2]; 470 u8 b[2 * sizeof(double)]; 471 } u; 472 473 nb = GETSIZE(op->type); 474 if (!address_ok(regs, ea, nb)) 475 return -EFAULT; 476 rn = op->reg; 477 err = copy_mem_in(u.b, ea, nb, regs); 478 if (err) 479 return err; 480 if (unlikely(cross_endian)) { 481 do_byte_reverse(u.b, min(nb, 8)); 482 if (nb == 16) 483 do_byte_reverse(&u.b[8], 8); 484 } 485 preempt_disable(); 486 if (nb == 4) { 487 if (op->type & FPCONV) 488 conv_sp_to_dp(&u.f, &u.d[0]); 489 else if (op->type & SIGNEXT) 490 u.l[0] = u.i; 491 else 492 u.l[0] = u.u; 493 } 494 if (regs->msr & MSR_FP) 495 put_fpr(rn, &u.d[0]); 496 else 497 current->thread.TS_FPR(rn) = u.l[0]; 498 if (nb == 16) { 499 /* lfdp */ 500 rn |= 1; 501 if (regs->msr & MSR_FP) 502 put_fpr(rn, &u.d[1]); 503 else 504 current->thread.TS_FPR(rn) = u.l[1]; 505 } 506 preempt_enable(); 507 return 0; 508 } 509 NOKPROBE_SYMBOL(do_fp_load); 510 511 static int do_fp_store(struct instruction_op *op, unsigned long ea, 512 struct pt_regs *regs, bool cross_endian) 513 { 514 int rn, nb; 515 union { 516 unsigned int u; 517 float f; 518 double d[2]; 519 unsigned long l[2]; 520 u8 b[2 * sizeof(double)]; 521 } u; 522 523 nb = GETSIZE(op->type); 524 if (!address_ok(regs, ea, nb)) 525 return -EFAULT; 526 rn = op->reg; 527 preempt_disable(); 528 if (regs->msr & MSR_FP) 529 get_fpr(rn, &u.d[0]); 530 else 531 u.l[0] = current->thread.TS_FPR(rn); 532 if (nb == 4) { 533 if (op->type & FPCONV) 534 conv_dp_to_sp(&u.d[0], &u.f); 535 else 536 u.u = u.l[0]; 537 } 538 if (nb == 16) { 539 rn |= 1; 540 if (regs->msr & MSR_FP) 541 get_fpr(rn, &u.d[1]); 542 else 543 u.l[1] = current->thread.TS_FPR(rn); 544 } 545 preempt_enable(); 546 if (unlikely(cross_endian)) { 547 do_byte_reverse(u.b, min(nb, 8)); 548 if (nb == 16) 549 do_byte_reverse(&u.b[8], 8); 550 } 551 return copy_mem_out(u.b, ea, nb, regs); 552 } 553 NOKPROBE_SYMBOL(do_fp_store); 554 #endif 555 556 #ifdef CONFIG_ALTIVEC 557 /* For Altivec/VMX, no need to worry about alignment */ 558 static nokprobe_inline int do_vec_load(int rn, unsigned long ea, 559 int size, struct pt_regs *regs, 560 bool cross_endian) 561 { 562 int err; 563 union { 564 __vector128 v; 565 u8 b[sizeof(__vector128)]; 566 } u = {}; 567 568 if (!address_ok(regs, ea & ~0xfUL, 16)) 569 return -EFAULT; 570 /* align to multiple of size */ 571 ea &= ~(size - 1); 572 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs); 573 if (err) 574 return err; 575 if (unlikely(cross_endian)) 576 do_byte_reverse(&u.b[ea & 0xf], size); 577 preempt_disable(); 578 if (regs->msr & MSR_VEC) 579 put_vr(rn, &u.v); 580 else 581 current->thread.vr_state.vr[rn] = u.v; 582 preempt_enable(); 583 return 0; 584 } 585 586 static nokprobe_inline int do_vec_store(int rn, unsigned long ea, 587 int size, struct pt_regs *regs, 588 bool cross_endian) 589 { 590 union { 591 __vector128 v; 592 u8 b[sizeof(__vector128)]; 593 } u; 594 595 if (!address_ok(regs, ea & ~0xfUL, 16)) 596 return -EFAULT; 597 /* align to multiple of size */ 598 ea &= ~(size - 1); 599 600 preempt_disable(); 601 if (regs->msr & MSR_VEC) 602 get_vr(rn, &u.v); 603 else 604 u.v = current->thread.vr_state.vr[rn]; 605 preempt_enable(); 606 if (unlikely(cross_endian)) 607 do_byte_reverse(&u.b[ea & 0xf], size); 608 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs); 609 } 610 #endif /* CONFIG_ALTIVEC */ 611 612 #ifdef __powerpc64__ 613 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea, 614 int reg, bool cross_endian) 615 { 616 int err; 617 618 if (!address_ok(regs, ea, 16)) 619 return -EFAULT; 620 /* if aligned, should be atomic */ 621 if ((ea & 0xf) == 0) { 622 err = do_lq(ea, ®s->gpr[reg]); 623 } else { 624 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs); 625 if (!err) 626 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs); 627 } 628 if (!err && unlikely(cross_endian)) 629 do_byte_reverse(®s->gpr[reg], 16); 630 return err; 631 } 632 633 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea, 634 int reg, bool cross_endian) 635 { 636 int err; 637 unsigned long vals[2]; 638 639 if (!address_ok(regs, ea, 16)) 640 return -EFAULT; 641 vals[0] = regs->gpr[reg]; 642 vals[1] = regs->gpr[reg + 1]; 643 if (unlikely(cross_endian)) 644 do_byte_reverse(vals, 16); 645 646 /* if aligned, should be atomic */ 647 if ((ea & 0xf) == 0) 648 return do_stq(ea, vals[0], vals[1]); 649 650 err = write_mem(vals[IS_LE], ea, 8, regs); 651 if (!err) 652 err = write_mem(vals[IS_BE], ea + 8, 8, regs); 653 return err; 654 } 655 #endif /* __powerpc64 */ 656 657 #ifdef CONFIG_VSX 658 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg, 659 const void *mem, bool rev) 660 { 661 int size, read_size; 662 int i, j; 663 const unsigned int *wp; 664 const unsigned short *hp; 665 const unsigned char *bp; 666 667 size = GETSIZE(op->type); 668 reg->d[0] = reg->d[1] = 0; 669 670 switch (op->element_size) { 671 case 16: 672 /* whole vector; lxv[x] or lxvl[l] */ 673 if (size == 0) 674 break; 675 memcpy(reg, mem, size); 676 if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) 677 rev = !rev; 678 if (rev) 679 do_byte_reverse(reg, 16); 680 break; 681 case 8: 682 /* scalar loads, lxvd2x, lxvdsx */ 683 read_size = (size >= 8) ? 8 : size; 684 i = IS_LE ? 8 : 8 - read_size; 685 memcpy(®->b[i], mem, read_size); 686 if (rev) 687 do_byte_reverse(®->b[i], 8); 688 if (size < 8) { 689 if (op->type & SIGNEXT) { 690 /* size == 4 is the only case here */ 691 reg->d[IS_LE] = (signed int) reg->d[IS_LE]; 692 } else if (op->vsx_flags & VSX_FPCONV) { 693 preempt_disable(); 694 conv_sp_to_dp(®->fp[1 + IS_LE], 695 ®->dp[IS_LE]); 696 preempt_enable(); 697 } 698 } else { 699 if (size == 16) { 700 unsigned long v = *(unsigned long *)(mem + 8); 701 reg->d[IS_BE] = !rev ? v : byterev_8(v); 702 } else if (op->vsx_flags & VSX_SPLAT) 703 reg->d[IS_BE] = reg->d[IS_LE]; 704 } 705 break; 706 case 4: 707 /* lxvw4x, lxvwsx */ 708 wp = mem; 709 for (j = 0; j < size / 4; ++j) { 710 i = IS_LE ? 3 - j : j; 711 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++); 712 } 713 if (op->vsx_flags & VSX_SPLAT) { 714 u32 val = reg->w[IS_LE ? 3 : 0]; 715 for (; j < 4; ++j) { 716 i = IS_LE ? 3 - j : j; 717 reg->w[i] = val; 718 } 719 } 720 break; 721 case 2: 722 /* lxvh8x */ 723 hp = mem; 724 for (j = 0; j < size / 2; ++j) { 725 i = IS_LE ? 7 - j : j; 726 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++); 727 } 728 break; 729 case 1: 730 /* lxvb16x */ 731 bp = mem; 732 for (j = 0; j < size; ++j) { 733 i = IS_LE ? 15 - j : j; 734 reg->b[i] = *bp++; 735 } 736 break; 737 } 738 } 739 EXPORT_SYMBOL_GPL(emulate_vsx_load); 740 NOKPROBE_SYMBOL(emulate_vsx_load); 741 742 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg, 743 void *mem, bool rev) 744 { 745 int size, write_size; 746 int i, j; 747 union vsx_reg buf; 748 unsigned int *wp; 749 unsigned short *hp; 750 unsigned char *bp; 751 752 size = GETSIZE(op->type); 753 754 switch (op->element_size) { 755 case 16: 756 /* stxv, stxvx, stxvl, stxvll */ 757 if (size == 0) 758 break; 759 if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) 760 rev = !rev; 761 if (rev) { 762 /* reverse 16 bytes */ 763 buf.d[0] = byterev_8(reg->d[1]); 764 buf.d[1] = byterev_8(reg->d[0]); 765 reg = &buf; 766 } 767 memcpy(mem, reg, size); 768 break; 769 case 8: 770 /* scalar stores, stxvd2x */ 771 write_size = (size >= 8) ? 8 : size; 772 i = IS_LE ? 8 : 8 - write_size; 773 if (size < 8 && op->vsx_flags & VSX_FPCONV) { 774 buf.d[0] = buf.d[1] = 0; 775 preempt_disable(); 776 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]); 777 preempt_enable(); 778 reg = &buf; 779 } 780 memcpy(mem, ®->b[i], write_size); 781 if (size == 16) 782 memcpy(mem + 8, ®->d[IS_BE], 8); 783 if (unlikely(rev)) { 784 do_byte_reverse(mem, write_size); 785 if (size == 16) 786 do_byte_reverse(mem + 8, 8); 787 } 788 break; 789 case 4: 790 /* stxvw4x */ 791 wp = mem; 792 for (j = 0; j < size / 4; ++j) { 793 i = IS_LE ? 3 - j : j; 794 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]); 795 } 796 break; 797 case 2: 798 /* stxvh8x */ 799 hp = mem; 800 for (j = 0; j < size / 2; ++j) { 801 i = IS_LE ? 7 - j : j; 802 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]); 803 } 804 break; 805 case 1: 806 /* stvxb16x */ 807 bp = mem; 808 for (j = 0; j < size; ++j) { 809 i = IS_LE ? 