1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Single-step support. 4 * 5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM 6 */ 7 #include <linux/kernel.h> 8 #include <linux/kprobes.h> 9 #include <linux/ptrace.h> 10 #include <linux/prefetch.h> 11 #include <asm/sstep.h> 12 #include <asm/processor.h> 13 #include <linux/uaccess.h> 14 #include <asm/cpu_has_feature.h> 15 #include <asm/cputable.h> 16 #include <asm/disassemble.h> 17 18 #ifdef CONFIG_PPC64 19 /* Bits in SRR1 that are copied from MSR */ 20 #define MSR_MASK 0xffffffff87c0ffffUL 21 #else 22 #define MSR_MASK 0x87c0ffff 23 #endif 24 25 /* Bits in XER */ 26 #define XER_SO 0x80000000U 27 #define XER_OV 0x40000000U 28 #define XER_CA 0x20000000U 29 #define XER_OV32 0x00080000U 30 #define XER_CA32 0x00040000U 31 32 #ifdef CONFIG_VSX 33 #define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe)) 34 #endif 35 36 #ifdef CONFIG_PPC_FPU 37 /* 38 * Functions in ldstfp.S 39 */ 40 extern void get_fpr(int rn, double *p); 41 extern void put_fpr(int rn, const double *p); 42 extern void get_vr(int rn, __vector128 *p); 43 extern void put_vr(int rn, __vector128 *p); 44 extern void load_vsrn(int vsr, const void *p); 45 extern void store_vsrn(int vsr, void *p); 46 extern void conv_sp_to_dp(const float *sp, double *dp); 47 extern void conv_dp_to_sp(const double *dp, float *sp); 48 #endif 49 50 #ifdef __powerpc64__ 51 /* 52 * Functions in quad.S 53 */ 54 extern int do_lq(unsigned long ea, unsigned long *regs); 55 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1); 56 extern int do_lqarx(unsigned long ea, unsigned long *regs); 57 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1, 58 unsigned int *crp); 59 #endif 60 61 #ifdef __LITTLE_ENDIAN__ 62 #define IS_LE 1 63 #define IS_BE 0 64 #else 65 #define IS_LE 0 66 #define IS_BE 1 67 #endif 68 69 /* 70 * Emulate the truncation of 64 bit values in 32-bit mode. 71 */ 72 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr, 73 unsigned long val) 74 { 75 if ((msr & MSR_64BIT) == 0) 76 val &= 0xffffffffUL; 77 return val; 78 } 79 80 /* 81 * Determine whether a conditional branch instruction would branch. 82 */ 83 static nokprobe_inline int branch_taken(unsigned int instr, 84 const struct pt_regs *regs, 85 struct instruction_op *op) 86 { 87 unsigned int bo = (instr >> 21) & 0x1f; 88 unsigned int bi; 89 90 if ((bo & 4) == 0) { 91 /* decrement counter */ 92 op->type |= DECCTR; 93 if (((bo >> 1) & 1) ^ (regs->ctr == 1)) 94 return 0; 95 } 96 if ((bo & 0x10) == 0) { 97 /* check bit from CR */ 98 bi = (instr >> 16) & 0x1f; 99 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1)) 100 return 0; 101 } 102 return 1; 103 } 104 105 static nokprobe_inline long address_ok(struct pt_regs *regs, 106 unsigned long ea, int nb) 107 { 108 if (!user_mode(regs)) 109 return 1; 110 if (access_ok((void __user *)ea, nb)) 111 return 1; 112 if (access_ok((void __user *)ea, 1)) 113 /* Access overlaps the end of the user region */ 114 regs->dar = TASK_SIZE_MAX - 1; 115 else 116 regs->dar = ea; 117 return 0; 118 } 119 120 /* 121 * Calculate effective address for a D-form instruction 122 */ 123 static nokprobe_inline unsigned long dform_ea(unsigned int instr, 124 const struct pt_regs *regs) 125 { 126 int ra; 127 unsigned long ea; 128 129 ra = (instr >> 16) & 0x1f; 130 ea = (signed short) instr; /* sign-extend */ 131 if (ra) 132 ea += regs->gpr[ra]; 133 134 return ea; 135 } 136 137 #ifdef __powerpc64__ 138 /* 139 * Calculate effective address for a DS-form instruction 140 */ 141 static nokprobe_inline unsigned long dsform_ea(unsigned int instr, 142 const struct pt_regs *regs) 143 { 144 int ra; 145 unsigned long ea; 146 147 ra = (instr >> 16) & 0x1f; 148 ea = (signed short) (instr & ~3); /* sign-extend */ 149 if (ra) 150 ea += regs->gpr[ra]; 151 152 return ea; 153 } 154 155 /* 156 * Calculate effective address for a DQ-form instruction 157 */ 158 static nokprobe_inline unsigned long dqform_ea(unsigned int instr, 159 const struct pt_regs *regs) 160 { 161 int ra; 162 unsigned long ea; 163 164 ra = (instr >> 16) & 0x1f; 165 ea = (signed short) (instr & ~0xf); /* sign-extend */ 166 if (ra) 167 ea += regs->gpr[ra]; 168 169 return ea; 170 } 171 #endif /* __powerpc64 */ 172 173 /* 174 * Calculate effective address for an X-form instruction 175 */ 176 static nokprobe_inline unsigned long xform_ea(unsigned int instr, 177 const struct pt_regs *regs) 178 { 179 int ra, rb; 180 unsigned long ea; 181 182 ra = (instr >> 16) & 0x1f; 183 rb = (instr >> 11) & 0x1f; 184 ea = regs->gpr[rb]; 185 if (ra) 186 ea += regs->gpr[ra]; 187 188 return ea; 189 } 190 191 /* 192 * Calculate effective address for a MLS:D-form / 8LS:D-form 193 * prefixed instruction 194 */ 195 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr, 196 unsigned int suffix, 197 const struct pt_regs *regs) 198 { 199 int ra, prefix_r; 200 unsigned int dd; 201 unsigned long ea, d0, d1, d; 202 203 prefix_r = GET_PREFIX_R(instr); 204 ra = GET_PREFIX_RA(suffix); 205 206 d0 = instr & 0x3ffff; 207 d1 = suffix & 0xffff; 208 d = (d0 << 16) | d1; 209 210 /* 211 * sign extend a 34 bit number 212 */ 213 dd = (unsigned int)(d >> 2); 214 ea = (signed int)dd; 215 ea = (ea << 2) | (d & 0x3); 216 217 if (!prefix_r && ra) 218 ea += regs->gpr[ra]; 219 else if (!prefix_r && !ra) 220 ; /* Leave ea as is */ 221 else if (prefix_r) 222 ea += regs->nip; 223 224 /* 225 * (prefix_r && ra) is an invalid form. Should already be 226 * checked for by caller! 227 */ 228 229 return ea; 230 } 231 232 /* 233 * Return the largest power of 2, not greater than sizeof(unsigned long), 234 * such that x is a multiple of it. 235 */ 236 static nokprobe_inline unsigned long max_align(unsigned long x) 237 { 238 x |= sizeof(unsigned long); 239 return x & -x; /* isolates rightmost bit */ 240 } 241 242 static nokprobe_inline unsigned long byterev_2(unsigned long x) 243 { 244 return ((x >> 8) & 0xff) | ((x & 0xff) << 8); 245 } 246 247 static nokprobe_inline unsigned long byterev_4(unsigned long x) 248 { 249 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) | 250 ((x & 0xff00) << 8) | ((x & 0xff) << 24); 251 } 252 253 #ifdef __powerpc64__ 254 static nokprobe_inline unsigned long byterev_8(unsigned long x) 255 { 256 return (byterev_4(x) << 32) | byterev_4(x >> 32); 257 } 258 #endif 259 260 static nokprobe_inline void do_byte_reverse(void *ptr, int nb) 261 { 262 switch (nb) { 263 case 2: 264 *(u16 *)ptr = byterev_2(*(u16 *)ptr); 265 break; 266 case 4: 267 *(u32 *)ptr = byterev_4(*(u32 *)ptr); 268 break; 269 #ifdef __powerpc64__ 270 case 8: 271 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr); 272 break; 273 case 16: { 274 unsigned long *up = (unsigned long *)ptr; 275 unsigned long tmp; 276 tmp = byterev_8(up[0]); 277 up[0] = byterev_8(up[1]); 278 up[1] = tmp; 279 break; 280 } 281 case 32: { 282 unsigned long *up = (unsigned long *)ptr; 283 unsigned long tmp; 284 285 tmp = byterev_8(up[0]); 286 up[0] = byterev_8(up[3]); 287 up[3] = tmp; 288 tmp = byterev_8(up[2]); 289 up[2] = byterev_8(up[1]); 290 up[1] = tmp; 291 break; 292 } 293 294 #endif 295 default: 296 WARN_ON_ONCE(1); 297 } 298 } 299 300 static __always_inline int 301 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) 302 { 303 unsigned long x = 0; 304 305 switch (nb) { 306 case 1: 307 unsafe_get_user(x, (unsigned char __user *)ea, Efault); 308 break; 309 case 2: 310 unsafe_get_user(x, (unsigned short __user *)ea, Efault); 311 break; 312 case 4: 313 unsafe_get_user(x, (unsigned int __user *)ea, Efault); 314 break; 315 #ifdef __powerpc64__ 316 case 8: 317 unsafe_get_user(x, (unsigned long __user *)ea, Efault); 318 break; 319 #endif 320 } 321 *dest = x; 322 return 0; 323 324 Efault: 325 regs->dar = ea; 326 return -EFAULT; 327 } 328 329 static nokprobe_inline int 330 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) 331 { 332 int err; 333 334 if (is_kernel_addr(ea)) 335 return __read_mem_aligned(dest, ea, nb, regs); 336 337 if (user_read_access_begin((void __user *)ea, nb)) { 338 err = __read_mem_aligned(dest, ea, nb, regs); 339 user_read_access_end(); 340 } else { 341 err = -EFAULT; 342 regs->dar = ea; 343 } 344 345 return err; 346 } 347 348 /* 349 * Copy from userspace to a buffer, using the largest possible 350 * aligned accesses, up to sizeof(long). 351 */ 352 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 353 { 354 int c; 355 356 for (; nb > 0; nb -= c) { 357 c = max_align(ea); 358 if (c > nb) 359 c = max_align(nb); 360 switch (c) { 361 case 1: 362 unsafe_get_user(*dest, (u8 __user *)ea, Efault); 363 break; 364 case 2: 365 unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault); 366 break; 367 case 4: 368 unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault); 369 break; 370 #ifdef __powerpc64__ 371 case 8: 372 unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault); 373 break; 374 #endif 375 } 376 dest += c; 377 ea += c; 378 } 379 return 0; 380 381 Efault: 382 regs->dar = ea; 383 return -EFAULT; 384 } 385 386 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 387 { 388 int err; 389 390 if (is_kernel_addr(ea)) 391 return __copy_mem_in(dest, ea, nb, regs); 392 393 if (user_read_access_begin((void __user *)ea, nb)) { 394 err = __copy_mem_in(dest, ea, nb, regs); 395 user_read_access_end(); 396 } else { 397 err = -EFAULT; 398 regs->dar = ea; 399 } 400 401 return err; 402 } 403 404 static nokprobe_inline int read_mem_unaligned(unsigned long *dest, 405 unsigned long ea, int nb, 406 struct pt_regs *regs) 407 { 408 union { 409 unsigned long ul; 410 u8 b[sizeof(unsigned long)]; 411 } u; 412 int i; 413 int err; 414 415 u.ul = 0; 416 i = IS_BE ? sizeof(unsigned long) - nb : 0; 417 err = copy_mem_in(&u.b[i], ea, nb, regs); 418 if (!err) 419 *dest = u.ul; 420 return err; 421 } 422 423 /* 424 * Read memory at address ea for nb bytes, return 0 for success 425 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. 426 * If nb < sizeof(long), the result is right-justified on BE systems. 427 */ 428 static int read_mem(unsigned long *dest, unsigned long ea, int nb, 429 struct pt_regs *regs) 430 { 431 if (!address_ok(regs, ea, nb)) 432 return -EFAULT; 433 if ((ea & (nb - 1)) == 0) 434 return read_mem_aligned(dest, ea, nb, regs); 435 return read_mem_unaligned(dest, ea, nb, regs); 436 } 437 NOKPROBE_SYMBOL(read_mem); 438 439 static __always_inline int 440 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) 441 { 442 switch (nb) { 443 case 1: 444 unsafe_put_user(val, (unsigned char __user *)ea, Efault); 445 break; 446 case 2: 447 unsafe_put_user(val, (unsigned short __user *)ea, Efault); 448 break; 449 case 4: 450 unsafe_put_user(val, (unsigned int __user *)ea, Efault); 451 break; 452 #ifdef __powerpc64__ 453 case 8: 454 unsafe_put_user(val, (unsigned long __user *)ea, Efault); 455 break; 456 #endif 457 } 458 return 0; 459 460 Efault: 461 regs->dar = ea; 462 return -EFAULT; 463 } 464 465 static nokprobe_inline int 466 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) 467 { 468 int err; 469 470 if (is_kernel_addr(ea)) 471 return __write_mem_aligned(val, ea, nb, regs); 472 473 if (user_write_access_begin((void __user *)ea, nb)) { 474 err = __write_mem_aligned(val, ea, nb, regs); 475 user_write_access_end(); 476 } else { 477 err = -EFAULT; 478 regs->dar = ea; 479 } 480 481 return err; 482 } 483 484 /* 485 * Copy from a buffer to userspace, using the largest possible 486 * aligned accesses, up to sizeof(long). 