xref: /openbmc/linux/arch/powerpc/lib/sstep.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17 
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20 
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK	0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK	0x87c0ffff
26 #endif
27 
28 /* Bits in XER */
29 #define XER_SO		0x80000000U
30 #define XER_OV		0x40000000U
31 #define XER_CA		0x20000000U
32 #define XER_OV32	0x00080000U
33 #define XER_CA32	0x00040000U
34 
35 #ifdef CONFIG_VSX
36 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
37 #endif
38 
39 #ifdef CONFIG_PPC_FPU
40 /*
41  * Functions in ldstfp.S
42  */
43 extern void get_fpr(int rn, double *p);
44 extern void put_fpr(int rn, const double *p);
45 extern void get_vr(int rn, __vector128 *p);
46 extern void put_vr(int rn, __vector128 *p);
47 extern void load_vsrn(int vsr, const void *p);
48 extern void store_vsrn(int vsr, void *p);
49 extern void conv_sp_to_dp(const float *sp, double *dp);
50 extern void conv_dp_to_sp(const double *dp, float *sp);
51 #endif
52 
53 #ifdef __powerpc64__
54 /*
55  * Functions in quad.S
56  */
57 extern int do_lq(unsigned long ea, unsigned long *regs);
58 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
59 extern int do_lqarx(unsigned long ea, unsigned long *regs);
60 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
61 		    unsigned int *crp);
62 #endif
63 
64 #ifdef __LITTLE_ENDIAN__
65 #define IS_LE	1
66 #define IS_BE	0
67 #else
68 #define IS_LE	0
69 #define IS_BE	1
70 #endif
71 
72 /*
73  * Emulate the truncation of 64 bit values in 32-bit mode.
74  */
75 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
76 							unsigned long val)
77 {
78 #ifdef __powerpc64__
79 	if ((msr & MSR_64BIT) == 0)
80 		val &= 0xffffffffUL;
81 #endif
82 	return val;
83 }
84 
85 /*
86  * Determine whether a conditional branch instruction would branch.
87  */
88 static nokprobe_inline int branch_taken(unsigned int instr,
89 					const struct pt_regs *regs,
90 					struct instruction_op *op)
91 {
92 	unsigned int bo = (instr >> 21) & 0x1f;
93 	unsigned int bi;
94 
95 	if ((bo & 4) == 0) {
96 		/* decrement counter */
97 		op->type |= DECCTR;
98 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
99 			return 0;
100 	}
101 	if ((bo & 0x10) == 0) {
102 		/* check bit from CR */
103 		bi = (instr >> 16) & 0x1f;
104 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
105 			return 0;
106 	}
107 	return 1;
108 }
109 
110 static nokprobe_inline long address_ok(struct pt_regs *regs,
111 				       unsigned long ea, int nb)
112 {
113 	if (!user_mode(regs))
114 		return 1;
115 	if (__access_ok(ea, nb))
116 		return 1;
117 	if (__access_ok(ea, 1))
118 		/* Access overlaps the end of the user region */
119 		regs->dar = TASK_SIZE_MAX - 1;
120 	else
121 		regs->dar = ea;
122 	return 0;
123 }
124 
125 /*
126  * Calculate effective address for a D-form instruction
127  */
128 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
129 					      const struct pt_regs *regs)
130 {
131 	int ra;
132 	unsigned long ea;
133 
134 	ra = (instr >> 16) & 0x1f;
135 	ea = (signed short) instr;		/* sign-extend */
136 	if (ra)
137 		ea += regs->gpr[ra];
138 
139 	return ea;
140 }
141 
142 #ifdef __powerpc64__
143 /*
144  * Calculate effective address for a DS-form instruction
145  */
146 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
147 					       const struct pt_regs *regs)
148 {
149 	int ra;
150 	unsigned long ea;
151 
152 	ra = (instr >> 16) & 0x1f;
153 	ea = (signed short) (instr & ~3);	/* sign-extend */
154 	if (ra)
155 		ea += regs->gpr[ra];
156 
157 	return ea;
158 }
159 
160 /*
161  * Calculate effective address for a DQ-form instruction
162  */
163 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
164 					       const struct pt_regs *regs)
165 {
166 	int ra;
167 	unsigned long ea;
168 
169 	ra = (instr >> 16) & 0x1f;
170 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
171 	if (ra)
172 		ea += regs->gpr[ra];
173 
174 	return ea;
175 }
176 #endif /* __powerpc64 */
177 
178 /*
179  * Calculate effective address for an X-form instruction
180  */
181 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