15 - j : j; 810 *bp++ = reg->b[i]; 811 } 812 break; 813 } 814 } 815 EXPORT_SYMBOL_GPL(emulate_vsx_store); 816 NOKPROBE_SYMBOL(emulate_vsx_store); 817 818 static nokprobe_inline int do_vsx_load(struct instruction_op *op, 819 unsigned long ea, struct pt_regs *regs, 820 bool cross_endian) 821 { 822 int reg = op->reg; 823 u8 mem[16]; 824 union vsx_reg buf; 825 int size = GETSIZE(op->type); 826 827 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs)) 828 return -EFAULT; 829 830 emulate_vsx_load(op, &buf, mem, cross_endian); 831 preempt_disable(); 832 if (reg < 32) { 833 /* FP regs + extensions */ 834 if (regs->msr & MSR_FP) { 835 load_vsrn(reg, &buf); 836 } else { 837 current->thread.fp_state.fpr[reg][0] = buf.d[0]; 838 current->thread.fp_state.fpr[reg][1] = buf.d[1]; 839 } 840 } else { 841 if (regs->msr & MSR_VEC) 842 load_vsrn(reg, &buf); 843 else 844 current->thread.vr_state.vr[reg - 32] = buf.v; 845 } 846 preempt_enable(); 847 return 0; 848 } 849 850 static nokprobe_inline int do_vsx_store(struct instruction_op *op, 851 unsigned long ea, struct pt_regs *regs, 852 bool cross_endian) 853 { 854 int reg = op->reg; 855 u8 mem[16]; 856 union vsx_reg buf; 857 int size = GETSIZE(op->type); 858 859 if (!address_ok(regs, ea, size)) 860 return -EFAULT; 861 862 preempt_disable(); 863 if (reg < 32) { 864 /* FP regs + extensions */ 865 if (regs->msr & MSR_FP) { 866 store_vsrn(reg, &buf); 867 } else { 868 buf.d[0] = current->thread.fp_state.fpr[reg][0]; 869 buf.d[1] = current->thread.fp_state.fpr[reg][1]; 870 } 871 } else { 872 if (regs->msr & MSR_VEC) 873 store_vsrn(reg, &buf); 874 else 875 buf.v = current->thread.vr_state.vr[reg - 32]; 876 } 877 preempt_enable(); 878 emulate_vsx_store(op, &buf, mem, cross_endian); 879 return copy_mem_out(mem, ea, size, regs); 880 } 881 #endif /* CONFIG_VSX */ 882 883 int emulate_dcbz(unsigned long ea, struct pt_regs *regs) 884 { 885 int err; 886 unsigned long i, size; 887 888 #ifdef __powerpc64__ 889 size = ppc64_caches.l1d.block_size; 890 if (!(regs->msr & MSR_64BIT)) 891 ea &= 0xffffffffUL; 892 #else 893 size = L1_CACHE_BYTES; 894 #endif 895 ea &= ~(size - 1); 896 if (!address_ok(regs, ea, size)) 897 return -EFAULT; 898 for (i = 0; i < size; i += sizeof(long)) { 899 err = __put_user(0, (unsigned long __user *) (ea + i)); 900 if (err) { 901 regs->dar = ea; 902 return err; 903 } 904 } 905 return 0; 906 } 907 NOKPROBE_SYMBOL(emulate_dcbz); 908 909 #define __put_user_asmx(x, addr, err, op, cr) \ 910 __asm__ __volatile__( \ 911 "1: " op " %2,0,%3\n" \ 912 " mfcr %1\n" \ 913 "2:\n" \ 914 ".section .fixup,\"ax\"\n" \ 915 "3: li %0,%4\n" \ 916 " b 2b\n" \ 917 ".previous\n" \ 918 EX_TABLE(1b, 3b) \ 919 : "=r" (err), "=r" (cr) \ 920 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err)) 921 922 #define __get_user_asmx(x, addr, err, op) \ 923 __asm__ __volatile__( \ 924 "1: "op" %1,0,%2\n" \ 925 "2:\n" \ 926 ".section .fixup,\"ax\"\n" \ 927 "3: li %0,%3\n" \ 928 " b 2b\n" \ 929 ".previous\n" \ 930 EX_TABLE(1b, 3b) \ 931 : "=r" (err), "=r" (x) \ 932 : "r" (addr), "i" (-EFAULT), "0" (err)) 933 934 #define __cacheop_user_asmx(addr, err, op) \ 935 __asm__ __volatile__( \ 936 "1: "op" 0,%1\n" \ 937 "2:\n" \ 938 ".section .fixup,\"ax\"\n" \ 939 "3: li %0,%3\n" \ 940 " b 2b\n" \ 941 ".previous\n" \ 942 EX_TABLE(1b, 3b) \ 943 : "=r" (err) \ 944 : "r" (addr), "i" (-EFAULT), "0" (err)) 945 946 static nokprobe_inline void set_cr0(const struct pt_regs *regs, 947 struct instruction_op *op, int rd) 948 { 949 long val = regs->gpr[rd]; 950 951 op->type |= SETCC; 952 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000); 953 #ifdef __powerpc64__ 954 if (!(regs->msr & MSR_64BIT)) 955 val = (int) val; 956 #endif 957 if (val < 0) 958 op->ccval |= 0x80000000; 959 else if (val > 0) 960 op->ccval |= 0x40000000; 961 else 962 op->ccval |= 0x20000000; 963 } 964 965 static nokprobe_inline void add_with_carry(const struct pt_regs *regs, 966 struct instruction_op *op, int rd, 967 unsigned long val1, unsigned long val2, 968 unsigned long carry_in) 969 { 970 unsigned long val = val1 + val2; 971 972 if (carry_in) 973 ++val; 974 op->type = COMPUTE + SETREG + SETXER; 975 op->reg = rd; 976 op->val = val; 977 #ifdef __powerpc64__ 978 if (!(regs->msr & MSR_64BIT)) { 979 val = (unsigned int) val; 980 val1 = (unsigned int) val1; 981 } 982 #endif 983 op->xerval = regs->xer; 984 if (val < val1 || (carry_in && val == val1)) 985 op->xerval |= XER_CA; 986 else 987 op->xerval &= ~XER_CA; 988 } 989 990 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs, 991 struct instruction_op *op, 992 long v1, long v2, int crfld) 993 { 994 unsigned int crval, shift; 995 996 op->type = COMPUTE + SETCC; 997 crval = (regs->xer >> 31) & 1; /* get SO bit */ 998 if (v1 < v2) 999 crval |= 8; 1000 else if (v1 > v2) 1001 crval |= 4; 1002 else 1003 crval |= 2; 1004 shift = (7 - crfld) * 4; 1005 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); 1006 } 1007 1008 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs, 1009 struct instruction_op *op, 1010 unsigned long v1, 1011 unsigned long v2, int crfld) 1012 { 1013 unsigned int crval, shift; 1014 1015 op->type = COMPUTE + SETCC; 1016 crval = (regs->xer >> 31) & 1; /* get SO bit */ 1017 if (v1 < v2) 1018 crval |= 8; 1019 else if (v1 > v2) 1020 crval |= 4; 1021 else 1022 crval |= 2; 1023 shift = (7 - crfld) * 4; 1024 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); 1025 } 1026 1027 static nokprobe_inline void do_cmpb(const struct pt_regs *regs, 1028 struct instruction_op *op, 1029 unsigned long v1, unsigned long v2) 1030 { 1031 unsigned long long out_val, mask; 1032 int i; 1033 1034 out_val = 0; 1035 for (i = 0; i < 8; i++) { 1036 mask = 0xffUL << (i * 8); 1037 if ((v1 & mask) == (v2 & mask)) 1038 out_val |= mask; 1039 } 1040 op->val = out_val; 1041 } 1042 1043 /* 1044 * The size parameter is used to adjust the equivalent popcnt instruction. 1045 * popcntb = 8, popcntw = 32, popcntd = 64 1046 */ 1047 static nokprobe_inline void do_popcnt(const struct pt_regs *regs, 1048 struct instruction_op *op, 1049 unsigned long v1, int size) 1050 { 1051 unsigned long long out = v1; 1052 1053 out -= (out >> 1) & 0x5555555555555555; 1054 out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2)); 1055 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f; 1056 1057 if (size == 8) { /* popcntb */ 1058 op->val = out; 1059 return; 1060 } 1061 out += out >> 8; 1062 out += out >> 16; 1063 if (size == 32) { /* popcntw */ 1064 op->val = out & 0x0000003f0000003f; 1065 return; 1066 } 1067 1068 out = (out + (out >> 32)) & 0x7f; 1069 op->val = out; /* popcntd */ 1070 } 1071 1072 #ifdef CONFIG_PPC64 1073 static nokprobe_inline void do_bpermd(const struct pt_regs *regs, 1074 struct instruction_op *op, 1075 unsigned long v1, unsigned long v2) 1076 { 1077 unsigned char perm, idx; 1078 unsigned int i; 1079 1080 perm = 0; 1081 for (i = 0; i < 8; i++) { 1082 idx = (v1 >> (i * 8)) & 0xff; 1083 if (idx < 64) 1084 if (v2 & PPC_BIT(idx)) 1085 perm |= 1 << i; 1086 } 1087 op->val = perm; 1088 } 1089 #endif /* CONFIG_PPC64 */ 1090 /* 1091 * The size parameter adjusts the equivalent prty instruction. 1092 * prtyw = 32, prtyd = 64 1093 */ 1094 static nokprobe_inline void do_prty(const struct pt_regs *regs, 1095 struct instruction_op *op, 1096 unsigned long v, int size) 1097 { 1098 unsigned long long res = v ^ (v >> 8); 1099 1100 res ^= res >> 16; 1101 if (size == 32) { /* prtyw */ 1102 op->val = res & 0x0000000100000001; 1103 return; 1104 } 1105 1106 res ^= res >> 32; 1107 op->val = res & 1; /*prtyd */ 1108 } 1109 1110 static nokprobe_inline int trap_compare(long v1, long v2) 1111 { 1112 int ret = 0; 1113 1114 if (v1 < v2) 1115 ret |= 0x10; 1116 else if (v1 > v2) 1117 ret |= 0x08; 1118 else 1119 ret |= 0x04; 1120 if ((unsigned long)v1 < (unsigned long)v2) 1121 ret |= 0x02; 1122 else if ((unsigned long)v1 > (unsigned long)v2) 1123 ret |= 0x01; 1124 return ret; 1125 } 1126 1127 /* 1128 * Elements of 32-bit rotate and mask instructions. 