487 */ 488 static __always_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 489 { 490 int c; 491 492 for (; nb > 0; nb -= c) { 493 c = max_align(ea); 494 if (c > nb) 495 c = max_align(nb); 496 switch (c) { 497 case 1: 498 unsafe_put_user(*dest, (u8 __user *)ea, Efault); 499 break; 500 case 2: 501 unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault); 502 break; 503 case 4: 504 unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault); 505 break; 506 #ifdef __powerpc64__ 507 case 8: 508 unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault); 509 break; 510 #endif 511 } 512 dest += c; 513 ea += c; 514 } 515 return 0; 516 517 Efault: 518 regs->dar = ea; 519 return -EFAULT; 520 } 521 522 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) 523 { 524 int err; 525 526 if (is_kernel_addr(ea)) 527 return __copy_mem_out(dest, ea, nb, regs); 528 529 if (user_write_access_begin((void __user *)ea, nb)) { 530 err = __copy_mem_out(dest, ea, nb, regs); 531 user_write_access_end(); 532 } else { 533 err = -EFAULT; 534 regs->dar = ea; 535 } 536 537 return err; 538 } 539 540 static nokprobe_inline int write_mem_unaligned(unsigned long val, 541 unsigned long ea, int nb, 542 struct pt_regs *regs) 543 { 544 union { 545 unsigned long ul; 546 u8 b[sizeof(unsigned long)]; 547 } u; 548 int i; 549 550 u.ul = val; 551 i = IS_BE ? sizeof(unsigned long) - nb : 0; 552 return copy_mem_out(&u.b[i], ea, nb, regs); 553 } 554 555 /* 556 * Write memory at address ea for nb bytes, return 0 for success 557 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. 558 */ 559 static int write_mem(unsigned long val, unsigned long ea, int nb, 560 struct pt_regs *regs) 561 { 562 if (!address_ok(regs, ea, nb)) 563 return -EFAULT; 564 if ((ea & (nb - 1)) == 0) 565 return write_mem_aligned(val, ea, nb, regs); 566 return write_mem_unaligned(val, ea, nb, regs); 567 } 568 NOKPROBE_SYMBOL(write_mem); 569 570 #ifdef CONFIG_PPC_FPU 571 /* 572 * These access either the real FP register or the image in the 573 * thread_struct, depending on regs->msr & MSR_FP. 574 */ 575 static int do_fp_load(struct instruction_op *op, unsigned long ea, 576 struct pt_regs *regs, bool cross_endian) 577 { 578 int err, rn, nb; 579 union { 580 int i; 581 unsigned int u; 582 float f; 583 double d[2]; 584 unsigned long l[2]; 585 u8 b[2 * sizeof(double)]; 586 } u; 587 588 nb = GETSIZE(op->type); 589 if (nb > sizeof(u)) 590 return -EINVAL; 591 if (!address_ok(regs, ea, nb)) 592 return -EFAULT; 593 rn = op->reg; 594 err = copy_mem_in(u.b, ea, nb, regs); 595 if (err) 596 return err; 597 if (unlikely(cross_endian)) { 598 do_byte_reverse(u.b, min(nb, 8)); 599 if (nb == 16) 600 do_byte_reverse(&u.b[8], 8); 601 } 602 preempt_disable(); 603 if (nb == 4) { 604 if (op->type & FPCONV) 605 conv_sp_to_dp(&u.f, &u.d[0]); 606 else if (op->type & SIGNEXT) 607 u.l[0] = u.i; 608 else 609 u.l[0] = u.u; 610 } 611 if (regs->msr & MSR_FP) 612 put_fpr(rn, &u.d[0]); 613 else 614 current->thread.TS_FPR(rn) = u.l[0]; 615 if (nb == 16) { 616 /* lfdp */ 617 rn |= 1; 618 if (regs->msr & MSR_FP) 619 put_fpr(rn, &u.d[1]); 620 else 621 current->thread.TS_FPR(rn) = u.l[1]; 622 } 623 preempt_enable(); 624 return 0; 625 } 626 NOKPROBE_SYMBOL(do_fp_load); 627 628 static int do_fp_store(struct instruction_op *op, unsigned long ea, 629 struct pt_regs *regs, bool cross_endian) 630 { 631 int rn, nb; 632 union { 633 unsigned int u; 634 float f; 635 double d[2]; 636 unsigned long l[2]; 637 u8 b[2 * sizeof(double)]; 638 } u; 639 640 nb = GETSIZE(op->type); 641 if (nb > sizeof(u)) 642 return -EINVAL; 643 if (!address_ok(regs, ea, nb)) 644 return -EFAULT; 645 rn = op->reg; 646 preempt_disable(); 647 if (regs->msr & MSR_FP) 648 get_fpr(rn, &u.d[0]); 649 else 650 u.l[0] = current->thread.TS_FPR(rn); 651 if (nb == 4) { 652 if (op->type & FPCONV) 653 conv_dp_to_sp(&u.d[0], &u.f); 654 else 655 u.u = u.l[0]; 656 } 657 if (nb == 16) { 658 rn |= 1; 659 if (regs->msr & MSR_FP) 660 get_fpr(rn, &u.d[1]); 661 else 662 u.l[1] = current->thread.TS_FPR(rn); 663 } 664 preempt_enable(); 665 if (unlikely(cross_endian)) { 666 do_byte_reverse(u.b, min(nb, 8)); 667 if (nb == 16) 668 do_byte_reverse(&u.b[8], 8); 669 } 670 return copy_mem_out(u.b, ea, nb, regs); 671 } 672 NOKPROBE_SYMBOL(do_fp_store); 673 #endif 674 675 #ifdef CONFIG_ALTIVEC 676 /* For Altivec/VMX, no need to worry about alignment */ 677 static nokprobe_inline int do_vec_load(int rn, unsigned long ea, 678 int size, struct pt_regs *regs, 679 bool cross_endian) 680 { 681 int err; 682 union { 683 __vector128 v; 684 u8 b[sizeof(__vector128)]; 685 } u = {}; 686 687 if (size > sizeof(u)) 688 return -EINVAL; 689 690 if (!address_ok(regs, ea & ~0xfUL, 16)) 691 return -EFAULT; 692 /* align to multiple of size */ 693 ea &= ~(size - 1); 694 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs); 695 if (err) 696 return err; 697 if (unlikely(cross_endian)) 698 do_byte_reverse(&u.b[ea & 0xf], size); 699 preempt_disable(); 700 if (regs->msr & MSR_VEC) 701 put_vr(rn, &u.v); 702 else 703 current->thread.vr_state.vr[rn] = u.v; 704 preempt_enable(); 705 return 0; 706 } 707 708 static nokprobe_inline int do_vec_store(int rn, unsigned long ea, 709 int size, struct pt_regs *regs, 710 bool cross_endian) 711 { 712 union { 713 __vector128 v; 714 u8 b[sizeof(__vector128)]; 715 } u; 716 717 if (size > sizeof(u)) 718 return -EINVAL; 719 720 if (!address_ok(regs, ea & ~0xfUL, 16)) 721 return -EFAULT; 722 /* align to multiple of size */ 723 ea &= ~(size - 1); 724 725 preempt_disable(); 726 if (regs->msr & MSR_VEC) 727 get_vr(rn, &u.v); 728 else 729 u.v = current->thread.vr_state.vr[rn]; 730 preempt_enable(); 731 if (unlikely(cross_endian)) 732 do_byte_reverse(&u.b[ea & 0xf], size); 733 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs); 734 } 735 #endif /* CONFIG_ALTIVEC */ 736 737 #ifdef __powerpc64__ 738 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea, 739 int reg, bool cross_endian) 740 { 741 int err; 742 743 if (!address_ok(regs, ea, 16)) 744 return -EFAULT; 745 /* if aligned, should be atomic */ 746 if ((ea & 0xf) == 0) { 747 err = do_lq(ea, ®s->gpr[reg]); 748 } else { 749 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs); 750 if (!err) 751 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs); 752 } 753 if (!err && unlikely(cross_endian)) 754 do_byte_reverse(®s->gpr[reg], 16); 755 return err; 756 } 757 758 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea, 759 int reg, bool cross_endian) 760 { 761 int err; 762 unsigned long vals[2]; 763 764 if (!address_ok(regs, ea, 16)) 765 return -EFAULT; 766 vals[0] = regs->gpr[reg]; 767 vals[1] = regs->gpr[reg + 1]; 768 if (unlikely(cross_endian)) 769 do_byte_reverse(vals, 16); 770 771 /* if aligned, should be atomic */ 772 if ((ea & 0xf) == 0) 773 return do_stq(ea, vals[0], vals[1]); 774 775 err = write_mem(vals[IS_LE], ea, 8, regs); 776 if (!err) 777 err = write_mem(vals[IS_BE], ea + 8, 8, regs); 778 return err; 779 } 780 #endif /* __powerpc64 */ 781 782 #ifdef CONFIG_VSX 783 static nokprobe_inline void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg, 784 const void *mem, bool rev) 785 { 786 int size, read_size; 787 int i, j; 788 const unsigned int *wp; 789 const unsigned short *hp; 790 const unsigned char *bp; 791 792 size = GETSIZE(op->type); 793 reg->d[0] = reg->d[1] = 0; 794 795 switch (op->element_size) { 796 case 32: 797 /* [p]lxvp[x] */ 798 case 16: 799 /* whole vector; lxv[x] or lxvl[l] */ 800 if (size == 0) 801 break; 802 memcpy(reg, mem, size); 803 if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) 804 rev = !rev; 805 if (rev) 806 do_byte_reverse(reg, size); 807 break; 808 case 8: 809 /* scalar loads, lxvd2x, lxvdsx */ 810 read_size = (size >= 8) ? 8 : size; 811 i = IS_LE ? 8 : 8 - read_size; 812 memcpy(®->b[i], mem, read_size); 813 if (rev) 814 do_byte_reverse(®->b[i], 8); 815 if (size < 8) { 816 if (op->type & SIGNEXT) { 817 /* size == 4 is the only case here */ 818 reg->d[IS_LE] = (signed int) reg->d[IS_LE]; 819 } else if (op->vsx_flags & VSX_FPCONV) { 820 preempt_disable(); 821 conv_sp_to_dp(®->fp[1 + IS_LE], 822 ®->dp[IS_LE]); 823 preempt_enable(); 824 } 825 } else { 826 if (size == 16) { 827 unsigned long v = *(unsigned long *)(mem + 8); 828 reg->d[IS_BE] = !rev ? v : byterev_8(v); 829 } else if (op->vsx_flags & VSX_SPLAT) 830 reg->d[IS_BE] = reg->d[IS_LE]; 831 } 832 break; 833 case 4: 834 /* lxvw4x, lxvwsx */ 835 wp = mem; 836 for (j = 0; j < size / 4; ++j) { 837 i = IS_LE ? 3 - j : j; 838 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++); 839 } 840 if (op->vsx_flags & VSX_SPLAT) { 841 u32 val = reg->w[IS_LE ? 3 : 0]; 842 for (; j < 4; ++j) { 843 i = IS_LE ? 3 - j : j; 844 reg->w[i] = val; 845 } 846 } 847 break; 848 case 2: 849 /* lxvh8x */ 850 hp = mem; 851 for (j = 0; j < size / 2; ++j) { 852 i = IS_LE ? 7 - j : j; 853 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++); 854 } 855 break; 856 case 1: 857 /* lxvb16x */ 858 bp = mem; 859 for (j = 0; j < size; ++j) { 860 i = IS_LE ? 15 - j : j; 861 reg->b[i] = *bp++; 862 } 863 break; 864 } 865 } 866 867 static nokprobe_inline void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg, 868 void *mem, bool rev) 869 { 870 int size, write_size; 871 int i, j; 872 union vsx_reg buf; 873 unsigned int *wp; 874 unsigned short *hp; 875 unsigned char *bp; 876 877 size = GETSIZE(op->type); 878 879 switch (op->element_size) { 880 case 32: 881 /* [p]stxvp[x] */ 882 if (size == 0) 883 break; 884 if (rev) { 885 /* reverse 32 bytes */ 886 union vsx_reg buf32[2]; 887 buf32[0].d[0] = byterev_8(reg[1].d[1]); 888 buf32[0].d[1] = byterev_8(reg[1].d[0]); 889 buf32[1].d[0] = byterev_8(reg[0].d[1]); 890 buf32[1].d[1] = byterev_8(reg[0].d[0]); 891 memcpy(mem, buf32, size); 892 } else { 893 memcpy(mem, reg, size); 894 } 895 break; 896 case 16: 897 /* stxv, stxvx, stxvl, stxvll */ 898 if (size == 0) 899 break; 900 if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) 901 rev = !rev; 902 if (rev) { 903 /* reverse 16 bytes */ 904 buf.d[0] = byterev_8(reg->d[1]); 905 buf.d[1] = byterev_8(reg->d[0]); 906 reg = &buf; 907 } 908 memcpy(mem, reg, size); 909 break; 910 case 8: 911 /* scalar stores, stxvd2x */ 912 write_size = (size >= 8) ? 8 : size; 913 i = IS_LE ? 8 : 8 - write_size; 914 if (size < 8 && op->vsx_flags & VSX_FPCONV) { 915 buf.d[0] = buf.d[1] = 0; 916 preempt_disable(); 917 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]); 918 preempt_enable(); 919 reg = &buf; 920 } 921 memcpy(mem, ®->b[i], write_size); 922 if (size == 16) 923 memcpy(mem + 8, ®->d[IS_BE], 8); 924 if (unlikely(rev)) { 925 do_byte_reverse(mem, write_size); 926 if (size == 16) 927 do_byte_reverse(mem + 8, 8); 928 } 929 break; 930 case 4: 931 /* stxvw4x */ 932 wp = mem; 933 for (j = 0; j < size / 4; ++j) { 934 i = IS_LE ? 3 - j : j; 935 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]); 936 } 937 break; 938 case 2: 939 /* stxvh8x */ 940 hp = mem; 941 for (j = 0; j < size / 2; ++j) { 942 i = IS_LE ? 7 - j : j; 943 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]); 944 } 945 break; 946 case 1: 947 /* stvxb16x */ 948 bp = mem; 949 for (j = 0; j < size; ++j) { 950 i = IS_LE ? 