182 					      const struct pt_regs *regs)
183 {
184 	int ra, rb;
185 	unsigned long ea;
186 
187 	ra = (instr >> 16) & 0x1f;
188 	rb = (instr >> 11) & 0x1f;
189 	ea = regs->gpr[rb];
190 	if (ra)
191 		ea += regs->gpr[ra];
192 
193 	return ea;
194 }
195 
196 /*
197  * Calculate effective address for a MLS:D-form / 8LS:D-form
198  * prefixed instruction
199  */
200 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
201 						  unsigned int suffix,
202 						  const struct pt_regs *regs)
203 {
204 	int ra, prefix_r;
205 	unsigned int  dd;
206 	unsigned long ea, d0, d1, d;
207 
208 	prefix_r = GET_PREFIX_R(instr);
209 	ra = GET_PREFIX_RA(suffix);
210 
211 	d0 = instr & 0x3ffff;
212 	d1 = suffix & 0xffff;
213 	d = (d0 << 16) | d1;
214 
215 	/*
216 	 * sign extend a 34 bit number
217 	 */
218 	dd = (unsigned int)(d >> 2);
219 	ea = (signed int)dd;
220 	ea = (ea << 2) | (d & 0x3);
221 
222 	if (!prefix_r && ra)
223 		ea += regs->gpr[ra];
224 	else if (!prefix_r && !ra)
225 		; /* Leave ea as is */
226 	else if (prefix_r)
227 		ea += regs->nip;
228 
229 	/*
230 	 * (prefix_r && ra) is an invalid form. Should already be
231 	 * checked for by caller!
232 	 */
233 
234 	return ea;
235 }
236 
237 /*
238  * Return the largest power of 2, not greater than sizeof(unsigned long),
239  * such that x is a multiple of it.
240  */
241 static nokprobe_inline unsigned long max_align(unsigned long x)
242 {
243 	x |= sizeof(unsigned long);
244 	return x & -x;		/* isolates rightmost bit */
245 }
246 
247 static nokprobe_inline unsigned long byterev_2(unsigned long x)
248 {
249 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
250 }
251 
252 static nokprobe_inline unsigned long byterev_4(unsigned long x)
253 {
254 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
255 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
256 }
257 
258 #ifdef __powerpc64__
259 static nokprobe_inline unsigned long byterev_8(unsigned long x)
260 {
261 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
262 }
263 #endif
264 
265 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
266 {
267 	switch (nb) {
268 	case 2:
269 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
270 		break;
271 	case 4:
272 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
273 		break;
274 #ifdef __powerpc64__
275 	case 8:
276 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
277 		break;
278 	case 16: {
279 		unsigned long *up = (unsigned long *)ptr;
280 		unsigned long tmp;
281 		tmp = byterev_8(up[0]);
282 		up[0] = byterev_8(up[1]);
283 		up[1] = tmp;
284 		break;
285 	}
286 	case 32: {
287 		unsigned long *up = (unsigned long *)ptr;
288 		unsigned long tmp;
289 
290 		tmp = byterev_8(up[0]);
291 		up[0] = byterev_8(up[3]);
292 		up[3] = tmp;
293 		tmp = byterev_8(up[2]);
294 		up[2] = byterev_8(up[1]);
295 		up[1] = tmp;
296 		break;
297 	}
298 
299 #endif
300 	default:
301 		WARN_ON_ONCE(1);
302 	}
303 }
304 
305 static __always_inline int
306 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
307 {
308 	unsigned long x = 0;
309 
310 	switch (nb) {
311 	case 1:
312 		unsafe_get_user(x, (unsigned char __user *)ea, Efault);
313 		break;
314 	case 2:
315 		unsafe_get_user(x, (unsigned short __user *)ea, Efault);
316 		break;
317 	case 4:
318 		unsafe_get_user(x, (unsigned int __user *)ea, Efault);
319 		break;
320 #ifdef __powerpc64__
321 	case 8:
322 		unsafe_get_user(x, (unsigned long __user *)ea, Efault);
323 		break;
324 #endif
325 	}
326 	*dest = x;
327 	return 0;
328 
329 Efault:
330 	regs->dar = ea;
331 	return -EFAULT;
332 }
333 
334 static nokprobe_inline int
335 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
336 {
337 	int err;
338 
339 	if (is_kernel_addr(ea))
340 		return __read_mem_aligned(dest, ea, nb, regs);
341 
342 	if (user_read_access_begin((void __user *)ea, nb)) {
343 		err = __read_mem_aligned(dest, ea, nb, regs);
344 		user_read_access_end();
345 	} else {
346 		err = -EFAULT;
347 		regs->dar = ea;
348 	}
349 
350 	return err;
351 }
352 
353 /*
354  * Copy from userspace to a buffer, using the largest possible
355  * aligned accesses, up to sizeof(long).
