xref: /openbmc/linux/arch/powerpc/lib/sstep.c (revision 66127f0d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17 
18 #ifdef CONFIG_PPC64
19 /* Bits in SRR1 that are copied from MSR */
20 #define MSR_MASK	0xffffffff87c0ffffUL
21 #else
22 #define MSR_MASK	0x87c0ffff
23 #endif
24 
25 /* Bits in XER */
26 #define XER_SO		0x80000000U
27 #define XER_OV		0x40000000U
28 #define XER_CA		0x20000000U
29 #define XER_OV32	0x00080000U
30 #define XER_CA32	0x00040000U
31 
32 #ifdef CONFIG_VSX
33 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
34 #endif
35 
36 #ifdef CONFIG_PPC_FPU
37 /*
38  * Functions in ldstfp.S
39  */
40 extern void get_fpr(int rn, double *p);
41 extern void put_fpr(int rn, const double *p);
42 extern void get_vr(int rn, __vector128 *p);
43 extern void put_vr(int rn, __vector128 *p);
44 extern void load_vsrn(int vsr, const void *p);
45 extern void store_vsrn(int vsr, void *p);
46 extern void conv_sp_to_dp(const float *sp, double *dp);
47 extern void conv_dp_to_sp(const double *dp, float *sp);
48 #endif
49 
50 #ifdef __powerpc64__
51 /*
52  * Functions in quad.S
53  */
54 extern int do_lq(unsigned long ea, unsigned long *regs);
55 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
56 extern int do_lqarx(unsigned long ea, unsigned long *regs);
57 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
58 		    unsigned int *crp);
59 #endif
60 
61 #ifdef __LITTLE_ENDIAN__
62 #define IS_LE	1
63 #define IS_BE	0
64 #else
65 #define IS_LE	0
66 #define IS_BE	1
67 #endif
68 
69 /*
70  * Emulate the truncation of 64 bit values in 32-bit mode.
71  */
72 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
73 							unsigned long val)
74 {
75 	if ((msr & MSR_64BIT) == 0)
76 		val &= 0xffffffffUL;
77 	return val;
78 }
79 
80 /*
81  * Determine whether a conditional branch instruction would branch.
82  */
83 static nokprobe_inline int branch_taken(unsigned int instr,
84 					const struct pt_regs *regs,
85 					struct instruction_op *op)
86 {
87 	unsigned int bo = (instr >> 21) & 0x1f;
88 	unsigned int bi;
89 
90 	if ((bo & 4) == 0) {
91 		/* decrement counter */
92 		op->type |= DECCTR;
93 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
94 			return 0;
95 	}
96 	if ((bo & 0x10) == 0) {
97 		/* check bit from CR */
98 		bi = (instr >> 16) & 0x1f;
99 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
100 			return 0;
101 	}
102 	return 1;
103 }
104 
105 static nokprobe_inline long address_ok(struct pt_regs *regs,
106 				       unsigned long ea, int nb)
107 {
108 	if (!user_mode(regs))
109 		return 1;
110 	if (access_ok((void __user *)ea, nb))
111 		return 1;
112 	if (access_ok((void __user *)ea, 1))
113 		/* Access overlaps the end of the user region */
114 		regs->dar = TASK_SIZE_MAX - 1;
115 	else
116 		regs->dar = ea;
117 	return 0;
118 }
119 
120 /*
121  * Calculate effective address for a D-form instruction
122  */
123 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
124 					      const struct pt_regs *regs)
125 {
126 	int ra;
127 	unsigned long ea;
128 
129 	ra = (instr >> 16) & 0x1f;
130 	ea = (signed short) instr;		/* sign-extend */
131 	if (ra)
132 		ea += regs->gpr[ra];
133 
134 	return ea;
135 }
136 
137 #ifdef __powerpc64__
138 /*
139  * Calculate effective address for a DS-form instruction
140  */
141 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
142 					       const struct pt_regs *regs)
143 {
144 	int ra;
145 	unsigned long ea;
146 
147 	ra = (instr >> 16) & 0x1f;
148 	ea = (signed short) (instr & ~3);	/* sign-extend */
149 	if (ra)
150 		ea += regs->gpr[ra];
151 
152 	return ea;
153 }
154 
155 /*
156  * Calculate effective address for a DQ-form instruction
157  */
158 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
159 					       const struct pt_regs *regs)
160 {
161 	int ra;
162 	unsigned long ea;
163 
164 	ra = (instr >> 16) & 0x1f;
165 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
166 	if (ra)
167 		ea += regs->gpr[ra];
168 
169 	return ea;
170 }
171 #endif /* __powerpc64 */
172 
173 /*
174  * Calculate effective address for an X-form instruction
175  */
176 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
177 					      const struct pt_regs *regs)
178 {
179 	int ra, rb;
180 	unsigned long ea;
181 
182 	ra = (instr >> 16) & 0x1f;
183 	rb = (instr >> 11) & 0x1f;
184 	ea = regs->gpr[rb];
185 	if (ra)
186 		ea += regs->gpr[ra];
187 
188 	return ea;
189 }
190 
191 /*
192  * Calculate effective address for a MLS:D-form / 8LS:D-form
193  * prefixed instruction
194  */
195 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
196 						  unsigned int suffix,
197 						  const struct pt_regs *regs)
198 {
199 	int ra, prefix_r;
200 	unsigned int  dd;
201 	unsigned long ea, d0, d1, d;
202 
203 	prefix_r = GET_PREFIX_R(instr);
204 	ra = GET_PREFIX_RA(suffix);
205 
206 	d0 = instr & 0x3ffff;
207 	d1 = suffix & 0xffff;
208 	d = (d0 << 16) | d1;
209 
210 	/*
211 	 * sign extend a 34 bit number
212 	 */
213 	dd = (unsigned int)(d >> 2);
214 	ea = (signed int)dd;
215 	ea = (ea << 2) | (d & 0x3);
216 
217 	if (!prefix_r && ra)
218 		ea += regs->gpr[ra];
219 	else if (!prefix_r && !ra)
220 		; /* Leave ea as is */
221 	else if (prefix_r)
222 		ea += regs->nip;
223 
224 	/*
225 	 * (prefix_r && ra) is an invalid form. Should already be
226 	 * checked for by caller!
227 	 */
228 
229 	return ea;
230 }
231 
232 /*
233  * Return the largest power of 2, not greater than sizeof(unsigned long),
234  * such that x is a multiple of it.
235  */
236 static nokprobe_inline unsigned long max_align(unsigned long x)
237 {
238 	x |= sizeof(unsigned long);
239 	return x & -x;		/* isolates rightmost bit */
240 }
241 
242 static nokprobe_inline unsigned long byterev_2(unsigned long x)
243 {
244 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
245 }
246 
247 static nokprobe_inline unsigned long byterev_4(unsigned long x)
248 {
249 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
250 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
251 }
252 
253 #ifdef __powerpc64__
254 static nokprobe_inline unsigned long byterev_8(unsigned long x)
255 {
256 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
257 }
258 #endif
259 
260 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
261 {
262 	switch (nb) {
263 	case 2:
264 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
265 		break;
266 	case 4:
267 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
268 		break;
269 #ifdef __powerpc64__
270 	case 8:
271 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
272 		break;
273 	case 16: {
274 		unsigned long *up = (unsigned long *)ptr;
275 		unsigned long tmp;
276 		tmp = byterev_8(up[0]);
277 		up[0] = byterev_8(up[1]);
278 		up[1] = tmp;
279 		break;
280 	}
281 	case 32: {
282 		unsigned long *up = (unsigned long *)ptr;
283 		unsigned long tmp;
284 
285 		tmp = byterev_8(up[0]);
286 		up[0] = byterev_8(up[3]);
287 		up[3] = tmp;
288 		tmp = byterev_8(up[2]);
289 		up[2] = byterev_8(up[1]);
290 		up[1] = tmp;
291 		break;
292 	}
293 
294 #endif
295 	default:
296 		WARN_ON_ONCE(1);
297 	}
298 }
299 
300 static __always_inline int
301 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
302 {
303 	unsigned long x = 0;
304 
305 	switch (nb) {
306 	case 1:
307 		unsafe_get_user(x, (unsigned char __user *)ea, Efault);
308 		break;
309 	case 2:
310 		unsafe_get_user(x, (unsigned short __user *)ea, Efault);
311 		break;
312 	case 4:
313 		unsafe_get_user(x, (unsigned int __user *)ea, Efault);
314 		break;
315 #ifdef __powerpc64__
316 	case 8:
317 		unsafe_get_user(x, (unsigned long __user *)ea, Efault);
318 		break;
319 #endif
320 	}
321 	*dest = x;
322 	return 0;
323 
324 Efault:
325 	regs->dar = ea;
326 	return -EFAULT;
327 }
328 
329 static nokprobe_inline int
330 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
331 {
332 	int err;
333 
334 	if (is_kernel_addr(ea))
335 		return __read_mem_aligned(dest, ea, nb, regs);
336 
337 	if (user_read_access_begin((void __user *)ea, nb)) {
338 		err = __read_mem_aligned(dest, ea, nb, regs);
339 		user_read_access_end();
340 	} else {
341 		err = -EFAULT;
342 		regs->dar = ea;
343 	}
344 
345 	return err;
346 }
347 
348 /*
349  * Copy from userspace to a buffer, using the largest possible
350  * aligned accesses, up to sizeof(long).
351  */
352 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
353 {
354 	int c;
355 
356 	for (; nb > 0; nb -= c) {
357 		c = max_align(ea);
358 		if (c > nb)
359 			c = max_align(nb);
360 		switch (c) {
361 		case 1:
362 			unsafe_get_user(*dest, (u8 __user *)ea, Efault);
363 			break;
364 		case 2:
365 			unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
366 			break;
367 		case 4:
368 			unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
369 			break;
370 #ifdef __powerpc64__
371 		case 8:
372 			unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
373 			break;
374 #endif
375 		}
376 		dest += c;
377 		ea += c;
378 	}
379 	return 0;
380 
381 Efault:
382 	regs->dar = ea;
383 	return -EFAULT;
384 }
385 
386 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
387 {
388 	int err;
389 
390 	if (is_kernel_addr(ea))
391 		return __copy_mem_in(dest, ea, nb, regs);
392 
393 	if (user_read_access_begin((void __user *)ea, nb)) {
394 		err = __copy_mem_in(dest, ea, nb, regs);
395 		user_read_access_end();
396 	} else {
397 		err = -EFAULT;
398 		regs->dar = ea;
399 	}
400 
401 	return err;
402 }
403 
404 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
405 					      unsigned long ea, int nb,
406 					      struct pt_regs *regs)
407 {
408 	union {
409 		unsigned long ul;
410 		u8 b[sizeof(unsigned long)];
411 	} u;
412 	int i;
413 	int err;
414 
415 	u.ul = 0;
416 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
417 	err = copy_mem_in(&u.b[i], ea, nb, regs);
418 	if (!err)
419 		*dest = u.ul;
420 	return err;
421 }
422 
423 /*
424  * Read memory at address ea for nb bytes, return 0 for success
425  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
426  * If nb < sizeof(long), the result is right-justified on BE systems.
427  */
428 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
429 			      struct pt_regs *regs)
430 {
431 	if (!address_ok(regs, ea, nb))
432 		return -EFAULT;
433 	if ((ea & (nb - 1)) == 0)
434 		return read_mem_aligned(dest, ea, nb, regs);
435 	return read_mem_unaligned(dest, ea, nb, regs);
436 }
437 NOKPROBE_SYMBOL(read_mem);
438 
439 static __always_inline int
440 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
441 {
442 	switch (nb) {
443 	case 1:
444 		unsafe_put_user(val, (unsigned char __user *)ea, Efault);
445 		break;
446 	case 2:
447 		unsafe_put_user(val, (unsigned short __user *)ea, Efault);
448 		break;
449 	case 4:
450 		unsafe_put_user(val, (unsigned int __user *)ea, Efault);
451 		break;
452 #ifdef __powerpc64__
453 	case 8:
454 		unsafe_put_user(val, (unsigned long __user *)ea, Efault);
455 		break;
456 #endif
457 	}
458 	return 0;
459 
460 Efault:
461 	regs->dar = ea;
462 	return -EFAULT;
463 }
464 
465 static nokprobe_inline int
466 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
467 {
468 	int err;
469 
470 	if (is_kernel_addr(ea))
471 		return __write_mem_aligned(val, ea, nb, regs);
472 
473 	if (user_write_access_begin((void __user *)ea, nb)) {
474 		err = __write_mem_aligned(val, ea, nb, regs);
475 		user_write_access_end();
476 	} else {
477 		err = -EFAULT;
478 		regs->dar = ea;
479 	}
480 
481 	return err;
482 }
483 
484 /*
485  * Copy from a buffer to userspace, using the largest possible
486  * aligned accesses, up to sizeof(long).
487  */
488 static __always_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
489 {
490 	int c;
491 
492 	for (; nb > 0; nb -= c) {
493 		c = max_align(ea);
494 		if (c > nb)
495 			c = max_align(nb);
496 		switch (c) {
497 		case 1:
498 			unsafe_put_user(*dest, (u8 __user *)ea, Efault);
499 			break;
500 		case 2:
501 			unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
502 			break;
503 		case 4:
504 			unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
505 			break;
506 #ifdef __powerpc64__
507 		case 8:
508 			unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
509 			break;
510 #endif
511 		}
512 		dest += c;
513 		ea += c;
514 	}
515 	return 0;
516 
517 Efault:
518 	regs->dar = ea;
519 	return -EFAULT;
520 }
521 
522 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
523 {
524 	int err;
525 
526 	if (is_kernel_addr(ea))
527 		return __copy_mem_out(dest, ea, nb, regs);
528 
529 	if (user_write_access_begin((void __user *)ea, nb)) {
530 		err = __copy_mem_out(dest, ea, nb, regs);
531 		user_write_access_end();
532 	} else {
533 		err = -EFAULT;
534 		regs->dar = ea;
535 	}
536 
537 	return err;
538 }
539 
540 static nokprobe_inline int write_mem_unaligned(unsigned long val,
541 					       unsigned long ea, int nb,
542 					       struct pt_regs *regs)
543 {
544 	union {
545 		unsigned long ul;
546 		u8 b[sizeof(unsigned long)];
547 	} u;
548 	int i;
549 
550 	u.ul = val;
551 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
552 	return copy_mem_out(&u.b[i], ea, nb, regs);
553 }
554 
555 /*
556  * Write memory at address ea for nb bytes, return 0 for success
557  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
558  */
559 static int write_mem(unsigned long val, unsigned long ea, int nb,
560 			       struct pt_regs *regs)
561 {
562 	if (!address_ok(regs, ea, nb))
563 		return -EFAULT;
564 	if ((ea & (nb - 1)) == 0)
565 		return write_mem_aligned(val, ea, nb, regs);
566 	return write_mem_unaligned(val, ea, nb, regs);
567 }
568 NOKPROBE_SYMBOL(write_mem);
569 
570 #ifdef CONFIG_PPC_FPU
571 /*
572  * These access either the real FP register or the image in the
573  * thread_struct, depending on regs->msr & MSR_FP.