15 - j : j; 951 *bp++ = reg->b[i]; 952 } 953 break; 954 } 955 } 956 957 static nokprobe_inline int do_vsx_load(struct instruction_op *op, 958 unsigned long ea, struct pt_regs *regs, 959 bool cross_endian) 960 { 961 int reg = op->reg; 962 int i, j, nr_vsx_regs; 963 u8 mem[32]; 964 union vsx_reg buf[2]; 965 int size = GETSIZE(op->type); 966 967 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs)) 968 return -EFAULT; 969 970 nr_vsx_regs = max(1ul, size / sizeof(__vector128)); 971 emulate_vsx_load(op, buf, mem, cross_endian); 972 preempt_disable(); 973 if (reg < 32) { 974 /* FP regs + extensions */ 975 if (regs->msr & MSR_FP) { 976 for (i = 0; i < nr_vsx_regs; i++) { 977 j = IS_LE ? nr_vsx_regs - i - 1 : i; 978 load_vsrn(reg + i, &buf[j].v); 979 } 980 } else { 981 for (i = 0; i < nr_vsx_regs; i++) { 982 j = IS_LE ? nr_vsx_regs - i - 1 : i; 983 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0]; 984 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1]; 985 } 986 } 987 } else { 988 if (regs->msr & MSR_VEC) { 989 for (i = 0; i < nr_vsx_regs; i++) { 990 j = IS_LE ? nr_vsx_regs - i - 1 : i; 991 load_vsrn(reg + i, &buf[j].v); 992 } 993 } else { 994 for (i = 0; i < nr_vsx_regs; i++) { 995 j = IS_LE ? nr_vsx_regs - i - 1 : i; 996 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v; 997 } 998 } 999 } 1000 preempt_enable(); 1001 return 0; 1002 } 1003 1004 static nokprobe_inline int do_vsx_store(struct instruction_op *op, 1005 unsigned long ea, struct pt_regs *regs, 1006 bool cross_endian) 1007 { 1008 int reg = op->reg; 1009 int i, j, nr_vsx_regs; 1010 u8 mem[32]; 1011 union vsx_reg buf[2]; 1012 int size = GETSIZE(op->type); 1013 1014 if (!address_ok(regs, ea, size)) 1015 return -EFAULT; 1016 1017 nr_vsx_regs = max(1ul, size / sizeof(__vector128)); 1018 preempt_disable(); 1019 if (reg < 32) { 1020 /* FP regs + extensions */ 1021 if (regs->msr & MSR_FP) { 1022 for (i = 0; i < nr_vsx_regs; i++) { 1023 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1024 store_vsrn(reg + i, &buf[j].v); 1025 } 1026 } else { 1027 for (i = 0; i < nr_vsx_regs; i++) { 1028 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1029 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0]; 1030 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1]; 1031 } 1032 } 1033 } else { 1034 if (regs->msr & MSR_VEC) { 1035 for (i = 0; i < nr_vsx_regs; i++) { 1036 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1037 store_vsrn(reg + i, &buf[j].v); 1038 } 1039 } else { 1040 for (i = 0; i < nr_vsx_regs; i++) { 1041 j = IS_LE ? nr_vsx_regs - i - 1 : i; 1042 buf[j].v = current->thread.vr_state.vr[reg - 32 + i]; 1043 } 1044 } 1045 } 1046 preempt_enable(); 1047 emulate_vsx_store(op, buf, mem, cross_endian); 1048 return copy_mem_out(mem, ea, size, regs); 1049 } 1050 #endif /* CONFIG_VSX */ 1051 1052 static __always_inline int __emulate_dcbz(unsigned long ea) 1053 { 1054 unsigned long i; 1055 unsigned long size = l1_dcache_bytes(); 1056 1057 for (i = 0; i < size; i += sizeof(long)) 1058 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault); 1059 1060 return 0; 1061 1062 Efault: 1063 return -EFAULT; 1064 } 1065 1066 int emulate_dcbz(unsigned long ea, struct pt_regs *regs) 1067 { 1068 int err; 1069 unsigned long size = l1_dcache_bytes(); 1070 1071 ea = truncate_if_32bit(regs->msr, ea); 1072 ea &= ~(size - 1); 1073 if (!address_ok(regs, ea, size)) 1074 return -EFAULT; 1075 1076 if (is_kernel_addr(ea)) { 1077 err = __emulate_dcbz(ea); 1078 } else if (user_write_access_begin((void __user *)ea, size)) { 1079 err = __emulate_dcbz(ea); 1080 user_write_access_end(); 1081 } else { 1082 err = -EFAULT; 1083 } 1084 1085 if (err) 1086 regs->dar = ea; 1087 1088 1089 return err; 1090 } 1091 NOKPROBE_SYMBOL(emulate_dcbz); 1092 1093 #define __put_user_asmx(x, addr, err, op, cr) \ 1094 __asm__ __volatile__( \ 1095 ".machine push\n" \ 1096 ".machine power8\n" \ 1097 "1: " op " %2,0,%3\n" \ 1098 ".machine pop\n" \ 1099 " mfcr %1\n" \ 1100 "2:\n" \ 1101 ".section .fixup,\"ax\"\n" \ 1102 "3: li %0,%4\n" \ 1103 " b 2b\n" \ 1104 ".previous\n" \ 1105 EX_TABLE(1b, 3b) \ 1106 : "=r" (err), "=r" (cr) \ 1107 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err)) 1108 1109 #define __get_user_asmx(x, addr, err, op) \ 1110 __asm__ __volatile__( \ 1111 ".machine push\n" \ 1112 ".machine power8\n" \ 1113 "1: "op" %1,0,%2\n" \ 1114 ".machine pop\n" \ 1115 "2:\n" \ 1116 ".section .fixup,\"ax\"\n" \ 1117 "3: li %0,%3\n" \ 1118 " b 2b\n" \ 1119 ".previous\n" \ 1120 EX_TABLE(1b, 3b) \ 1121 : "=r" (err), "=r" (x) \ 1122 : "r" (addr), "i" (-EFAULT), "0" (err)) 1123 1124 #define __cacheop_user_asmx(addr, err, op) \ 1125 __asm__ __volatile__( \ 1126 "1: "op" 0,%1\n" \ 1127 "2:\n" \ 1128 ".section .fixup,\"ax\"\n" \ 1129 "3: li %0,%3\n" \ 1130 " b 2b\n" \ 1131 ".previous\n" \ 1132 EX_TABLE(1b, 3b) \ 1133 : "=r" (err) \ 1134 : "r" (addr), "i" (-EFAULT), "0" (err)) 1135 1136 static nokprobe_inline void set_cr0(const struct pt_regs *regs, 1137 struct instruction_op *op) 1138 { 1139 long val = op->val; 1140 1141 op->type |= SETCC; 1142 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000); 1143 if (!(regs->msr & MSR_64BIT)) 1144 val = (int) val; 1145 if (val < 0) 1146 op->ccval |= 0x80000000; 1147 else if (val > 0) 1148 op->ccval |= 0x40000000; 1149 else 1150 op->ccval |= 0x20000000; 1151 } 1152 1153 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val) 1154 { 1155 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1156 if (val) 1157 op->xerval |= XER_CA32; 1158 else 1159 op->xerval &= ~XER_CA32; 1160 } 1161 } 1162 1163 static nokprobe_inline void add_with_carry(const struct pt_regs *regs, 1164 struct instruction_op *op, int rd, 1165 unsigned long val1, unsigned long val2, 1166 unsigned long carry_in) 1167 { 1168 unsigned long val = val1 + val2; 1169 1170 if (carry_in) 1171 ++val; 1172 op->type = COMPUTE | SETREG | SETXER; 1173 op->reg = rd; 1174 op->val = val; 1175 val = truncate_if_32bit(regs->msr, val); 1176 val1 = truncate_if_32bit(regs->msr, val1); 1177 op->xerval = regs->xer; 1178 if (val < val1 || (carry_in && val == val1)) 1179 op->xerval |= XER_CA; 1180 else 1181 op->xerval &= ~XER_CA; 1182 1183 set_ca32(op, (unsigned int)val < (unsigned int)val1 || 1184 (carry_in && (unsigned int)val == (unsigned int)val1)); 1185 } 1186 1187 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs, 1188 struct instruction_op *op, 1189 long v1, long v2, int crfld) 1190 { 1191 unsigned int crval, shift; 1192 1193 op->type = COMPUTE | SETCC; 1194 crval = (regs->xer >> 31) & 1; /* get SO bit */ 1195 if (v1 < v2) 1196 crval |= 8; 1197 else if (v1 > v2) 1198 crval |= 4; 1199 else 1200 crval |= 2; 1201 shift = (7 - crfld) * 4; 1202 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); 1203 } 1204 1205 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs, 1206 struct instruction_op *op, 1207 unsigned long v1, 1208 unsigned long v2, int crfld) 1209 { 1210 unsigned int crval, shift; 1211 1212 op->type = COMPUTE | SETCC; 1213 crval = (regs->xer >> 31) & 1; /* get SO bit */ 1214 if (v1 < v2) 1215 crval |= 8; 1216 else if (v1 > v2) 1217 crval |= 4; 1218 else 1219 crval |= 2; 1220 shift = (7 - crfld) * 4; 1221 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); 1222 } 1223 1224 static nokprobe_inline void do_cmpb(const struct pt_regs *regs, 1225 struct instruction_op *op, 1226 unsigned long v1, unsigned long v2) 1227 { 1228 unsigned long long out_val, mask; 1229 int i; 1230 1231 out_val = 0; 1232 for (i = 0; i < 8; i++) { 1233 mask = 0xffUL << (i * 8); 1234 if ((v1 & mask) == (v2 & mask)) 1235 out_val |= mask; 1236 } 1237 op->val = out_val; 1238 } 1239 1240 /* 1241 * The size parameter is used to adjust the equivalent popcnt instruction. 1242 * popcntb = 8, popcntw = 32, popcntd = 64 1243 */ 1244 static nokprobe_inline void do_popcnt(const struct pt_regs *regs, 1245 struct instruction_op *op, 1246 unsigned long v1, int size) 1247 { 1248 unsigned long long out = v1; 1249 1250 out -= (out >> 1) & 0x5555555555555555ULL; 1251 out = (0x3333333333333333ULL & out) + 1252 (0x3333333333333333ULL & (out >> 2)); 1253 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL; 1254 1255 if (size == 8) { /* popcntb */ 1256 op->val = out; 1257 return; 1258 } 1259 out += out >> 8; 1260 out += out >> 16; 1261 if (size == 32) { /* popcntw */ 1262 op->val = out & 0x0000003f0000003fULL; 1263 return; 1264 } 1265 1266 out = (out + (out >> 32)) & 0x7f; 1267 op->val = out; /* popcntd */ 1268 } 1269 1270 #ifdef CONFIG_PPC64 1271 static nokprobe_inline void do_bpermd(const struct pt_regs *regs, 1272 struct instruction_op *op, 1273 unsigned long v1, unsigned long v2) 1274 { 1275 unsigned char perm, idx; 1276 unsigned int i; 1277 1278 perm = 0; 1279 for (i = 0; i < 8; i++) { 1280 idx = (v1 >> (i * 8)) & 0xff; 1281 if (idx < 64) 1282 if (v2 & PPC_BIT(idx)) 1283 perm |= 1 << i; 1284 } 1285 op->val = perm; 1286 } 1287 #endif /* CONFIG_PPC64 */ 1288 /* 1289 * The size parameter adjusts the equivalent prty instruction. 1290 * prtyw = 32, prtyd = 64 1291 */ 1292 static nokprobe_inline void do_prty(const struct pt_regs *regs, 1293 struct instruction_op *op, 1294 unsigned long v, int size) 1295 { 1296 unsigned long long res = v ^ (v >> 8); 1297 1298 res ^= res >> 16; 1299 if (size == 32) { /* prtyw */ 1300 op->val = res & 0x0000000100000001ULL; 1301 return; 1302 } 1303 1304 res ^= res >> 32; 1305 op->val = res & 1; /*prtyd */ 1306 } 1307 1308 static nokprobe_inline int trap_compare(long v1, long v2) 1309 { 1310 int ret = 0; 1311 1312 if (v1 < v2) 1313 ret |= 0x10; 1314 else if (v1 > v2) 1315 ret |= 0x08; 1316 else 1317 ret |= 0x04; 1318 if ((unsigned long)v1 < (unsigned long)v2) 1319 ret |= 0x02; 1320 else if ((unsigned long)v1 > (unsigned long)v2) 1321 ret |= 0x01; 1322 return ret; 1323 } 1324 1325 /* 1326 * Elements of 32-bit rotate and mask instructions. 1327 */ 1328 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \ 1329 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb))) 1330 #ifdef __powerpc64__ 1331 #define MASK64_L(mb) (~0UL >> (mb)) 1332 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me)) 1333 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb))) 1334 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32)) 1335 #else 1336 #define DATA32(x) (x) 1337 #endif 1338 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x)) 1339 1340 /* 1341 * Decode an instruction, and return information about it in *op 1342 * without changing *regs. 1343 * Integer arithmetic and logical instructions, branches, and barrier 1344 * instructions can be emulated just using the information in *op. 1345 * 1346 * Return value is 1 if the instruction can be emulated just by 1347 * updating *regs with the information in *op, -1 if we need the 1348 * GPRs but *regs doesn't contain the full register set, or 0 1349 * otherwise. 1350 */ 1351 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs, 1352 ppc_inst_t instr) 1353 { 1354 #ifdef CONFIG_PPC64 1355 unsigned int suffixopcode, prefixtype, prefix_r; 1356 #endif 1357 unsigned int opcode, ra, rb, rc, rd, spr, u; 1358 unsigned long int imm; 1359 unsigned long int val, val2; 1360 unsigned int mb, me, sh; 1361 unsigned int word, suffix; 1362 long ival; 1363 1364 word = ppc_inst_val(instr); 1365 suffix = ppc_inst_suffix(instr); 1366 1367 op->type = COMPUTE; 1368 1369 opcode = ppc_inst_primary_opcode(instr); 1370 switch (opcode) { 1371 case 16: /* bc */ 1372 op->type = BRANCH; 1373 imm = (signed short)(word & 0xfffc); 1374 if ((word & 2) == 0) 1375 imm += regs->nip; 1376 op->val = truncate_if_32bit(regs->msr, imm); 1377 if (word & 1) 1378 op->type |= SETLK; 1379 if (branch_taken(word, regs, op)) 1380 op->type |= BRTAKEN; 1381 return 1; 1382 case 17: /* sc */ 1383 if ((word & 0xfe2) == 2) 1384 op->type = SYSCALL; 1385 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && 1386 (word & 0xfe3) == 1) { /* scv */ 1387 op->type = SYSCALL_VECTORED_0; 1388 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1389 goto unknown_opcode; 1390 } else 1391 op->type = UNKNOWN; 1392 return 0; 1393 case 18: /* b */ 1394 op->type = BRANCH | BRTAKEN; 1395 imm = word & 0x03fffffc; 1396 if (imm & 0x02000000) 1397 imm -= 0x04000000; 1398 if ((word & 2) == 0) 1399 imm += regs->nip; 1400 op->val = truncate_if_32bit(regs->msr, imm); 1401 if (word & 1) 1402 op->type |= SETLK; 1403 return 1; 1404 case 19: 1405 switch ((word >> 1) & 0x3ff) { 1406 case 0: /* mcrf */ 1407 op->type = COMPUTE + SETCC; 1408 rd = 7 - ((word >> 23) & 0x7); 1409 ra = 7 - ((word >> 18) & 0x7); 1410 rd *= 4; 1411 ra *= 4; 1412 val = (regs->ccr >> ra) & 0xf; 1413 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd); 