356  */
357 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
358 {
359 	int c;
360 
361 	for (; nb > 0; nb -= c) {
362 		c = max_align(ea);
363 		if (c > nb)
364 			c = max_align(nb);
365 		switch (c) {
366 		case 1:
367 			unsafe_get_user(*dest, (u8 __user *)ea, Efault);
368 			break;
369 		case 2:
370 			unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
371 			break;
372 		case 4:
373 			unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
374 			break;
375 #ifdef __powerpc64__
376 		case 8:
377 			unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
378 			break;
379 #endif
380 		}
381 		dest += c;
382 		ea += c;
383 	}
384 	return 0;
385 
386 Efault:
387 	regs->dar = ea;
388 	return -EFAULT;
389 }
390 
391 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
392 {
393 	int err;
394 
395 	if (is_kernel_addr(ea))
396 		return __copy_mem_in(dest, ea, nb, regs);
397 
398 	if (user_read_access_begin((void __user *)ea, nb)) {
399 		err = __copy_mem_in(dest, ea, nb, regs);
400 		user_read_access_end();
401 	} else {
402 		err = -EFAULT;
403 		regs->dar = ea;
404 	}
405 
406 	return err;
407 }
408 
409 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
410 					      unsigned long ea, int nb,
411 					      struct pt_regs *regs)
412 {
413 	union {
414 		unsigned long ul;
415 		u8 b[sizeof(unsigned long)];
416 	} u;
417 	int i;
418 	int err;
419 
420 	u.ul = 0;
421 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
422 	err = copy_mem_in(&u.b[i], ea, nb, regs);
423 	if (!err)
424 		*dest = u.ul;
425 	return err;
426 }
427 
428 /*
429  * Read memory at address ea for nb bytes, return 0 for success
430  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
431  * If nb < sizeof(long), the result is right-justified on BE systems.
432  */
433 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
434 			      struct pt_regs *regs)
435 {
436 	if (!address_ok(regs, ea, nb))
437 		return -EFAULT;
438 	if ((ea & (nb - 1)) == 0)
439 		return read_mem_aligned(dest, ea, nb, regs);
440 	return read_mem_unaligned(dest, ea, nb, regs);
441 }
442 NOKPROBE_SYMBOL(read_mem);
443 
444 static __always_inline int
445 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
446 {
447 	switch (nb) {
448 	case 1:
449 		unsafe_put_user(val, (unsigned char __user *)ea, Efault);
450 		break;
451 	case 2:
452 		unsafe_put_user(val, (unsigned short __user *)ea, Efault);
453 		break;
454 	case 4:
455 		unsafe_put_user(val, (unsigned int __user *)ea, Efault);
456 		break;
457 #ifdef __powerpc64__
458 	case 8:
459 		unsafe_put_user(val, (unsigned long __user *)ea, Efault);
460 		break;
461 #endif
462 	}
463 	return 0;
464 
465 Efault:
466 	regs->dar = ea;
467 	return -EFAULT;
468 }
469 
470 static nokprobe_inline int
471 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
472 {
473 	int err;
474 
475 	if (is_kernel_addr(ea))
476 		return __write_mem_aligned(val, ea, nb, regs);
477 
478 	if (user_write_access_begin((void __user *)ea, nb)) {
479 		err = __write_mem_aligned(val, ea, nb, regs);
480 		user_write_access_end();
481 	} else {
482 		err = -EFAULT;
483 		regs->dar = ea;
484 	}
485 
486 	return err;
487 }
488 
489 /*
490  * Copy from a buffer to userspace, using the largest possible
491  * aligned accesses, up to sizeof(long).