1129 */ 1130 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \ 1131 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb))) 1132 #ifdef __powerpc64__ 1133 #define MASK64_L(mb) (~0UL >> (mb)) 1134 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me)) 1135 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb))) 1136 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32)) 1137 #else 1138 #define DATA32(x) (x) 1139 #endif 1140 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x)) 1141 1142 /* 1143 * Decode an instruction, and return information about it in *op 1144 * without changing *regs. 1145 * Integer arithmetic and logical instructions, branches, and barrier 1146 * instructions can be emulated just using the information in *op. 1147 * 1148 * Return value is 1 if the instruction can be emulated just by 1149 * updating *regs with the information in *op, -1 if we need the 1150 * GPRs but *regs doesn't contain the full register set, or 0 1151 * otherwise. 1152 */ 1153 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs, 1154 unsigned int instr) 1155 { 1156 unsigned int opcode, ra, rb, rd, spr, u; 1157 unsigned long int imm; 1158 unsigned long int val, val2; 1159 unsigned int mb, me, sh; 1160 long ival; 1161 1162 op->type = COMPUTE; 1163 1164 opcode = instr >> 26; 1165 switch (opcode) { 1166 case 16: /* bc */ 1167 op->type = BRANCH; 1168 imm = (signed short)(instr & 0xfffc); 1169 if ((instr & 2) == 0) 1170 imm += regs->nip; 1171 op->val = truncate_if_32bit(regs->msr, imm); 1172 if (instr & 1) 1173 op->type |= SETLK; 1174 if (branch_taken(instr, regs, op)) 1175 op->type |= BRTAKEN; 1176 return 1; 1177 #ifdef CONFIG_PPC64 1178 case 17: /* sc */ 1179 if ((instr & 0xfe2) == 2) 1180 op->type = SYSCALL; 1181 else 1182 op->type = UNKNOWN; 1183 return 0; 1184 #endif 1185 case 18: /* b */ 1186 op->type = BRANCH | BRTAKEN; 1187 imm = instr & 0x03fffffc; 1188 if (imm & 0x02000000) 1189 imm -= 0x04000000; 1190 if ((instr & 2) == 0) 1191 imm += regs->nip; 1192 op->val = truncate_if_32bit(regs->msr, imm); 1193 if (instr & 1) 1194 op->type |= SETLK; 1195 return 1; 1196 case 19: 1197 switch ((instr >> 1) & 0x3ff) { 1198 case 0: /* mcrf */ 1199 op->type = COMPUTE + SETCC; 1200 rd = 7 - ((instr >> 23) & 0x7); 1201 ra = 7 - ((instr >> 18) & 0x7); 1202 rd *= 4; 1203 ra *= 4; 1204 val = (regs->ccr >> ra) & 0xf; 1205 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd); 1206 return 1; 1207 1208 case 16: /* bclr */ 1209 case 528: /* bcctr */ 1210 op->type = BRANCH; 1211 imm = (instr & 0x400)? regs->ctr: regs->link; 1212 op->val = truncate_if_32bit(regs->msr, imm); 1213 if (instr & 1) 1214 op->type |= SETLK; 1215 if (branch_taken(instr, regs, op)) 1216 op->type |= BRTAKEN; 1217 return 1; 1218 1219 case 18: /* rfid, scary */ 1220 if (regs->msr & MSR_PR) 1221 goto priv; 1222 op->type = RFI; 1223 return 0; 1224 1225 case 150: /* isync */ 1226 op->type = BARRIER | BARRIER_ISYNC; 1227 return 1; 1228 1229 case 33: /* crnor */ 1230 case 129: /* crandc */ 1231 case 193: /* crxor */ 1232 case 225: /* crnand */ 1233 case 257: /* crand */ 1234 case 289: /* creqv */ 1235 case 417: /* crorc */ 1236 case 449: /* cror */ 1237 op->type = COMPUTE + SETCC; 1238 ra = (instr >> 16) & 0x1f; 1239 rb = (instr >> 11) & 0x1f; 1240 rd = (instr >> 21) & 0x1f; 1241 ra = (regs->ccr >> (31 - ra)) & 1; 1242 rb = (regs->ccr >> (31 - rb)) & 1; 1243 val = (instr >> (6 + ra * 2 + rb)) & 1; 1244 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) | 1245 (val << (31 - rd)); 1246 return 1; 1247 } 1248 break; 1249 case 31: 1250 switch ((instr >> 1) & 0x3ff) { 1251 case 598: /* sync */ 1252 op->type = BARRIER + BARRIER_SYNC; 1253 #ifdef __powerpc64__ 1254 switch ((instr >> 21) & 3) { 1255 case 1: /* lwsync */ 1256 op->type = BARRIER + BARRIER_LWSYNC; 1257 break; 1258 case 2: /* ptesync */ 1259 op->type = BARRIER + BARRIER_PTESYNC; 1260 break; 1261 } 1262 #endif 1263 return 1; 1264 1265 case 854: /* eieio */ 1266 op->type = BARRIER + BARRIER_EIEIO; 1267 return 1; 1268 } 1269 break; 1270 } 1271 1272 /* Following cases refer to regs->gpr[], so we need all regs */ 1273 if (!FULL_REGS(regs)) 1274 return -1; 1275 1276 rd = (instr >> 21) & 0x1f; 1277 ra = (instr >> 16) & 0x1f; 1278 rb = (instr >> 11) & 0x1f; 1279 1280 switch (opcode) { 1281 #ifdef __powerpc64__ 1282 case 2: /* tdi */ 1283 if (rd & trap_compare(regs->gpr[ra], (short) instr)) 1284 goto trap; 1285 return 1; 1286 #endif 1287 case 3: /* twi */ 1288 if (rd & trap_compare((int)regs->gpr[ra], (short) instr)) 1289 goto trap; 1290 return 1; 1291 1292 case 7: /* mulli */ 1293 op->val = regs->gpr[ra] * (short) instr; 1294 goto compute_done; 1295 1296 case 8: /* subfic */ 1297 imm = (short) instr; 1298 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1); 1299 return 1; 1300 1301 case 10: /* cmpli */ 1302 imm = (unsigned short) instr; 1303 val = regs->gpr[ra]; 1304 #ifdef __powerpc64__ 1305 if ((rd & 1) == 0) 1306 val = (unsigned int) val; 1307 #endif 1308 do_cmp_unsigned(regs, op, val, imm, rd >> 2); 1309 return 1; 1310 1311 case 11: /* cmpi */ 1312 imm = (short) instr; 1313 val = regs->gpr[ra]; 1314 #ifdef __powerpc64__ 1315 if ((rd & 1) == 0) 1316 val = (int) val; 1317 #endif 1318 do_cmp_signed(regs, op, val, imm, rd >> 2); 1319 return 1; 1320 1321 case 12: /* addic */ 1322 imm = (short) instr; 1323 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); 1324 return 1; 1325 1326 case 13: /* addic. */ 1327 imm = (short) instr; 1328 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); 1329 set_cr0(regs, op, rd); 1330 return 1; 1331 1332 case 14: /* addi */ 1333 imm = (short) instr; 1334 if (ra) 1335 imm += regs->gpr[ra]; 1336 op->val = imm; 1337 goto compute_done; 1338 1339 case 15: /* addis */ 1340 imm = ((short) instr) << 16; 1341 if (ra) 1342 imm += regs->gpr[ra]; 1343 op->val = imm; 1344 goto compute_done; 1345 1346 case 19: 1347 if (((instr >> 1) & 0x1f) == 2) { 1348 /* addpcis */ 1349 imm = (short) (instr & 0xffc1); /* d0 + d2 fields */ 1350 imm |= (instr >> 15) & 0x3e; /* d1 field */ 1351 op->val = regs->nip + (imm << 16) + 4; 1352 goto compute_done; 1353 } 1354 op->type = UNKNOWN; 1355 return 0; 1356 1357 case 20: /* rlwimi */ 1358 mb = (instr >> 6) & 0x1f; 1359 me = (instr >> 1) & 0x1f; 1360 val = DATA32(regs->gpr[rd]); 1361 imm = MASK32(mb, me); 1362 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm); 1363 goto logical_done; 1364 1365 case 21: /* rlwinm */ 1366 mb = (instr >> 6) & 0x1f; 1367 me = (instr >> 1) & 0x1f; 1368 val = DATA32(regs->gpr[rd]); 1369 op->val = ROTATE(val, rb) & MASK32(mb, me); 1370 goto logical_done; 1371 1372 case 23: /* rlwnm */ 1373 mb = (instr >> 6) & 0x1f; 1374 me = (instr >> 1) & 0x1f; 1375 rb = regs->gpr[rb] & 0x1f; 1376 val = DATA32(regs->gpr[rd]); 1377 op->val = ROTATE(val, rb) & MASK32(mb, me); 1378 goto logical_done; 1379 1380 case 24: /* ori */ 1381 op->val = regs->gpr[rd] | (unsigned short) instr; 1382 goto logical_done_nocc; 1383 1384 case 25: /* oris */ 1385 imm = (unsigned short) instr; 1386 op->val = regs->gpr[rd] | (imm << 16); 1387 goto logical_done_nocc; 1388 1389 case 26: /* xori */ 1390 op->val = regs->gpr[rd] ^ (unsigned short) instr; 1391 goto logical_done_nocc; 1392 1393 case 27: /* xoris */ 1394 imm = (unsigned short) instr; 1395 op->val = regs->gpr[rd] ^ (imm << 16); 1396 goto logical_done_nocc; 1397 1398 case 28: /* andi. */ 1399 op->val = regs->gpr[rd] & (unsigned short) instr; 1400 set_cr0(regs, op, ra); 1401 goto logical_done_nocc; 1402 1403 case 29: /* andis. */ 1404 imm = (unsigned short) instr; 1405 op->val = regs->gpr[rd] & (imm << 16); 1406 set_cr0(regs, op, ra); 1407 goto logical_done_nocc; 1408 1409 #ifdef __powerpc64__ 1410 case 30: /* rld* */ 1411 mb = ((instr >> 6) & 0x1f) | (instr & 0x20); 1412 val = regs->gpr[rd]; 1413 if ((instr & 0x10) == 0) { 1414 sh = rb | ((instr & 2) << 4); 1415 val = ROTATE(val, sh); 1416 switch ((instr >> 2) & 3) { 1417 case 0: /* rldicl */ 1418 val &= MASK64_L(mb); 1419 break; 1420 case 1: /* rldicr */ 1421 val &= MASK64_R(mb); 1422 break; 1423 case 2: /* rldic */ 1424 val &= MASK64(mb, 63 - sh); 1425 break; 1426 case 3: /* rldimi */ 1427 imm = MASK64(mb, 63 - sh); 1428 val = (regs->gpr[ra] & ~imm) | 1429 (val & imm); 1430 } 1431 op->val = val; 1432 goto logical_done; 1433 } else { 1434 sh = regs->gpr[rb] & 0x3f; 1435 val = ROTATE(val, sh); 1436 switch ((instr >> 1) & 7) { 1437 case 0: /* rldcl */ 1438 op->val = val & MASK64_L(mb); 1439 goto logical_done; 1440 case 1: /* rldcr */ 1441 op->val = val & MASK64_R(mb); 1442 goto logical_done; 1443 } 1444 } 1445 #endif 1446 op->type = UNKNOWN; /* illegal instruction */ 1447 return 0; 1448 1449 case 31: 1450 /* isel occupies 32 minor opcodes */ 1451 if (((instr >> 1) & 0x1f) == 15) { 1452 mb = (instr >> 6) & 0x1f; /* bc field */ 1453 val = (regs->ccr >> (31 - mb)) & 1; 1454 val2 = (ra) ? regs->gpr[ra] : 0; 1455 1456 op->val = (val) ? val2 : regs->gpr[rb]; 1457 goto compute_done; 1458 } 1459 1460 switch ((instr >> 1) & 0x3ff) { 1461 case 4: /* tw */ 1462 if (rd == 0x1f || 1463 (rd & trap_compare((int)regs->gpr[ra], 1464 (int)regs->gpr[rb]))) 1465 goto trap; 1466 return 1; 1467 #ifdef __powerpc64__ 1468 case 68: /* td */ 1469 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb])) 1470 goto trap; 1471 return 1; 1472 #endif 1473 case 83: /* mfmsr */ 1474 if (regs->msr & MSR_PR) 1475 goto priv; 1476 op->type = MFMSR; 1477 op->reg = rd; 1478 return 0; 1479 case 146: /* mtmsr */ 1480 if (regs->msr & MSR_PR) 1481 goto priv; 1482 op->type = MTMSR; 1483 op->reg = rd; 1484 op->val = 0xffffffff & ~(MSR_ME | MSR_LE); 1485 return 0; 1486 #ifdef CONFIG_PPC64 1487 case 178: /* mtmsrd */ 1488 if (regs->msr & MSR_PR) 1489 goto priv; 1490 op->type = MTMSR; 1491 op->reg = rd; 1492 /* only MSR_EE and MSR_RI get changed if bit 15 set */ 1493 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */ 1494 imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL; 1495 op->val = imm; 1496 return 0; 1497 #endif 1498 1499 case 19: /* mfcr */ 1500 imm = 0xffffffffUL; 1501 if ((instr >> 20) & 1) { 1502 imm = 0xf0000000UL; 1503 for (sh = 0; sh < 8; ++sh) { 1504 if (instr & (0x80000 >> sh)) 1505 break; 1506 imm >>= 4; 1507 } 1508 } 1509 op->val = regs->ccr & imm; 1510 goto compute_done; 1511 1512 case 144: /* mtcrf */ 1513 op->type = COMPUTE + SETCC; 1514 imm = 0xf0000000UL; 1515 val = regs->gpr[rd]; 1516 op->val = regs->ccr; 1517 for (sh = 0; sh < 8; ++sh) { 1518 if (instr & (0x80000 >> sh)) 1519 op->val = (op->val & ~imm) | 1520 (val & imm); 1521 imm >>= 4; 1522 } 1523 return 1; 1524 1525 case 339: /* mfspr */ 1526 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0); 1527 op->type = MFSPR; 1528 op->reg = rd; 1529 op->spr = spr; 1530 if (spr == SPRN_XER || spr == SPRN_LR || 1531 spr == SPRN_CTR) 1532 return 1; 1533 return 0; 1534 1535 case 467: /* mtspr */ 1536 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0); 1537 op->type = MTSPR; 1538 op->val = regs->gpr[rd]; 1539 op->spr = spr; 1540 if (spr == SPRN_XER || spr == SPRN_LR || 1541 spr == SPRN_CTR) 1542 return 1; 1543 return 0; 1544 1545 /* 1546 * Compare instructions 1547 */ 1548 case 0: /* cmp */ 1549 val = regs->gpr[ra]; 1550 val2 = regs->gpr[rb]; 1551 #ifdef __powerpc64__ 1552 if ((rd & 1) == 0) { 1553 /* word (32-bit) compare */ 1554 val = (int) val; 1555 val2 = (int) val2; 1556 } 1557 #endif 1558 do_cmp_signed(regs, op, val, val2, rd >> 2); 1559 return 1; 1560 1561 case 32: /* cmpl */ 1562 val = regs->gpr[ra]; 1563 val2 = regs->gpr[rb]; 1564 #ifdef __powerpc64__ 1565 if ((rd & 1) == 0) { 1566 /* word (32-bit) compare */ 1567 val = (unsigned int) val; 1568 val2 = (unsigned int) val2; 1569 } 1570 #endif 1571 do_cmp_unsigned(regs, op, val, val2, rd >> 2); 1572 return 1; 1573 1574 case 508: /* cmpb */ 1575 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]); 1576 goto logical_done_nocc; 1577 1578 /* 1579 * Arithmetic instructions 1580 */ 1581 case 8: /* subfc */ 1582 add_with_carry(regs, op, rd, ~regs->gpr[ra], 1583 regs->gpr[rb], 1); 1584 goto arith_done; 1585 #ifdef __powerpc64__ 1586 case 9: /* mulhdu */ 1587 asm("mulhdu %0,%1,%2" : "=r" (op->val) : 1588 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1589 goto arith_done; 1590 #endif 1591 case 10: /* addc */ 1592 add_with_carry(regs, op, rd, regs->gpr[ra], 1593 regs->gpr[rb], 0); 1594 goto arith_done; 1595 1596 case 11: /* mulhwu */ 1597 asm("mulhwu %0,%1,%2" : "=r" (op->val) : 1598 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1599 goto arith_done; 1600 1601 case 40: /* subf */ 1602 op->val = regs->gpr[rb] - regs->gpr[ra]; 1603 goto arith_done; 1604 #ifdef __powerpc64__ 1605 case 73: /* mulhd */ 1606 asm("mulhd %0,%1,%2" : "=r" (op->val) : 1607 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1608 goto arith_done; 1609 #endif 1610 case 75: /* mulhw */ 1611 asm("mulhw %0,%1,%2" : "=r" (op->val) : 1612 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1613 goto arith_done; 1614 1615 case 104: /* neg */ 1616 op->val = -regs->gpr[ra]; 1617 goto arith_done; 1618 1619 case 136: /* subfe */ 1620 add_with_carry(regs, op, rd, ~regs->gpr[ra], 1621 regs->gpr[rb], regs->xer & XER_CA); 1622 goto arith_done; 1623 1624 case 138: /* adde */ 1625 add_with_carry(regs, op, rd, regs->gpr[ra], 1626 regs->gpr[rb], regs->xer & XER_CA); 1627 goto arith_done; 1628 1629 case 200: /* subfze */ 1630 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L, 1631 regs->xer & XER_CA); 1632 goto arith_done; 1633 1634 case 202: /* addze */ 1635 add_with_carry(regs, op, rd, regs->gpr[ra], 0L, 1636 regs->xer & XER_CA); 1637 goto arith_done; 1638 1639 case 232: /* subfme */ 1640 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L, 1641 regs->xer & XER_CA); 1642 goto arith_done; 1643 #ifdef __powerpc64__ 1644 case 233: /* mulld */ 1645 op->val = regs->gpr[ra] * regs->gpr[rb]; 1646 goto arith_done; 1647 #endif 1648 case 234: /* addme */ 1649 add_with_carry(regs, op, rd, regs->gpr[ra], -1L, 1650 regs->xer & XER_CA); 1651 goto arith_done; 1652 1653 case 235: /* mullw */ 1654 op->val = (unsigned int) regs->gpr[ra] * 1655 (unsigned int) regs->gpr[rb]; 1656 goto arith_done; 1657 1658 case 266: /* add */ 1659 op->val = regs->gpr[ra] + regs->gpr[rb]; 1660 goto arith_done; 1661 #ifdef __powerpc64__ 1662 case 457: /* divdu */ 1663 op->val = regs->gpr[ra] / regs->gpr[rb]; 1664 goto arith_done; 1665 #endif 1666 case 459: /* divwu */ 1667 op->val = (unsigned int) regs->gpr[ra] / 1668 (unsigned int) regs->gpr[rb]; 1669 goto arith_done; 1670 #ifdef __powerpc64__ 1671 case 489: /* divd */ 1672 op->val = (long int) regs->gpr[ra] / 1673 (long int) regs->gpr[rb]; 1674 goto arith_done; 1675 #endif 1676 case 491: /* divw */ 1677 op->val = (int) regs->gpr[ra] / 1678 (int) regs->gpr[rb]; 1679 goto arith_done; 1680 1681 1682 /* 1683 * Logical instructions 1684 */ 1685 case 26: /* cntlzw */ 1686 op->val = __builtin_clz((unsigned int) regs->gpr[rd]); 1687 goto logical_done; 1688 #ifdef __powerpc64__ 1689 case 58: /* cntlzd */ 1690 op->val = __builtin_clzl(regs->gpr[rd]); 1691 goto logical_done; 1692 #endif 1693 case 28: /* and */ 1694 op->val = regs->gpr[rd] & regs->gpr[rb]; 1695 goto logical_done; 1696 1697 case 60: /* andc */ 1698 op->val = regs->gpr[rd] & ~regs->gpr[rb]; 1699 goto logical_done; 1700 1701 case 122: /* popcntb */ 1702 do_popcnt(regs, op, regs->gpr[rd], 8); 1703 goto logical_done_nocc; 1704 1705 case 124: /* nor */ 1706 op->val = ~(regs->gpr[rd] | regs->gpr[rb]); 1707 goto logical_done; 1708 1709 case 154: /* prtyw */ 1710 do_prty(regs, op, regs->gpr[rd], 32); 1711 goto logical_done_nocc; 1712 1713 case 186: /* prtyd */ 1714 do_prty(regs, op, regs->gpr[rd], 64); 1715 goto logical_done_nocc; 1716 #ifdef CONFIG_PPC64 1717 case 252: /* bpermd */ 1718 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]); 1719 goto logical_done_nocc; 1720 #endif 1721 case 284: /* xor */ 1722 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]); 1723 goto logical_done; 1724 1725 case 316: /* xor */ 1726 op->val = regs->gpr[rd] ^ regs->gpr[rb]; 1727 goto logical_done; 1728 1729 case 378: /* popcntw */ 1730 do_popcnt(regs, op, regs->gpr[rd], 32); 1731 goto logical_done_nocc; 1732 1733 case 412: /* orc */ 1734 op->val = regs->gpr[rd] | ~regs->gpr[rb]; 1735 goto logical_done; 1736 1737 case 444: /* or */ 1738 op->val = regs->gpr[rd] | regs->gpr[rb]; 1739 goto logical_done; 1740 1741 case 476: /* nand */ 1742 op->val = ~(regs->gpr[rd] & regs->gpr[rb]); 1743 goto logical_done; 1744 #ifdef CONFIG_PPC64 