1414 return 1; 1415 1416 case 16: /* bclr */ 1417 case 528: /* bcctr */ 1418 op->type = BRANCH; 1419 imm = (word & 0x400)? regs->ctr: regs->link; 1420 op->val = truncate_if_32bit(regs->msr, imm); 1421 if (word & 1) 1422 op->type |= SETLK; 1423 if (branch_taken(word, regs, op)) 1424 op->type |= BRTAKEN; 1425 return 1; 1426 1427 case 18: /* rfid, scary */ 1428 if (regs->msr & MSR_PR) 1429 goto priv; 1430 op->type = RFI; 1431 return 0; 1432 1433 case 150: /* isync */ 1434 op->type = BARRIER | BARRIER_ISYNC; 1435 return 1; 1436 1437 case 33: /* crnor */ 1438 case 129: /* crandc */ 1439 case 193: /* crxor */ 1440 case 225: /* crnand */ 1441 case 257: /* crand */ 1442 case 289: /* creqv */ 1443 case 417: /* crorc */ 1444 case 449: /* cror */ 1445 op->type = COMPUTE + SETCC; 1446 ra = (word >> 16) & 0x1f; 1447 rb = (word >> 11) & 0x1f; 1448 rd = (word >> 21) & 0x1f; 1449 ra = (regs->ccr >> (31 - ra)) & 1; 1450 rb = (regs->ccr >> (31 - rb)) & 1; 1451 val = (word >> (6 + ra * 2 + rb)) & 1; 1452 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) | 1453 (val << (31 - rd)); 1454 return 1; 1455 } 1456 break; 1457 case 31: 1458 switch ((word >> 1) & 0x3ff) { 1459 case 598: /* sync */ 1460 op->type = BARRIER + BARRIER_SYNC; 1461 #ifdef __powerpc64__ 1462 switch ((word >> 21) & 3) { 1463 case 1: /* lwsync */ 1464 op->type = BARRIER + BARRIER_LWSYNC; 1465 break; 1466 case 2: /* ptesync */ 1467 op->type = BARRIER + BARRIER_PTESYNC; 1468 break; 1469 } 1470 #endif 1471 return 1; 1472 1473 case 854: /* eieio */ 1474 op->type = BARRIER + BARRIER_EIEIO; 1475 return 1; 1476 } 1477 break; 1478 } 1479 1480 rd = (word >> 21) & 0x1f; 1481 ra = (word >> 16) & 0x1f; 1482 rb = (word >> 11) & 0x1f; 1483 rc = (word >> 6) & 0x1f; 1484 1485 switch (opcode) { 1486 #ifdef __powerpc64__ 1487 case 1: 1488 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 1489 goto unknown_opcode; 1490 1491 prefix_r = GET_PREFIX_R(word); 1492 ra = GET_PREFIX_RA(suffix); 1493 rd = (suffix >> 21) & 0x1f; 1494 op->reg = rd; 1495 op->val = regs->gpr[rd]; 1496 suffixopcode = get_op(suffix); 1497 prefixtype = (word >> 24) & 0x3; 1498 switch (prefixtype) { 1499 case 2: 1500 if (prefix_r && ra) 1501 return 0; 1502 switch (suffixopcode) { 1503 case 14: /* paddi */ 1504 op->type = COMPUTE | PREFIXED; 1505 op->val = mlsd_8lsd_ea(word, suffix, regs); 1506 goto compute_done; 1507 } 1508 } 1509 break; 1510 case 2: /* tdi */ 1511 if (rd & trap_compare(regs->gpr[ra], (short) word)) 1512 goto trap; 1513 return 1; 1514 #endif 1515 case 3: /* twi */ 1516 if (rd & trap_compare((int)regs->gpr[ra], (short) word)) 1517 goto trap; 1518 return 1; 1519 1520 #ifdef __powerpc64__ 1521 case 4: 1522 /* 1523 * There are very many instructions with this primary opcode 1524 * introduced in the ISA as early as v2.03. However, the ones 1525 * we currently emulate were all introduced with ISA 3.0 1526 */ 1527 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1528 goto unknown_opcode; 1529 1530 switch (word & 0x3f) { 1531 case 48: /* maddhd */ 1532 asm volatile(PPC_MADDHD(%0, %1, %2, %3) : 1533 "=r" (op->val) : "r" (regs->gpr[ra]), 1534 "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); 1535 goto compute_done; 1536 1537 case 49: /* maddhdu */ 1538 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) : 1539 "=r" (op->val) : "r" (regs->gpr[ra]), 1540 "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); 1541 goto compute_done; 1542 1543 case 51: /* maddld */ 1544 asm volatile(PPC_MADDLD(%0, %1, %2, %3) : 1545 "=r" (op->val) : "r" (regs->gpr[ra]), 1546 "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); 1547 goto compute_done; 1548 } 1549 1550 /* 1551 * There are other instructions from ISA 3.0 with the same 1552 * primary opcode which do not have emulation support yet. 1553 */ 1554 goto unknown_opcode; 1555 #endif 1556 1557 case 7: /* mulli */ 1558 op->val = regs->gpr[ra] * (short) word; 1559 goto compute_done; 1560 1561 case 8: /* subfic */ 1562 imm = (short) word; 1563 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1); 1564 return 1; 1565 1566 case 10: /* cmpli */ 1567 imm = (unsigned short) word; 1568 val = regs->gpr[ra]; 1569 #ifdef __powerpc64__ 1570 if ((rd & 1) == 0) 1571 val = (unsigned int) val; 1572 #endif 1573 do_cmp_unsigned(regs, op, val, imm, rd >> 2); 1574 return 1; 1575 1576 case 11: /* cmpi */ 1577 imm = (short) word; 1578 val = regs->gpr[ra]; 1579 #ifdef __powerpc64__ 1580 if ((rd & 1) == 0) 1581 val = (int) val; 1582 #endif 1583 do_cmp_signed(regs, op, val, imm, rd >> 2); 1584 return 1; 1585 1586 case 12: /* addic */ 1587 imm = (short) word; 1588 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); 1589 return 1; 1590 1591 case 13: /* addic. */ 1592 imm = (short) word; 1593 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); 1594 set_cr0(regs, op); 1595 return 1; 1596 1597 case 14: /* addi */ 1598 imm = (short) word; 1599 if (ra) 1600 imm += regs->gpr[ra]; 1601 op->val = imm; 1602 goto compute_done; 1603 1604 case 15: /* addis */ 1605 imm = ((short) word) << 16; 1606 if (ra) 1607 imm += regs->gpr[ra]; 1608 op->val = imm; 1609 goto compute_done; 1610 1611 case 19: 1612 if (((word >> 1) & 0x1f) == 2) { 1613 /* addpcis */ 1614 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1615 goto unknown_opcode; 1616 imm = (short) (word & 0xffc1); /* d0 + d2 fields */ 1617 imm |= (word >> 15) & 0x3e; /* d1 field */ 1618 op->val = regs->nip + (imm << 16) + 4; 1619 goto compute_done; 1620 } 1621 op->type = UNKNOWN; 1622 return 0; 1623 1624 case 20: /* rlwimi */ 1625 mb = (word >> 6) & 0x1f; 1626 me = (word >> 1) & 0x1f; 1627 val = DATA32(regs->gpr[rd]); 1628 imm = MASK32(mb, me); 1629 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm); 1630 goto logical_done; 1631 1632 case 21: /* rlwinm */ 1633 mb = (word >> 6) & 0x1f; 1634 me = (word >> 1) & 0x1f; 1635 val = DATA32(regs->gpr[rd]); 1636 op->val = ROTATE(val, rb) & MASK32(mb, me); 1637 goto logical_done; 1638 1639 case 23: /* rlwnm */ 1640 mb = (word >> 6) & 0x1f; 1641 me = (word >> 1) & 0x1f; 1642 rb = regs->gpr[rb] & 0x1f; 1643 val = DATA32(regs->gpr[rd]); 1644 op->val = ROTATE(val, rb) & MASK32(mb, me); 1645 goto logical_done; 1646 1647 case 24: /* ori */ 1648 op->val = regs->gpr[rd] | (unsigned short) word; 1649 goto logical_done_nocc; 1650 1651 case 25: /* oris */ 1652 imm = (unsigned short) word; 1653 op->val = regs->gpr[rd] | (imm << 16); 1654 goto logical_done_nocc; 1655 1656 case 26: /* xori */ 1657 op->val = regs->gpr[rd] ^ (unsigned short) word; 1658 goto logical_done_nocc; 1659 1660 case 27: /* xoris */ 1661 imm = (unsigned short) word; 1662 op->val = regs->gpr[rd] ^ (imm << 16); 1663 goto logical_done_nocc; 1664 1665 case 28: /* andi. */ 1666 op->val = regs->gpr[rd] & (unsigned short) word; 1667 set_cr0(regs, op); 1668 goto logical_done_nocc; 1669 1670 case 29: /* andis. */ 1671 imm = (unsigned short) word; 1672 op->val = regs->gpr[rd] & (imm << 16); 1673 set_cr0(regs, op); 1674 goto logical_done_nocc; 1675 1676 #ifdef __powerpc64__ 1677 case 30: /* rld* */ 1678 mb = ((word >> 6) & 0x1f) | (word & 0x20); 1679 val = regs->gpr[rd]; 1680 if ((word & 0x10) == 0) { 1681 sh = rb | ((word & 2) << 4); 1682 val = ROTATE(val, sh); 1683 switch ((word >> 2) & 3) { 1684 case 0: /* rldicl */ 1685 val &= MASK64_L(mb); 1686 break; 1687 case 1: /* rldicr */ 1688 val &= MASK64_R(mb); 1689 break; 1690 case 2: /* rldic */ 1691 val &= MASK64(mb, 63 - sh); 1692 break; 1693 case 3: /* rldimi */ 1694 imm = MASK64(mb, 63 - sh); 1695 val = (regs->gpr[ra] & ~imm) | 1696 (val & imm); 1697 } 1698 op->val = val; 1699 goto logical_done; 1700 } else { 1701 sh = regs->gpr[rb] & 0x3f; 1702 val = ROTATE(val, sh); 1703 switch ((word >> 1) & 7) { 1704 case 0: /* rldcl */ 1705 op->val = val & MASK64_L(mb); 1706 goto logical_done; 1707 case 1: /* rldcr */ 1708 op->val = val & MASK64_R(mb); 1709 goto logical_done; 1710 } 1711 } 1712 #endif 1713 op->type = UNKNOWN; /* illegal instruction */ 1714 return 0; 1715 1716 case 31: 1717 /* isel occupies 32 minor opcodes */ 1718 if (((word >> 1) & 0x1f) == 15) { 1719 mb = (word >> 6) & 0x1f; /* bc field */ 1720 val = (regs->ccr >> (31 - mb)) & 1; 1721 val2 = (ra) ? regs->gpr[ra] : 0; 1722 1723 op->val = (val) ? val2 : regs->gpr[rb]; 1724 goto compute_done; 1725 } 1726 1727 switch ((word >> 1) & 0x3ff) { 1728 case 4: /* tw */ 1729 if (rd == 0x1f || 1730 (rd & trap_compare((int)regs->gpr[ra], 1731 (int)regs->gpr[rb]))) 1732 goto trap; 1733 return 1; 1734 #ifdef __powerpc64__ 1735 case 68: /* td */ 1736 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb])) 1737 goto trap; 1738 return 1; 1739 #endif 1740 case 83: /* mfmsr */ 1741 if (regs->msr & MSR_PR) 1742 goto priv; 1743 op->type = MFMSR; 1744 op->reg = rd; 1745 return 0; 1746 case 146: /* mtmsr */ 1747 if (regs->msr & MSR_PR) 1748 goto priv; 1749 op->type = MTMSR; 1750 op->reg = rd; 1751 op->val = 0xffffffff & ~(MSR_ME | MSR_LE); 1752 return 0; 1753 #ifdef CONFIG_PPC64 1754 case 178: /* mtmsrd */ 1755 if (regs->msr & MSR_PR) 1756 goto priv; 1757 op->type = MTMSR; 1758 op->reg = rd; 1759 /* only MSR_EE and MSR_RI get changed if bit 15 set */ 1760 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */ 1761 imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL; 1762 op->val = imm; 1763 return 0; 1764 #endif 1765 1766 case 19: /* mfcr */ 1767 imm = 0xffffffffUL; 1768 if ((word >> 20) & 1) { 1769 imm = 0xf0000000UL; 1770 for (sh = 0; sh < 8; ++sh) { 1771 if (word & (0x80000 >> sh)) 1772 break; 1773 imm >>= 4; 1774 } 1775 } 1776 op->val = regs->ccr & imm; 1777 goto compute_done; 1778 1779 case 128: /* setb */ 1780 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1781 goto unknown_opcode; 1782 /* 1783 * 'ra' encodes the CR field number (bfa) in the top 3 bits. 1784 * Since each CR field is 4 bits, 1785 * we can simply mask off the bottom two bits (bfa * 4) 1786 * to yield the first bit in the CR field. 1787 */ 1788 ra = ra & ~0x3; 1789 /* 'val' stores bits of the CR field (bfa) */ 1790 val = regs->ccr >> (CR0_SHIFT - ra); 1791 /* checks if the LT bit of CR field (bfa) is set */ 1792 if (val & 8) 1793 op->val = -1; 1794 /* checks if the GT bit of CR field (bfa) is set */ 1795 else if (val & 4) 1796 op->val = 1; 1797 else 1798 op->val = 0; 1799 goto compute_done; 1800 1801 case 144: /* mtcrf */ 1802 op->type = COMPUTE + SETCC; 1803 imm = 0xf0000000UL; 1804 val = regs->gpr[rd]; 1805 op->ccval = regs->ccr; 1806 for (sh = 0; sh < 8; ++sh) { 1807 if (word & (0x80000 >> sh)) 1808 op->ccval = (op->ccval & ~imm) | 1809 (val & imm); 1810 imm >>= 4; 1811 } 1812 return 1; 1813 1814 case 339: /* mfspr */ 1815 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0); 1816 op->type = MFSPR; 1817 op->reg = rd; 1818 op->spr = spr; 1819 if (spr == SPRN_XER || spr == SPRN_LR || 1820 spr == SPRN_CTR) 1821 return 1; 1822 return 0; 1823 1824 case 467: /* mtspr */ 1825 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0); 1826 op->type = MTSPR; 1827 op->val = regs->gpr[rd]; 1828 op->spr = spr; 1829 if (spr == SPRN_XER || spr == SPRN_LR || 1830 spr == SPRN_CTR) 1831 return 1; 1832 return 0; 1833 1834 /* 1835 * Compare instructions 1836 */ 1837 case 0: /* cmp */ 1838 val = regs->gpr[ra]; 1839 val2 = regs->gpr[rb]; 1840 #ifdef __powerpc64__ 1841 if ((rd & 1) == 0) { 1842 /* word (32-bit) compare */ 1843 val = (int) val; 1844 val2 = (int) val2; 1845 } 1846 #endif 1847 do_cmp_signed(regs, op, val, val2, rd >> 2); 1848 return 1; 1849 1850 case 32: /* cmpl */ 1851 val = regs->gpr[ra]; 1852 val2 = regs->gpr[rb]; 1853 #ifdef __powerpc64__ 1854 if ((rd & 1) == 0) { 1855 /* word (32-bit) compare */ 1856 val = (unsigned int) val; 1857 val2 = (unsigned int) val2; 1858 } 1859 #endif 1860 do_cmp_unsigned(regs, op, val, val2, rd >> 2); 1861 return 