492  */
493 static nokprobe_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
494 {
495 	int c;
496 
497 	for (; nb > 0; nb -= c) {
498 		c = max_align(ea);
499 		if (c > nb)
500 			c = max_align(nb);
501 		switch (c) {
502 		case 1:
503 			unsafe_put_user(*dest, (u8 __user *)ea, Efault);
504 			break;
505 		case 2:
506 			unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
507 			break;
508 		case 4:
509 			unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
510 			break;
511 #ifdef __powerpc64__
512 		case 8:
513 			unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
514 			break;
515 #endif
516 		}
517 		dest += c;
518 		ea += c;
519 	}
520 	return 0;
521 
522 Efault:
523 	regs->dar = ea;
524 	return -EFAULT;
525 }
526 
527 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
528 {
529 	int err;
530 
531 	if (is_kernel_addr(ea))
532 		return __copy_mem_out(dest, ea, nb, regs);
533 
534 	if (user_write_access_begin((void __user *)ea, nb)) {
535 		err = __copy_mem_out(dest, ea, nb, regs);
536 		user_write_access_end();
537 	} else {
538 		err = -EFAULT;
539 		regs->dar = ea;
540 	}
541 
542 	return err;
543 }
544 
545 static nokprobe_inline int write_mem_unaligned(unsigned long val,
546 					       unsigned long ea, int nb,
547 					       struct pt_regs *regs)
548 {
549 	union {
550 		unsigned long ul;
551 		u8 b[sizeof(unsigned long)];
552 	} u;
553 	int i;
554 
555 	u.ul = val;
556 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
557 	return copy_mem_out(&u.b[i], ea, nb, regs);
558 }
559 
560 /*
561  * Write memory at address ea for nb bytes, return 0 for success
562  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
563  */
564 static int write_mem(unsigned long val, unsigned long ea, int nb,
565 			       struct pt_regs *regs)
566 {
567 	if (!address_ok(regs, ea, nb))
568 		return -EFAULT;
569 	if ((ea & (nb - 1)) == 0)
570 		return write_mem_aligned(val, ea, nb, regs);
571 	return write_mem_unaligned(val, ea, nb, regs);
572 }
573 NOKPROBE_SYMBOL(write_mem);
574 
575 #ifdef CONFIG_PPC_FPU
576 /*
577  * These access either the real FP register or the image in the
578  * thread_struct, depending on regs->msr & MSR_FP.
579  */
580 static int do_fp_load(struct instruction_op *op, unsigned long ea,
581 		      struct pt_regs *regs, bool cross_endian)
582 {
583 	int err, rn, nb;
584 	union {
585 		int i;
586 		unsigned int u;
587 		float f;
588 		double d[2];
589 		unsigned long l[2];
590 		u8 b[2 * sizeof(double)];
591 	} u;
592 
593 	nb = GETSIZE(op->type);
594 	if (!address_ok(regs, ea, nb))
595 		return -EFAULT;
596 	rn = op->reg;
597 	err = copy_mem_in(u.b, ea, nb, regs);
598 	if (err)
599 		return err;
600 	if (unlikely(cross_endian)) {
601 		do_byte_reverse(u.b, min(nb, 8));
602 		if (nb == 16)
603 			do_byte_reverse(&u.b[8], 8);
604 	}
605 	preempt_disable();
606 	if (nb == 4) {
607 		if (op->type & FPCONV)
608 			conv_sp_to_dp(&u.f, &u.d[0]);
609 		else if (op->type & SIGNEXT)
610 			u.l[0] = u.i;
611 		else
612 			u.l[0] = u.u;
613 	}
614 	if (regs->msr & MSR_FP)
615 		put_fpr(rn, &u.d[0]);
616 	else
617 		current->thread.TS_FPR(rn) = u.l[0];
618 	if (nb == 16) {
619 		/* lfdp */
620 		rn |= 1;
621 		if (regs->msr & MSR_FP)
622 			put_fpr(rn, &u.d[1]);
623 		else
624 			current->thread.TS_FPR(rn) = u.l[1];
625 	}
626 	preempt_enable();
627 	return 0;
628 }
629 NOKPROBE_SYMBOL(do_fp_load);
630 
631 static int do_fp_store(struct instruction_op *op, unsigned long ea,
632 		       struct pt_regs *regs, bool cross_endian)
633 {
634 	int rn, nb;
635 	union {
636 		unsigned int u;