574  */
575 static int do_fp_load(struct instruction_op *op, unsigned long ea,
576 		      struct pt_regs *regs, bool cross_endian)
577 {
578 	int err, rn, nb;
579 	union {
580 		int i;
581 		unsigned int u;
582 		float f;
583 		double d[2];
584 		unsigned long l[2];
585 		u8 b[2 * sizeof(double)];
586 	} u;
587 
588 	nb = GETSIZE(op->type);
589 	if (nb > sizeof(u))
590 		return -EINVAL;
591 	if (!address_ok(regs, ea, nb))
592 		return -EFAULT;
593 	rn = op->reg;
594 	err = copy_mem_in(u.b, ea, nb, regs);
595 	if (err)
596 		return err;
597 	if (unlikely(cross_endian)) {
598 		do_byte_reverse(u.b, min(nb, 8));
599 		if (nb == 16)
600 			do_byte_reverse(&u.b[8], 8);
601 	}
602 	preempt_disable();
603 	if (nb == 4) {
604 		if (op->type & FPCONV)
605 			conv_sp_to_dp(&u.f, &u.d[0]);
606 		else if (op->type & SIGNEXT)
607 			u.l[0] = u.i;
608 		else
609 			u.l[0] = u.u;
610 	}
611 	if (regs->msr & MSR_FP)
612 		put_fpr(rn, &u.d[0]);
613 	else
614 		current->thread.TS_FPR(rn) = u.l[0];
615 	if (nb == 16) {
616 		/* lfdp */
617 		rn |= 1;
618 		if (regs->msr & MSR_FP)
619 			put_fpr(rn, &u.d[1]);
620 		else
621 			current->thread.TS_FPR(rn) = u.l[1];
622 	}
623 	preempt_enable();
624 	return 0;
625 }
626 NOKPROBE_SYMBOL(do_fp_load);
627 
628 static int do_fp_store(struct instruction_op *op, unsigned long ea,
629 		       struct pt_regs *regs, bool cross_endian)
630 {
631 	int rn, nb;
632 	union {
633 		unsigned int u;
634 		float f;
635 		double d[2];
636 		unsigned long l[2];
637 		u8 b[2 * sizeof(double)];
638 	} u;
639 
640 	nb = GETSIZE(op->type);
641 	if (nb > sizeof(u))
642 		return -EINVAL;
643 	if (!address_ok(regs, ea, nb))
644 		return -EFAULT;
645 	rn = op->reg;
646 	preempt_disable();
647 	if (regs->msr & MSR_FP)
648 		get_fpr(rn, &u.d[0]);
649 	else
650 		u.l[0] = current->thread.TS_FPR(rn);
651 	if (nb == 4) {
652 		if (op->type & FPCONV)
653 			conv_dp_to_sp(&u.d[0], &u.f);
654 		else
655 			u.u = u.l[0];
656 	}
657 	if (nb == 16) {
658 		rn |= 1;
659 		if (regs->msr & MSR_FP)
660 			get_fpr(rn, &u.d[1]);
661 		else
662 			u.l[1] = current->thread.TS_FPR(rn);
663 	}
664 	preempt_enable();
665 	if (unlikely(cross_endian)) {
666 		do_byte_reverse(u.b, min(nb, 8));
667 		if (nb == 16)
668 			do_byte_reverse(&u.b[8], 8);
669 	}
670 	return copy_mem_out(u.b, ea, nb, regs);
671 }
672 NOKPROBE_SYMBOL(do_fp_store);
673 #endif
674 
675 #ifdef CONFIG_ALTIVEC
676 /* For Altivec/VMX, no need to worry about alignment */
677 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
678 				       int size, struct pt_regs *regs,
679 				       bool cross_endian)
680 {
681 	int err;
682 	union {
683 		__vector128 v;
684 		u8 b[sizeof(__vector128)];
685 	} u = {};
686 
687 	if (size > sizeof(u))
688 		return -EINVAL;
689 
690 	if (!address_ok(regs, ea & ~0xfUL, 16))
691 		return -EFAULT;
692 	/* align to multiple of size */
693 	ea &= ~(size - 1);
694 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
695 	if (err)
696 		return err;
697 	if (unlikely(cross_endian))
698 		do_byte_reverse(&u.b[ea & 0xf], size);
699 	preempt_disable();
700 	if (regs->msr & MSR_VEC)
701 		put_vr(rn, &u.v);
702 	else
703 		current->thread.vr_state.vr[rn] = u.v;
704 	preempt_enable();
705 	return 0;
706 }
707 
708 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
709 					int size, struct pt_regs *regs,
710 					bool cross_endian)
711 {
712 	union {
713 		__vector128 v;
714 		u8 b[sizeof(__vector128)];
715 	} u;
716 
717 	if (size > sizeof(u))
718 		return -EINVAL;
719 
720 	if (!address_ok(regs, ea & ~0xfUL, 16))
721 		return -EFAULT;
722 	/* align to multiple of size */
723 	ea &= ~(size - 1);
724 
725 	preempt_disable();
726 	if (regs->msr & MSR_VEC)
727 		get_vr(rn, &u.v);
728 	else
729 		u.v = current->thread.vr_state.vr[rn];
730 	preempt_enable();
731 	if (unlikely(cross_endian))
732 		do_byte_reverse(&u.b[ea & 0xf], size);
733 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
734 }
735 #endif /* CONFIG_ALTIVEC */
736 
737 #ifdef __powerpc64__
738 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
739 				      int reg, bool cross_endian)
740 {
741 	int err;
742 
743 	if (!address_ok(regs, ea, 16))
744 		return -EFAULT;
745 	/* if aligned, should be atomic */
746 	if ((ea & 0xf) == 0) {
747 		err = do_lq(ea, &regs->gpr[reg]);
748 	} else {
749 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
750 		if (!err)
751 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
752 	}
753 	if (!err && unlikely(cross_endian))
754 		do_byte_reverse(&regs->gpr[reg], 16);
755 	return err;
756 }
757 
758 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
759 				       int reg, bool cross_endian)
760 {
761 	int err;
762 	unsigned long vals[2];
763 
764 	if (!address_ok(regs, ea, 16))
765 		return -EFAULT;
766 	vals[0] = regs->gpr[reg];
767 	vals[1] = regs->gpr[reg + 1];
768 	if (unlikely(cross_endian))
769 		do_byte_reverse(vals, 16);
770 
771 	/* if aligned, should be atomic */
772 	if ((ea & 0xf) == 0)
773 		return do_stq(ea, vals[0], vals[1]);
774 
775 	err = write_mem(vals[IS_LE], ea, 8, regs);
776 	if (!err)
777 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
778 	return err;
779 }
780 #endif /* __powerpc64 */
781 
782 #ifdef CONFIG_VSX
783 static nokprobe_inline void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
784 					     const void *mem, bool rev)
785 {
786 	int size, read_size;
787 	int i, j;
788 	const unsigned int *wp;
789 	const unsigned short *hp;
790 	const unsigned char *bp;
791 
792 	size = GETSIZE(op->type);
793 	reg->d[0] = reg->d[1] = 0;
794 
795 	switch (op->element_size) {
796 	case 32:
797 		/* [p]lxvp[x] */
798 	case 16:
799 		/* whole vector; lxv[x] or lxvl[l] */
800 		if (size == 0)
801 			break;
802 		memcpy(reg, mem, size);
803 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
804 			rev = !rev;
805 		if (rev)
806 			do_byte_reverse(reg, size);
807 		break;
808 	case 8:
809 		/* scalar loads, lxvd2x, lxvdsx */
810 		read_size = (size >= 8) ? 8 : size;
811 		i = IS_LE ? 8 : 8 - read_size;
812 		memcpy(&reg->b[i], mem, read_size);
813 		if (rev)
814 			do_byte_reverse(&reg->b[i], 8);
815 		if (size < 8) {
816 			if (op->type & SIGNEXT) {
817 				/* size == 4 is the only case here */
818 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
819 			} else if (op->vsx_flags & VSX_FPCONV) {
820 				preempt_disable();
821 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
822 					      &reg->dp[IS_LE]);
823 				preempt_enable();
824 			}
825 		} else {
826 			if (size == 16) {
827 				unsigned long v = *(unsigned long *)(mem + 8);
828 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
829 			} else if (op->vsx_flags & VSX_SPLAT)
830 				reg->d[IS_BE] = reg->d[IS_LE];
831 		}
832 		break;
833 	case 4:
834 		/* lxvw4x, lxvwsx */
835 		wp = mem;
836 		for (j = 0; j < size / 4; ++j) {
837 			i = IS_LE ? 3 - j : j;
838 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
839 		}
840 		if (op->vsx_flags & VSX_SPLAT) {
841 			u32 val = reg->w[IS_LE ? 3 : 0];
842 			for (; j < 4; ++j) {
843 				i = IS_LE ? 3 - j : j;
844 				reg->w[i] = val;
845 			}
846 		}
847 		break;
848 	case 2:
849 		/* lxvh8x */
850 		hp = mem;
851 		for (j = 0; j < size / 2; ++j) {
852 			i = IS_LE ? 7 - j : j;
853 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
854 		}
855 		break;
856 	case 1:
857 		/* lxvb16x */
858 		bp = mem;
859 		for (j = 0; j < size; ++j) {
860 			i = IS_LE ? 15 - j : j;
861 			reg->b[i] = *bp++;
862 		}
863 		break;
864 	}
865 }
866 
867 static nokprobe_inline void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
868 					      void *mem, bool rev)
869 {
870 	int size, write_size;
871 	int i, j;
872 	union vsx_reg buf;
873 	unsigned int *wp;
874 	unsigned short *hp;
875 	unsigned char *bp;
876 
877 	size = GETSIZE(op->type);
878 
879 	switch (op->element_size) {
880 	case 32:
881 		/* [p]stxvp[x] */
882 		if (size == 0)
883 			break;
884 		if (rev) {
885 			/* reverse 32 bytes */
886 			union vsx_reg buf32[2];
887 			buf32[0].d[0] = byterev_8(reg[1].d[1]);
888 			buf32[0].d[1] = byterev_8(reg[1].d[0]);
889 			buf32[1].d[0] = byterev_8(reg[0].d[1]);
890 			buf32[1].d[1] = byterev_8(reg[0].d[0]);
891 			memcpy(mem, buf32, size);
892 		} else {
893 			memcpy(mem, reg, size);
894 		}
895 		break;
896 	case 16:
897 		/* stxv, stxvx, stxvl, stxvll */
898 		if (size == 0)
899 			break;
900 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
901 			rev = !rev;
902 		if (rev) {
903 			/* reverse 16 bytes */
904 			buf.d[0] = byterev_8(reg->d[1]);
905 			buf.d[1] = byterev_8(reg->d[0]);
906 			reg = &buf;
907 		}
908 		memcpy(mem, reg, size);
909 		break;
910 	case 8:
911 		/* scalar stores, stxvd2x */
912 		write_size = (size >= 8) ? 8 : size;
913 		i = IS_LE ? 8 : 8 - write_size;
914 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
915 			buf.d[0] = buf.d[1] = 0;
916 			preempt_disable();
917 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
918 			preempt_enable();
919 			reg = &buf;
920 		}
921 		memcpy(mem, &reg->b[i], write_size);
922 		if (size == 16)
923 			memcpy(mem + 8, &reg->d[IS_BE], 8);
924 		if (unlikely(rev)) {
925 			do_byte_reverse(mem, write_size);
926 			if (size == 16)
927 				do_byte_reverse(mem + 8, 8);
928 		}
929 		break;
930 	case 4:
931 		/* stxvw4x */
932 		wp = mem;
933 		for (j = 0; j < size / 4; ++j) {
934 			i = IS_LE ? 3 - j : j;
935 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
936 		}
937 		break;
938 	case 2:
939 		/* stxvh8x */
940 		hp = mem;
941 		for (j = 0; j < size / 2; ++j) {
942 			i = IS_LE ? 7 - j : j;
943 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
944 		}
945 		break;
946 	case 1:
947 		/* stvxb16x */
948 		bp = mem;
949 		for (j = 0; j < size; ++j) {
950 			i = IS_LE ? 15 - j : j;
951 			*bp++ = reg->b[i];
952 		}
953 		break;
954 	}
955 }
956 
957 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
958 				       unsigned long ea, struct pt_regs *regs,
959 				       bool cross_endian)
960 {
961 	int reg = op->reg;
962 	int i, j, nr_vsx_regs;
963 	u8 mem[32];
964 	union vsx_reg buf[2];
965 	int size = GETSIZE(op->type);
966 
967 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
968 		return -EFAULT;
969 
970 	nr_vsx_regs = max(1ul, size / sizeof(__vector128));
971 	emulate_vsx_load(op, buf, mem, cross_endian);
972 	preempt_disable();
973 	if (reg < 32) {
974 		/* FP regs + extensions */
975 		if (regs->msr & MSR_FP) {
976 			for (i = 0; i < nr_vsx_regs; i++) {
977 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
978 				load_vsrn(reg + i, &buf[j].v);
979 			}
980 		} else {
981 			for (i = 0; i < nr_vsx_regs; i++) {
982 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
983 				current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
984 				current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
985 			}
986 		}
987 	} else {
988 		if (regs->msr & MSR_VEC) {
989 			for (i = 0; i < nr_vsx_regs; i++) {
990 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
991 				load_vsrn(reg + i, &buf[j].v);
992 			}
993 		} else {
994 			for (i = 0; i < nr_vsx_regs; i++) {
995 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
996 				current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
997 			}
998 		}
999 	}
1000 	preempt_enable();
1001 	return 0;
1002 }
1003 
1004 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
1005 					unsigned long ea, struct pt_regs *regs,
1006 					bool cross_endian)
1007 {
1008 	int reg = op->reg;
1009 	int i, j, nr_vsx_regs;
1010 	u8 mem[32];
1011 	union vsx_reg buf[2];
1012 	int size = GETSIZE(op->type);
1013 
1014 	if (!address_ok(regs, ea, size))
1015 		return -EFAULT;
1016 
1017 	nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1018 	preempt_disable();
1019 	if (reg < 32) {
1020 		/* FP regs + extensions */
1021 		if (regs->msr & MSR_FP) {
1022 			for (i = 0; i < nr_vsx_regs; i++) {
1023 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1024 				store_vsrn(reg + i, &buf[j].v);
1025 			}
1026 		} else {
1027 			for (i = 0; i < nr_vsx_regs; i++) {
1028 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1029 				buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1030 				buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1031 			}
1032 		}
1033 	} else {
1034 		if (regs->msr & MSR_VEC) {
1035 			for (i = 0; i < nr_vsx_regs; i++) {
1036 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1037 				store_vsrn(reg + i, &buf[j].v);
1038 			}
1039 		} else {
1040 			for (i = 0; i < nr_vsx_regs; i++) {
1041 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1042 				buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1043 			}
1044 		}
1045 	}
1046 	preempt_enable();
1047 	emulate_vsx_store(op, buf, mem, cross_endian);
1048 	return  copy_mem_out(mem, ea, size, regs);
1049 }
1050 #endif /* CONFIG_VSX */
1051 
1052 static __always_inline int __emulate_dcbz(unsigned long ea)
1053 {
1054 	unsigned long i;
1055 	unsigned long size = l1_dcache_bytes();
1056 
1057 	for (i = 0; i < size; i += sizeof(long))
1058 		unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1059 
1060 	return 0;
1061 
1062 Efault:
1063 	return -EFAULT;
1064 }
1065 
1066 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1067 {
1068 	int err;
1069 	unsigned long size = l1_dcache_bytes();
1070 
1071 	ea = truncate_if_32bit(regs->msr, ea);
1072 	ea &= ~(size - 1);
1073 	if (!address_ok(regs, ea, size))
1074 		return -EFAULT;
1075 
1076 	if (is_kernel_addr(ea)) {
1077 		err = __emulate_dcbz(ea);
1078 	} else if (user_write_access_begin((void __user *)ea, size)) {
1079 		err = __emulate_dcbz(ea);
1080 		user_write_access_end();
1081 	} else {