1; 1862 1863 case 508: /* cmpb */ 1864 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]); 1865 goto logical_done_nocc; 1866 1867 /* 1868 * Arithmetic instructions 1869 */ 1870 case 8: /* subfc */ 1871 add_with_carry(regs, op, rd, ~regs->gpr[ra], 1872 regs->gpr[rb], 1); 1873 goto arith_done; 1874 #ifdef __powerpc64__ 1875 case 9: /* mulhdu */ 1876 asm("mulhdu %0,%1,%2" : "=r" (op->val) : 1877 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1878 goto arith_done; 1879 #endif 1880 case 10: /* addc */ 1881 add_with_carry(regs, op, rd, regs->gpr[ra], 1882 regs->gpr[rb], 0); 1883 goto arith_done; 1884 1885 case 11: /* mulhwu */ 1886 asm("mulhwu %0,%1,%2" : "=r" (op->val) : 1887 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1888 goto arith_done; 1889 1890 case 40: /* subf */ 1891 op->val = regs->gpr[rb] - regs->gpr[ra]; 1892 goto arith_done; 1893 #ifdef __powerpc64__ 1894 case 73: /* mulhd */ 1895 asm("mulhd %0,%1,%2" : "=r" (op->val) : 1896 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1897 goto arith_done; 1898 #endif 1899 case 75: /* mulhw */ 1900 asm("mulhw %0,%1,%2" : "=r" (op->val) : 1901 "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); 1902 goto arith_done; 1903 1904 case 104: /* neg */ 1905 op->val = -regs->gpr[ra]; 1906 goto arith_done; 1907 1908 case 136: /* subfe */ 1909 add_with_carry(regs, op, rd, ~regs->gpr[ra], 1910 regs->gpr[rb], regs->xer & XER_CA); 1911 goto arith_done; 1912 1913 case 138: /* adde */ 1914 add_with_carry(regs, op, rd, regs->gpr[ra], 1915 regs->gpr[rb], regs->xer & XER_CA); 1916 goto arith_done; 1917 1918 case 200: /* subfze */ 1919 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L, 1920 regs->xer & XER_CA); 1921 goto arith_done; 1922 1923 case 202: /* addze */ 1924 add_with_carry(regs, op, rd, regs->gpr[ra], 0L, 1925 regs->xer & XER_CA); 1926 goto arith_done; 1927 1928 case 232: /* subfme */ 1929 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L, 1930 regs->xer & XER_CA); 1931 goto arith_done; 1932 #ifdef __powerpc64__ 1933 case 233: /* mulld */ 1934 op->val = regs->gpr[ra] * regs->gpr[rb]; 1935 goto arith_done; 1936 #endif 1937 case 234: /* addme */ 1938 add_with_carry(regs, op, rd, regs->gpr[ra], -1L, 1939 regs->xer & XER_CA); 1940 goto arith_done; 1941 1942 case 235: /* mullw */ 1943 op->val = (long)(int) regs->gpr[ra] * 1944 (int) regs->gpr[rb]; 1945 1946 goto arith_done; 1947 #ifdef __powerpc64__ 1948 case 265: /* modud */ 1949 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1950 goto unknown_opcode; 1951 op->val = regs->gpr[ra] % regs->gpr[rb]; 1952 goto compute_done; 1953 #endif 1954 case 266: /* add */ 1955 op->val = regs->gpr[ra] + regs->gpr[rb]; 1956 goto arith_done; 1957 1958 case 267: /* moduw */ 1959 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1960 goto unknown_opcode; 1961 op->val = (unsigned int) regs->gpr[ra] % 1962 (unsigned int) regs->gpr[rb]; 1963 goto compute_done; 1964 #ifdef __powerpc64__ 1965 case 457: /* divdu */ 1966 op->val = regs->gpr[ra] / regs->gpr[rb]; 1967 goto arith_done; 1968 #endif 1969 case 459: /* divwu */ 1970 op->val = (unsigned int) regs->gpr[ra] / 1971 (unsigned int) regs->gpr[rb]; 1972 goto arith_done; 1973 #ifdef __powerpc64__ 1974 case 489: /* divd */ 1975 op->val = (long int) regs->gpr[ra] / 1976 (long int) regs->gpr[rb]; 1977 goto arith_done; 1978 #endif 1979 case 491: /* divw */ 1980 op->val = (int) regs->gpr[ra] / 1981 (int) regs->gpr[rb]; 1982 goto arith_done; 1983 #ifdef __powerpc64__ 1984 case 425: /* divde[.] */ 1985 asm volatile(PPC_DIVDE(%0, %1, %2) : 1986 "=r" (op->val) : "r" (regs->gpr[ra]), 1987 "r" (regs->gpr[rb])); 1988 goto arith_done; 1989 case 393: /* divdeu[.] */ 1990 asm volatile(PPC_DIVDEU(%0, %1, %2) : 1991 "=r" (op->val) : "r" (regs->gpr[ra]), 1992 "r" (regs->gpr[rb])); 1993 goto arith_done; 1994 #endif 1995 case 755: /* darn */ 1996 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1997 goto unknown_opcode; 1998 switch (ra & 0x3) { 1999 case 0: 2000 /* 32-bit conditioned */ 2001 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val)); 2002 goto compute_done; 2003 2004 case 1: 2005 /* 64-bit conditioned */ 2006 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val)); 2007 goto compute_done; 2008 2009 case 2: 2010 /* 64-bit raw */ 2011 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val)); 2012 goto compute_done; 2013 } 2014 2015 goto unknown_opcode; 2016 #ifdef __powerpc64__ 2017 case 777: /* modsd */ 2018 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2019 goto unknown_opcode; 2020 op->val = (long int) regs->gpr[ra] % 2021 (long int) regs->gpr[rb]; 2022 goto compute_done; 2023 #endif 2024 case 779: /* modsw */ 2025 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2026 goto unknown_opcode; 2027 op->val = (int) regs->gpr[ra] % 2028 (int) regs->gpr[rb]; 2029 goto compute_done; 2030 2031 2032 /* 2033 * Logical instructions 2034 */ 2035 case 26: /* cntlzw */ 2036 val = (unsigned int) regs->gpr[rd]; 2037 op->val = ( val ? __builtin_clz(val) : 32 ); 2038 goto logical_done; 2039 #ifdef __powerpc64__ 2040 case 58: /* cntlzd */ 2041 val = regs->gpr[rd]; 2042 op->val = ( val ? __builtin_clzl(val) : 64 ); 2043 goto logical_done; 2044 #endif 2045 case 28: /* and */ 2046 op->val = regs->gpr[rd] & regs->gpr[rb]; 2047 goto logical_done; 2048 2049 case 60: /* andc */ 2050 op->val = regs->gpr[rd] & ~regs->gpr[rb]; 2051 goto logical_done; 2052 2053 case 122: /* popcntb */ 2054 do_popcnt(regs, op, regs->gpr[rd], 8); 2055 goto logical_done_nocc; 2056 2057 case 124: /* nor */ 2058 op->val = ~(regs->gpr[rd] | regs->gpr[rb]); 2059 goto logical_done; 2060 2061 case 154: /* prtyw */ 2062 do_prty(regs, op, regs->gpr[rd], 32); 2063 goto logical_done_nocc; 2064 2065 case 186: /* prtyd */ 2066 do_prty(regs, op, regs->gpr[rd], 64); 2067 goto logical_done_nocc; 2068 #ifdef CONFIG_PPC64 2069 case 252: /* bpermd */ 2070 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]); 2071 goto logical_done_nocc; 2072 #endif 2073 case 284: /* xor */ 2074 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]); 2075 goto logical_done; 2076 2077 case 316: /* xor */ 2078 op->val = regs->gpr[rd] ^ regs->gpr[rb]; 2079 goto logical_done; 2080 2081 case 378: /* popcntw */ 2082 do_popcnt(regs, op, regs->gpr[rd], 32); 2083 goto logical_done_nocc; 2084 2085 case 412: /* orc */ 2086 op->val = regs->gpr[rd] | ~regs->gpr[rb]; 2087 goto logical_done; 2088 2089 case 444: /* or */ 2090 op->val = regs->gpr[rd] | regs->gpr[rb]; 2091 goto logical_done; 2092 2093 case 476: /* nand */ 2094 op->val = ~(regs->gpr[rd] & regs->gpr[rb]); 2095 goto logical_done; 2096 #ifdef CONFIG_PPC64 2097 case 506: /* popcntd */ 2098 do_popcnt(regs, op, regs->gpr[rd], 64); 2099 goto logical_done_nocc; 2100 #endif 2101 case 538: /* cnttzw */ 2102 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2103 goto unknown_opcode; 2104 val = (unsigned int) regs->gpr[rd]; 2105 op->val = (val ? __builtin_ctz(val) : 32); 2106 goto logical_done; 2107 #ifdef __powerpc64__ 2108 case 570: /* cnttzd */ 2109 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2110 goto unknown_opcode; 2111 val = regs->gpr[rd]; 2112 op->val = (val ? __builtin_ctzl(val) : 64); 2113 goto logical_done; 2114 #endif 2115 case 922: /* extsh */ 2116 op->val = (signed short) regs->gpr[rd]; 2117 goto logical_done; 2118 2119 case 954: /* extsb */ 2120 op->val = (signed char) regs->gpr[rd]; 2121 goto logical_done; 2122 #ifdef __powerpc64__ 2123 case 986: /* extsw */ 2124 op->val = (signed int) regs->gpr[rd]; 2125 goto logical_done; 2126 #endif 2127 2128 /* 2129 * Shift instructions 2130 */ 2131 case 24: /* slw */ 2132 sh = regs->gpr[rb] & 0x3f; 2133 if (sh < 32) 2134 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL; 2135 else 2136 op->val = 0; 2137 goto logical_done; 2138 2139 case 536: /* srw */ 2140 sh = regs->gpr[rb] & 0x3f; 2141 if (sh < 32) 2142 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh; 2143 else 2144 op->val = 0; 2145 goto logical_done; 2146 2147 case 792: /* sraw */ 2148 op->type = COMPUTE + SETREG + SETXER; 2149 sh = regs->gpr[rb] & 0x3f; 2150 ival = (signed int) regs->gpr[rd]; 2151 op->val = ival >> (sh < 32 ? sh : 31); 2152 op->xerval = regs->xer; 2153 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0)) 2154 op->xerval |= XER_CA; 2155 else 2156 op->xerval &= ~XER_CA; 2157 set_ca32(op, op->xerval & XER_CA); 2158 goto logical_done; 2159 2160 case 824: /* srawi */ 2161 op->type = COMPUTE + SETREG + SETXER; 2162 sh = rb; 2163 ival = (signed int) regs->gpr[rd]; 2164 op->val = ival >> sh; 2165 op->xerval = regs->xer; 2166 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) 2167 op->xerval |= XER_CA; 2168 else 2169 op->xerval &= ~XER_CA; 2170 set_ca32(op, op->xerval & XER_CA); 2171 goto logical_done; 2172 2173 #ifdef __powerpc64__ 2174 case 27: /* sld */ 2175 sh = regs->gpr[rb] & 0x7f; 2176 if (sh < 64) 2177 op->val = regs->gpr[rd] << sh; 2178 else 2179 op->val = 0; 2180 goto logical_done; 2181 2182 case 539: /* srd */ 2183 sh = regs->gpr[rb] & 0x7f; 2184 if (sh < 64) 2185 op->val = regs->gpr[rd] >> sh; 2186 else 2187 op->val = 0; 2188 goto logical_done; 2189 2190 case 794: /* srad */ 2191 op->type = COMPUTE + SETREG + SETXER; 2192 sh = regs->gpr[rb] & 0x7f; 2193 ival = (signed long int) regs->gpr[rd]; 2194 op->val = ival >> (sh < 64 ? sh : 63); 2195 op->xerval = regs->xer; 2196 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0)) 2197 op->xerval |= XER_CA; 2198 else 2199 op->xerval &= ~XER_CA; 2200 set_ca32(op, op->xerval & XER_CA); 2201 goto logical_done; 2202 2203 case 826: /* sradi with sh_5 = 0 */ 2204 case 827: /* sradi with sh_5 = 1 */ 2205 op->type = COMPUTE + SETREG + SETXER; 2206 sh = rb | ((word & 2) << 4); 2207 ival = (signed long int) regs->gpr[rd]; 2208 op->val = ival >> sh; 2209 op->xerval = regs->xer; 2210 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) 2211 op->xerval |= XER_CA; 2212 else 2213 op->xerval &= ~XER_CA; 2214 set_ca32(op, op->xerval & XER_CA); 2215 goto logical_done; 2216 2217 case 890: /* extswsli with sh_5 = 0 */ 2218 case 891: /* extswsli with sh_5 = 1 */ 2219 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2220 goto unknown_opcode; 2221 op->type = COMPUTE + SETREG; 2222 sh = rb | ((word & 2) << 4); 2223 val = (signed int) regs->gpr[rd]; 2224 if (sh) 2225 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh); 2226 else 2227 op->val = val; 2228 goto logical_done; 2229 2230 #endif /* __powerpc64__ */ 2231 2232 /* 2233 * Cache instructions 2234 */ 2235 case 54: /* dcbst */ 2236 op->type = MKOP(CACHEOP, DCBST, 0); 2237 op->ea = xform_ea(word, regs); 2238 return 0; 2239 2240 case 86: /* dcbf */ 2241 op->type = MKOP(CACHEOP, DCBF, 0); 2242 op->ea = xform_ea(word, regs); 2243 return 0; 2244 2245 case 246: /* dcbtst */ 2246 op->type = MKOP(CACHEOP, DCBTST, 0); 2247 op->ea = xform_ea(word, regs); 2248 op->reg = rd; 2249 return 0; 2250 2251 case 278: /* dcbt */ 2252 op->type = MKOP(CACHEOP, DCBTST, 0); 2253 op->ea = xform_ea(word, regs); 2254 op->reg = rd; 2255 return 0; 2256 2257 case 982: /* icbi */ 2258 op->type = MKOP(CACHEOP, ICBI, 0); 2259 op->ea = xform_ea(word, regs); 2260 return 0; 2261 2262 case 1014: /* dcbz */ 2263 op->type = MKOP(CACHEOP, DCBZ, 0); 2264 op->ea = xform_ea(word, regs); 2265 return 0; 2266 } 2267 break; 2268 } 2269 2270 /* 2271 * Loads and stores. 