637 		float f;
638 		double d[2];
639 		unsigned long l[2];
640 		u8 b[2 * sizeof(double)];
641 	} u;
642 
643 	nb = GETSIZE(op->type);
644 	if (!address_ok(regs, ea, nb))
645 		return -EFAULT;
646 	rn = op->reg;
647 	preempt_disable();
648 	if (regs->msr & MSR_FP)
649 		get_fpr(rn, &u.d[0]);
650 	else
651 		u.l[0] = current->thread.TS_FPR(rn);
652 	if (nb == 4) {
653 		if (op->type & FPCONV)
654 			conv_dp_to_sp(&u.d[0], &u.f);
655 		else
656 			u.u = u.l[0];
657 	}
658 	if (nb == 16) {
659 		rn |= 1;
660 		if (regs->msr & MSR_FP)
661 			get_fpr(rn, &u.d[1]);
662 		else
663 			u.l[1] = current->thread.TS_FPR(rn);
664 	}
665 	preempt_enable();
666 	if (unlikely(cross_endian)) {
667 		do_byte_reverse(u.b, min(nb, 8));
668 		if (nb == 16)
669 			do_byte_reverse(&u.b[8], 8);
670 	}
671 	return copy_mem_out(u.b, ea, nb, regs);
672 }
673 NOKPROBE_SYMBOL(do_fp_store);
674 #endif
675 
676 #ifdef CONFIG_ALTIVEC
677 /* For Altivec/VMX, no need to worry about alignment */
678 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
679 				       int size, struct pt_regs *regs,
680 				       bool cross_endian)
681 {
682 	int err;
683 	union {
684 		__vector128 v;
685 		u8 b[sizeof(__vector128)];
686 	} u = {};
687 
688 	if (!address_ok(regs, ea & ~0xfUL, 16))
689 		return -EFAULT;
690 	/* align to multiple of size */
691 	ea &= ~(size - 1);
692 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
693 	if (err)
694 		return err;
695 	if (unlikely(cross_endian))
696 		do_byte_reverse(&u.b[ea & 0xf], size);
697 	preempt_disable();
698 	if (regs->msr & MSR_VEC)
699 		put_vr(rn, &u.v);
700 	else
701 		current->thread.vr_state.vr[rn] = u.v;
702 	preempt_enable();
703 	return 0;
704 }
705 
706 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
707 					int size, struct pt_regs *regs,
708 					bool cross_endian)
709 {
710 	union {
711 		__vector128 v;
712 		u8 b[sizeof(__vector128)];
713 	} u;
714 
715 	if (!address_ok(regs, ea & ~0xfUL, 16))
716 		return -EFAULT;
717 	/* align to multiple of size */
718 	ea &= ~(size - 1);
719 
720 	preempt_disable();
721 	if (regs->msr & MSR_VEC)
722 		get_vr(rn, &u.v);
723 	else
724 		u.v = current->thread.vr_state.vr[rn];
725 	preempt_enable();
726 	if (unlikely(cross_endian))
727 		do_byte_reverse(&u.b[ea & 0xf], size);
728 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
729 }
730 #endif /* CONFIG_ALTIVEC */
731 
732 #ifdef __powerpc64__
733 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
734 				      int reg, bool cross_endian)
735 {
736 	int err;
737 
738 	if (!address_ok(regs, ea, 16))
739 		return -EFAULT;
740 	/* if aligned, should be atomic */
741 	if ((ea & 0xf) == 0) {
742 		err = do_lq(ea, &regs->gpr[reg]);
743 	} else {
744 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
745 		if (!err)
746 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
747 	}
748 	if (!err && unlikely(cross_endian))
749 		do_byte_reverse(&regs->gpr[reg], 16);
750 	return err;
751 }
752 
753 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
754 				       int reg, bool cross_endian)
755 {
756 	int err;
757 	unsigned long vals[2];
758 
759 	if (!address_ok(regs, ea, 16))
760 		return -EFAULT;
761 	vals[0] = regs->gpr[reg];
762 	vals[1] = regs->gpr[reg + 1];
763 	if (unlikely(cross_endian))
764 		do_byte_reverse(vals, 16);
765 
766 	/* if aligned, should be atomic */
767 	if ((ea & 0xf) == 0)
768 		return do_stq(ea, vals[0], vals[1]);
769 
770 	err = write_mem(vals[IS_LE], ea, 8, regs);
771 	if (!err)
772 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
773 	return err;
774 }