1082 		err = -EFAULT;
1083 	}
1084 
1085 	if (err)
1086 		regs->dar = ea;
1087 
1088 
1089 	return err;
1090 }
1091 NOKPROBE_SYMBOL(emulate_dcbz);
1092 
1093 #define __put_user_asmx(x, addr, err, op, cr)		\
1094 	__asm__ __volatile__(				\
1095 		".machine push\n"			\
1096 		".machine power8\n"			\
1097 		"1:	" op " %2,0,%3\n"		\
1098 		".machine pop\n"			\
1099 		"	mfcr	%1\n"			\
1100 		"2:\n"					\
1101 		".section .fixup,\"ax\"\n"		\
1102 		"3:	li	%0,%4\n"		\
1103 		"	b	2b\n"			\
1104 		".previous\n"				\
1105 		EX_TABLE(1b, 3b)			\
1106 		: "=r" (err), "=r" (cr)			\
1107 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1108 
1109 #define __get_user_asmx(x, addr, err, op)		\
1110 	__asm__ __volatile__(				\
1111 		".machine push\n"			\
1112 		".machine power8\n"			\
1113 		"1:	"op" %1,0,%2\n"			\
1114 		".machine pop\n"			\
1115 		"2:\n"					\
1116 		".section .fixup,\"ax\"\n"		\
1117 		"3:	li	%0,%3\n"		\
1118 		"	b	2b\n"			\
1119 		".previous\n"				\
1120 		EX_TABLE(1b, 3b)			\
1121 		: "=r" (err), "=r" (x)			\
1122 		: "r" (addr), "i" (-EFAULT), "0" (err))
1123 
1124 #define __cacheop_user_asmx(addr, err, op)		\
1125 	__asm__ __volatile__(				\
1126 		"1:	"op" 0,%1\n"			\
1127 		"2:\n"					\
1128 		".section .fixup,\"ax\"\n"		\
1129 		"3:	li	%0,%3\n"		\
1130 		"	b	2b\n"			\
1131 		".previous\n"				\
1132 		EX_TABLE(1b, 3b)			\
1133 		: "=r" (err)				\
1134 		: "r" (addr), "i" (-EFAULT), "0" (err))
1135 
1136 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1137 				    struct instruction_op *op)
1138 {
1139 	long val = op->val;
1140 
1141 	op->type |= SETCC;
1142 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1143 	if (!(regs->msr & MSR_64BIT))
1144 		val = (int) val;
1145 	if (val < 0)
1146 		op->ccval |= 0x80000000;
1147 	else if (val > 0)
1148 		op->ccval |= 0x40000000;
1149 	else
1150 		op->ccval |= 0x20000000;
1151 }
1152 
1153 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1154 {
1155 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1156 		if (val)
1157 			op->xerval |= XER_CA32;
1158 		else
1159 			op->xerval &= ~XER_CA32;
1160 	}
1161 }
1162 
1163 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1164 				     struct instruction_op *op, int rd,
1165 				     unsigned long val1, unsigned long val2,
1166 				     unsigned long carry_in)
1167 {
1168 	unsigned long val = val1 + val2;
1169 
1170 	if (carry_in)
1171 		++val;
1172 	op->type = COMPUTE | SETREG | SETXER;
1173 	op->reg = rd;
1174 	op->val = val;
1175 	val = truncate_if_32bit(regs->msr, val);
1176 	val1 = truncate_if_32bit(regs->msr, val1);
1177 	op->xerval = regs->xer;
1178 	if (val < val1 || (carry_in && val == val1))
1179 		op->xerval |= XER_CA;
1180 	else
1181 		op->xerval &= ~XER_CA;
1182 
1183 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1184 			(carry_in && (unsigned int)val == (unsigned int)val1));
1185 }
1186 
1187 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1188 					  struct instruction_op *op,
1189 					  long v1, long v2, int crfld)
1190 {
1191 	unsigned int crval, shift;
1192 
1193 	op->type = COMPUTE | SETCC;
1194 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1195 	if (v1 < v2)
1196 		crval |= 8;
1197 	else if (v1 > v2)
1198 		crval |= 4;
1199 	else
1200 		crval |= 2;
1201 	shift = (7 - crfld) * 4;
1202 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1203 }
1204 
1205 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1206 					    struct instruction_op *op,
1207 					    unsigned long v1,
1208 					    unsigned long v2, int crfld)
1209 {
1210 	unsigned int crval, shift;
1211 
1212 	op->type = COMPUTE | SETCC;
1213 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1214 	if (v1 < v2)
1215 		crval |= 8;
1216 	else if (v1 > v2)
1217 		crval |= 4;
1218 	else
1219 		crval |= 2;
1220 	shift = (7 - crfld) * 4;
1221 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1222 }
1223 
1224 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1225 				    struct instruction_op *op,
1226 				    unsigned long v1, unsigned long v2)
1227 {
1228 	unsigned long long out_val, mask;
1229 	int i;
1230 
1231 	out_val = 0;
1232 	for (i = 0; i < 8; i++) {
1233 		mask = 0xffUL << (i * 8);
1234 		if ((v1 & mask) == (v2 & mask))
1235 			out_val |= mask;
1236 	}
1237 	op->val = out_val;
1238 }
1239 
1240 /*
1241  * The size parameter is used to adjust the equivalent popcnt instruction.
1242  * popcntb = 8, popcntw = 32, popcntd = 64
1243  */
1244 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1245 				      struct instruction_op *op,
1246 				      unsigned long v1, int size)
1247 {
1248 	unsigned long long out = v1;
1249 
1250 	out -= (out >> 1) & 0x5555555555555555ULL;
1251 	out = (0x3333333333333333ULL & out) +
1252 	      (0x3333333333333333ULL & (out >> 2));
1253 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1254 
1255 	if (size == 8) {	/* popcntb */
1256 		op->val = out;
1257 		return;
1258 	}
1259 	out += out >> 8;
1260 	out += out >> 16;
1261 	if (size == 32) {	/* popcntw */
1262 		op->val = out & 0x0000003f0000003fULL;
1263 		return;
1264 	}
1265 
1266 	out = (out + (out >> 32)) & 0x7f;
1267 	op->val = out;	/* popcntd */
1268 }
1269 
1270 #ifdef CONFIG_PPC64
1271 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1272 				      struct instruction_op *op,
1273 				      unsigned long v1, unsigned long v2)
1274 {
1275 	unsigned char perm, idx;
1276 	unsigned int i;
1277 
1278 	perm = 0;
1279 	for (i = 0; i < 8; i++) {
1280 		idx = (v1 >> (i * 8)) & 0xff;
1281 		if (idx < 64)
1282 			if (v2 & PPC_BIT(idx))
1283 				perm |= 1 << i;
1284 	}
1285 	op->val = perm;
1286 }
1287 #endif /* CONFIG_PPC64 */
1288 /*
1289  * The size parameter adjusts the equivalent prty instruction.
1290  * prtyw = 32, prtyd = 64
1291  */
1292 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1293 				    struct instruction_op *op,
1294 				    unsigned long v, int size)
1295 {
1296 	unsigned long long res = v ^ (v >> 8);
1297 
1298 	res ^= res >> 16;
1299 	if (size == 32) {		/* prtyw */
1300 		op->val = res & 0x0000000100000001ULL;
1301 		return;
1302 	}
1303 
1304 	res ^= res >> 32;
1305 	op->val = res & 1;	/*prtyd */
1306 }
1307 
1308 static nokprobe_inline int trap_compare(long v1, long v2)
1309 {
1310 	int ret = 0;
1311 
1312 	if (v1 < v2)
1313 		ret |= 0x10;
1314 	else if (v1 > v2)
1315 		ret |= 0x08;
1316 	else
1317 		ret |= 0x04;
1318 	if ((unsigned long)v1 < (unsigned long)v2)
1319 		ret |= 0x02;
1320 	else if ((unsigned long)v1 > (unsigned long)v2)
1321 		ret |= 0x01;
1322 	return ret;
1323 }
1324 
1325 /*
1326  * Elements of 32-bit rotate and mask instructions.
1327  */
1328 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1329 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1330 #ifdef __powerpc64__
1331 #define MASK64_L(mb)	(~0UL >> (mb))
1332 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1333 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1334 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1335 #else
1336 #define DATA32(x)	(x)
1337 #endif
1338 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1339 
1340 /*
1341  * Decode an instruction, and return information about it in *op
1342  * without changing *regs.
1343  * Integer arithmetic and logical instructions, branches, and barrier
1344  * instructions can be emulated just using the information in *op.
1345  *
1346  * Return value is 1 if the instruction can be emulated just by
1347  * updating *regs with the information in *op, -1 if we need the
1348  * GPRs but *regs doesn't contain the full register set, or 0
1349  * otherwise.
1350  */
1351 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1352 		  ppc_inst_t instr)
1353 {
1354 #ifdef CONFIG_PPC64
1355 	unsigned int suffixopcode, prefixtype, prefix_r;
1356 #endif
1357 	unsigned int opcode, ra, rb, rc, rd, spr, u;
1358 	unsigned long int imm;
1359 	unsigned long int val, val2;
1360 	unsigned int mb, me, sh;
1361 	unsigned int word, suffix;
1362 	long ival;
1363 
1364 	word = ppc_inst_val(instr);
1365 	suffix = ppc_inst_suffix(instr);
1366 
1367 	op->type = COMPUTE;
1368 
1369 	opcode = ppc_inst_primary_opcode(instr);
1370 	switch (opcode) {
1371 	case 16:	/* bc */
1372 		op->type = BRANCH;
1373 		imm = (signed short)(word & 0xfffc);
1374 		if ((word & 2) == 0)
1375 			imm += regs->nip;
1376 		op->val = truncate_if_32bit(regs->msr, imm);
1377 		if (word & 1)
1378 			op->type |= SETLK;
1379 		if (branch_taken(word, regs, op))
1380 			op->type |= BRTAKEN;
1381 		return 1;
1382 	case 17:	/* sc */
1383 		if ((word & 0xfe2) == 2)
1384 			op->type = SYSCALL;
1385 		else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1386 				(word & 0xfe3) == 1) {	/* scv */
1387 			op->type = SYSCALL_VECTORED_0;
1388 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1389 				goto unknown_opcode;
1390 		} else
1391 			op->type = UNKNOWN;
1392 		return 0;
1393 	case 18:	/* b */
1394 		op->type = BRANCH | BRTAKEN;
1395 		imm = word & 0x03fffffc;
1396 		if (imm & 0x02000000)
1397 			imm -= 0x04000000;
1398 		if ((word & 2) == 0)
1399 			imm += regs->nip;
1400 		op->val = truncate_if_32bit(regs->msr, imm);
1401 		if (word & 1)
1402 			op->type |= SETLK;
1403 		return 1;
1404 	case 19:
1405 		switch ((word >> 1) & 0x3ff) {
1406 		case 0:		/* mcrf */
1407 			op->type = COMPUTE + SETCC;
1408 			rd = 7 - ((word >> 23) & 0x7);
1409 			ra = 7 - ((word >> 18) & 0x7);
1410 			rd *= 4;
1411 			ra *= 4;
1412 			val = (regs->ccr >> ra) & 0xf;
1413 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1414 			return 1;
1415 
1416 		case 16:	/* bclr */
1417 		case 528:	/* bcctr */
1418 			op->type = BRANCH;
1419 			imm = (word & 0x400)? regs->ctr: regs->link;
1420 			op->val = truncate_if_32bit(regs->msr, imm);
1421 			if (word & 1)
1422 				op->type |= SETLK;
1423 			if (branch_taken(word, regs, op))
1424 				op->type |= BRTAKEN;
1425 			return 1;
1426 
1427 		case 18:	/* rfid, scary */
1428 			if (regs->msr & MSR_PR)
1429 				goto priv;
1430 			op->type = RFI;
1431 			return 0;
1432 
1433 		case 150:	/* isync */
1434 			op->type = BARRIER | BARRIER_ISYNC;
1435 			return 1;
1436 
1437 		case 33:	/* crnor */
1438 		case 129:	/* crandc */
1439 		case 193:	/* crxor */
1440 		case 225:	/* crnand */
1441 		case 257:	/* crand */
1442 		case 289:	/* creqv */
1443 		case 417:	/* crorc */
1444 		case 449:	/* cror */
1445 			op->type = COMPUTE + SETCC;
1446 			ra = (word >> 16) & 0x1f;
1447 			rb = (word >> 11) & 0x1f;
1448 			rd = (word >> 21) & 0x1f;
1449 			ra = (regs->ccr >> (31 - ra)) & 1;
1450 			rb = (regs->ccr >> (31 - rb)) & 1;
1451 			val = (word >> (6 + ra * 2 + rb)) & 1;
1452 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1453 				(val << (31 - rd));
1454 			return 1;
1455 		}
1456 		break;
1457 	case 31:
1458 		switch ((word >> 1) & 0x3ff) {
1459 		case 598:	/* sync */
1460 			op->type = BARRIER + BARRIER_SYNC;
1461 #ifdef __powerpc64__
1462 			switch ((word >> 21) & 3) {
1463 			case 1:		/* lwsync */
1464 				op->type = BARRIER + BARRIER_LWSYNC;
1465 				break;
1466 			case 2:		/* ptesync */
1467 				op->type = BARRIER + BARRIER_PTESYNC;
1468 				break;
1469 			}
1470 #endif
1471 			return 1;
1472 
1473 		case 854:	/* eieio */
1474 			op->type = BARRIER + BARRIER_EIEIO;
1475 			return 1;
1476 		}
1477 		break;
1478 	}
1479 
1480 	rd = (word >> 21) & 0x1f;
1481 	ra = (word >> 16) & 0x1f;
1482 	rb = (word >> 11) & 0x1f;
1483 	rc = (word >> 6) & 0x1f;
1484 
1485 	switch (opcode) {
1486 #ifdef __powerpc64__
1487 	case 1:
1488 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
1489 			goto unknown_opcode;
1490 
1491 		prefix_r = GET_PREFIX_R(word);
1492 		ra = GET_PREFIX_RA(suffix);
1493 		rd = (suffix >> 21) & 0x1f;
1494 		op->reg = rd;
1495 		op->val = regs->gpr[rd];
1496 		suffixopcode = get_op(suffix);
1497 		prefixtype = (word >> 24) & 0x3;
1498 		switch (prefixtype) {
1499 		case 2:
1500 			if (prefix_r && ra)
1501 				return 0;
1502 			switch (suffixopcode) {
1503 			case 14:	/* paddi */
1504 				op->type = COMPUTE | PREFIXED;
1505 				op->val = mlsd_8lsd_ea(word, suffix, regs);
1506 				goto compute_done;
1507 			}
1508 		}
1509 		break;
1510 	case 2:		/* tdi */
1511 		if (rd & trap_compare(regs->gpr[ra], (short) word))
1512 			goto trap;
1513 		return 1;
1514 #endif
1515 	case 3:		/* twi */
1516 		if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1517 			goto trap;
1518 		return 1;
1519 
1520 #ifdef __powerpc64__
1521 	case 4:
1522 		/*
1523 		 * There are very many instructions with this primary opcode
1524 		 * introduced in the ISA as early as v2.03. However, the ones
1525 		 * we currently emulate were all introduced with ISA 3.0
1526 		 */
1527 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1528 			goto unknown_opcode;
1529 
1530 		switch (word & 0x3f) {
1531 		case 48:	/* maddhd */
1532 			asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1533 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1534 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1535 			goto compute_done;
1536 
1537 		case 49:	/* maddhdu */
1538 			asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1539 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1540 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1541 			goto compute_done;
1542 
1543 		case 51:	/* maddld */
1544 			asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1545 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1546 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1547 			goto compute_done;
1548 		}
1549 
1550 		/*
1551 		 * There are other instructions from ISA 3.0 with the same
1552 		 * primary opcode which do not have emulation support yet.