2272 */ 2273 op->type = UNKNOWN; 2274 op->update_reg = ra; 2275 op->reg = rd; 2276 op->val = regs->gpr[rd]; 2277 u = (word >> 20) & UPDATE; 2278 op->vsx_flags = 0; 2279 2280 switch (opcode) { 2281 case 31: 2282 u = word & UPDATE; 2283 op->ea = xform_ea(word, regs); 2284 switch ((word >> 1) & 0x3ff) { 2285 case 20: /* lwarx */ 2286 op->type = MKOP(LARX, 0, 4); 2287 break; 2288 2289 case 150: /* stwcx. */ 2290 op->type = MKOP(STCX, 0, 4); 2291 break; 2292 2293 #ifdef CONFIG_PPC_HAS_LBARX_LHARX 2294 case 52: /* lbarx */ 2295 op->type = MKOP(LARX, 0, 1); 2296 break; 2297 2298 case 694: /* stbcx. */ 2299 op->type = MKOP(STCX, 0, 1); 2300 break; 2301 2302 case 116: /* lharx */ 2303 op->type = MKOP(LARX, 0, 2); 2304 break; 2305 2306 case 726: /* sthcx. */ 2307 op->type = MKOP(STCX, 0, 2); 2308 break; 2309 #endif 2310 #ifdef __powerpc64__ 2311 case 84: /* ldarx */ 2312 op->type = MKOP(LARX, 0, 8); 2313 break; 2314 2315 case 214: /* stdcx. */ 2316 op->type = MKOP(STCX, 0, 8); 2317 break; 2318 2319 case 276: /* lqarx */ 2320 if (!((rd & 1) || rd == ra || rd == rb)) 2321 op->type = MKOP(LARX, 0, 16); 2322 break; 2323 2324 case 182: /* stqcx. */ 2325 if (!(rd & 1)) 2326 op->type = MKOP(STCX, 0, 16); 2327 break; 2328 #endif 2329 2330 case 23: /* lwzx */ 2331 case 55: /* lwzux */ 2332 op->type = MKOP(LOAD, u, 4); 2333 break; 2334 2335 case 87: /* lbzx */ 2336 case 119: /* lbzux */ 2337 op->type = MKOP(LOAD, u, 1); 2338 break; 2339 2340 #ifdef CONFIG_ALTIVEC 2341 /* 2342 * Note: for the load/store vector element instructions, 2343 * bits of the EA say which field of the VMX register to use. 2344 */ 2345 case 7: /* lvebx */ 2346 op->type = MKOP(LOAD_VMX, 0, 1); 2347 op->element_size = 1; 2348 break; 2349 2350 case 39: /* lvehx */ 2351 op->type = MKOP(LOAD_VMX, 0, 2); 2352 op->element_size = 2; 2353 break; 2354 2355 case 71: /* lvewx */ 2356 op->type = MKOP(LOAD_VMX, 0, 4); 2357 op->element_size = 4; 2358 break; 2359 2360 case 103: /* lvx */ 2361 case 359: /* lvxl */ 2362 op->type = MKOP(LOAD_VMX, 0, 16); 2363 op->element_size = 16; 2364 break; 2365 2366 case 135: /* stvebx */ 2367 op->type = MKOP(STORE_VMX, 0, 1); 2368 op->element_size = 1; 2369 break; 2370 2371 case 167: /* stvehx */ 2372 op->type = MKOP(STORE_VMX, 0, 2); 2373 op->element_size = 2; 2374 break; 2375 2376 case 199: /* stvewx */ 2377 op->type = MKOP(STORE_VMX, 0, 4); 2378 op->element_size = 4; 2379 break; 2380 2381 case 231: /* stvx */ 2382 case 487: /* stvxl */ 2383 op->type = MKOP(STORE_VMX, 0, 16); 2384 break; 2385 #endif /* CONFIG_ALTIVEC */ 2386 2387 #ifdef __powerpc64__ 2388 case 21: /* ldx */ 2389 case 53: /* ldux */ 2390 op->type = MKOP(LOAD, u, 8); 2391 break; 2392 2393 case 149: /* stdx */ 2394 case 181: /* stdux */ 2395 op->type = MKOP(STORE, u, 8); 2396 break; 2397 #endif 2398 2399 case 151: /* stwx */ 2400 case 183: /* stwux */ 2401 op->type = MKOP(STORE, u, 4); 2402 break; 2403 2404 case 215: /* stbx */ 2405 case 247: /* stbux */ 2406 op->type = MKOP(STORE, u, 1); 2407 break; 2408 2409 case 279: /* lhzx */ 2410 case 311: /* lhzux */ 2411 op->type = MKOP(LOAD, u, 2); 2412 break; 2413 2414 #ifdef __powerpc64__ 2415 case 341: /* lwax */ 2416 case 373: /* lwaux */ 2417 op->type = MKOP(LOAD, SIGNEXT | u, 4); 2418 break; 2419 #endif 2420 2421 case 343: /* lhax */ 2422 case 375: /* lhaux */ 2423 op->type = MKOP(LOAD, SIGNEXT | u, 2); 2424 break; 2425 2426 case 407: /* sthx */ 2427 case 439: /* sthux */ 2428 op->type = MKOP(STORE, u, 2); 2429 break; 2430 2431 #ifdef __powerpc64__ 2432 case 532: /* ldbrx */ 2433 op->type = MKOP(LOAD, BYTEREV, 8); 2434 break; 2435 2436 #endif 2437 case 533: /* lswx */ 2438 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f); 2439 break; 2440 2441 case 534: /* lwbrx */ 2442 op->type = MKOP(LOAD, BYTEREV, 4); 2443 break; 2444 2445 case 597: /* lswi */ 2446 if (rb == 0) 2447 rb = 32; /* # bytes to load */ 2448 op->type = MKOP(LOAD_MULTI, 0, rb); 2449 op->ea = ra ? regs->gpr[ra] : 0; 2450 break; 2451 2452 #ifdef CONFIG_PPC_FPU 2453 case 535: /* lfsx */ 2454 case 567: /* lfsux */ 2455 op->type = MKOP(LOAD_FP, u | FPCONV, 4); 2456 break; 2457 2458 case 599: /* lfdx */ 2459 case 631: /* lfdux */ 2460 op->type = MKOP(LOAD_FP, u, 8); 2461 break; 2462 2463 case 663: /* stfsx */ 2464 case 695: /* stfsux */ 2465 op->type = MKOP(STORE_FP, u | FPCONV, 4); 2466 break; 2467 2468 case 727: /* stfdx */ 2469 case 759: /* stfdux */ 2470 op->type = MKOP(STORE_FP, u, 8); 2471 break; 2472 2473 #ifdef __powerpc64__ 2474 case 791: /* lfdpx */ 2475 op->type = MKOP(LOAD_FP, 0, 16); 2476 break; 2477 2478 case 855: /* lfiwax */ 2479 op->type = MKOP(LOAD_FP, SIGNEXT, 4); 2480 break; 2481 2482 case 887: /* lfiwzx */ 2483 op->type = MKOP(LOAD_FP, 0, 4); 2484 break; 2485 2486 case 919: /* stfdpx */ 2487 op->type = MKOP(STORE_FP, 0, 16); 2488 break; 2489 2490 case 983: /* stfiwx */ 2491 op->type = MKOP(STORE_FP, 0, 4); 2492 break; 2493 #endif /* __powerpc64 */ 2494 #endif /* CONFIG_PPC_FPU */ 2495 2496 #ifdef __powerpc64__ 2497 case 660: /* stdbrx */ 2498 op->type = MKOP(STORE, BYTEREV, 8); 2499 op->val = byterev_8(regs->gpr[rd]); 2500 break; 2501 2502 #endif 2503 case 661: /* stswx */ 2504 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f); 2505 break; 2506 2507 case 662: /* stwbrx */ 2508 op->type = MKOP(STORE, BYTEREV, 4); 2509 op->val = byterev_4(regs->gpr[rd]); 2510 break; 2511 2512 case 725: /* stswi */ 2513 if (rb == 0) 2514 rb = 32; /* # bytes to store */ 2515 op->type = MKOP(STORE_MULTI, 0, rb); 2516 op->ea = ra ? regs->gpr[ra] : 0; 2517 break; 2518 2519 case 790: /* lhbrx */ 2520 op->type = MKOP(LOAD, BYTEREV, 2); 2521 break; 2522 2523 case 918: /* sthbrx */ 2524 op->type = MKOP(STORE, BYTEREV, 2); 2525 op->val = byterev_2(regs->gpr[rd]); 2526 break; 2527 2528 #ifdef CONFIG_VSX 2529 case 12: /* lxsiwzx */ 2530 op->reg = rd | ((word & 1) << 5); 2531 op->type = MKOP(LOAD_VSX, 0, 4); 2532 op->element_size = 8; 2533 break; 2534 2535 case 76: /* lxsiwax */ 2536 op->reg = rd | ((word & 1) << 5); 2537 op->type = MKOP(LOAD_VSX, SIGNEXT, 4); 2538 op->element_size = 8; 2539 break; 2540 2541 case 140: /* stxsiwx */ 2542 op->reg = rd | ((word & 1) << 5); 2543 op->type = MKOP(STORE_VSX, 0, 4); 2544 op->element_size = 8; 2545 break; 2546 2547 case 268: /* lxvx */ 2548 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2549 goto unknown_opcode; 2550 op->reg = rd | ((word & 1) << 5); 2551 op->type = MKOP(LOAD_VSX, 0, 16); 2552 op->element_size = 16; 2553 op->vsx_flags = VSX_CHECK_VEC; 2554 break; 2555 2556 case 269: /* lxvl */ 2557 case 301: { /* lxvll */ 2558 int nb; 2559 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2560 goto unknown_opcode; 2561 op->reg = rd | ((word & 1) << 5); 2562 op->ea = ra ? regs->gpr[ra] : 0; 2563 nb = regs->gpr[rb] & 0xff; 2564 if (nb > 16) 2565 nb = 16; 2566 op->type = MKOP(LOAD_VSX, 0, nb); 2567 op->element_size = 16; 2568 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) | 2569 VSX_CHECK_VEC; 2570 break; 2571 } 2572 case 332: /* lxvdsx */ 2573 op->reg = rd | ((word & 1) << 5); 2574 op->type = MKOP(LOAD_VSX, 0, 8); 2575 op->element_size = 8; 2576 op->vsx_flags = VSX_SPLAT; 2577 break; 2578 2579 case 333: /* lxvpx */ 2580 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2581 goto unknown_opcode; 2582 op->reg = VSX_REGISTER_XTP(rd); 2583 op->type = MKOP(LOAD_VSX, 0, 32); 2584 op->element_size = 32; 2585 break; 2586 2587 case 364: /* lxvwsx */ 2588 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2589 goto unknown_opcode; 2590 op->reg = rd | ((word & 1) << 5); 2591 op->type = MKOP(LOAD_VSX, 0, 4); 2592 op->element_size = 4; 2593 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC; 2594 break; 2595 2596 case 396: /* stxvx */ 2597 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2598 goto unknown_opcode; 2599 op->reg = rd | ((word & 1) << 5); 2600 op->type = MKOP(STORE_VSX, 0, 16); 2601 op->element_size = 16; 2602 op->vsx_flags = VSX_CHECK_VEC; 2603 break; 2604 2605 case 397: /* stxvl */ 2606 case 429: { /* stxvll */ 2607 int nb; 2608 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2609 goto unknown_opcode; 2610 op->reg = rd | ((word & 1) << 5); 2611 op->ea = ra ? regs->gpr[ra] : 0; 2612 nb = regs->gpr[rb] & 0xff; 2613 if (nb > 16) 2614 nb = 16; 2615 op->type = MKOP(STORE_VSX, 0, nb); 2616 op->element_size = 16; 2617 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) | 2618 VSX_CHECK_VEC; 2619 break; 2620 } 2621 case 461: /* stxvpx */ 2622 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2623 goto unknown_opcode; 2624 op->reg = VSX_REGISTER_XTP(rd); 2625 op->type = MKOP(STORE_VSX, 0, 32); 2626 op->element_size = 32; 2627 break; 2628 case 524: /* lxsspx */ 2629 op->reg = rd | ((word & 1) << 5); 2630 op->type = MKOP(LOAD_VSX, 0, 4); 2631 op->element_size = 8; 2632 op->vsx_flags = VSX_FPCONV; 2633 break; 2634 2635 case 588: /* lxsdx */ 2636 op->reg = rd | ((word & 1) << 5); 2637 op->type = MKOP(LOAD_VSX, 0, 8); 2638 op->element_size = 8; 2639 break; 2640 2641 case 652: /* stxsspx */ 2642 op->reg = rd | ((word & 1) << 5); 2643 op->type = MKOP(STORE_VSX, 0, 4); 2644 op->element_size = 8; 2645 op->vsx_flags = VSX_FPCONV; 2646 break; 2647 2648 case 716: /* stxsdx */ 2649 op->reg = rd | ((word & 1) << 5); 2650 op->type = MKOP(STORE_VSX, 0, 8); 2651 op->element_size = 8; 2652 break; 2653 2654 case 780: /* lxvw4x */ 2655 op->reg = rd | ((word & 1) << 5); 2656 op->type = MKOP(LOAD_VSX, 0, 16); 2657 op->element_size = 4; 2658 break; 2659 2660 case 781: /* lxsibzx */ 2661 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2662 goto unknown_opcode; 2663 op->reg = rd | ((word & 1) << 5); 2664 op->type = MKOP(LOAD_VSX, 0, 1); 2665 op->element_size = 8; 2666 op->vsx_flags = VSX_CHECK_VEC; 2667 break; 2668 2669 case 812: /* lxvh8x */ 2670 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2671 goto unknown_opcode; 2672 op->reg = rd | ((word & 1) << 5); 2673 op->type = MKOP(LOAD_VSX, 0, 16); 2674 op->element_size = 2; 2675 op->vsx_flags = VSX_CHECK_VEC; 2676 break; 2677 2678 case 813: /* lxsihzx */ 2679 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2680 goto unknown_opcode; 2681 op->reg = rd | ((word & 1) << 5); 2682 op->type = MKOP(LOAD_VSX, 0, 2); 2683 op->element_size = 8; 2684 op->vsx_flags = VSX_CHECK_VEC; 2685 break; 2686 2687 case 844: /* lxvd2x */ 2688 op->reg = rd | ((word & 1) << 5); 2689 op->type = MKOP(LOAD_VSX, 0, 16); 2690 op->element_size = 8; 2691 break; 2692 2693 case 876: /* lxvb16x */ 2694 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2695 goto unknown_opcode; 2696 op->reg = rd | ((word & 1) << 5); 2697 op->type = MKOP(LOAD_VSX, 0, 16); 2698 op->element_size = 1; 2699 op->vsx_flags = VSX_CHECK_VEC; 2700 break; 2701 2702 case 908: /* stxvw4x */ 2703 op->reg = rd | ((word & 1) << 5); 2704 op->type = MKOP(STORE_VSX, 0, 16); 2705 op->element_size = 4; 2706 break; 2707 2708 case 909: /* stxsibx */ 2709 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2710 goto unknown_opcode; 2711 op->reg = rd | ((word & 1) << 5); 2712 op->type = MKOP(STORE_VSX, 0, 1); 2713 op->element_size = 8; 2714 op->vsx_flags = VSX_CHECK_VEC; 2715 break; 2716 2717 case 940: /* stxvh8x */ 2718 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2719 goto unknown_opcode; 2720 op->reg = rd | ((word & 1) << 5); 2721 op->type = MKOP(STORE_VSX, 0, 16); 2722 op->element_size = 2; 2723 op->vsx_flags = VSX_CHECK_VEC; 2724 break; 2725 2726 case 941: /* stxsihx */ 2727 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2728 goto unknown_opcode; 2729 op->reg = rd | ((word & 1) << 5); 2730 op->type = MKOP(STORE_VSX, 0, 2); 2731 op->element_size = 8; 2732 op->vsx_flags = VSX_CHECK_VEC; 2733 break; 2734 2735 case 972: /* stxvd2x */ 2736 op->reg = rd | ((word & 1) << 5); 2737 op->type = MKOP(STORE_VSX, 0, 16); 2738 op->element_size = 8; 2739 break; 2740 2741 case 1004: /* stxvb16x */ 2742 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2743 goto unknown_opcode; 2744 op->reg = rd | ((word & 1) << 5); 2745 op->type = MKOP(STORE_VSX, 0, 16); 2746 op->element_size = 1; 2747 op->vsx_flags = VSX_CHECK_VEC; 2748 break; 2749 2750 #endif /* CONFIG_VSX */ 2751 } 2752 break; 2753 2754 case 