775 #endif /* __powerpc64 */
776 
777 #ifdef CONFIG_VSX
778 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
779 		      const void *mem, bool rev)
780 {
781 	int size, read_size;
782 	int i, j;
783 	const unsigned int *wp;
784 	const unsigned short *hp;
785 	const unsigned char *bp;
786 
787 	size = GETSIZE(op->type);
788 	reg->d[0] = reg->d[1] = 0;
789 
790 	switch (op->element_size) {
791 	case 32:
792 		/* [p]lxvp[x] */
793 	case 16:
794 		/* whole vector; lxv[x] or lxvl[l] */
795 		if (size == 0)
796 			break;
797 		memcpy(reg, mem, size);
798 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
799 			rev = !rev;
800 		if (rev)
801 			do_byte_reverse(reg, size);
802 		break;
803 	case 8:
804 		/* scalar loads, lxvd2x, lxvdsx */
805 		read_size = (size >= 8) ? 8 : size;
806 		i = IS_LE ? 8 : 8 - read_size;
807 		memcpy(&reg->b[i], mem, read_size);
808 		if (rev)
809 			do_byte_reverse(&reg->b[i], 8);
810 		if (size < 8) {
811 			if (op->type & SIGNEXT) {
812 				/* size == 4 is the only case here */
813 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
814 			} else if (op->vsx_flags & VSX_FPCONV) {
815 				preempt_disable();
816 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
817 					      &reg->dp[IS_LE]);
818 				preempt_enable();
819 			}
820 		} else {
821 			if (size == 16) {
822 				unsigned long v = *(unsigned long *)(mem + 8);
823 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
824 			} else if (op->vsx_flags & VSX_SPLAT)
825 				reg->d[IS_BE] = reg->d[IS_LE];
826 		}
827 		break;
828 	case 4:
829 		/* lxvw4x, lxvwsx */
830 		wp = mem;
831 		for (j = 0; j < size / 4; ++j) {
832 			i = IS_LE ? 3 - j : j;
833 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
834 		}
835 		if (op->vsx_flags & VSX_SPLAT) {
836 			u32 val = reg->w[IS_LE ? 3 : 0];
837 			for (; j < 4; ++j) {
838 				i = IS_LE ? 3 - j : j;
839 				reg->w[i] = val;
840 			}
841 		}
842 		break;
843 	case 2:
844 		/* lxvh8x */
845 		hp = mem;
846 		for (j = 0; j < size / 2; ++j) {
847 			i = IS_LE ? 7 - j : j;
848 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
849 		}
850 		break;
851 	case 1:
852 		/* lxvb16x */
853 		bp = mem;
854 		for (j = 0; j < size; ++j) {
855 			i = IS_LE ? 15 - j : j;
856 			reg->b[i] = *bp++;
857 		}
858 		break;
859 	}
860 }
861 EXPORT_SYMBOL_GPL(emulate_vsx_load);
862 NOKPROBE_SYMBOL(emulate_vsx_load);
863 
864 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
865 		       void *mem, bool rev)
866 {
867 	int size, write_size;
868 	int i, j;
869 	union vsx_reg buf;
870 	unsigned int *wp;
871 	unsigned short *hp;
872 	unsigned char *bp;
873 
874 	size = GETSIZE(op->type);
875 
876 	switch (op->element_size) {
877 	case 32:
878 		/* [p]stxvp[x] */
879 		if (size == 0)
880 			break;
881 		if (rev) {
882 			/* reverse 32 bytes */
883 			union vsx_reg buf32[2];
884 			buf32[0].d[0] = byterev_8(reg[1].d[1]);
885 			buf32[0].d[1] = byterev_8(reg[1].d[0]);
886 			buf32[1].d[0] = byterev_8(reg[0].d[1]);
887 			buf32[1].d[1] = byterev_8(reg[0].d[0]);
888 			memcpy(mem, buf32, size);
889 		} else {
890 			memcpy(mem, reg, size);
891 		}
892 		break;
893 	case 16:
894 		/* stxv, stxvx, stxvl, stxvll */
895 		if (size == 0)
896 			break;
897 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
898 			rev = !rev;
899 		if (rev) {
900 			/* reverse 16 bytes */
901 			buf.d[0] = byterev_8(reg->d[1]);
902 			buf.d[1] = byterev_8(reg->d[0]);
903 			reg = &buf;
904 		}
905 		memcpy(mem, reg, size);
906 		break;
907 	case 8:
908 		/* scalar stores, stxvd2x */
909 		write_size = (size >= 8) ? 8 : size;