1553 		 */
1554 		goto unknown_opcode;
1555 #endif
1556 
1557 	case 7:		/* mulli */
1558 		op->val = regs->gpr[ra] * (short) word;
1559 		goto compute_done;
1560 
1561 	case 8:		/* subfic */
1562 		imm = (short) word;
1563 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1564 		return 1;
1565 
1566 	case 10:	/* cmpli */
1567 		imm = (unsigned short) word;
1568 		val = regs->gpr[ra];
1569 #ifdef __powerpc64__
1570 		if ((rd & 1) == 0)
1571 			val = (unsigned int) val;
1572 #endif
1573 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1574 		return 1;
1575 
1576 	case 11:	/* cmpi */
1577 		imm = (short) word;
1578 		val = regs->gpr[ra];
1579 #ifdef __powerpc64__
1580 		if ((rd & 1) == 0)
1581 			val = (int) val;
1582 #endif
1583 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1584 		return 1;
1585 
1586 	case 12:	/* addic */
1587 		imm = (short) word;
1588 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1589 		return 1;
1590 
1591 	case 13:	/* addic. */
1592 		imm = (short) word;
1593 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1594 		set_cr0(regs, op);
1595 		return 1;
1596 
1597 	case 14:	/* addi */
1598 		imm = (short) word;
1599 		if (ra)
1600 			imm += regs->gpr[ra];
1601 		op->val = imm;
1602 		goto compute_done;
1603 
1604 	case 15:	/* addis */
1605 		imm = ((short) word) << 16;
1606 		if (ra)
1607 			imm += regs->gpr[ra];
1608 		op->val = imm;
1609 		goto compute_done;
1610 
1611 	case 19:
1612 		if (((word >> 1) & 0x1f) == 2) {
1613 			/* addpcis */
1614 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1615 				goto unknown_opcode;
1616 			imm = (short) (word & 0xffc1);	/* d0 + d2 fields */
1617 			imm |= (word >> 15) & 0x3e;	/* d1 field */
1618 			op->val = regs->nip + (imm << 16) + 4;
1619 			goto compute_done;
1620 		}
1621 		op->type = UNKNOWN;
1622 		return 0;
1623 
1624 	case 20:	/* rlwimi */
1625 		mb = (word >> 6) & 0x1f;
1626 		me = (word >> 1) & 0x1f;
1627 		val = DATA32(regs->gpr[rd]);
1628 		imm = MASK32(mb, me);
1629 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1630 		goto logical_done;
1631 
1632 	case 21:	/* rlwinm */
1633 		mb = (word >> 6) & 0x1f;
1634 		me = (word >> 1) & 0x1f;
1635 		val = DATA32(regs->gpr[rd]);
1636 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1637 		goto logical_done;
1638 
1639 	case 23:	/* rlwnm */
1640 		mb = (word >> 6) & 0x1f;
1641 		me = (word >> 1) & 0x1f;
1642 		rb = regs->gpr[rb] & 0x1f;
1643 		val = DATA32(regs->gpr[rd]);
1644 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1645 		goto logical_done;
1646 
1647 	case 24:	/* ori */
1648 		op->val = regs->gpr[rd] | (unsigned short) word;
1649 		goto logical_done_nocc;
1650 
1651 	case 25:	/* oris */
1652 		imm = (unsigned short) word;
1653 		op->val = regs->gpr[rd] | (imm << 16);
1654 		goto logical_done_nocc;
1655 
1656 	case 26:	/* xori */
1657 		op->val = regs->gpr[rd] ^ (unsigned short) word;
1658 		goto logical_done_nocc;
1659 
1660 	case 27:	/* xoris */
1661 		imm = (unsigned short) word;
1662 		op->val = regs->gpr[rd] ^ (imm << 16);
1663 		goto logical_done_nocc;
1664 
1665 	case 28:	/* andi. */
1666 		op->val = regs->gpr[rd] & (unsigned short) word;
1667 		set_cr0(regs, op);
1668 		goto logical_done_nocc;
1669 
1670 	case 29:	/* andis. */
1671 		imm = (unsigned short) word;
1672 		op->val = regs->gpr[rd] & (imm << 16);
1673 		set_cr0(regs, op);
1674 		goto logical_done_nocc;
1675 
1676 #ifdef __powerpc64__
1677 	case 30:	/* rld* */
1678 		mb = ((word >> 6) & 0x1f) | (word & 0x20);
1679 		val = regs->gpr[rd];
1680 		if ((word & 0x10) == 0) {
1681 			sh = rb | ((word & 2) << 4);
1682 			val = ROTATE(val, sh);
1683 			switch ((word >> 2) & 3) {
1684 			case 0:		/* rldicl */
1685 				val &= MASK64_L(mb);
1686 				break;
1687 			case 1:		/* rldicr */
1688 				val &= MASK64_R(mb);
1689 				break;
1690 			case 2:		/* rldic */
1691 				val &= MASK64(mb, 63 - sh);
1692 				break;
1693 			case 3:		/* rldimi */
1694 				imm = MASK64(mb, 63 - sh);
1695 				val = (regs->gpr[ra] & ~imm) |
1696 					(val & imm);
1697 			}
1698 			op->val = val;
1699 			goto logical_done;
1700 		} else {
1701 			sh = regs->gpr[rb] & 0x3f;
1702 			val = ROTATE(val, sh);
1703 			switch ((word >> 1) & 7) {
1704 			case 0:		/* rldcl */
1705 				op->val = val & MASK64_L(mb);
1706 				goto logical_done;
1707 			case 1:		/* rldcr */
1708 				op->val = val & MASK64_R(mb);
1709 				goto logical_done;
1710 			}
1711 		}
1712 #endif
1713 		op->type = UNKNOWN;	/* illegal instruction */
1714 		return 0;
1715 
1716 	case 31:
1717 		/* isel occupies 32 minor opcodes */
1718 		if (((word >> 1) & 0x1f) == 15) {
1719 			mb = (word >> 6) & 0x1f; /* bc field */
1720 			val = (regs->ccr >> (31 - mb)) & 1;
1721 			val2 = (ra) ? regs->gpr[ra] : 0;
1722 
1723 			op->val = (val) ? val2 : regs->gpr[rb];
1724 			goto compute_done;
1725 		}
1726 
1727 		switch ((word >> 1) & 0x3ff) {
1728 		case 4:		/* tw */
1729 			if (rd == 0x1f ||
1730 			    (rd & trap_compare((int)regs->gpr[ra],
1731 					       (int)regs->gpr[rb])))
1732 				goto trap;
1733 			return 1;
1734 #ifdef __powerpc64__
1735 		case 68:	/* td */
1736 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1737 				goto trap;
1738 			return 1;
1739 #endif
1740 		case 83:	/* mfmsr */
1741 			if (regs->msr & MSR_PR)
1742 				goto priv;
1743 			op->type = MFMSR;
1744 			op->reg = rd;
1745 			return 0;
1746 		case 146:	/* mtmsr */
1747 			if (regs->msr & MSR_PR)
1748 				goto priv;
1749 			op->type = MTMSR;
1750 			op->reg = rd;
1751 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1752 			return 0;
1753 #ifdef CONFIG_PPC64
1754 		case 178:	/* mtmsrd */
1755 			if (regs->msr & MSR_PR)
1756 				goto priv;
1757 			op->type = MTMSR;
1758 			op->reg = rd;
1759 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1760 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1761 			imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1762 			op->val = imm;
1763 			return 0;
1764 #endif
1765 
1766 		case 19:	/* mfcr */
1767 			imm = 0xffffffffUL;
1768 			if ((word >> 20) & 1) {
1769 				imm = 0xf0000000UL;
1770 				for (sh = 0; sh < 8; ++sh) {
1771 					if (word & (0x80000 >> sh))
1772 						break;
1773 					imm >>= 4;
1774 				}
1775 			}
1776 			op->val = regs->ccr & imm;
1777 			goto compute_done;
1778 
1779 		case 128:	/* setb */
1780 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1781 				goto unknown_opcode;
1782 			/*
1783 			 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1784 			 * Since each CR field is 4 bits,
1785 			 * we can simply mask off the bottom two bits (bfa * 4)
1786 			 * to yield the first bit in the CR field.