32: /* lwz */ 2755 case 33: /* lwzu */ 2756 op->type = MKOP(LOAD, u, 4); 2757 op->ea = dform_ea(word, regs); 2758 break; 2759 2760 case 34: /* lbz */ 2761 case 35: /* lbzu */ 2762 op->type = MKOP(LOAD, u, 1); 2763 op->ea = dform_ea(word, regs); 2764 break; 2765 2766 case 36: /* stw */ 2767 case 37: /* stwu */ 2768 op->type = MKOP(STORE, u, 4); 2769 op->ea = dform_ea(word, regs); 2770 break; 2771 2772 case 38: /* stb */ 2773 case 39: /* stbu */ 2774 op->type = MKOP(STORE, u, 1); 2775 op->ea = dform_ea(word, regs); 2776 break; 2777 2778 case 40: /* lhz */ 2779 case 41: /* lhzu */ 2780 op->type = MKOP(LOAD, u, 2); 2781 op->ea = dform_ea(word, regs); 2782 break; 2783 2784 case 42: /* lha */ 2785 case 43: /* lhau */ 2786 op->type = MKOP(LOAD, SIGNEXT | u, 2); 2787 op->ea = dform_ea(word, regs); 2788 break; 2789 2790 case 44: /* sth */ 2791 case 45: /* sthu */ 2792 op->type = MKOP(STORE, u, 2); 2793 op->ea = dform_ea(word, regs); 2794 break; 2795 2796 case 46: /* lmw */ 2797 if (ra >= rd) 2798 break; /* invalid form, ra in range to load */ 2799 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd)); 2800 op->ea = dform_ea(word, regs); 2801 break; 2802 2803 case 47: /* stmw */ 2804 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd)); 2805 op->ea = dform_ea(word, regs); 2806 break; 2807 2808 #ifdef CONFIG_PPC_FPU 2809 case 48: /* lfs */ 2810 case 49: /* lfsu */ 2811 op->type = MKOP(LOAD_FP, u | FPCONV, 4); 2812 op->ea = dform_ea(word, regs); 2813 break; 2814 2815 case 50: /* lfd */ 2816 case 51: /* lfdu */ 2817 op->type = MKOP(LOAD_FP, u, 8); 2818 op->ea = dform_ea(word, regs); 2819 break; 2820 2821 case 52: /* stfs */ 2822 case 53: /* stfsu */ 2823 op->type = MKOP(STORE_FP, u | FPCONV, 4); 2824 op->ea = dform_ea(word, regs); 2825 break; 2826 2827 case 54: /* stfd */ 2828 case 55: /* stfdu */ 2829 op->type = MKOP(STORE_FP, u, 8); 2830 op->ea = dform_ea(word, regs); 2831 break; 2832 #endif 2833 2834 #ifdef __powerpc64__ 2835 case 56: /* lq */ 2836 if (!((rd & 1) || (rd == ra))) 2837 op->type = MKOP(LOAD, 0, 16); 2838 op->ea = dqform_ea(word, regs); 2839 break; 2840 #endif 2841 2842 #ifdef CONFIG_VSX 2843 case 57: /* lfdp, lxsd, lxssp */ 2844 op->ea = dsform_ea(word, regs); 2845 switch (word & 3) { 2846 case 0: /* lfdp */ 2847 if (rd & 1) 2848 break; /* reg must be even */ 2849 op->type = MKOP(LOAD_FP, 0, 16); 2850 break; 2851 case 2: /* lxsd */ 2852 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2853 goto unknown_opcode; 2854 op->reg = rd + 32; 2855 op->type = MKOP(LOAD_VSX, 0, 8); 2856 op->element_size = 8; 2857 op->vsx_flags = VSX_CHECK_VEC; 2858 break; 2859 case 3: /* lxssp */ 2860 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2861 goto unknown_opcode; 2862 op->reg = rd + 32; 2863 op->type = MKOP(LOAD_VSX, 0, 4); 2864 op->element_size = 8; 2865 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 2866 break; 2867 } 2868 break; 2869 #endif /* CONFIG_VSX */ 2870 2871 #ifdef __powerpc64__ 2872 case 58: /* ld[u], lwa */ 2873 op->ea = dsform_ea(word, regs); 2874 switch (word & 3) { 2875 case 0: /* ld */ 2876 op->type = MKOP(LOAD, 0, 8); 2877 break; 2878 case 1: /* ldu */ 2879 op->type = MKOP(LOAD, UPDATE, 8); 2880 break; 2881 case 2: /* lwa */ 2882 op->type = MKOP(LOAD, SIGNEXT, 4); 2883 break; 2884 } 2885 break; 2886 #endif 2887 2888 #ifdef CONFIG_VSX 2889 case 6: 2890 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2891 goto unknown_opcode; 2892 op->ea = dqform_ea(word, regs); 2893 op->reg = VSX_REGISTER_XTP(rd); 2894 op->element_size = 32; 2895 switch (word & 0xf) { 2896 case 0: /* lxvp */ 2897 op->type = MKOP(LOAD_VSX, 0, 32); 2898 break; 2899 case 1: /* stxvp */ 2900 op->type = MKOP(STORE_VSX, 0, 32); 2901 break; 2902 } 2903 break; 2904 2905 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */ 2906 switch (word & 7) { 2907 case 0: /* stfdp with LSB of DS field = 0 */ 2908 case 4: /* stfdp with LSB of DS field = 1 */ 2909 op->ea = dsform_ea(word, regs); 2910 op->type = MKOP(STORE_FP, 0, 16); 2911 break; 2912 2913 case 1: /* lxv */ 2914 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2915 goto unknown_opcode; 2916 op->ea = dqform_ea(word, regs); 2917 if (word & 8) 2918 op->reg = rd + 32; 2919 op->type = MKOP(LOAD_VSX, 0, 16); 2920 op->element_size = 16; 2921 op->vsx_flags = VSX_CHECK_VEC; 2922 break; 2923 2924 case 2: /* stxsd with LSB of DS field = 0 */ 2925 case 6: /* stxsd with LSB of DS field = 1 */ 2926 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2927 goto unknown_opcode; 2928 op->ea = dsform_ea(word, regs); 2929 op->reg = rd + 32; 2930 op->type = MKOP(STORE_VSX, 0, 8); 2931 op->element_size = 8; 2932 op->vsx_flags = VSX_CHECK_VEC; 2933 break; 2934 2935 case 3: /* stxssp with LSB of DS field = 0 */ 2936 case 7: /* stxssp with LSB of DS field = 1 */ 2937 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2938 goto unknown_opcode; 2939 op->ea = dsform_ea(word, regs); 2940 op->reg = rd + 32; 2941 op->type = MKOP(STORE_VSX, 0, 4); 2942 op->element_size = 8; 2943 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 2944 break; 2945 2946 case 5: /* stxv */ 2947 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2948 goto unknown_opcode; 2949 op->ea = dqform_ea(word, regs); 2950 if (word & 8) 2951 op->reg = rd + 32; 2952 op->type = MKOP(STORE_VSX, 0, 16); 2953 op->element_size = 16; 2954 op->vsx_flags = VSX_CHECK_VEC; 2955 break; 2956 } 2957 break; 2958 #endif /* CONFIG_VSX */ 2959 2960 #ifdef __powerpc64__ 2961 case 62: /* std[u] */ 2962 op->ea = dsform_ea(word, regs); 2963 switch (word & 3) { 2964 case 0: /* std */ 2965 op->type = MKOP(STORE, 0, 8); 2966 break; 2967 case 1: /* stdu */ 2968 op->type = MKOP(STORE, UPDATE, 8); 2969 break; 2970 case 2: /* stq */ 2971 if (!(rd & 1)) 2972 op->type = MKOP(STORE, 0, 16); 2973 break; 2974 } 2975 break; 2976 case 1: /* Prefixed instructions */ 2977 if (!cpu_has_feature(CPU_FTR_ARCH_31)) 2978 goto unknown_opcode; 2979 2980 prefix_r = GET_PREFIX_R(word); 2981 ra = GET_PREFIX_RA(suffix); 2982 op->update_reg = ra; 2983 rd = (suffix >> 21) & 0x1f; 2984 op->reg = rd; 2985 op->val = regs->gpr[rd]; 2986 2987 suffixopcode = get_op(suffix); 2988 prefixtype = (word >> 24) & 0x3; 2989 switch (prefixtype) { 2990 case 0: /* Type 00 Eight-Byte Load/Store */ 2991 if (prefix_r && ra) 2992 break; 2993 op->ea = mlsd_8lsd_ea(word, suffix, regs); 2994 switch (suffixopcode) { 2995 case 41: /* plwa */ 2996 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4); 2997 break; 2998 #ifdef CONFIG_VSX 2999 case 42: /* plxsd */ 3000 op->reg = rd + 32; 3001 op->type = MKOP(LOAD_VSX, PREFIXED, 8); 3002 op->element_size = 8; 3003 op->vsx_flags = VSX_CHECK_VEC; 3004 break; 3005 case 43: /* plxssp */ 3006 op->reg = rd + 32; 3007 op->type = MKOP(LOAD_VSX, PREFIXED, 4); 3008 op->element_size = 8; 3009 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 3010 break; 3011 case 46: /* pstxsd */ 3012 op->reg = rd + 32; 3013 op->type = MKOP(STORE_VSX, PREFIXED, 8); 3014 op->element_size = 8; 3015 op->vsx_flags = VSX_CHECK_VEC; 3016 break; 3017 case 47: /* pstxssp */ 3018 op->reg = rd + 32; 3019 op->type = MKOP(STORE_VSX, PREFIXED, 4); 3020 op->element_size = 8; 3021 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; 3022 break; 3023 case 51: /* plxv1 */ 3024 op->reg += 32; 3025 fallthrough; 3026 case 50: /* plxv0 */ 3027 op->type = MKOP(LOAD_VSX, PREFIXED, 16); 3028 op->element_size = 16; 3029 op->vsx_flags = VSX_CHECK_VEC; 3030 break; 3031 case 55: /* pstxv1 */ 3032 op->reg = rd + 32; 3033 fallthrough; 3034 case 54: /* pstxv0 */ 3035 op->type = MKOP(STORE_VSX, PREFIXED, 16); 3036 op->element_size = 16; 3037 op->vsx_flags = VSX_CHECK_VEC; 3038 break; 3039 #endif /* CONFIG_VSX */ 3040 case 56: /* plq */ 3041 op->type = MKOP(LOAD, PREFIXED, 16); 3042 break; 3043 case 57: /* pld */ 3044 op->type = MKOP(LOAD, PREFIXED, 8); 3045 break; 3046 #ifdef CONFIG_VSX 3047 case 58: /* plxvp */ 3048 op->reg = VSX_REGISTER_XTP(rd); 3049 op->type = MKOP(LOAD_VSX, PREFIXED, 32); 3050 op->element_size = 32; 3051 break; 3052 #endif /* CONFIG_VSX */ 3053 case 60: /* pstq */ 3054 op->type = MKOP(STORE, PREFIXED, 16); 3055 break; 3056 case 61: /* pstd */ 3057 op->type = MKOP(STORE, PREFIXED, 8); 3058 break; 3059 #ifdef CONFIG_VSX 3060 case 62: /* pstxvp */ 3061 op->reg = VSX_REGISTER_XTP(rd); 3062 op->type = MKOP(STORE_VSX, PREFIXED, 32); 3063 op->element_size = 32; 3064 break; 3065 #endif /* CONFIG_VSX */ 3066 } 3067 break; 3068 case 1: /* Type 01 Eight-Byte Register-to-Register */ 3069 break; 3070 case 2: /* Type 10 Modified Load/Store */ 3071 if (prefix_r && ra) 3072 break; 3073 op->ea = mlsd_8lsd_ea(word, suffix, regs); 3074 switch (suffixopcode) { 3075 case 32: /* plwz */ 3076 op->type = MKOP(LOAD, PREFIXED, 4); 3077 break; 3078 case 34: /* plbz */ 3079 op->type = MKOP(LOAD, PREFIXED, 1); 3080 break; 3081 case 36: /* pstw */ 3082 op->type = MKOP(STORE, PREFIXED, 4); 3083 break; 3084 case 38: /* pstb */ 3085 op->type = MKOP(STORE, PREFIXED, 1); 3086 break; 3087 case 40: /* plhz */ 3088 op->type = MKOP(LOAD, PREFIXED, 2); 3089 break; 3090 case 42: /* plha */ 3091 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2); 3092 break; 3093 case 44: /* psth */ 3094 op->type = MKOP(STORE, PREFIXED, 2); 3095 break; 3096 case 48: /* plfs */ 3097 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4); 3098 break; 3099 case 50: /* plfd */ 3100 op->type = MKOP(LOAD_FP, PREFIXED, 8); 3101 break; 3102 case 52: /* pstfs */ 3103 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4); 3104 break; 3105 case 54: /* pstfd */ 3106 op->type = MKOP(STORE_FP, PREFIXED, 8); 3107 break; 3108 } 3109 break; 3110 case 3: /* Type 11 Modified Register-to-Register */ 3111 break; 3112 } 3113 #endif /* __powerpc64__ */ 3114 3115 } 3116 3117 if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) { 3118 switch (GETTYPE(op->type)) { 3119 case LOAD: 3120 if (ra == rd) 3121 goto unknown_opcode; 3122 fallthrough; 3123 case STORE: 3124 case LOAD_FP: 3125 case STORE_FP: 3126 if (ra == 0) 3127 goto unknown_opcode; 3128 } 3129 } 3130 3131 #ifdef CONFIG_VSX 3132 if ((GETTYPE(op->type) == LOAD_VSX || 3133 GETTYPE(op->type) == STORE_VSX) && 3134 !cpu_has_feature(CPU_FTR_VSX)) { 3135 return -1; 3136 } 3137 #endif /* CONFIG_VSX */ 3138 3139 return 0; 3140 3141 unknown_opcode: 3142 op->type = UNKNOWN; 3143 return 0; 3144 3145 logical_done: 3146 if (word & 1) 3147 set_cr0(regs, op); 3148 logical_done_nocc: 3149 op->reg = ra; 3150 op->type |= SETREG; 3151 return 1; 3152 3153 arith_done: 3154 if (word & 1) 3155 set_cr0(regs, op); 3156 compute_done: 3157 op->reg = rd; 3158 op->type |= SETREG; 3159 return 1; 3160 3161 priv: 3162 op->type = INTERRUPT | 0x700; 3163 op->val = SRR1_PROGPRIV; 3164 return 0; 3165 3166 trap: 3167 op->type = INTERRUPT | 0x700; 3168 op->val = SRR1_PROGTRAP; 3169 return 0; 3170 } 3171 EXPORT_SYMBOL_GPL(analyse_instr); 3172 NOKPROBE_SYMBOL(analyse_instr); 3173 3174 /* 3175 * For PPC32 we always use stwu with r1 to change the stack pointer. 3176 * So this emulated store may corrupt the exception frame, now we 3177 * have to provide the exception frame trampoline, which is pushed 3178 * below the kprobed function stack. So we only update gpr[1] but 3179 * don't emulate the real store operation. We will do real store 3180 * operation safely in exception return code by checking this flag. 3181 */ 3182 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs) 3183 { 3184 /* 3185 * Check if we already set since that means we'll 3186 * lose the previous value. 