910 		i = IS_LE ? 8 : 8 - write_size;
911 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
912 			buf.d[0] = buf.d[1] = 0;
913 			preempt_disable();
914 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
915 			preempt_enable();
916 			reg = &buf;
917 		}
918 		memcpy(mem, &reg->b[i], write_size);
919 		if (size == 16)
920 			memcpy(mem + 8, &reg->d[IS_BE], 8);
921 		if (unlikely(rev)) {
922 			do_byte_reverse(mem, write_size);
923 			if (size == 16)
924 				do_byte_reverse(mem + 8, 8);
925 		}
926 		break;
927 	case 4:
928 		/* stxvw4x */
929 		wp = mem;
930 		for (j = 0; j < size / 4; ++j) {
931 			i = IS_LE ? 3 - j : j;
932 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
933 		}
934 		break;
935 	case 2:
936 		/* stxvh8x */
937 		hp = mem;
938 		for (j = 0; j < size / 2; ++j) {
939 			i = IS_LE ? 7 - j : j;
940 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
941 		}
942 		break;
943 	case 1:
944 		/* stvxb16x */
945 		bp = mem;
946 		for (j = 0; j < size; ++j) {
947 			i = IS_LE ? 15 - j : j;
948 			*bp++ = reg->b[i];
949 		}
950 		break;
951 	}
952 }
953 EXPORT_SYMBOL_GPL(emulate_vsx_store);
954 NOKPROBE_SYMBOL(emulate_vsx_store);
955 
956 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
957 				       unsigned long ea, struct pt_regs *regs,
958 				       bool cross_endian)
959 {
960 	int reg = op->reg;
961 	int i, j, nr_vsx_regs;
962 	u8 mem[32];
963 	union vsx_reg buf[2];
964 	int size = GETSIZE(op->type);
965 
966 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
967 		return -EFAULT;
968 
969 	nr_vsx_regs = max(1ul, size / sizeof(__vector128));
970 	emulate_vsx_load(op, buf, mem, cross_endian);
971 	preempt_disable();
972 	if (reg < 32) {
973 		/* FP regs + extensions */
974 		if (regs->msr & MSR_FP) {
975 			for (i = 0; i < nr_vsx_regs; i++) {
976 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
977 				load_vsrn(reg + i, &buf[j].v);
978 			}
979 		} else {
980 			for (i = 0; i < nr_vsx_regs; i++) {
981 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
982 				current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
983 				current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
984 			}
985 		}
986 	} else {
987 		if (regs->msr & MSR_VEC) {
988 			for (i = 0; i < nr_vsx_regs; i++) {
989 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
990 				load_vsrn(reg + i, &buf[j].v);
991 			}
992 		} else {
993 			for (i = 0; i < nr_vsx_regs; i++) {
994 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
995 				current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
996 			}
997 		}
998 	}
999 	preempt_enable();
1000 	return 0;
1001 }
1002 
1003 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
1004 					unsigned long ea, struct pt_regs *regs,
1005 					bool cross_endian)
1006 {
1007 	int reg = op->reg;
1008 	int i, j, nr_vsx_regs;
1009 	u8 mem[32];
1010 	union vsx_reg buf[2];
1011 	int size = GETSIZE(op->type);
1012 
1013 	if (!address_ok(regs, ea, size))
1014 		return -EFAULT;
1015 
1016 	nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1017 	preempt_disable();
1018 	if (reg < 32) {
1019 		/* FP regs + extensions */
1020 		if (regs->msr & MSR_FP) {
1021 			for (i = 0; i < nr_vsx_regs; i++) {
1022 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1023 				store_vsrn(reg + i, &buf[j].v);
1024 			}
1025 		} else {
1026 			for (i = 0; i < nr_vsx_regs; i++) {
1027 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1028 				buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1029 				buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1030 			}