1787 			 */
1788 			ra = ra & ~0x3;
1789 			/* 'val' stores bits of the CR field (bfa) */
1790 			val = regs->ccr >> (CR0_SHIFT - ra);
1791 			/* checks if the LT bit of CR field (bfa) is set */
1792 			if (val & 8)
1793 				op->val = -1;
1794 			/* checks if the GT bit of CR field (bfa) is set */
1795 			else if (val & 4)
1796 				op->val = 1;
1797 			else
1798 				op->val = 0;
1799 			goto compute_done;
1800 
1801 		case 144:	/* mtcrf */
1802 			op->type = COMPUTE + SETCC;
1803 			imm = 0xf0000000UL;
1804 			val = regs->gpr[rd];
1805 			op->ccval = regs->ccr;
1806 			for (sh = 0; sh < 8; ++sh) {
1807 				if (word & (0x80000 >> sh))
1808 					op->ccval = (op->ccval & ~imm) |
1809 						(val & imm);
1810 				imm >>= 4;
1811 			}
1812 			return 1;
1813 
1814 		case 339:	/* mfspr */
1815 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1816 			op->type = MFSPR;
1817 			op->reg = rd;
1818 			op->spr = spr;
1819 			if (spr == SPRN_XER || spr == SPRN_LR ||
1820 			    spr == SPRN_CTR)
1821 				return 1;
1822 			return 0;
1823 
1824 		case 467:	/* mtspr */
1825 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1826 			op->type = MTSPR;
1827 			op->val = regs->gpr[rd];
1828 			op->spr = spr;
1829 			if (spr == SPRN_XER || spr == SPRN_LR ||
1830 			    spr == SPRN_CTR)
1831 				return 1;
1832 			return 0;
1833 
1834 /*
1835  * Compare instructions
1836  */
1837 		case 0:	/* cmp */
1838 			val = regs->gpr[ra];
1839 			val2 = regs->gpr[rb];
1840 #ifdef __powerpc64__
1841 			if ((rd & 1) == 0) {
1842 				/* word (32-bit) compare */
1843 				val = (int) val;
1844 				val2 = (int) val2;
1845 			}
1846 #endif
1847 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1848 			return 1;
1849 
1850 		case 32:	/* cmpl */
1851 			val = regs->gpr[ra];
1852 			val2 = regs->gpr[rb];
1853 #ifdef __powerpc64__
1854 			if ((rd & 1) == 0) {
1855 				/* word (32-bit) compare */
1856 				val = (unsigned int) val;
1857 				val2 = (unsigned int) val2;
1858 			}
1859 #endif
1860 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1861 			return 1;
1862 
1863 		case 508: /* cmpb */
1864 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1865 			goto logical_done_nocc;
1866 
1867 /*
1868  * Arithmetic instructions
1869  */
1870 		case 8:	/* subfc */
1871 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1872 				       regs->gpr[rb], 1);
1873 			goto arith_done;
1874 #ifdef __powerpc64__
1875 		case 9:	/* mulhdu */
1876 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1877 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1878 			goto arith_done;
1879 #endif
1880 		case 10:	/* addc */
1881 			add_with_carry(regs, op, rd, regs->gpr[ra],
1882 				       regs->gpr[rb], 0);
1883 			goto arith_done;
1884 
1885 		case 11:	/* mulhwu */
1886 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1887 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1888 			goto arith_done;
1889 
1890 		case 40:	/* subf */
1891 			op->val = regs->gpr[rb] - regs->gpr[ra];
1892 			goto arith_done;
1893 #ifdef __powerpc64__
1894 		case 73:	/* mulhd */
1895 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1896 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1897 			goto arith_done;
1898 #endif
1899 		case 75:	/* mulhw */
1900 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1901 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1902 			goto arith_done;
1903 
1904 		case 104:	/* neg */
1905 			op->val = -regs->gpr[ra];
1906 			goto arith_done;
1907 
1908 		case 136:	/* subfe */
1909 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1910 				       regs->gpr[rb], regs->xer & XER_CA);
1911 			goto arith_done;
1912 
1913 		case 138:	/* adde */
1914 			add_with_carry(regs, op, rd, regs->gpr[ra],
1915 				       regs->gpr[rb], regs->xer & XER_CA);
1916 			goto arith_done;
1917 
1918 		case 200:	/* subfze */
1919 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1920 				       regs->xer & XER_CA);
1921 			goto arith_done;
1922 
1923 		case 202:	/* addze */
1924 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1925 				       regs->xer & XER_CA);
1926 			goto arith_done;
1927 
1928 		case 232:	/* subfme */
1929 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1930 				       regs->xer & XER_CA);
1931 			goto arith_done;
1932 #ifdef __powerpc64__
1933 		case 233:	/* mulld */
1934 			op->val = regs->gpr[ra] * regs->gpr[rb];
1935 			goto arith_done;
1936 #endif
1937 		case 234:	/* addme */
1938 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1939 				       regs->xer & XER_CA);
1940 			goto arith_done;
1941 
1942 		case 235:	/* mullw */
1943 			op->val = (long)(int) regs->gpr[ra] *
1944 				(int) regs->gpr[rb];
1945 
1946 			goto arith_done;
1947 #ifdef __powerpc64__
1948 		case 265:	/* modud */
1949 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1950 				goto unknown_opcode;
1951 			op->val = regs->gpr[ra] % regs->gpr[rb];
1952 			goto compute_done;
1953 #endif
1954 		case 266:	/* add */
1955 			op->val = regs->gpr[ra] + regs->gpr[rb];
1956 			goto arith_done;
1957 
1958 		case 267:	/* moduw */
1959 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1960 				goto unknown_opcode;
1961 			op->val = (unsigned int) regs->gpr[ra] %
1962 				(unsigned int) regs->gpr[rb];
1963 			goto compute_done;
1964 #ifdef __powerpc64__
1965 		case 457:	/* divdu */
1966 			op->val = regs->gpr[ra] / regs->gpr[rb];
1967 			goto arith_done;
1968 #endif
1969 		case 459:	/* divwu */
1970 			op->val = (unsigned int) regs->gpr[ra] /
1971 				(unsigned int) regs->gpr[rb];
1972 			goto arith_done;
1973 #ifdef __powerpc64__
1974 		case 489:	/* divd */
1975 			op->val = (long int) regs->gpr[ra] /
1976 				(long int) regs->gpr[rb];
1977 			goto arith_done;
1978 #endif
1979 		case 491:	/* divw */
1980 			op->val = (int) regs->gpr[ra] /
1981 				(int) regs->gpr[rb];
1982 			goto arith_done;
1983 #ifdef __powerpc64__
1984 		case 425:	/* divde[.] */
1985 			asm volatile(PPC_DIVDE(%0, %1, %2) :
1986 				"=r" (op->val) : "r" (regs->gpr[ra]),
1987 				"r" (regs->gpr[rb]));
1988 			goto arith_done;
1989 		case 393:	/* divdeu[.] */
1990 			asm volatile(PPC_DIVDEU(%0, %1, %2) :
1991 				"=r" (op->val) : "r" (regs->gpr[ra]),
1992 				"r" (regs->gpr[rb]));
1993 			goto arith_done;
1994 #endif
1995 		case 755:	/* darn */
1996 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1997 				goto unknown_opcode;
1998 			switch (ra & 0x3) {
1999 			case 0:
2000 				/* 32-bit conditioned */
2001 				asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
2002 				goto compute_done;
2003 
2004 			case 1:
2005 				/* 64-bit conditioned */
2006 				asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2007 				goto compute_done;
2008 
2009 			case 2:
2010 				/* 64-bit raw */
2011 				asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2012 				goto compute_done;
2013 			}
2014 
2015 			goto unknown_opcode;
2016 #ifdef __powerpc64__
2017 		case 777:	/* modsd */
2018 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2019 				goto unknown_opcode;
2020 			op->val = (long int) regs->gpr[ra] %
2021 				(long int) regs->gpr[rb];
2022 			goto compute_done;
2023 #endif
2024 		case 779:	/* modsw */
2025 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2026 				goto unknown_opcode;
2027 			op->val = (int) regs->gpr[ra] %
2028 				(int) regs->gpr[rb];
2029 			goto compute_done;
2030 
2031 
2032 /*
2033  * Logical instructions
2034  */
2035 		case 26:	/* cntlzw */
2036 			val = (unsigned int) regs->gpr[rd];
2037 			op->val = ( val ? __builtin_clz(val) : 32 );
2038 			goto logical_done;
2039 #ifdef __powerpc64__
2040 		case 58:	/* cntlzd */
2041 			val = regs->gpr[rd];
2042 			op->val = ( val ? __builtin_clzl(val) : 64 );
2043 			goto logical_done;
2044 #endif
2045 		case 28:	/* and */
2046 			op->val = regs->gpr[rd] & regs->gpr[rb];
2047 			goto logical_done;
2048 
2049 		case 60:	/* andc */
2050 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
2051 			goto logical_done;
2052 
2053 		case 122:	/* popcntb */
2054 			do_popcnt(regs, op, regs->gpr[rd], 8);
2055 			goto logical_done_nocc;
2056 
2057 		case 124:	/* nor */
2058 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2059 			goto logical_done;
2060 
2061 		case 154:	/* prtyw */
2062 			do_prty(regs, op, regs->gpr[rd], 32);
2063 			goto logical_done_nocc;
2064 
2065 		case 186:	/* prtyd */
2066 			do_prty(regs, op, regs->gpr[rd], 64);
2067 			goto logical_done_nocc;
2068 #ifdef CONFIG_PPC64
2069 		case 252:	/* bpermd */
2070 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2071 			goto logical_done_nocc;
2072 #endif
2073 		case 284:	/* xor */
2074 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2075 			goto logical_done;
2076 
2077 		case 316:	/* xor */
2078 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
2079 			goto logical_done;
2080 
2081 		case 378:	/* popcntw */
2082 			do_popcnt(regs, op, regs->gpr[rd], 32);
2083 			goto logical_done_nocc;
2084 
2085 		case 412:	/* orc */
2086 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
2087 			goto logical_done;
2088 
2089 		case 444:	/* or */
2090 			op->val = regs->gpr[rd] | regs->gpr[rb];
2091 			goto logical_done;
2092 
2093 		case 476:	/* nand */
2094 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2095 			goto logical_done;
2096 #ifdef CONFIG_PPC64
2097 		case 506:	/* popcntd */
2098 			do_popcnt(regs, op, regs->gpr[rd], 64);
2099 			goto logical_done_nocc;
2100 #endif
2101 		case 538:	/* cnttzw */
2102 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2103 				goto unknown_opcode;
2104 			val = (unsigned int) regs->gpr[rd];
2105 			op->val = (val ? __builtin_ctz(val) : 32);
2106 			goto logical_done;
2107 #ifdef __powerpc64__
2108 		case 570:	/* cnttzd */
2109 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2110 				goto unknown_opcode;
2111 			val = regs->gpr[rd];
2112 			op->val = (val ? __builtin_ctzl(val) : 64);
2113 			goto logical_done;
2114 #endif
2115 		case 922:	/* extsh */
2116 			op->val = (signed short) regs->gpr[rd];
2117 			goto logical_done;
2118 
2119 		case 954:	/* extsb */
2120 			op->val = (signed char) regs->gpr[rd];
2121 			goto logical_done;
2122 #ifdef __powerpc64__
2123 		case 986:	/* extsw */
2124 			op->val = (signed int) regs->gpr[rd];
2125 			goto logical_done;
2126 #endif
2127 
2128 /*
2129  * Shift instructions
2130  */
2131 		case 24:	/* slw */
2132 			sh = regs->gpr[rb] & 0x3f;
2133 			if (sh < 32)
2134 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2135 			else
2136 				op->val = 0;
2137 			goto logical_done;
2138 
2139 		case 536:	/* srw */
2140 			sh = regs->gpr[rb] & 0x3f;
2141 			if (sh < 32)
2142 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2143 			else
2144 				op->val = 0;
2145 			goto logical_done;
2146 
2147 		case 792:	/* sraw */
2148 			op->type = COMPUTE + SETREG + SETXER;
2149 			sh = regs->gpr[rb] & 0x3f;
2150 			ival = (signed int) regs->gpr[rd];
2151 			op->val = ival >> (sh < 32 ? sh : 31);
2152 			op->xerval = regs->xer;
2153 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2154 				op->xerval |= XER_CA;
2155 			else
2156 				op->xerval &= ~XER_CA;
2157 			set_ca32(op, op->xerval & XER_CA);
2158 			goto logical_done;
2159 
2160 		case 824:	/* srawi */
2161 			op->type = COMPUTE + SETREG + SETXER;
2162 			sh = rb;
2163 			ival = (signed int) regs->gpr[rd];
2164 			op->val = ival >> sh;
2165 			op->xerval = regs->xer;
2166 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2167 				op->xerval |= XER_CA;
2168 			else
2169 				op->xerval &= ~XER_CA;
2170 			set_ca32(op, op->xerval & XER_CA);
2171 			goto logical_done;
2172 
2173 #ifdef __powerpc64__
2174 		case 27:	/* sld */
2175 			sh = regs->gpr[rb] & 0x7f;
2176 			if (sh < 64)
2177 				op->val = regs->gpr[rd] << sh;
2178 			else
2179 				op->val = 0;
2180 			goto logical_done;
2181 
2182 		case 539:	/* srd */
2183 			sh = regs->gpr[rb] & 0x7f;
2184 			if (sh < 64)
2185 				op->val = regs->gpr[rd] >> sh;
2186 			else
2187 				op->val = 0;
2188 			goto logical_done;
2189 
2190 		case 794:	/* srad */
2191 			op->type = COMPUTE + SETREG + SETXER;
2192 			sh = regs->gpr[rb] & 0x7f;
2193 			ival = (signed long int) regs->gpr[rd];
2194 			op->val = ival >> (sh < 64 ? sh : 63);
2195 			op->xerval = regs->xer;
2196 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2197 				op->xerval |= XER_CA;
2198 			else
2199 				op->xerval &= ~XER_CA;
2200 			set_ca32(op, op->xerval & XER_CA);
2201 			goto logical_done;
2202 
2203 		case 826:	/* sradi with sh_5 = 0 */
2204 		case 827:	/* sradi with sh_5 = 1 */
2205 			op->type = COMPUTE + SETREG + SETXER;
2206 			sh = rb | ((word & 2) << 4);
2207 			ival = (signed long int) regs->gpr[rd];
2208 			op->val = ival >> sh;
2209 			op->xerval = regs->xer;
2210 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2211 				op->xerval |= XER_CA;
2212 			else
2213 				op->xerval &= ~XER_CA;
2214 			set_ca32(op, op->xerval & XER_CA);
2215 			goto logical_done;
2216 
2217 		case 890:	/* extswsli with sh_5 = 0 */
2218 		case 891:	/* extswsli with sh_5 = 1 */
2219 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2220 				goto unknown_opcode;
2221 			op->type = COMPUTE + SETREG;
2222 			sh = rb | ((word & 2) << 4);
2223 			val = (signed int) regs->gpr[rd];
2224 			if (sh)
2225 				op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2226 			else
2227 				op->val = val;
2228 			goto logical_done;
2229 
2230 #endif /* __powerpc64__ */
2231 
2232 /*
2233  * Cache instructions
2234  */
2235 		case 54:	/* dcbst */
2236 			op->type = MKOP(CACHEOP, DCBST, 0);
2237 			op->ea = xform_ea(word, regs);
2238 			return 0;
2239 
2240 		case 86:	/* dcbf */
2241 			op->type = MKOP(CACHEOP, DCBF, 0);
2242 			op->ea = xform_ea(word, regs);
2243 			return 0;
2244 
2245 		case 246:	/* dcbtst */
2246 			op->type = MKOP(CACHEOP, DCBTST, 0);
2247 			op->ea = xform_ea(word, regs);
2248 			op->reg = rd;
2249 			return 0;
2250 
2251 		case 278:	/* dcbt */
2252 			op->type = MKOP(CACHEOP, DCBTST, 0);
2253 			op->ea = xform_ea(word, regs);
2254 			op->reg = rd;
2255 			return 0;
2256 
2257 		case 982:	/* icbi */
2258 			op->type = MKOP(CACHEOP, ICBI, 0);
2259 			op->ea = xform_ea(word, regs);
2260 			return 0;
2261 
2262 		case 1014:	/* dcbz */
2263 			op->type = MKOP(CACHEOP, DCBZ, 0);
2264 			op->ea = xform_ea(word, regs);
2265 			return 0;
2266 		}
2267 		break;
2268 	}
2269 
2270 /*
2271  * Loads and stores.
2272  */
2273 	op->type = UNKNOWN;
2274 	op->update_reg = ra;
2275 	op->reg = rd;
2276 	op->val = regs->gpr[rd];
2277 	u = (word >> 20) & UPDATE;
2278 	op->vsx_flags = 0;
2279 
2280 	switch (opcode) {
2281 	case 31:
2282 		u = word & UPDATE;
2283 		op->ea = xform_ea(word, regs);
2284 		switch ((word >> 1) & 0x3ff) {
2285 		case 20:	/* lwarx */
2286 			op->type = MKOP(LARX, 0, 4);
2287 			break;
2288 
2289 		case 150:	/* stwcx. */
2290 			op->type = MKOP(STCX, 0, 4);
2291 			break;
2292 
2293 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
2294 		case 52:	/* lbarx */
2295 			op->type = MKOP(LARX, 0, 1);
2296 			break;
2297 
2298 		case 694:	/* stbcx. */
2299 			op->type = MKOP(STCX, 0, 1);
2300 			break;
2301 
2302 		case 116:	/* lharx */
2303 			op->type = MKOP(LARX, 0, 2);
2304 			break;
2305 
2306 		case 726:	/* sthcx. */
2307 			op->type = MKOP(STCX, 0, 2);
2308 			break;
2309 #endif
2310 #ifdef __powerpc64__
2311 		case 84:	/* ldarx */
2312 			op->type = MKOP(LARX, 0, 8);
2313 			break;
2314 
2315 		case 214:	/* stdcx. */
2316 			op->type = MKOP(STCX, 0, 8);
2317 			break;
2318 
2319 		case 276:	/* lqarx */
2320 			if (!((rd & 1) || rd == ra || rd == rb))
2321 				op->type = MKOP(LARX, 0, 16);
2322 			break;
2323 
2324 		case 182:	/* stqcx. */
2325 			if (!(rd & 1))
2326 				op->type = MKOP(STCX, 0, 16);
2327 			break;
2328 #endif
2329 
2330 		case 23:	/* lwzx */
2331 		case 55:	/* lwzux */
2332 			op->type = MKOP(LOAD, u, 4);
2333 			break;
2334 
2335 		case 87:	/* lbzx */
2336 		case 119:	/* lbzux */
2337 			op->type = MKOP(LOAD, u, 1);
2338 			break;
2339 
2340 #ifdef CONFIG_ALTIVEC
2341 		/*
2342 		 * Note: for the load/store vector element instructions,
2343 		 * bits of the EA say which field of the VMX register to use.