1745 case 506: /* popcntd */ 1746 do_popcnt(regs, op, regs->gpr[rd], 64); 1747 goto logical_done_nocc; 1748 #endif 1749 case 922: /* extsh */ 1750 op->val = (signed short) regs->gpr[rd]; 1751 goto logical_done; 1752 1753 case 954: /* extsb */ 1754 op->val = (signed char) regs->gpr[rd]; 1755 goto logical_done; 1756 #ifdef __powerpc64__ 1757 case 986: /* extsw */ 1758 op->val = (signed int) regs->gpr[rd]; 1759 goto logical_done; 1760 #endif 1761 1762 /* 1763 * Shift instructions 1764 */ 1765 case 24: /* slw */ 1766 sh = regs->gpr[rb] & 0x3f; 1767 if (sh < 32) 1768 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL; 1769 else 1770 op->val = 0; 1771 goto logical_done; 1772 1773 case 536: /* srw */ 1774 sh = regs->gpr[rb] & 0x3f; 1775 if (sh < 32) 1776 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh; 1777 else 1778 op->val = 0; 1779 goto logical_done; 1780 1781 case 792: /* sraw */ 1782 op->type = COMPUTE + SETREG + SETXER; 1783 sh = regs->gpr[rb] & 0x3f; 1784 ival = (signed int) regs->gpr[rd]; 1785 op->val = ival >> (sh < 32 ? sh : 31); 1786 op->xerval = regs->xer; 1787 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0)) 1788 op->xerval |= XER_CA; 1789 else 1790 op->xerval &= ~XER_CA; 1791 goto logical_done; 1792 1793 case 824: /* srawi */ 1794 op->type = COMPUTE + SETREG + SETXER; 1795 sh = rb; 1796 ival = (signed int) regs->gpr[rd]; 1797 op->val = ival >> sh; 1798 op->xerval = regs->xer; 1799 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) 1800 op->xerval |= XER_CA; 1801 else 1802 op->xerval &= ~XER_CA; 1803 goto logical_done; 1804 1805 #ifdef __powerpc64__ 1806 case 27: /* sld */ 1807 sh = regs->gpr[rb] & 0x7f; 1808 if (sh < 64) 1809 op->val = regs->gpr[rd] << sh; 1810 else 1811 op->val = 0; 1812 goto logical_done; 1813 1814 case 539: /* srd */ 1815 sh = regs->gpr[rb] & 0x7f; 1816 if (sh < 64) 1817 op->val = regs->gpr[rd] >> sh; 1818 else 1819 op->val = 0; 1820 goto logical_done; 1821 1822 case 794: /* srad */ 1823 op->type = COMPUTE + SETREG + SETXER; 1824 sh = regs->gpr[rb] & 0x7f; 1825 ival = (signed long int) regs->gpr[rd]; 1826 op->val = ival >> (sh < 64 ? sh : 63); 1827 op->xerval = regs->xer; 1828 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0)) 1829 op->xerval |= XER_CA; 1830 else 1831 op->xerval &= ~XER_CA; 1832 goto logical_done; 1833 1834 case 826: /* sradi with sh_5 = 0 */ 1835 case 827: /* sradi with sh_5 = 1 */ 1836 op->type = COMPUTE + SETREG + SETXER; 1837 sh = rb | ((instr & 2) << 4); 1838 ival = (signed long int) regs->gpr[rd]; 1839 op->val = ival >> sh; 1840 op->xerval = regs->xer; 1841 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) 1842 op->xerval |= XER_CA; 1843 else 1844 op->xerval &= ~XER_CA; 1845 goto logical_done; 1846 #endif /* __powerpc64__ */ 1847 1848 /* 1849 * Cache instructions 1850 */ 1851 case 54: /* dcbst */ 1852 op->type = MKOP(CACHEOP, DCBST, 0); 1853 op->ea = xform_ea(instr, regs); 1854 return 0; 1855 1856 case 86: /* dcbf */ 1857 op->type = MKOP(CACHEOP, DCBF, 0); 1858 op->ea = xform_ea(instr, regs); 1859 return 0; 1860 1861 case 246: /* dcbtst */ 1862 op->type = MKOP(CACHEOP, DCBTST, 0); 1863 op->ea = xform_ea(instr, regs); 1864 op->reg = rd; 1865 return 0; 1866 1867 case 278: /* dcbt */ 1868 op->type = MKOP(CACHEOP, DCBTST, 0); 1869 op->ea = xform_ea(instr, regs); 1870 op->reg = rd; 1871 return 0; 1872 1873 case 982: /* icbi */ 1874 op->type = MKOP(CACHEOP, ICBI, 0); 1875 op->ea = xform_ea(instr, regs); 1876 return 0; 1877 1878 case 1014: /* dcbz */ 1879 op->type = MKOP(CACHEOP, DCBZ, 0); 1880 op->ea = xform_ea(instr, regs); 1881 return 0; 1882 } 1883 break; 1884 } 1885 1886 /* 1887 * Loads and stores. 1888 */ 1889 op->type = UNKNOWN; 1890 op->update_reg = ra; 1891 op->reg = rd; 1892 op->val = regs->gpr[rd]; 1893 u = (instr >> 20) & UPDATE; 1894 op->vsx_flags = 0; 1895 1896 switch (opcode) { 1897 case 31: 1898 u = instr & UPDATE; 1899 op->ea = xform_ea(instr, regs); 1900 switch ((instr >> 1) & 0x3ff) { 1901 case 20: /* lwarx */ 1902 op->type = MKOP(LARX, 0, 4); 1903 break; 1904 1905 case 150: /* stwcx. */ 1906 op->type = MKOP(STCX, 0, 4); 1907 break; 1908 1909 #ifdef __powerpc64__ 1910 case 84: /* ldarx */ 1911 op->type = MKOP(LARX, 0, 8); 1912 break; 1913 1914 case 214: /* stdcx. */ 1915 op->type = MKOP(STCX, 0, 8); 1916 break; 1917 1918 case 52: /* lbarx */ 1919 op->type = MKOP(LARX, 0, 1); 1920 break; 1921 1922 case 694: /* stbcx. */ 1923 op->type = MKOP(STCX, 0, 1); 1924 break; 1925 1926 case 116: /* lharx */ 1927 op->type = MKOP(LARX, 0, 2); 1928 break; 1929 1930 case 726: /* sthcx. */ 1931 op->type = MKOP(STCX, 0, 2); 1932 break; 1933 1934 case 276: /* lqarx */ 1935 if (!((rd & 1) || rd == ra || rd == rb)) 1936 op->type = MKOP(LARX, 0, 16); 1937 break; 1938 1939 case 182: /* stqcx. */ 1940 if (!(rd & 1)) 1941 op->type = MKOP(STCX, 0, 16); 1942 break; 1943 #endif 1944 1945 case 23: /* lwzx */ 1946 case 55: /* lwzux */ 1947 op->type = MKOP(LOAD, u, 4); 1948 break; 1949 1950 case 87: /* lbzx */ 1951 case 119: /* lbzux */ 1952 op->type = MKOP(LOAD, u, 1); 1953 break; 1954 1955 #ifdef CONFIG_ALTIVEC 1956 /* 1957 * Note: for the load/store vector element instructions, 1958 * bits of the EA say which field of the VMX register to use. 1959 */ 1960 case 7: /* lvebx */ 1961 op->type = MKOP(LOAD_VMX, 0, 1); 1962 op->element_size = 1; 1963 break; 1964 1965 case 39: /* lvehx */ 1966 op->type = MKOP(LOAD_VMX, 0, 2); 1967 op->element_size = 2; 1968 break; 1969 1970 case 71: /* lvewx */ 1971 op->type = MKOP(LOAD_VMX, 0, 4); 1972 op->element_size = 4; 1973 break; 1974 1975 case 103: /* lvx */ 1976 case 359: /* lvxl */ 1977 op->type = MKOP(LOAD_VMX, 0, 16); 1978 op->element_size = 16; 1979 break; 1980 1981 case 135: /* stvebx */ 1982 op->type = MKOP(STORE_VMX, 0, 1); 1983 op->element_size = 1; 1984 break; 1985 1986 case 167: /* stvehx */ 1987 op->type = MKOP(STORE_VMX, 0, 2); 1988 op->element_size = 2; 1989 break; 1990 1991 case 199: /* stvewx */ 1992 op->type = MKOP(STORE_VMX, 0, 4); 1993 op->element_size = 4; 1994 break; 1995 1996 case 231: /* stvx */ 1997 case 487: /* stvxl */ 1998 op->type = MKOP(STORE_VMX, 0, 16); 1999 break; 2000 #endif /* CONFIG_ALTIVEC */ 2001 2002 #ifdef __powerpc64__ 2003 case 21: /* ldx */ 2004 case 53: /* ldux */ 2005 op->type = MKOP(LOAD, u, 8); 2006 break; 2007 2008 case 149: /* stdx */ 2009 case 181: /* stdux */ 2010 op->type = MKOP(STORE, u, 8); 2011 break; 2012 #endif 2013 2014 case 151: /* stwx */ 2015 case 183: /* stwux */ 2016 op->type = MKOP(STORE, u, 4); 2017 break; 2018 2019 case 215: /* stbx */ 2020 case 247: /* stbux */ 2021 op->type = MKOP(STORE, u, 1); 2022 break; 2023 2024 case 279: /* lhzx */ 2025 case 311: /* lhzux */ 2026 op->type = MKOP(LOAD, u, 2); 2027 break; 2028 2029 #ifdef __powerpc64__ 2030 case 341: /* lwax */ 2031 case 373: /* lwaux */ 2032 op->type = MKOP(LOAD, SIGNEXT | u, 4); 2033 break; 2034 #endif 2035 2036 case 343: /* lhax */ 2037 case 375: /* lhaux */ 2038 op->type = MKOP(LOAD, SIGNEXT | u, 2); 2039 break; 2040 2041 case 407: /* sthx */ 2042 case 439: /* sthux */ 2043 op->type = MKOP(STORE, u, 2); 2044 break; 2045 2046 #ifdef __powerpc64__ 2047 case 532: /* ldbrx */ 2048 op->type = MKOP(LOAD, BYTEREV, 8); 2049 break; 2050 2051 #endif 2052 case 533: /* lswx */ 2053 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f); 2054 break; 2055 2056 case 534: /* lwbrx */ 2057 op->type = MKOP(LOAD, BYTEREV, 4); 2058 break; 2059 2060 case 597: /* lswi */ 2061 if (rb == 0) 2062 rb = 32; /* # bytes to load */ 2063 op->type = MKOP(LOAD_MULTI, 0, rb); 2064 op->ea = ra ? regs->gpr[ra] : 0; 2065 break; 2066 2067 #ifdef CONFIG_PPC_FPU 2068 case 535: /* lfsx */ 2069 case 567: /* lfsux */ 2070 op->type = MKOP(LOAD_FP, u | FPCONV, 4); 2071 break; 2072 2073 case 599: /* lfdx */ 2074 case 631: /* lfdux */ 2075 op->type = MKOP(LOAD_FP, u, 8); 2076 break; 2077 2078 case 663: /* stfsx */ 2079 case 695: /* stfsux */ 2080 op->type = MKOP(STORE_FP, u | FPCONV, 4); 2081 break; 2082 2083 case 727: /* stfdx */ 2084 case 759: /* stfdux */ 2085 op->type = MKOP(STORE_FP, u, 8); 2086 break; 2087 2088 #ifdef __powerpc64__ 2089 case 791: /* lfdpx */ 2090 op->type = MKOP(LOAD_FP, 0, 16); 2091 break; 2092 