3187 */ 3188 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE)); 3189 set_thread_flag(TIF_EMULATE_STACK_STORE); 3190 return 0; 3191 } 3192 3193 static nokprobe_inline void do_signext(unsigned long *valp, int size) 3194 { 3195 switch (size) { 3196 case 2: 3197 *valp = (signed short) *valp; 3198 break; 3199 case 4: 3200 *valp = (signed int) *valp; 3201 break; 3202 } 3203 } 3204 3205 static nokprobe_inline void do_byterev(unsigned long *valp, int size) 3206 { 3207 switch (size) { 3208 case 2: 3209 *valp = byterev_2(*valp); 3210 break; 3211 case 4: 3212 *valp = byterev_4(*valp); 3213 break; 3214 #ifdef __powerpc64__ 3215 case 8: 3216 *valp = byterev_8(*valp); 3217 break; 3218 #endif 3219 } 3220 } 3221 3222 /* 3223 * Emulate an instruction that can be executed just by updating 3224 * fields in *regs. 3225 */ 3226 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op) 3227 { 3228 unsigned long next_pc; 3229 3230 next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type)); 3231 switch (GETTYPE(op->type)) { 3232 case COMPUTE: 3233 if (op->type & SETREG) 3234 regs->gpr[op->reg] = op->val; 3235 if (op->type & SETCC) 3236 regs->ccr = op->ccval; 3237 if (op->type & SETXER) 3238 regs->xer = op->xerval; 3239 break; 3240 3241 case BRANCH: 3242 if (op->type & SETLK) 3243 regs->link = next_pc; 3244 if (op->type & BRTAKEN) 3245 next_pc = op->val; 3246 if (op->type & DECCTR) 3247 --regs->ctr; 3248 break; 3249 3250 case BARRIER: 3251 switch (op->type & BARRIER_MASK) { 3252 case BARRIER_SYNC: 3253 mb(); 3254 break; 3255 case BARRIER_ISYNC: 3256 isync(); 3257 break; 3258 case BARRIER_EIEIO: 3259 eieio(); 3260 break; 3261 #ifdef CONFIG_PPC64 3262 case BARRIER_LWSYNC: 3263 asm volatile("lwsync" : : : "memory"); 3264 break; 3265 case BARRIER_PTESYNC: 3266 asm volatile("ptesync" : : : "memory"); 3267 break; 3268 #endif 3269 } 3270 break; 3271 3272 case MFSPR: 3273 switch (op->spr) { 3274 case SPRN_XER: 3275 regs->gpr[op->reg] = regs->xer & 0xffffffffUL; 3276 break; 3277 case SPRN_LR: 3278 regs->gpr[op->reg] = regs->link; 3279 break; 3280 case SPRN_CTR: 3281 regs->gpr[op->reg] = regs->ctr; 3282 break; 3283 default: 3284 WARN_ON_ONCE(1); 3285 } 3286 break; 3287 3288 case MTSPR: 3289 switch (op->spr) { 3290 case SPRN_XER: 3291 regs->xer = op->val & 0xffffffffUL; 3292 break; 3293 case SPRN_LR: 3294 regs->link = op->val; 3295 break; 3296 case SPRN_CTR: 3297 regs->ctr = op->val; 3298 break; 3299 default: 3300 WARN_ON_ONCE(1); 3301 } 3302 break; 3303 3304 default: 3305 WARN_ON_ONCE(1); 3306 } 3307 regs_set_return_ip(regs, next_pc); 3308 } 3309 NOKPROBE_SYMBOL(emulate_update_regs); 3310 3311 /* 3312 * Emulate a previously-analysed load or store instruction. 3313 * Return values are: 3314 * 0 = instruction emulated successfully 3315 * -EFAULT = address out of range or access faulted (regs->dar 3316 * contains the faulting address) 3317 * -EACCES = misaligned access, instruction requires alignment 3318 * -EINVAL = unknown operation in *op 3319 */ 3320 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op) 3321 { 3322 int err, size, type; 3323 int i, rd, nb; 3324 unsigned int cr; 3325 unsigned long val; 3326 unsigned long ea; 3327 bool cross_endian; 3328 3329 err = 0; 3330 size = GETSIZE(op->type); 3331 type = GETTYPE(op->type); 3332 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE); 3333 ea = truncate_if_32bit(regs->msr, op->ea); 3334 3335 switch (type) { 3336 case LARX: 3337 if (ea & (size - 1)) 3338 return -EACCES; /* can't handle misaligned */ 3339 if (!address_ok(regs, ea, size)) 3340 return -EFAULT; 3341 err = 0; 3342 val = 0; 3343 switch (size) { 3344 #ifdef CONFIG_PPC_HAS_LBARX_LHARX 3345 case 1: 3346 __get_user_asmx(val, ea, err, "lbarx"); 3347 break; 3348 case 2: 3349 __get_user_asmx(val, ea, err, "lharx"); 3350 break; 3351 #endif 3352 case 4: 3353 __get_user_asmx(val, ea, err, "lwarx"); 3354 break; 3355 #ifdef __powerpc64__ 3356 case 8: 3357 __get_user_asmx(val, ea, err, "ldarx"); 3358 break; 3359 case 16: 3360 err = do_lqarx(ea, ®s->gpr[op->reg]); 3361 break; 3362 #endif 3363 default: 3364 return -EINVAL; 3365 } 3366 if (err) { 3367 regs->dar = ea; 3368 break; 3369 } 3370 if (size < 16) 3371 regs->gpr[op->reg] = val; 3372 break; 3373 3374 case STCX: 3375 if (ea & (size - 1)) 3376 return -EACCES; /* can't handle misaligned */ 3377 if (!address_ok(regs, ea, size)) 3378 return -EFAULT; 3379 err = 0; 3380 switch (size) { 3381 #ifdef __powerpc64__ 3382 case 1: 3383 __put_user_asmx(op->val, ea, err, "stbcx.", cr); 3384 break; 3385 case 2: 3386 __put_user_asmx(op->val, ea, err, "sthcx.", cr); 3387 break; 3388 #endif 3389 case 4: 3390 __put_user_asmx(op->val, ea, err, "stwcx.", cr); 3391 break; 3392 #ifdef __powerpc64__ 3393 case 8: 3394 __put_user_asmx(op->val, ea, err, "stdcx.", cr); 3395 break; 3396 case 16: 3397 err = do_stqcx(ea, regs->gpr[op->reg], 3398 regs->gpr[op->reg + 1], &cr); 3399 break; 3400 #endif 3401 default: 3402 return -EINVAL; 3403 } 3404 if (!err) 3405 regs->ccr = (regs->ccr & 0x0fffffff) | 3406 (cr & 0xe0000000) | 3407 ((regs->xer >> 3) & 0x10000000); 3408 else 3409 regs->dar = ea; 3410 break; 3411 3412 case LOAD: 3413 #ifdef __powerpc64__ 3414 if (size == 16) { 3415 err = emulate_lq(regs, ea, op->reg, cross_endian); 3416 break; 3417 } 3418 #endif 3419 err = read_mem(®s->gpr[op->reg], ea, size, regs); 3420 if (!err) { 3421 if (op->type & SIGNEXT) 3422 do_signext(®s->gpr[op->reg], size); 3423 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV)) 3424 do_byterev(®s->gpr[op->reg], size); 3425 } 3426 break; 3427 3428 #ifdef CONFIG_PPC_FPU 3429 case LOAD_FP: 3430 /* 3431 * If the instruction is in userspace, we can emulate it even 3432 * if the VMX state is not live, because we have the state 3433 * stored in the thread_struct. If the instruction is in 3434 * the kernel, we must not touch the state in the thread_struct. 3435 */ 3436 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) 3437 return 0; 3438 err = do_fp_load(op, ea, regs, cross_endian); 3439 break; 3440 #endif 3441 #ifdef CONFIG_ALTIVEC 3442 case LOAD_VMX: 3443 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) 3444 return 0; 3445 err = do_vec_load(op->reg, ea, size, regs, cross_endian); 3446 break; 3447 #endif 3448 #ifdef CONFIG_VSX 3449 case LOAD_VSX: { 3450 unsigned long msrbit = MSR_VSX; 3451 3452 /* 3453 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX 3454 * when the target of the instruction is a vector register. 3455 */ 3456 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) 3457 msrbit = MSR_VEC; 3458 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) 3459 return 0; 3460 err = do_vsx_load(op, ea, regs, cross_endian); 3461 break; 3462 } 3463 #endif 3464 case LOAD_MULTI: 3465 if (!address_ok(regs, ea, size)) 3466 return -EFAULT; 3467 rd = op->reg; 3468 for (i = 0; i < size; i += 4) { 3469 unsigned int v32 = 0; 3470 3471 nb = size - i; 3472 if (nb > 4) 3473 nb = 4; 3474 err = copy_mem_in((u8 *) &v32, ea, nb, regs); 3475 if (err) 3476 break; 3477 if (unlikely(cross_endian)) 3478 v32 = byterev_4(v32); 3479 regs->gpr[rd] = v32; 3480 ea += 4; 3481 /* reg number wraps from 31 to 0 for lsw[ix] */ 3482 rd = (rd + 1) & 0x1f; 3483 } 3484 break; 3485 3486 case STORE: 3487 #ifdef __powerpc64__ 3488 if (size == 16) { 3489 err = emulate_stq(regs, ea, op->reg, cross_endian); 3490 break; 3491 } 3492 #endif 3493 if ((op->type & UPDATE) && size == sizeof(long) && 3494 op->reg == 1 && op->update_reg == 1 && 3495 !(regs->msr & MSR_PR) && 3496 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) { 3497 err = handle_stack_update(ea, regs); 3498 break; 3499 } 3500 if (unlikely(cross_endian)) 3501 do_byterev(&op->val, size); 3502 err = write_mem(op->val, ea, size, regs); 3503 break; 3504 3505 #ifdef CONFIG_PPC_FPU 3506 case STORE_FP: 3507 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) 3508 return 0; 3509 err = do_fp_store(op, ea, regs, cross_endian); 3510 break; 3511 #endif 3512 #ifdef CONFIG_ALTIVEC 3513 case STORE_VMX: 3514 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) 3515 return 0; 3516 err = do_vec_store(op->reg, ea, size, regs, cross_endian); 3517 break; 3518 #endif 3519 #ifdef CONFIG_VSX 3520 case STORE_VSX: { 3521 unsigned long msrbit = MSR_VSX; 3522 3523 /* 3524 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX 3525 * when the target of the instruction is a vector register. 3526 */ 3527 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) 3528 msrbit = MSR_VEC; 3529 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) 3530 return 0; 3531 err = do_vsx_store(op, ea, regs, cross_endian); 3532 break; 3533 } 3534 #endif 3535 case STORE_MULTI: 3536 if (!address_ok(regs, ea, size)) 3537 return -EFAULT; 3538 rd = op->reg; 3539 for (i = 0; i < size; i += 4) { 3540 unsigned int v32 = regs->gpr[rd]; 3541 3542 nb = size - i; 3543 if (nb > 4) 3544 nb = 4; 3545 if (unlikely(cross_endian)) 3546 v32 = byterev_4(v32); 3547 err = copy_mem_out((u8 *) &v32, ea, nb, regs); 3548 if (err) 3549 break; 3550 ea += 4; 3551 /* reg number wraps from 31 to 0 for stsw[ix] */ 3552 rd = (rd + 1) & 0x1f; 3553 } 3554 break; 3555 3556 default: 3557 return -EINVAL; 3558 } 3559 3560 if (err) 3561 return err; 3562 3563 if (op->type & UPDATE) 3564 regs->gpr[op->update_reg] = op->ea; 3565 3566 return 0; 3567 } 3568 NOKPROBE_SYMBOL(emulate_loadstore); 3569 3570 /* 3571 * Emulate instructions that cause a transfer of control, 3572 * loads and stores, and a few other instructions. 3573 * Returns 1 if the step was emulated, 0 if not, 3574 * or -1 if the instruction is one that should not be stepped, 3575 * such as an rfid, or a mtmsrd that would clear MSR_RI. 3576 */ 3577 int emulate_step(struct pt_regs *regs, ppc_inst_t instr) 3578 { 3579 struct instruction_op op; 3580 int r, err, type; 3581 unsigned long val; 3582 unsigned long ea; 3583 3584 r = analyse_instr(&op, regs, instr); 3585 if (r < 0) 3586 return r; 3587 if (r > 0) { 3588 emulate_update_regs(regs, &op); 3589 return 1; 3590 } 3591 3592 err = 0; 3593 type = GETTYPE(op.type); 3594 3595 if (OP_IS_LOAD_STORE(type)) { 3596 err = emulate_loadstore(regs, &op); 3597 if (err) 3598 return 0; 3599 goto instr_done; 3600 } 3601 3602 switch (type) { 3603 case CACHEOP: 3604 ea = truncate_if_32bit(regs->msr, op.ea); 3605 if (!address_ok(regs, ea, 8)) 3606 return 0; 3607 switch (op.type & CACHEOP_MASK) { 3608 case DCBST: 3609 __cacheop_user_asmx(ea, err, "dcbst"); 3610 break; 3611 case DCBF: 3612 __cacheop_user_asmx(ea, err, "dcbf"); 3613 break; 3614 case DCBTST: 3615 if (op.reg == 0) 3616 prefetchw((void *) ea); 3617 break; 3618 case DCBT: 3619 if (op.reg == 0) 3620 prefetch((void *) ea); 3621 break; 3622 case ICBI: 3623 __cacheop_user_asmx(ea, err, "icbi"); 3624 break; 3625 case DCBZ: 3626 err = emulate_dcbz(ea, regs); 3627 break; 3628 } 3629 if (err) { 3630 regs->dar = ea; 3631 return 0; 3632 } 3633 goto instr_done; 3634 3635 case MFMSR: 3636 regs->gpr[op.reg] = regs->msr & MSR_MASK; 3637 goto instr_done; 3638 3639 case MTMSR: 3640 val = regs->gpr[op.reg]; 3641 if ((val & MSR_RI) == 0) 3642 /* can't step mtmsr[d] that would clear MSR_RI */ 3643 return -1; 3644 /* here op.val is the mask of bits to change */ 3645 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val)); 3646 goto instr_done; 3647 3648 case SYSCALL: /* sc */ 3649 /* 3650 * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't 3651 * single step a system call instruction: 3652 * 3653 * Successful completion for an instruction means that the 3654 * instruction caused no other interrupt. Thus a Trace 3655 * interrupt never occurs for a System Call or System Call 3656 * Vectored instruction, or for a Trap instruction that 3657 * traps. 3658 */ 3659 return -1; 3660 case SYSCALL_VECTORED_0: /* scv 0 */ 3661 return -1; 3662 case RFI: 3663 return -1; 3664 } 3665 return 0; 3666 3667 instr_done: 3668 regs_set_return_ip(regs, 3669 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type))); 3670 return 1; 3671 } 3672 NOKPROBE_SYMBOL(emulate_step); 3673