2344 		 */
2345 		case 7:		/* lvebx */
2346 			op->type = MKOP(LOAD_VMX, 0, 1);
2347 			op->element_size = 1;
2348 			break;
2349 
2350 		case 39:	/* lvehx */
2351 			op->type = MKOP(LOAD_VMX, 0, 2);
2352 			op->element_size = 2;
2353 			break;
2354 
2355 		case 71:	/* lvewx */
2356 			op->type = MKOP(LOAD_VMX, 0, 4);
2357 			op->element_size = 4;
2358 			break;
2359 
2360 		case 103:	/* lvx */
2361 		case 359:	/* lvxl */
2362 			op->type = MKOP(LOAD_VMX, 0, 16);
2363 			op->element_size = 16;
2364 			break;
2365 
2366 		case 135:	/* stvebx */
2367 			op->type = MKOP(STORE_VMX, 0, 1);
2368 			op->element_size = 1;
2369 			break;
2370 
2371 		case 167:	/* stvehx */
2372 			op->type = MKOP(STORE_VMX, 0, 2);
2373 			op->element_size = 2;
2374 			break;
2375 
2376 		case 199:	/* stvewx */
2377 			op->type = MKOP(STORE_VMX, 0, 4);
2378 			op->element_size = 4;
2379 			break;
2380 
2381 		case 231:	/* stvx */
2382 		case 487:	/* stvxl */
2383 			op->type = MKOP(STORE_VMX, 0, 16);
2384 			break;
2385 #endif /* CONFIG_ALTIVEC */
2386 
2387 #ifdef __powerpc64__
2388 		case 21:	/* ldx */
2389 		case 53:	/* ldux */
2390 			op->type = MKOP(LOAD, u, 8);
2391 			break;
2392 
2393 		case 149:	/* stdx */
2394 		case 181:	/* stdux */
2395 			op->type = MKOP(STORE, u, 8);
2396 			break;
2397 #endif
2398 
2399 		case 151:	/* stwx */
2400 		case 183:	/* stwux */
2401 			op->type = MKOP(STORE, u, 4);
2402 			break;
2403 
2404 		case 215:	/* stbx */
2405 		case 247:	/* stbux */
2406 			op->type = MKOP(STORE, u, 1);
2407 			break;
2408 
2409 		case 279:	/* lhzx */
2410 		case 311:	/* lhzux */
2411 			op->type = MKOP(LOAD, u, 2);
2412 			break;
2413 
2414 #ifdef __powerpc64__
2415 		case 341:	/* lwax */
2416 		case 373:	/* lwaux */
2417 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2418 			break;
2419 #endif
2420 
2421 		case 343:	/* lhax */
2422 		case 375:	/* lhaux */
2423 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2424 			break;
2425 
2426 		case 407:	/* sthx */
2427 		case 439:	/* sthux */
2428 			op->type = MKOP(STORE, u, 2);
2429 			break;
2430 
2431 #ifdef __powerpc64__
2432 		case 532:	/* ldbrx */
2433 			op->type = MKOP(LOAD, BYTEREV, 8);
2434 			break;
2435 
2436 #endif
2437 		case 533:	/* lswx */
2438 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2439 			break;
2440 
2441 		case 534:	/* lwbrx */
2442 			op->type = MKOP(LOAD, BYTEREV, 4);
2443 			break;
2444 
2445 		case 597:	/* lswi */
2446 			if (rb == 0)
2447 				rb = 32;	/* # bytes to load */
2448 			op->type = MKOP(LOAD_MULTI, 0, rb);
2449 			op->ea = ra ? regs->gpr[ra] : 0;
2450 			break;
2451 
2452 #ifdef CONFIG_PPC_FPU
2453 		case 535:	/* lfsx */
2454 		case 567:	/* lfsux */
2455 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2456 			break;
2457 
2458 		case 599:	/* lfdx */
2459 		case 631:	/* lfdux */
2460 			op->type = MKOP(LOAD_FP, u, 8);
2461 			break;
2462 
2463 		case 663:	/* stfsx */
2464 		case 695:	/* stfsux */
2465 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2466 			break;
2467 
2468 		case 727:	/* stfdx */
2469 		case 759:	/* stfdux */
2470 			op->type = MKOP(STORE_FP, u, 8);
2471 			break;
2472 
2473 #ifdef __powerpc64__
2474 		case 791:	/* lfdpx */
2475 			op->type = MKOP(LOAD_FP, 0, 16);
2476 			break;
2477 
2478 		case 855:	/* lfiwax */
2479 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2480 			break;
2481 
2482 		case 887:	/* lfiwzx */
2483 			op->type = MKOP(LOAD_FP, 0, 4);
2484 			break;
2485 
2486 		case 919:	/* stfdpx */
2487 			op->type = MKOP(STORE_FP, 0, 16);
2488 			break;
2489 
2490 		case 983:	/* stfiwx */
2491 			op->type = MKOP(STORE_FP, 0, 4);
2492 			break;
2493 #endif /* __powerpc64 */
2494 #endif /* CONFIG_PPC_FPU */
2495 
2496 #ifdef __powerpc64__
2497 		case 660:	/* stdbrx */
2498 			op->type = MKOP(STORE, BYTEREV, 8);
2499 			op->val = byterev_8(regs->gpr[rd]);
2500 			break;
2501 
2502 #endif
2503 		case 661:	/* stswx */
2504 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2505 			break;
2506 
2507 		case 662:	/* stwbrx */
2508 			op->type = MKOP(STORE, BYTEREV, 4);
2509 			op->val = byterev_4(regs->gpr[rd]);
2510 			break;
2511 
2512 		case 725:	/* stswi */
2513 			if (rb == 0)
2514 				rb = 32;	/* # bytes to store */
2515 			op->type = MKOP(STORE_MULTI, 0, rb);
2516 			op->ea = ra ? regs->gpr[ra] : 0;
2517 			break;
2518 
2519 		case 790:	/* lhbrx */
2520 			op->type = MKOP(LOAD, BYTEREV, 2);
2521 			break;
2522 
2523 		case 918:	/* sthbrx */
2524 			op->type = MKOP(STORE, BYTEREV, 2);
2525 			op->val = byterev_2(regs->gpr[rd]);
2526 			break;
2527 
2528 #ifdef CONFIG_VSX
2529 		case 12:	/* lxsiwzx */
2530 			op->reg = rd | ((word & 1) << 5);
2531 			op->type = MKOP(LOAD_VSX, 0, 4);
2532 			op->element_size = 8;
2533 			break;
2534 
2535 		case 76:	/* lxsiwax */
2536 			op->reg = rd | ((word & 1) << 5);
2537 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2538 			op->element_size = 8;
2539 			break;
2540 
2541 		case 140:	/* stxsiwx */
2542 			op->reg = rd | ((word & 1) << 5);
2543 			op->type = MKOP(STORE_VSX, 0, 4);
2544 			op->element_size = 8;
2545 			break;
2546 
2547 		case 268:	/* lxvx */
2548 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2549 				goto unknown_opcode;
2550 			op->reg = rd | ((word & 1) << 5);
2551 			op->type = MKOP(LOAD_VSX, 0, 16);
2552 			op->element_size = 16;
2553 			op->vsx_flags = VSX_CHECK_VEC;
2554 			break;
2555 
2556 		case 269:	/* lxvl */
2557 		case 301: {	/* lxvll */
2558 			int nb;
2559 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2560 				goto unknown_opcode;
2561 			op->reg = rd | ((word & 1) << 5);
2562 			op->ea = ra ? regs->gpr[ra] : 0;
2563 			nb = regs->gpr[rb] & 0xff;
2564 			if (nb > 16)
2565 				nb = 16;
2566 			op->type = MKOP(LOAD_VSX, 0, nb);
2567 			op->element_size = 16;
2568 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2569 				VSX_CHECK_VEC;
2570 			break;
2571 		}
2572 		case 332:	/* lxvdsx */
2573 			op->reg = rd | ((word & 1) << 5);
2574 			op->type = MKOP(LOAD_VSX, 0, 8);
2575 			op->element_size = 8;
2576 			op->vsx_flags = VSX_SPLAT;
2577 			break;
2578 
2579 		case 333:       /* lxvpx */
2580 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2581 				goto unknown_opcode;
2582 			op->reg = VSX_REGISTER_XTP(rd);
2583 			op->type = MKOP(LOAD_VSX, 0, 32);
2584 			op->element_size = 32;
2585 			break;
2586 
2587 		case 364:	/* lxvwsx */
2588 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2589 				goto unknown_opcode;
2590 			op->reg = rd | ((word & 1) << 5);
2591 			op->type = MKOP(LOAD_VSX, 0, 4);
2592 			op->element_size = 4;
2593 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2594 			break;
2595 
2596 		case 396:	/* stxvx */
2597 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2598 				goto unknown_opcode;
2599 			op->reg = rd | ((word & 1) << 5);
2600 			op->type = MKOP(STORE_VSX, 0, 16);
2601 			op->element_size = 16;
2602 			op->vsx_flags = VSX_CHECK_VEC;
2603 			break;
2604 
2605 		case 397:	/* stxvl */
2606 		case 429: {	/* stxvll */
2607 			int nb;
2608 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2609 				goto unknown_opcode;
2610 			op->reg = rd | ((word & 1) << 5);
2611 			op->ea = ra ? regs->gpr[ra] : 0;
2612 			nb = regs->gpr[rb] & 0xff;
2613 			if (nb > 16)
2614 				nb = 16;
2615 			op->type = MKOP(STORE_VSX, 0, nb);
2616 			op->element_size = 16;
2617 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2618 				VSX_CHECK_VEC;
2619 			break;
2620 		}
2621 		case 461:       /* stxvpx */
2622 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2623 				goto unknown_opcode;
2624 			op->reg = VSX_REGISTER_XTP(rd);
2625 			op->type = MKOP(STORE_VSX, 0, 32);
2626 			op->element_size = 32;
2627 			break;
2628 		case 524:	/* lxsspx */
2629 			op->reg = rd | ((word & 1) << 5);
2630 			op->type = MKOP(LOAD_VSX, 0, 4);
2631 			op->element_size = 8;
2632 			op->vsx_flags = VSX_FPCONV;
2633 			break;
2634 
2635 		case 588:	/* lxsdx */
2636 			op->reg = rd | ((word & 1) << 5);
2637 			op->type = MKOP(LOAD_VSX, 0, 8);
2638 			op->element_size = 8;
2639 			break;
2640 
2641 		case 652:	/* stxsspx */
2642 			op->reg = rd | ((word & 1) << 5);
2643 			op->type = MKOP(STORE_VSX, 0, 4);
2644 			op->element_size = 8;
2645 			op->vsx_flags = VSX_FPCONV;
2646 			break;
2647 
2648 		case 716:	/* stxsdx */
2649 			op->reg = rd | ((word & 1) << 5);
2650 			op->type = MKOP(STORE_VSX, 0, 8);
2651 			op->element_size = 8;
2652 			break;
2653 
2654 		case 780:	/* lxvw4x */
2655 			op->reg = rd | ((word & 1) << 5);
2656 			op->type = MKOP(LOAD_VSX, 0, 16);
2657 			op->element_size = 4;
2658 			break;
2659 
2660 		case 781:	/* lxsibzx */
2661 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2662 				goto unknown_opcode;
2663 			op->reg = rd | ((word & 1) << 5);
2664 			op->type = MKOP(LOAD_VSX, 0, 1);
2665 			op->element_size = 8;
2666 			op->vsx_flags = VSX_CHECK_VEC;
2667 			break;
2668 
2669 		case 812:	/* lxvh8x */
2670 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2671 				goto unknown_opcode;
2672 			op->reg = rd | ((word & 1) << 5);
2673 			op->type = MKOP(LOAD_VSX, 0, 16);
2674 			op->element_size = 2;
2675 			op->vsx_flags = VSX_CHECK_VEC;
2676 			break;
2677 
2678 		case 813:	/* lxsihzx */
2679 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2680 				goto unknown_opcode;
2681 			op->reg = rd | ((word & 1) << 5);
2682 			op->type = MKOP(LOAD_VSX, 0, 2);
2683 			op->element_size = 8;
2684 			op->vsx_flags = VSX_CHECK_VEC;
2685 			break;
2686 
2687 		case 844:	/* lxvd2x */
2688 			op->reg = rd | ((word & 1) << 5);
2689 			op->type = MKOP(LOAD_VSX, 0, 16);
2690 			op->element_size = 8;
2691 			break;
2692 
2693 		case 876:	/* lxvb16x */
2694 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2695 				goto unknown_opcode;
2696 			op->reg = rd | ((word & 1) << 5);
2697 			op->type = MKOP(LOAD_VSX, 0, 16);
2698 			op->element_size = 1;
2699 			op->vsx_flags = VSX_CHECK_VEC;
2700 			break;
2701 
2702 		case 908:	/* stxvw4x */
2703 			op->reg = rd | ((word & 1) << 5);
2704 			op->type = MKOP(STORE_VSX, 0, 16);
2705 			op->element_size = 4;
2706 			break;
2707 
2708 		case 909:	/* stxsibx */
2709 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2710 				goto unknown_opcode;
2711 			op->reg = rd | ((word & 1) << 5);
2712 			op->type = MKOP(STORE_VSX, 0, 1);
2713 			op->element_size = 8;
2714 			op->vsx_flags = VSX_CHECK_VEC;
2715 			break;
2716 
2717 		case 940:	/* stxvh8x */
2718 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2719 				goto unknown_opcode;
2720 			op->reg = rd | ((word & 1) << 5);
2721 			op->type = MKOP(STORE_VSX, 0, 16);
2722 			op->element_size = 2;
2723 			op->vsx_flags = VSX_CHECK_VEC;
2724 			break;
2725 
2726 		case 941:	/* stxsihx */
2727 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2728 				goto unknown_opcode;
2729 			op->reg = rd | ((word & 1) << 5);
2730 			op->type = MKOP(STORE_VSX, 0, 2);
2731 			op->element_size = 8;
2732 			op->vsx_flags = VSX_CHECK_VEC;
2733 			break;
2734 
2735 		case 972:	/* stxvd2x */
2736 			op->reg = rd | ((word & 1) << 5);
2737 			op->type = MKOP(STORE_VSX, 0, 16);
2738 			op->element_size = 8;
2739 			break;
2740 
2741 		case 1004:	/* stxvb16x */
2742 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2743 				goto unknown_opcode;
2744 			op->reg = rd | ((word & 1) << 5);
2745 			op->type = MKOP(STORE_VSX, 0, 16);
2746 			op->element_size = 1;
2747 			op->vsx_flags = VSX_CHECK_VEC;
2748 			break;
2749 
2750 #endif /* CONFIG_VSX */
2751 		}
2752 		break;
2753 
2754 	case 32:	/* lwz */
2755 	case 33:	/* lwzu */
2756 		op->type = MKOP(LOAD, u, 4);
2757 		op->ea = dform_ea(word, regs);
2758 		break;
2759 
2760 	case 34:	/* lbz */
2761 	case 35:	/* lbzu */
2762 		op->type = MKOP(LOAD, u, 1);
2763 		op->ea = dform_ea(word, regs);
2764 		break;
2765 
2766 	case 36:	/* stw */
2767 	case 37:	/* stwu */
2768 		op->type = MKOP(STORE, u, 4);
2769 		op->ea = dform_ea(word, regs);
2770 		break;
2771 
2772 	case 38:	/* stb */