2093 case 855: /* lfiwax */ 2094 op->type = MKOP(LOAD_FP, SIGNEXT, 4); 2095 break; 2096 2097 case 887: /* lfiwzx */ 2098 op->type = MKOP(LOAD_FP, 0, 4); 2099 break; 2100 2101 case 919: /* stfdpx */ 2102 op->type = MKOP(STORE_FP, 0, 16); 2103 break; 2104 2105 case 983: /* stfiwx */ 2106 op->type = MKOP(STORE_FP, 0, 4); 2107 break; 2108 #endif /* __powerpc64 */ 2109 #endif /* CONFIG_PPC_FPU */ 2110 2111 #ifdef __powerpc64__ 2112 case 660: /* stdbrx */ 2113 op->type = MKOP(STORE, BYTEREV, 8); 2114 op->val = byterev_8(regs->gpr[rd]); 2115 break; 2116 2117 #endif 2118 case 661: /* stswx */ 2119 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f); 2120 break; 2121 2122 case 662: /* stwbrx */ 2123 op->type = MKOP(STORE, BYTEREV, 4); 2124 op->val = byterev_4(regs->gpr[rd]); 2125 break; 2126 2127 case 725: /* stswi */ 2128 if (rb == 0) 2129 rb = 32; /* # bytes to store */ 2130 op->type = MKOP(STORE_MULTI, 0, rb); 2131 op->ea = ra ? regs->gpr[ra] : 0; 2132 break; 2133 2134 case 790: /* lhbrx */ 2135 op->type = MKOP(LOAD, BYTEREV, 2); 2136 break; 2137 2138 case 918: /* sthbrx */ 2139 op->type = MKOP(STORE, BYTEREV, 2); 2140 op->val = byterev_2(regs->gpr[rd]); 2141 break; 2142 2143 #ifdef CONFIG_VSX 2144 case 12: /* lxsiwzx */ 2145 op->reg = rd | ((instr & 1) << 5); 2146 op->type = MKOP(LOAD_VSX, 0, 4); 2147 op->element_size = 8; 2148 break; 2149 2150 case 76: /* lxsiwax */ 2151 op->reg = rd | ((instr & 1) << 5); 2152 op->type = MKOP(LOAD_VSX, SIGNEXT, 4); 2153 op->element_size = 8; 2154 break; 2155 2156 case 140: /* stxsiwx */ 2157 op->reg = rd | ((instr & 1) << 5); 2158 op->type = MKOP(STORE_VSX, 0, 4); 2159 op->element_size = 8; 2160 break; 2161 2162 case 268: /* lxvx */ 2163 op->reg = rd | ((instr & 1) << 5); 2164 op->type = MKOP(LOAD_VSX, 0, 16); 2165 op->element_size = 16; 2166 op->vsx_flags = VSX_CHECK_VEC; 2167 break; 2168 2169 case 269: /* lxvl */ 2170 case 301: { /* lxvll */ 2171 int nb; 2172 op->reg = rd | ((instr & 1) << 5); 2173 op->ea = ra ? regs->gpr[ra] : 0; 2174 nb = regs->gpr[rb] & 0xff; 2175 if (nb > 16) 2176 nb = 16; 2177 op->type = MKOP(LOAD_VSX, 0, nb); 2178 op->element_size = 16; 2179 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) | 2180 VSX_CHECK_VEC; 2181 break; 2182 } 2183 case 332: /* lxvdsx */ 2184 op->reg = rd | ((instr & 1) << 5); 2185 op->type = MKOP(LOAD_VSX, 0, 8); 2186 op->element_size = 8; 2187 op->vsx_flags = VSX_SPLAT; 2188 break; 2189 2190 case 364: /* lxvwsx */ 2191 op->reg = rd | ((instr & 1) << 5); 2192 op->type = MKOP(LOAD_VSX, 0, 4); 2193 op->element_size = 4; 2194 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC; 2195 break; 2196 2197 case 396: /* stxvx */ 2198 op->reg = rd | ((instr & 1) << 5); 2199 op->type = MKOP(STORE_VSX, 0, 16); 2200 op->element_size = 16; 2201 op->vsx_flags = VSX_CHECK_VEC; 2202 break; 2203 2204 case 397: /* stxvl */ 2205 case 429: { /* stxvll */ 2206 int nb; 2207 op->reg = rd | ((instr & 1) << 5); 2208 op->ea = ra ? regs->gpr[ra] : 0; 2209 nb = regs->gpr[rb] & 0xff; 2210 if (nb > 16) 2211 nb = 16; 2212 op->type = MKOP(STORE_VSX, 0, nb); 2213 op->element_size = 16; 2214 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) | 2215 VSX_CHECK_VEC; 2216 break; 2217 } 2218 case 524: /* lxsspx */ 2219 op->reg = rd | ((instr & 1) << 5); 2220 op->type = MKOP(LOAD_VSX, 0, 4); 2221 op->element_size = 8; 2222 op->vsx_flags = VSX_FPCONV; 2223 break; 2224 2225 case 588: /* lxsdx */ 2226 op->reg = rd | ((instr & 1) << 5); 2227 op->type = MKOP(LOAD_VSX, 0, 8); 2228 op->element_size = 8; 2229 break; 2230 2231 case 652: /* stxsspx */ 2232 op->reg = rd | ((instr & 1) << 5); 2233 op->type = MKOP(STORE_VSX, 0, 4); 2234 op->element_size = 8; 2235 op->vsx_flags = VSX_FPCONV; 2236 break; 2237 2238 case 716: /* stxsdx */ 2239 op->reg = rd | ((instr & 1) << 5); 2240 op->type = MKOP(STORE_VSX, 0, 8); 2241 op->element_size = 8; 2242 break; 2243 2244 case 780: /* lxvw4x */ 2245 op->reg = rd | ((instr & 1) << 5); 2246 op->type = MKOP(LOAD_VSX, 0, 16); 2247 op->element_size = 4; 2248 break; 2249 2250 case 781: /* lxsibzx */ 2251 op->reg = rd | ((instr & 1) << 5); 2252 op->type = MKOP(LOAD_VSX, 0, 1); 2253 op->element_size = 8; 2254 op->vsx_flags = VSX_CHECK_VEC; 2255 break; 2256 2257 case 812: /* lxvh8x */ 2258 op->reg = rd | ((instr & 1) << 5); 2259 op->type = MKOP(LOAD_VSX, 0, 16); 2260 op->element_size = 2; 2261 op->vsx_flags = VSX_CHECK_VEC; 2262 break; 2263 2264 case 813: /* lxsihzx */ 2265 op->reg = rd | ((instr & 1) << 5); 2266 op->type = MKOP(LOAD_VSX, 0, 2); 2267 op->element_size = 8; 2268 op->vsx_flags = VSX_CHECK_VEC; 2269 break; 2270 2271 case 844: /* lxvd2x */ 2272 op->reg = rd | ((instr & 1) << 5); 2273 op->type = MKOP(LOAD_VSX, 0, 16); 2274 op->element_size = 8; 2275 break; 2276 2277 case 876: /* lxvb16x */ 2278 op->reg = rd | ((instr & 1) << 5); 2279 op->type = MKOP(LOAD_VSX, 0, 16); 2280 op->element_size = 1; 2281 op->vsx_flags = VSX_CHECK_VEC; 2282 break; 2283 2284 case 908: /* stxvw4x */ 2285 op->reg = rd | ((instr & 1) << 5); 2286 op->type = MKOP(STORE_VSX, 0, 16); 2287 op->element_size = 4; 2288 break; 2289 2290 case 909: /* stxsibx */ 2291 op->reg = rd | ((instr & 1) << 5); 2292 op->type = MKOP(STORE_VSX, 0, 1); 2293 op->element_size = 8; 2294 op->vsx_flags = VSX_CHECK_VEC; 2295 break; 2296 2297 case 940: /* stxvh8x */ 2298 op->reg = rd | ((instr & 1) << 5); 2299 op->type = MKOP(STORE_VSX, 0, 16); 2300 op->element_size = 2; 2301 op->vsx_flags = VSX_CHECK_VEC; 2302 break; 2303 2304 case 941: /* stxsihx */ 2305 op->reg = rd | ((instr & 1) << 5); 2306 op->type = MKOP(STORE_VSX, 0, 2); 2307 op->element_size = 8; 2308 op->vsx_flags = VSX_CHECK_VEC; 2309 break; 2310 2311 case 972: /* stxvd2x */ 2312 op->reg = rd | ((instr & 1) << 5); 2313 op->type = MKOP(STORE_VSX, 0, 16); 2314 op->element_size = 8; 2315 break; 2316 2317 case 1004: /* stxvb16x */ 2318 op->reg = rd | ((instr & 1) << 5); 2319 op->type = MKOP(STORE_VSX, 0, 16); 2320 op->element_size = 1; 2321 op->vsx_flags = VSX_CHECK_VEC; 2322 break; 2323 2324 #endif /* CONFIG_VSX */ 2325 } 2326 break; 2327 2328 case 32: /* lwz */ 2329 case 33: /* lwzu */ 2330 op->type = MKOP(LOAD, u, 4); 2331 op->ea = dform_ea(instr, regs); 2332 break; 2333 2334 case 34: /* lbz */ 2335 case 35: /* lbzu */ 2336 op->type = MKOP(LOAD, u, 1); 2337 op->ea = dform_ea(instr, regs); 2338 break; 2339 2340 case 36: /* stw */ 2341 case 37: /* stwu */ 2342 op->type = MKOP(STORE, u, 4); 2343 op->ea = dform_ea(instr, regs); 2344 break; 2345 2346 case 38: /* stb */ 2347 case 39: /* stbu */ 2348 op->type = MKOP(STORE, u, 1); 2349 op->ea = dform_ea(instr, regs); 2350 break; 2351 2352 case 40: /* lhz */ 2353 case 41: /* lhzu */ 2354 op->type = MKOP(LOAD, u, 2); 2355 op->ea = dform_ea(instr, regs); 2356 break; 2357 2358 case 42: /* lha */ 2359 case 43: /* lhau */ 2360 op->type = MKOP(LOAD, SIGNEXT | u, 2); 2361 op->ea = dform_ea(instr, regs); 2362 break; 2363 2364 case 44: /* sth */ 2365 case 45: /* sthu */ 2366 op->type = MKOP(STORE, u, 2); 2367 op->ea = dform_ea(instr, regs); 2368 break; 2369 2370 case 46: /* lmw */ 2371 if (ra >= rd) 2372 break; /* invalid form, ra in range to load */ 2373 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd)); 2374 op->ea = dform_ea(instr, regs); 2375 break; 2376 2377 case 47: /* stmw */ 2378 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd)); 2379 op->ea = dform_ea(instr, regs); 2380 break; 2381 2382 #ifdef CONFIG_PPC_FPU 2383 case 48: /* lfs */ 2384 case 49: /* lfsu */ 2385 op->type = MKOP(LOAD_FP, u | FPCONV, 4); 2386 op->ea = dform_ea(instr, regs); 2387 break; 2388 2389 case 50: /* lfd */ 2390 case 51: /* lfdu */ 2391 op->type = MKOP(LOAD_FP, u, 8); 2392 op->ea = dform_ea(instr, regs); 2393 break; 2394 2395 case 52: /* stfs */ 2396 case 53: /* stfsu */ 2397 op->type = MKOP(STORE_FP, u | FPCONV, 4); 2398 op->ea = dform_ea(instr, regs); 2399 break; 2400 2401 case 54: /* stfd */ 2402 case 55: /* stfdu */ 2403 op->type = MKOP(STORE_FP, u, 8); 2404 op->ea = dform_ea(instr, regs); 2405 break; 2406 #endif 2407 2408 #ifdef __powerpc64__ 2409 case 56: /* lq */ 2410 if (!