2773 	case 39:	/* stbu */
2774 		op->type = MKOP(STORE, u, 1);
2775 		op->ea = dform_ea(word, regs);
2776 		break;
2777 
2778 	case 40:	/* lhz */
2779 	case 41:	/* lhzu */
2780 		op->type = MKOP(LOAD, u, 2);
2781 		op->ea = dform_ea(word, regs);
2782 		break;
2783 
2784 	case 42:	/* lha */
2785 	case 43:	/* lhau */
2786 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2787 		op->ea = dform_ea(word, regs);
2788 		break;
2789 
2790 	case 44:	/* sth */
2791 	case 45:	/* sthu */
2792 		op->type = MKOP(STORE, u, 2);
2793 		op->ea = dform_ea(word, regs);
2794 		break;
2795 
2796 	case 46:	/* lmw */
2797 		if (ra >= rd)
2798 			break;		/* invalid form, ra in range to load */
2799 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2800 		op->ea = dform_ea(word, regs);
2801 		break;
2802 
2803 	case 47:	/* stmw */
2804 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2805 		op->ea = dform_ea(word, regs);
2806 		break;
2807 
2808 #ifdef CONFIG_PPC_FPU
2809 	case 48:	/* lfs */
2810 	case 49:	/* lfsu */
2811 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2812 		op->ea = dform_ea(word, regs);
2813 		break;
2814 
2815 	case 50:	/* lfd */
2816 	case 51:	/* lfdu */
2817 		op->type = MKOP(LOAD_FP, u, 8);
2818 		op->ea = dform_ea(word, regs);
2819 		break;
2820 
2821 	case 52:	/* stfs */
2822 	case 53:	/* stfsu */
2823 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2824 		op->ea = dform_ea(word, regs);
2825 		break;
2826 
2827 	case 54:	/* stfd */
2828 	case 55:	/* stfdu */
2829 		op->type = MKOP(STORE_FP, u, 8);
2830 		op->ea = dform_ea(word, regs);
2831 		break;
2832 #endif
2833 
2834 #ifdef __powerpc64__
2835 	case 56:	/* lq */
2836 		if (!((rd & 1) || (rd == ra)))
2837 			op->type = MKOP(LOAD, 0, 16);
2838 		op->ea = dqform_ea(word, regs);
2839 		break;
2840 #endif
2841 
2842 #ifdef CONFIG_VSX
2843 	case 57:	/* lfdp, lxsd, lxssp */
2844 		op->ea = dsform_ea(word, regs);
2845 		switch (word & 3) {
2846 		case 0:		/* lfdp */
2847 			if (rd & 1)
2848 				break;		/* reg must be even */
2849 			op->type = MKOP(LOAD_FP, 0, 16);
2850 			break;
2851 		case 2:		/* lxsd */
2852 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2853 				goto unknown_opcode;
2854 			op->reg = rd + 32;
2855 			op->type = MKOP(LOAD_VSX, 0, 8);
2856 			op->element_size = 8;
2857 			op->vsx_flags = VSX_CHECK_VEC;
2858 			break;
2859 		case 3:		/* lxssp */
2860 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2861 				goto unknown_opcode;
2862 			op->reg = rd + 32;
2863 			op->type = MKOP(LOAD_VSX, 0, 4);
2864 			op->element_size = 8;
2865 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2866 			break;
2867 		}
2868 		break;
2869 #endif /* CONFIG_VSX */
2870 
2871 #ifdef __powerpc64__
2872 	case 58:	/* ld[u], lwa */
2873 		op->ea = dsform_ea(word, regs);
2874 		switch (word & 3) {
2875 		case 0:		/* ld */
2876 			op->type = MKOP(LOAD, 0, 8);
2877 			break;
2878 		case 1:		/* ldu */
2879 			op->type = MKOP(LOAD, UPDATE, 8);
2880 			break;
2881 		case 2:		/* lwa */
2882 			op->type = MKOP(LOAD, SIGNEXT, 4);
2883 			break;
2884 		}
2885 		break;
2886 #endif
2887 
2888 #ifdef CONFIG_VSX
2889 	case 6:
2890 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2891 			goto unknown_opcode;
2892 		op->ea = dqform_ea(word, regs);
2893 		op->reg = VSX_REGISTER_XTP(rd);
2894 		op->element_size = 32;
2895 		switch (word & 0xf) {
2896 		case 0:         /* lxvp */
2897 			op->type = MKOP(LOAD_VSX, 0, 32);
2898 			break;
2899 		case 1:         /* stxvp */
2900 			op->type = MKOP(STORE_VSX, 0, 32);
2901 			break;
2902 		}
2903 		break;
2904 
2905 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2906 		switch (word & 7) {
2907 		case 0:		/* stfdp with LSB of DS field = 0 */
2908 		case 4:		/* stfdp with LSB of DS field = 1 */
2909 			op->ea = dsform_ea(word, regs);
2910 			op->type = MKOP(STORE_FP, 0, 16);
2911 			break;
2912 
2913 		case 1:		/* lxv */
2914 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2915 				goto unknown_opcode;
2916 			op->ea = dqform_ea(word, regs);
2917 			if (word & 8)
2918 				op->reg = rd + 32;
2919 			op->type = MKOP(LOAD_VSX, 0, 16);
2920 			op->element_size = 16;
2921 			op->vsx_flags = VSX_CHECK_VEC;
2922 			break;
2923 
2924 		case 2:		/* stxsd with LSB of DS field = 0 */
2925 		case 6:		/* stxsd with LSB of DS field = 1 */
2926 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2927 				goto unknown_opcode;
2928 			op->ea = dsform_ea(word, regs);
2929 			op->reg = rd + 32;
2930 			op->type = MKOP(STORE_VSX, 0, 8);
2931 			op->element_size = 8;
2932 			op->vsx_flags = VSX_CHECK_VEC;
2933 			break;
2934 
2935 		case 3:		/* stxssp with LSB of DS field = 0 */
2936 		case 7:		/* stxssp with LSB of DS field = 1 */
2937 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2938 				goto unknown_opcode;
2939 			op->ea = dsform_ea(word, regs);
2940 			op->reg = rd + 32;
2941 			op->type = MKOP(STORE_VSX, 0, 4);
2942 			op->element_size = 8;
2943 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2944 			break;
2945 
2946 		case 5:		/* stxv */
2947 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2948 				goto unknown_opcode;
2949 			op->ea = dqform_ea(word, regs);
2950 			if (word & 8)
2951 				op->reg = rd + 32;
2952 			op->type = MKOP(STORE_VSX, 0, 16);
2953 			op->element_size = 16;
2954 			op->vsx_flags = VSX_CHECK_VEC;
2955 			break;
2956 		}
2957 		break;
2958 #endif /* CONFIG_VSX */
2959 
2960 #ifdef __powerpc64__
2961 	case 62:	/* std[u] */
2962 		op->ea = dsform_ea(word, regs);
2963 		switch (word & 3) {
2964 		case 0:		/* std */
2965 			op->type = MKOP(STORE, 0, 8);
2966 			break;
2967 		case 1:		/* stdu */
2968 			op->type = MKOP(STORE, UPDATE, 8);
2969 			break;
2970 		case 2:		/* stq */
2971 			if (!(rd & 1))
2972 				op->type = MKOP(STORE, 0, 16);
2973 			break;
2974 		}
2975 		break;
2976 	case 1: /* Prefixed instructions */
2977 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2978 			goto unknown_opcode;
2979 
2980 		prefix_r = GET_PREFIX_R(word);
2981 		ra = GET_PREFIX_RA(suffix);
2982 		op->update_reg = ra;
2983 		rd = (suffix >> 21) & 0x1f;
2984 		op->reg = rd;
2985 		op->val = regs->gpr[rd];
2986 
2987 		suffixopcode = get_op(suffix);
2988 		prefixtype = (word >> 24) & 0x3;
2989 		switch (prefixtype) {
2990 		case 0: /* Type 00  Eight-Byte Load/Store */
2991 			if (prefix_r && ra)
2992 				break;
2993 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
2994 			switch (suffixopcode) {
2995 			case 41:	/* plwa */
2996 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2997 				break;
2998 #ifdef CONFIG_VSX
2999 			case 42:        /* plxsd */
3000 				op->reg = rd + 32;
3001 				op->type = MKOP(LOAD_VSX, PREFIXED, 8);
3002 				op->element_size = 8;
3003 				op->vsx_flags = VSX_CHECK_VEC;
3004 				break;
3005 			case 43:	/* plxssp */
3006 				op->reg = rd + 32;
3007 				op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3008 				op->element_size = 8;
3009 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3010 				break;
3011 			case 46:	/* pstxsd */
3012 				op->reg = rd + 32;
3013 				op->type = MKOP(STORE_VSX, PREFIXED, 8);
3014 				op->element_size = 8;
3015 				op->vsx_flags = VSX_CHECK_VEC;
3016 				break;
3017 			case 47:	/* pstxssp */
3018 				op->reg = rd + 32;
3019 				op->type = MKOP(STORE_VSX, PREFIXED, 4);
3020 				op->element_size = 8;
3021 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3022 				break;
3023 			case 51:	/* plxv1 */
3024 				op->reg += 32;
3025 				fallthrough;
3026 			case 50:	/* plxv0 */
3027 				op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3028 				op->element_size = 16;
3029 				op->vsx_flags = VSX_CHECK_VEC;
3030 				break;
3031 			case 55:	/* pstxv1 */
3032 				op->reg = rd + 32;
3033 				fallthrough;
3034 			case 54:	/* pstxv0 */
3035 				op->type = MKOP(STORE_VSX, PREFIXED, 16);
3036 				op->element_size = 16;
3037 				op->vsx_flags = VSX_CHECK_VEC;
3038 				break;
3039 #endif /* CONFIG_VSX */
3040 			case 56:        /* plq */
3041 				op->type = MKOP(LOAD, PREFIXED, 16);
3042 				break;
3043 			case 57:	/* pld */
3044 				op->type = MKOP(LOAD, PREFIXED, 8);
3045 				break;
3046 #ifdef CONFIG_VSX
3047 			case 58:        /* plxvp */
3048 				op->reg = VSX_REGISTER_XTP(rd);
3049 				op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3050 				op->element_size = 32;
3051 				break;
3052 #endif /* CONFIG_VSX */
3053 			case 60:        /* pstq */
3054 				op->type = MKOP(STORE, PREFIXED, 16);
3055 				break;
3056 			case 61:	/* pstd */
3057 				op->type = MKOP(STORE, PREFIXED, 8);
3058 				break;
3059 #ifdef CONFIG_VSX
3060 			case 62:        /* pstxvp */
3061 				op->reg = VSX_REGISTER_XTP(rd);
3062 				op->type = MKOP(STORE_VSX, PREFIXED, 32);
3063 				op->element_size = 32;
3064 				break;
3065 #endif /* CONFIG_VSX */
3066 			}
3067 			break;
3068 		case 1: /* Type 01 Eight-Byte Register-to-Register */
3069 			break;
3070 		case 2: /* Type 10 Modified Load/Store */
3071 			if (prefix_r && ra)
3072 				break;
3073 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
3074 			switch (suffixopcode) {
3075 			case 32:	/* plwz */
3076 				op->type = MKOP(LOAD, PREFIXED, 4);
3077 				break;
3078 			case 34:	/* plbz */
3079 				op->type = MKOP(LOAD, PREFIXED, 1);
3080 				break;
3081 			case 36:	/* pstw */
3082 				op->type = MKOP(STORE, PREFIXED, 4);
3083 				break;
3084 			case 38:	/* pstb */
3085 				op->type = MKOP(STORE, PREFIXED, 1);
3086 				break;
3087 			case 40:	/* plhz */
3088 				op->type = MKOP(LOAD, PREFIXED, 2);
3089 				break;
3090 			case 42:	/* plha */
3091 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3092 				break;
3093 			case 44:	/* psth */
3094 				op->type = MKOP(STORE, PREFIXED, 2);
3095 				break;
3096 			case 48:        /* plfs */
3097 				op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3098 				break;
3099 			case 50:        /* plfd */
3100 				op->type = MKOP(LOAD_FP, PREFIXED, 8);
3101 				break;
3102 			case 52:        /* pstfs */
3103 				op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3104 				break;
3105 			case 54:        /* pstfd */
3106 				op->type = MKOP(STORE_FP, PREFIXED, 8);
3107 				break;
3108 			}
3109 			break;
3110 		case 3: /* Type 11 Modified Register-to-Register */
3111 			break;
3112 		}
3113 #endif /* __powerpc64__ */
3114 
3115 	}
3116 
3117 	if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3118 		switch (GETTYPE(op->type)) {
3119 		case LOAD:
3120 			if (ra == rd)
3121 				goto unknown_opcode;
3122 			fallthrough;
3123 		case STORE:
3124 		case LOAD_FP:
3125 		case STORE_FP:
3126 			if (ra == 0)
3127 				goto unknown_opcode;
3128 		}
3129 	}
3130 
3131 #ifdef CONFIG_VSX
3132 	if ((GETTYPE(op->type) == LOAD_VSX ||
3133 	     GETTYPE(op->type) == STORE_VSX) &&
3134 	    !cpu_has_feature(CPU_FTR_VSX)) {
3135 		return -1;
3136 	}
3137 #endif /* CONFIG_VSX */
3138 
3139 	return 0;
3140 
3141  unknown_opcode:
3142 	op->type = UNKNOWN;
3143 	return 0;
3144 
3145  logical_done:
3146 	if (word & 1)
3147 		set_cr0(regs, op);
3148  logical_done_nocc:
3149 	op->reg = ra;
3150 	op->type |= SETREG;
3151 	return 1;
3152 
3153  arith_done:
3154 	if (word & 1)
3155 		set_cr0(regs, op);
3156  compute_done:
3157 	op->reg = rd;
3158 	op->type |= SETREG;
3159 	return 1;
3160 
3161  priv:
3162 	op->type = INTERRUPT | 0x700;
3163 	op->val = SRR1_PROGPRIV;
3164 	return 0;
3165 
3166  trap:
3167 	op->type = INTERRUPT | 0x700;
3168 	op->val = SRR1_PROGTRAP;
3169 	return 0;
3170 }
3171 EXPORT_SYMBOL_GPL(analyse_instr);
3172 NOKPROBE_SYMBOL(analyse_instr);
3173 
3174 /*
3175  * For PPC32 we always use stwu with r1 to change the stack pointer.
3176  * So this emulated store may corrupt the exception frame, now we
3177  * have to provide the exception frame trampoline, which is pushed
3178  * below the kprobed function stack. So we only update gpr[1] but
3179  * don't emulate the real store operation. We will do real store
3180  * operation safely in exception return code by checking this flag.
3181  */
3182 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3183 {
3184 	/*
3185 	 * Check if we already set since that means we'll
3186 	 * lose the previous value.
3187 	 */
3188 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3189 	set_thread_flag(TIF_EMULATE_STACK_STORE);
3190 	return 0;
3191 }
3192 
3193 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3194 {
3195 	switch (size) {
3196 	case 2:
3197 		*valp = (signed short) *valp;
3198 		break;
3199 	case 4:
3200 		*valp = (signed int) *valp;
3201 		break;
3202 	}
3203 }
3204 
3205 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3206 {
3207 	switch (size) {
3208 	case 2:
3209 		*valp = byterev_2(*valp);
3210 		break;
3211 	case 4:
3212 		*valp = byterev_4(*valp);
3213 		break;
3214 #ifdef __powerpc64__
3215 	case 8:
3216 		*valp = byterev_8(*valp);
3217 		break;
3218 #endif
3219 	}
3220 }
3221 
3222 /*
3223  * Emulate an instruction that can be executed just by updating
3224  * fields in *regs.
3225  */
3226 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3227 {
3228 	unsigned long next_pc;
3229 
3230 	next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3231 	switch (GETTYPE(op->type)) {
3232 	case COMPUTE:
3233 		if (op->type & SETREG)
3234 			regs->gpr[op->reg] = op->val;
3235 		if (op->type & SETCC)
3236 			regs->ccr = op->ccval;
3237 		if (op->type & SETXER)
3238 			regs->xer = op->xerval;
3239 		break;
3240 
3241 	case BRANCH:
3242 		if (op->type & SETLK)
3243 			regs->link = next_pc;
3244 		if (op->type & BRTAKEN)
3245 			next_pc = op->val;
3246 		if (op->type & DECCTR)
3247 			--regs->ctr;
3248 		break;
3249 
3250 	case BARRIER:
3251 		switch (op->type & BARRIER_MASK) {
3252 		case BARRIER_SYNC:
3253 			mb();
3254 			break;
3255 		case BARRIER_ISYNC:
3256 			isync();
3257 			break;
3258 		case BARRIER_EIEIO:
3259 			eieio();
3260 			break;
3261 #ifdef CONFIG_PPC64
3262 		case BARRIER_LWSYNC:
3263 			asm volatile("lwsync" : : : "memory");
3264 			break;
3265 		case BARRIER_PTESYNC:
3266 			asm volatile("ptesync" : : : "memory");
3267 			break;
3268 #endif
3269 		}
3270 		break;
3271 
3272 	case MFSPR:
3273 		switch (op->spr) {
3274 		case SPRN_XER:
3275 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3276 			break;
3277 		case SPRN_LR:
3278 			regs->gpr[op->reg] = regs->link;
3279 			break;
3280 		case SPRN_CTR:
3281 			regs->gpr[op->reg] = regs->ctr;
3282 			break;
3283 		default:
3284 			WARN_ON_ONCE(1);
3285 		}
3286 		break;
3287 
3288 	case MTSPR:
3289 		switch (op->spr) {
3290 		case SPRN_XER:
3291 			regs->xer = op->val & 0xffffffffUL;
3292 			break;
3293 		case SPRN_LR:
3294 			regs->link = op->val;
3295 			break;
3296 		case SPRN_CTR:
3297 			regs->ctr = op->val;
3298 			break;
3299 		default:
3300 			WARN_ON_ONCE(1);
3301 		}
3302 		break;
3303 
3304 	default:
3305 		WARN_ON_ONCE(1);
3306 	}
3307 	regs_set_return_ip(regs, next_pc);
3308 }
3309 NOKPROBE_SYMBOL(emulate_update_regs);
3310 
3311 /*
3312  * Emulate a previously-analysed load or store instruction.
3313  * Return values are:
3314  * 0 = instruction emulated successfully
3315  * -EFAULT = address out of range or access faulted (regs->dar
3316  *	     contains the faulting address)
3317  * -EACCES = misaligned access, instruction requires alignment
3318  * -EINVAL = unknown operation in *op
3319  */
3320 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3321 {
3322 	int err, size, type;
3323 	int i, rd, nb;
3324 	unsigned int cr;
3325 	unsigned long val;
3326 	unsigned long ea;
3327 	bool cross_endian;
3328 
3329 	err = 0;
3330 	size = GETSIZE(op->type);
3331 	type = GETTYPE(op->type);
3332 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3333 	ea = truncate_if_32bit(regs->msr, op->ea);
3334 
3335 	switch (type) {
3336 	case LARX:
3337 		if (ea & (size - 1))
3338 			return -EACCES;		/* can't handle misaligned */
3339 		if (!address_ok(regs, ea, size))
3340 			return -EFAULT;
3341 		err = 0;
3342 		val = 0;
3343 		switch (size) {
3344 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
3345 		case 1:
3346 			__get_user_asmx(val, ea, err, "lbarx");
3347 			break;
3348 		case 2:
3349 			__get_user_asmx(val, ea, err, "lharx");
3350 			break;
3351 #endif
3352 		case 4:
3353 			__get_user_asmx(val, ea, err, "lwarx");
3354 			break;
3355 #ifdef __powerpc64__
3356 		case 8:
3357 			__get_user_asmx(val, ea, err, "ldarx");
3358 			break;
3359 		case 16:
3360 			err = do_lqarx(ea, &regs->gpr[op->reg]);
3361 			break;
3362 #endif
3363 		default:
3364 			return -EINVAL;
3365 		}
3366 		if (err) {
3367 			regs->dar = ea;
3368 			break;
3369 		}
3370 		if (size < 16)
3371 			regs->gpr[op->reg] = val;
3372 		break;
3373 
3374 	case STCX:
3375 		if (ea & (size - 1))
3376 			return -EACCES;		/* can't handle misaligned */
3377 		if (!address_ok(regs, ea, size))
3378 			return -EFAULT;
3379 		err = 0;
3380 		switch (size) {
3381 #ifdef __powerpc64__
3382 		case 1:
3383 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3384 			break;
3385 		case 2:
3386 			__put_user_asmx(op->val, ea, err, "sthcx.", cr);
3387 			break;
3388 #endif
3389 		case 4:
3390 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
3391 			break;
3392 #ifdef __powerpc64__
3393 		case 8:
3394 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
3395 			break;
3396 		case 16:
3397 			err = do_stqcx(ea, regs->gpr[op->reg],
3398 				       regs->gpr[op->reg + 1], &cr);
3399 			break;
3400 #endif
3401 		default:
3402 			return -EINVAL;
3403 		}
3404 		if (!err)
3405 			regs->ccr = (regs->ccr & 0x0fffffff) |
3406 				(cr & 0xe0000000) |
3407 				((regs->xer >> 3) & 0x10000000);
3408 		else
3409 			regs->dar = ea;
3410 		break;
3411 
3412 	case LOAD:
3413 #ifdef __powerpc64__
3414 		if (size == 16) {
3415 			err = emulate_lq(regs, ea, op->reg, cross_endian);
3416 			break;
3417 		}
3418 #endif
3419 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3420 		if (!err) {
3421 			if (op->type & SIGNEXT)
3422 				do_signext(&regs->gpr[op->reg], size);
3423 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3424 				do_byterev(&regs->gpr[op->reg], size);
3425 		}
3426 		break;
3427 
3428 #ifdef CONFIG_PPC_FPU
3429 	case LOAD_FP:
3430 		/*
3431 		 * If the instruction is in userspace, we can emulate it even
3432 		 * if the VMX state is not live, because we have the state
3433 		 * stored in the thread_struct.  If the instruction is in
3434 		 * the kernel, we must not touch the state in the thread_struct.
3435 		 */
3436 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3437 			return 0;
3438 		err = do_fp_load(op, ea, regs, cross_endian);
3439 		break;
3440 #endif
3441 #ifdef CONFIG_ALTIVEC
3442 	case LOAD_VMX:
3443 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3444 			return 0;
3445 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3446 		break;
3447 #endif
3448 #ifdef CONFIG_VSX
3449 	case LOAD_VSX: {
3450 		unsigned long msrbit = MSR_VSX;
3451 
3452 		/*
3453 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3454 		 * when the target of the instruction is a vector register.
3455 		 */
3456 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3457 			msrbit = MSR_VEC;
3458 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3459 			return 0;
3460 		err = do_vsx_load(op, ea, regs, cross_endian);
3461 		break;
3462 	}
3463 #endif
3464 	case LOAD_MULTI:
3465 		if (!address_ok(regs, ea, size))
3466 			return -EFAULT;
3467 		rd = op->reg;
3468 		for (i = 0; i < size; i += 4) {
3469 			unsigned int v32 = 0;
3470 
3471 			nb = size - i;
3472 			if (nb > 4)
3473 				nb = 4;
3474 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3475 			if (err)
3476 				break;
3477 			if (unlikely(cross_endian))
3478 				v32 = byterev_4(v32);
3479 			regs->gpr[rd] = v32;
3480 			ea += 4;
3481 			/* reg number wraps from 31 to 0 for lsw[ix] */
3482 			rd = (rd + 1) & 0x1f;
3483 		}
3484 		break;
3485 
3486 	case STORE:
3487 #ifdef __powerpc64__
3488 		if (size == 16) {
3489 			err = emulate_stq(regs, ea, op->reg, cross_endian);
3490 			break;
3491 		}
3492 #endif
3493 		if ((op->type & UPDATE) && size == sizeof(long) &&
3494 		    op->reg == 1 && op->update_reg == 1 &&
3495 		    !(regs->msr & MSR_PR) &&
3496 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3497 			err = handle_stack_update(ea, regs);
3498 			break;
3499 		}
3500 		if (unlikely(cross_endian))
3501 			do_byterev(&op->val, size);
3502 		err = write_mem(op->val, ea, size, regs);
3503 		break;
3504 
3505 #ifdef CONFIG_PPC_FPU
3506 	case STORE_FP:
3507 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3508 			return 0;
3509 		err = do_fp_store(op, ea, regs, cross_endian);
3510 		break;
3511 #endif
3512 #ifdef CONFIG_ALTIVEC
3513 	case STORE_VMX:
3514 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3515 			return 0;
3516 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3517 		break;
3518 #endif
3519 #ifdef CONFIG_VSX
3520 	case STORE_VSX: {
3521 		unsigned long msrbit = MSR_VSX;
3522 
3523 		/*
3524 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3525 		 * when the target of the instruction is a vector register.
3526 		 */
3527 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3528 			msrbit = MSR_VEC;
3529 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3530 			return 0;
3531 		err = do_vsx_store(op, ea, regs, cross_endian);
3532 		break;
3533 	}
3534 #endif
3535 	case STORE_MULTI:
3536 		if (!address_ok(regs, ea, size))
3537 			return -EFAULT;
3538 		rd = op->reg;
3539 		for (i = 0; i < size; i += 4) {
3540 			unsigned int v32 = regs->gpr[rd];
3541 
3542 			nb = size - i;
3543 			if (nb > 4)
3544 				nb = 4;
3545 			if (unlikely(cross_endian))
3546 				v32 = byterev_4(v32);
3547 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3548 			if (err)
3549 				break;
3550 			ea += 4;
3551 			/* reg number wraps from 31 to 0 for stsw[ix] */
3552 			rd = (rd + 1) & 0x1f;
3553 		}
3554 		break;
3555 
3556 	default:
3557 		return -EINVAL;
3558 	}
3559 
3560 	if (err)
3561 		return err;
3562 
3563 	if (op->type & UPDATE)
3564 		regs->gpr[op->update_reg] = op->ea;
3565 
3566 	return 0;
3567 }
3568 NOKPROBE_SYMBOL(emulate_loadstore);
3569 
3570 /*
3571  * Emulate instructions that cause a transfer of control,
3572  * loads and stores, and a few other instructions.
3573  * Returns 1 if the step was emulated, 0 if not,
3574  * or -1 if the instruction is one that should not be stepped,
3575  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3576  */
3577 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3578 {
3579 	struct instruction_op op;
3580 	int r, err, type;
3581 	unsigned long val;
3582 	unsigned long ea;
3583 
3584 	r = analyse_instr(&op, regs, instr);
3585 	if (r < 0)
3586 		return r;
3587 	if (r > 0) {
3588 		emulate_update_regs(regs, &op);
3589 		return 1;
3590 	}
3591 
3592 	err = 0;
3593 	type = GETTYPE(op.type);
3594 
3595 	if (OP_IS_LOAD_STORE(type)) {
3596 		err = emulate_loadstore(regs, &op);
3597 		if (err)
3598 			return 0;
3599 		goto instr_done;
3600 	}
3601 
3602 	switch (type) {
3603 	case CACHEOP:
3604 		ea = truncate_if_32bit(regs->msr, op.ea);
3605 		if (!address_ok(regs, ea, 8))
3606 			return 0;
3607 		switch (op.type & CACHEOP_MASK) {
3608 		case DCBST:
3609 			__cacheop_user_asmx(ea, err, "dcbst");
3610 			break;
3611 		case DCBF:
3612 			__cacheop_user_asmx(ea, err, "dcbf");
3613 			break;
3614 		case DCBTST:
3615 			if (op.reg == 0)
3616 				prefetchw((void *) ea);
3617 			break;
3618 		case DCBT:
3619 			if (op.reg == 0)
3620 				prefetch((void *) ea);
3621 			break;
3622 		case ICBI:
3623 			__cacheop_user_asmx(ea, err, "icbi");
3624 			break;
3625 		case DCBZ:
3626 			err = emulate_dcbz(ea, regs);
3627 			break;
3628 		}
3629 		if (err) {
3630 			regs->dar = ea;
3631 			return 0;
3632 		}
3633 		goto instr_done;
3634 
3635 	case MFMSR:
3636 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3637 		goto instr_done;
3638 
3639 	case MTMSR:
3640 		val = regs->gpr[op.reg];
3641 		if ((val & MSR_RI) == 0)
3642 			/* can't step mtmsr[d] that would clear MSR_RI */
3643 			return -1;
3644 		/* here op.val is the mask of bits to change */
3645 		regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3646 		goto instr_done;
3647 
3648 	case SYSCALL:	/* sc */
3649 		/*
3650 		 * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't
3651 		 * single step a system call instruction:
3652 		 *
3653 		 *   Successful completion for an instruction means that the
3654 		 *   instruction caused no other interrupt. Thus a Trace
3655 		 *   interrupt never occurs for a System Call or System Call
3656 		 *   Vectored instruction, or for a Trap instruction that
3657 		 *   traps.
3658 		 */
3659 		return -1;
3660 	case SYSCALL_VECTORED_0:	/* scv 0 */
3661 		return -1;
3662 	case RFI:
3663 		return -1;
3664 	}
3665 	return 0;
3666 
3667  instr_done:
3668 	regs_set_return_ip(regs,
3669 		truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3670 	return 1;
3671 }
3672 NOKPROBE_SYMBOL(emulate_step);
3673