((rd & 1) || (rd == ra))) 2411 op->type = MKOP(LOAD, 0, 16); 2412 op->ea = dqform_ea(instr, regs); 2413 break; 2414 #endif 2415 2416 #ifdef CONFIG_VSX 2417 case 57: /* lfdp, lxsd, lxssp */ 2418 op->ea = dsform_ea(instr, regs); 2419 switch (instr & 3) { 2420 case 0: /* lfdp */ 2421 if (rd & 1) 2422 break; /* reg must be even */ 2423 op->type = MKOP(LOAD_FP, 0, 16); 2424 break; 2425 case 2: /* lxsd */ 2426 op->reg = rd + 32; 2427 op->type = MKOP(LOAD_VSX, 0, 8); 2428 op->element_size = 8; 2429 op->vsx_flags = VSX_CHECK_VEC; 2430 break; 2431 case 3: /* lxssp */ 2432 op->reg = rd + 32; 2433 op->type = MKOP(LOAD_VSX, 0, 4); 2434 op->element_size = 8; 2435 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 2436 break; 2437 } 2438 break; 2439 #endif /* CONFIG_VSX */ 2440 2441 #ifdef __powerpc64__ 2442 case 58: /* ld[u], lwa */ 2443 op->ea = dsform_ea(instr, regs); 2444 switch (instr & 3) { 2445 case 0: /* ld */ 2446 op->type = MKOP(LOAD, 0, 8); 2447 break; 2448 case 1: /* ldu */ 2449 op->type = MKOP(LOAD, UPDATE, 8); 2450 break; 2451 case 2: /* lwa */ 2452 op->type = MKOP(LOAD, SIGNEXT, 4); 2453 break; 2454 } 2455 break; 2456 #endif 2457 2458 #ifdef CONFIG_VSX 2459 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */ 2460 switch (instr & 7) { 2461 case 0: /* stfdp with LSB of DS field = 0 */ 2462 case 4: /* stfdp with LSB of DS field = 1 */ 2463 op->ea = dsform_ea(instr, regs); 2464 op->type = MKOP(STORE_FP, 0, 16); 2465 break; 2466 2467 case 1: /* lxv */ 2468 op->ea = dqform_ea(instr, regs); 2469 if (instr & 8) 2470 op->reg = rd + 32; 2471 op->type = MKOP(LOAD_VSX, 0, 16); 2472 op->element_size = 16; 2473 op->vsx_flags = VSX_CHECK_VEC; 2474 break; 2475 2476 case 2: /* stxsd with LSB of DS field = 0 */ 2477 case 6: /* stxsd with LSB of DS field = 1 */ 2478 op->ea = dsform_ea(instr, regs); 2479 op->reg = rd + 32; 2480 op->type = MKOP(STORE_VSX, 0, 8); 2481 op->element_size = 8; 2482 op->vsx_flags = VSX_CHECK_VEC; 2483 break; 2484 2485 case 3: /* stxssp with LSB of DS field = 0 */ 2486 case 7: /* stxssp with LSB of DS field = 1 */ 2487 op->ea = dsform_ea(instr, regs); 2488 op->reg = rd + 32; 2489 op->type = MKOP(STORE_VSX, 0, 4); 2490 op->element_size = 8; 2491 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 2492 break; 2493 2494 case 5: /* stxv */ 2495 op->ea = dqform_ea(instr, regs); 2496 if (instr & 8) 2497 op->reg = rd + 32; 2498 op->type = MKOP(STORE_VSX, 0, 16); 2499 op->element_size = 16; 2500 op->vsx_flags = VSX_CHECK_VEC; 2501 break; 2502 } 2503 break; 2504 #endif /* CONFIG_VSX */ 2505 2506 #ifdef __powerpc64__ 2507 case 62: /* std[u] */ 2508 op->ea = dsform_ea(instr, regs); 2509 switch (instr & 3) { 2510 case 0: /* std */ 2511 op->type = MKOP(STORE, 0, 8); 2512 break; 2513 case 1: /* stdu */ 2514 op->type = MKOP(STORE, UPDATE, 8); 2515 break; 2516 case 2: /* stq */ 2517 if (!(rd & 1)) 2518 op->type = MKOP(STORE, 0, 16); 2519 break; 2520 } 2521 break; 2522 #endif /* __powerpc64__ */ 2523 2524 } 2525 return 0; 2526 2527 logical_done: 2528 if (instr & 1) 2529 set_cr0(regs, op, ra); 2530 logical_done_nocc: 2531 op->reg = ra; 2532 op->type |= SETREG; 2533 return 1; 2534 2535 arith_done: 2536 if (instr & 1) 2537 set_cr0(regs, op, rd); 2538 compute_done: 2539 op->reg = rd; 2540 op->type |= SETREG; 2541 return 1; 2542 2543 priv: 2544 op->type = INTERRUPT | 0x700; 2545 op->val = SRR1_PROGPRIV; 2546 return 0; 2547 2548 trap: 2549 op->type = INTERRUPT | 0x700; 2550 op->val = SRR1_PROGTRAP; 2551 return 0; 2552 } 2553 EXPORT_SYMBOL_GPL(analyse_instr); 2554 NOKPROBE_SYMBOL(analyse_instr); 2555 2556 /* 2557 * For PPC32 we always use stwu with r1 to change the stack pointer. 2558 * So this emulated store may corrupt the exception frame, now we 2559 * have to provide the exception frame trampoline, which is pushed 2560 * below the kprobed function stack. So we only update gpr[1] but 2561 * don't emulate the real store operation. We will do real store 2562 * operation safely in exception return code by checking this flag. 2563 */ 2564 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs) 2565 { 2566 #ifdef CONFIG_PPC32 2567 /* 2568 * Check if we will touch kernel stack overflow 2569 */ 2570 if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) { 2571 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n"); 2572 return -EINVAL; 2573 } 2574 #endif /* CONFIG_PPC32 */ 2575 /* 2576 * Check if we already set since that means we'll 2577 * lose the previous value. 2578 */ 2579 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE)); 2580 set_thread_flag(TIF_EMULATE_STACK_STORE); 2581 return 0; 2582 } 2583 2584 static nokprobe_inline void do_signext(unsigned long *valp, int size) 2585 { 2586 switch (size) { 2587 case 2: 2588 *valp = (signed short) *valp; 2589 break; 2590 case 4: 2591 *valp = (signed int) *valp; 2592 break; 2593 } 2594 } 2595 2596 static nokprobe_inline void do_byterev(unsigned long *valp, int size) 2597 { 2598 switch (size) { 2599 case 2: 2600 *valp = byterev_2(*valp); 2601 break; 2602 case 4: 2603 *valp = byterev_4(*valp); 2604 break; 2605 #ifdef __powerpc64__ 2606 case 8: 2607 *valp = byterev_8(*valp); 2608 break; 2609 #endif 2610 } 2611 } 2612 2613 /* 2614 * Emulate an instruction that can be executed just by updating 2615 * fields in *regs. 2616 */ 2617 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op) 2618 { 2619 unsigned long next_pc; 2620 2621 next_pc = truncate_if_32bit(regs->msr, regs->nip + 4); 2622 switch (op->type & INSTR_TYPE_MASK) { 2623 case COMPUTE: 2624 if (op->type & SETREG) 2625 regs->gpr[op->reg] = op->val; 2626 if (op->type & SETCC) 2627 regs->ccr = op->ccval; 2628 if (op->type & SETXER) 2629 regs->xer = op->xerval; 2630 break; 2631 2632 case BRANCH: 2633 if (op->type & SETLK) 2634 regs->link = next_pc; 2635 if (op->type & BRTAKEN) 2636 next_pc = op->val; 2637 if (op->type & DECCTR) 2638 --regs->ctr; 2639 break; 2640 2641 case BARRIER: 2642 switch (op->type & BARRIER_MASK) { 2643 case BARRIER_SYNC: 2644 mb(); 2645 break; 2646 case BARRIER_ISYNC: 2647 isync(); 2648 break; 2649 case BARRIER_EIEIO: 2650 eieio(); 2651 break; 2652 case BARRIER_LWSYNC: 2653 asm volatile("lwsync" : : : "memory"); 2654 break; 2655 case BARRIER_PTESYNC: 2656 asm volatile("ptesync" : : : "memory"); 2657 break; 2658 } 2659 break; 2660 2661 case MFSPR: 2662 switch (op->spr) { 2663 case SPRN_XER: 2664 regs->gpr[op->reg] = regs->xer & 0xffffffffUL; 2665 break; 2666 case SPRN_LR: 2667 regs->gpr[op->reg] = regs->link; 2668 break; 2669 case SPRN_CTR: 2670 regs->gpr[op->reg] = regs->ctr; 2671 break; 2672 default: 2673 WARN_ON_ONCE(1); 2674 } 2675 break; 2676 2677 case MTSPR: 2678 switch (op->spr) { 2679 case SPRN_XER: 2680 regs->xer = op->val & 0xffffffffUL; 2681 break; 2682 case SPRN_LR: 2683 regs->link = op->val; 2684 break; 2685 case SPRN_CTR: 2686 regs->ctr = op->val; 2687 break; 2688 default: 2689 WARN_ON_ONCE(1); 2690 } 2691 break; 2692 2693 default: 2694 WARN_ON_ONCE(1); 2695 } 2696 regs->nip = next_pc; 2697 } 2698 2699 /* 2700 * Emulate a previously-analysed load or store instruction. 2701 * Return values are: 2702 * 0 = instruction emulated successfully 2703 * -EFAULT = address out of range or access faulted (regs->dar 2704 * contains the faulting address) 2705 * -EACCES = misaligned access, instruction requires alignment 2706 * -EINVAL = unknown operation in *op 2707 */ 2708 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op) 2709 { 2710 int err, size, type; 2711 int i, rd, nb; 2712 unsigned int cr; 2713 unsigned long val; 2714 unsigned long ea; 2715 bool cross_endian; 2716 2717 err = 0; 2718 size = GETSIZE(op->type); 2719 type = op->type & INSTR_TYPE_MASK; 2720 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE); 2721 ea = truncate_if_32bit(regs->msr, op->ea); 2722 2723 switch (type) { 2724 case LARX: 2725 if (ea & (size - 1)) 2726 return -EACCES; /* can't handle misaligned */ 2727 if (!address_ok(regs, ea, size)) 2728 return -EFAULT; 2729 err = 0; 2730 val = 0; 2731 switch (size) { 2732 #ifdef __powerpc64__ 2733 case 1: 2734 __get_user_asmx(val, ea, err, "lbarx"); 2735 break; 2736 case 2: 2737 __get_user_asmx(val, ea, err, "lharx"); 2738 break; 2739 #endif 2740 case 4: 2741 __get_user_asmx(val, ea, err, "lwarx"); 2742 break; 2743 #ifdef __powerpc64__ 2744 case 8: 2745 __get_user_asmx(val, ea, err, "ldarx"); 2746 break; 2747 case 16: 2748 err = do_lqarx(ea, ®s->gpr[op->reg]); 2749 break; 2750 #endif 2751 default: 2752 return -EINVAL; 2753 } 2754 if (err) { 2755 regs->dar = ea; 2756 break; 2757 } 2758 if (size < 16) 2759 regs->gpr[op->reg] = val; 2760 break; 2761 2762 case STCX: 2763 if (ea & (size - 1)) 2764 return -EACCES; /* can't handle misaligned */ 2765 if (!address_ok(regs, ea, size)) 2766 return -EFAULT; 2767 err = 0; 2768 switch (size) { 2769 #ifdef __powerpc64__ 2770 case 1: 2771 __put_user_asmx(op->val, ea, err, "stbcx.", cr); 2772 break; 2773 case 2: 2774 __put_user_asmx(op->val, ea, err, "stbcx.", cr); 2775 break; 2776 #endif 2777 case 4: 2778 __put_user_asmx(op->val, ea, err, "stwcx.", cr); 2779 break; 2780 #ifdef __powerpc64__ 2781 case 8: 2782 __put_user_asmx(op->val, ea, err, "stdcx.", cr); 2783 break; 2784 case 16: 2785 err = do_stqcx(ea, regs->gpr[op->reg], 2786 regs->gpr[op->reg + 1], &cr); 2787 break; 2788 #endif 2789 default: 2790 return -EINVAL; 2791 } 2792 if (!err) 2793 regs->ccr = (regs->ccr & 0x0fffffff) | 2794 (cr & 0xe0000000) | 2795 ((regs->xer >> 3) & 0x10000000); 2796 else 2797 regs->dar = ea; 2798 break; 2799 2800 case LOAD: 2801 #ifdef __powerpc64__ 2802 if (size == 16) { 2803 err = emulate_lq(regs, ea, op->reg, cross_endian); 2804 break; 2805 } 2806 #endif 2807 err = read_mem(®s->gpr[op->reg], ea, size, regs); 2808 if (!err) { 2809 if (op->type & SIGNEXT) 2810 do_signext(®s->gpr[op->reg], size); 2811 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV)) 2812 do_byterev(®s->gpr[op->reg], size); 2813 } 2814 break; 2815 2816 #ifdef CONFIG_PPC_FPU 2817 case LOAD_FP: 2818 /* 2819 * If the instruction is in userspace, we can emulate it even 2820 * if the VMX state is not live, because we have the state 2821 * stored in the thread_struct. If the instruction is in 2822 * the kernel, we must not touch the state in the thread_struct. 2823 */ 2824 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) 2825 return 0; 2826 err = do_fp_load(op, ea, regs, cross_endian); 2827 break; 2828 #endif 2829 #ifdef CONFIG_ALTIVEC 2830 case LOAD_VMX: 2831 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) 2832 return 0; 2833 err = do_vec_load(op->reg, ea, size, regs, cross_endian); 2834 break; 2835 #endif 2836 #ifdef CONFIG_VSX 2837 case LOAD_VSX: { 2838 unsigned long msrbit = MSR_VSX; 2839 2840 /* 2841 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX 2842 * when the target of the instruction is a vector register. 2843 */ 2844 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) 2845 msrbit = MSR_VEC; 2846 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) 2847 return 0; 2848 err = do_vsx_load(op, ea, regs, cross_endian); 2849 break; 2850 } 2851 #endif 2852 case LOAD_MULTI: 2853 if (!address_ok(regs, ea, size)) 2854 return -EFAULT; 2855 rd = op->reg; 2856 for (i = 0; i < size; i += 4) { 2857 unsigned int v32 = 0; 2858 2859 nb = size - i; 2860 if (nb > 4) 2861 nb = 4; 2862 err = copy_mem_in((u8 *) &v32, ea, nb, regs); 2863 if (err) 2864 break; 2865 if (unlikely(cross_endian)) 2866 v32 = byterev_4(v32); 2867 regs->gpr[rd] = v32; 2868 ea += 4; 2869 /* reg number wraps from 31 to 0 for lsw[ix] */ 2870 rd = (rd + 1) & 0x1f; 2871 } 2872 break; 2873 2874 case STORE: 2875 #ifdef __powerpc64__ 2876 if (size == 16) { 2877 err = emulate_stq(regs, ea, op->reg, cross_endian); 2878 break; 2879 } 2880 #endif 2881 if ((op->type & UPDATE) && size == sizeof(long) && 2882 op->reg == 1 && op->update_reg == 1 && 2883 !(regs->msr & MSR_PR) && 2884 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) { 2885 err = handle_stack_update(ea, regs); 2886 break; 2887 } 2888 if (unlikely(cross_endian)) 2889 do_byterev(&op->val, size); 2890 err = write_mem(op->val, ea, size, regs); 2891 break; 2892 2893 #ifdef CONFIG_PPC_FPU 2894 case STORE_FP: 2895 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) 2896 return 0; 2897 err = do_fp_store(op, ea, regs, cross_endian); 2898 break; 2899 #endif 2900 #ifdef CONFIG_ALTIVEC 2901 case STORE_VMX: 2902 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) 2903 return 0; 2904 err = do_vec_store(op->reg, ea, size, regs, cross_endian); 2905 break; 2906 #endif 2907 #ifdef CONFIG_VSX 2908 case STORE_VSX: { 2909 unsigned long msrbit = MSR_VSX; 2910 2911 /* 2912 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX 2913 * when the target of the instruction is a vector register. 2914 */ 2915 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) 2916 msrbit = MSR_VEC; 2917 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) 2918 return 0; 2919 err = do_vsx_store(op, ea, regs, cross_endian); 2920 break; 2921 } 2922 #endif 2923 case STORE_MULTI: 2924 if (!address_ok(regs, ea, size)) 2925 return -EFAULT; 2926 rd = op->reg; 2927 for (i = 0; i < size; i += 4) { 2928 unsigned int v32 = regs->gpr[rd]; 2929 2930 nb = size - i; 2931 if (nb > 4) 2932 nb = 4; 2933 if (unlikely(cross_endian)) 2934 v32 = byterev_4(v32); 2935 err = copy_mem_out((u8 *) &v32, ea, nb, regs); 2936 if (err) 2937 break; 2938 ea += 4; 2939 /* reg number wraps from 31 to 0 for stsw[ix] */ 2940 rd = (rd + 1) & 0x1f; 2941 } 2942 break; 2943 2944 default: 2945 return -EINVAL; 2946 } 2947 2948 if (err) 2949 return err; 2950 2951 if (op->type & UPDATE) 2952 regs->gpr[op->update_reg] = op->ea; 2953 2954 return 0; 2955 } 2956 NOKPROBE_SYMBOL(emulate_loadstore); 2957 2958 /* 2959 * Emulate instructions that cause a transfer of control, 2960 * loads and stores, and a few other instructions. 2961 * Returns 1 if the step was emulated, 0 if not, 2962 * or -1 if the instruction is one that should not be stepped, 2963 * such as an rfid, or a mtmsrd that would clear MSR_RI. 2964 */ 2965 int emulate_step(struct pt_regs *regs, unsigned int instr) 2966 { 2967 struct instruction_op op; 2968 int r, err, type; 2969 unsigned long val; 2970 unsigned long ea; 2971 2972 r = analyse_instr(&op, regs, instr); 2973 if (r < 0) 2974 return r; 2975 if (r > 0) { 2976 emulate_update_regs(regs, &op); 2977 return 1; 2978 } 2979 2980 err = 0; 2981 type = op.type & INSTR_TYPE_MASK; 2982 2983 if (OP_IS_LOAD_STORE(type)) { 2984 err = emulate_loadstore(regs, &op); 2985 if (err) 2986 return 0; 2987 goto instr_done; 2988 } 2989 2990 switch (type) { 2991 case CACHEOP: 2992 ea = truncate_if_32bit(regs->msr, op.ea); 2993 if (!address_ok(regs, ea, 8)) 2994 return 0; 2995 switch (op.type & CACHEOP_MASK) { 2996 case DCBST: 2997 __cacheop_user_asmx(ea, err, "dcbst"); 2998 break; 2999 case DCBF: 3000 __cacheop_user_asmx(ea, err, "dcbf"); 3001 break; 3002 case DCBTST: 3003 if (op.reg == 0) 3004 prefetchw((void *) ea); 3005 break; 3006 case DCBT: 3007 if (op.reg == 0) 3008 prefetch((void *) ea); 3009 break; 3010 case ICBI: 3011 __cacheop_user_asmx(ea, err, "icbi"); 3012 break; 3013 case DCBZ: 3014 err = emulate_dcbz(ea, regs); 3015 break; 3016 } 3017 if (err) { 3018 regs->dar = ea; 3019 return 0; 3020 } 3021 goto instr_done; 3022 3023 case MFMSR: 3024 regs->gpr[op.reg] = regs->msr & MSR_MASK; 3025 goto instr_done; 3026 3027 case MTMSR: 3028 val = regs->gpr[op.reg]; 3029 if ((val & MSR_RI) == 0) 3030 /* can't step mtmsr[d] that would clear MSR_RI */ 3031 return -1; 3032 /* here op.val is the mask of bits to change */ 3033 regs->msr = (regs->msr & ~op.val) | (val & op.val); 3034 goto instr_done; 3035 3036 #ifdef CONFIG_PPC64 3037 case SYSCALL: /* sc */ 3038 /* 3039 * N.B. this uses knowledge about how the syscall 3040 * entry code works. If that is changed, this will 3041 * need to be changed also. 3042 */ 3043 if (regs->gpr[0] == 0x1ebe && 3044 cpu_has_feature(CPU_FTR_REAL_LE)) { 3045 regs->msr ^= MSR_LE; 3046 goto instr_done; 3047 } 3048 regs->gpr[9] = regs->gpr[13]; 3049 regs->gpr[10] = MSR_KERNEL; 3050 regs->gpr[11] = regs->nip + 4; 3051 regs->gpr[12] = regs->msr & MSR_MASK; 3052 regs->gpr[13] = (unsigned long) get_paca(); 3053 regs->nip = (unsigned long) &system_call_common; 3054 regs->msr = MSR_KERNEL; 3055 return 1; 3056 3057 case RFI: 3058 return -1; 3059 #endif 3060 } 3061 return 0; 3062 3063 instr_done: 3064 regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4); 3065 return 1; 3066 } 3067 NOKPROBE_SYMBOL(emulate_step); 3068