1031 		}
1032 	} else {
1033 		if (regs->msr & MSR_VEC) {
1034 			for (i = 0; i < nr_vsx_regs; i++) {
1035 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1036 				store_vsrn(reg + i, &buf[j].v);
1037 			}
1038 		} else {
1039 			for (i = 0; i < nr_vsx_regs; i++) {
1040 				j = IS_LE ? nr_vsx_regs - i - 1 : i;
1041 				buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1042 			}
1043 		}
1044 	}
1045 	preempt_enable();
1046 	emulate_vsx_store(op, buf, mem, cross_endian);
1047 	return  copy_mem_out(mem, ea, size, regs);
1048 }
1049 #endif /* CONFIG_VSX */
1050 
1051 static int __emulate_dcbz(unsigned long ea)
1052 {
1053 	unsigned long i;
1054 	unsigned long size = l1_dcache_bytes();
1055 
1056 	for (i = 0; i < size; i += sizeof(long))
1057 		unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1058 
1059 	return 0;
1060 
1061 Efault:
1062 	return -EFAULT;
1063 }
1064 
1065 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1066 {
1067 	int err;
1068 	unsigned long size;
1069 
1070 #ifdef __powerpc64__
1071 	size = ppc64_caches.l1d.block_size;
1072 	if (!(regs->msr & MSR_64BIT))
1073 		ea &= 0xffffffffUL;
1074 #else
1075 	size = L1_CACHE_BYTES;
1076 #endif
1077 	ea &= ~(size - 1);
1078 	if (!address_ok(regs, ea, size))
1079 		return -EFAULT;
1080 
1081 	if (is_kernel_addr(ea)) {
1082 		err = __emulate_dcbz(ea);
1083 	} else if (user_write_access_begin((void __user *)ea, size)) {
1084 		err = __emulate_dcbz(ea);
1085 		user_write_access_end();
1086 	} else {
1087 		err = -EFAULT;
1088 	}
1089 
1090 	if (err)
1091 		regs->dar = ea;
1092 
1093 
1094 	return err;
1095 }
1096 NOKPROBE_SYMBOL(emulate_dcbz);
1097 
1098 #define __put_user_asmx(x, addr, err, op, cr)		\
1099 	__asm__ __volatile__(				\
1100 		"1:	" op " %2,0,%3\n"		\
1101 		"	mfcr	%1\n"			\
1102 		"2:\n"					\
1103 		".section .fixup,\"ax\"\n"		\
1104 		"3:	li	%0,%4\n"		\
1105 		"	b	2b\n"			\
1106 		".previous\n"				\
1107 		EX_TABLE(1b, 3b)			\
1108 		: "=r" (err), "=r" (cr)			\
1109 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1110 
1111 #define __get_user_asmx(x, addr, err, op)		\
1112 	__asm__ __volatile__(				\
1113 		"1:	"op" %1,0,%2\n"			\
1114 		"2:\n"					\
1115 		".section .fixup,\"ax\"\n"		\
1116 		"3:	li	%0,%3\n"		\
1117 		"	b	2b\n"			\
1118 		".previous\n"				\
1119 		EX_TABLE(1b, 3b)			\
1120 		: "=r" (err), "=r" (x)			\
1121 		: "r" (addr), "i" (-EFAULT), "0" (err))
1122 
1123 #define __cacheop_user_asmx(addr, err, op)		\
1124 	__asm__ __volatile__(				\
1125 		"1:	"op" 0,%1\n"			\
1126 		"2:\n"					\
1127 		".section .fixup,\"ax\"\n"		\
1128 		"3:	li	%0,%3\n"		\
1129 		"	b	2b\n"			\
1130 		".previous\n"				\
1131 		EX_TABLE(1b, 3b)			\
1132 		: "=r" (err)				\
1133 		: "r" (addr), "i" (-EFAULT), "0" (err))
1134 
1135 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1136 				    struct instruction_op *op)
1137 {
1138 	long val = op->val;
1139 
1140 	op->type |= SETCC;
1141 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1142 #ifdef __powerpc64__
1143 	if (!(regs->msr & MSR_64BIT))
1144 		val = (int) val;
1145 #endif
1146 	if (val < 0)
1147 		op->ccval |= 0x80000000;
1148 	else if (val > 0)
1149 		op->ccval |= 0x40000000;
1150 	else
1151 		op->ccval |= 0x20000000;
1152 }
1153 
1154 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1155 {
1156 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1157 		if (val)
1158 			op->xerval |= XER_CA32;
1159 		else
1160 			op->xerval &= ~XER_CA32;
1161 	}
1162 }
1163 
1164 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1165 				     struct instruction_op *op, int rd,
1166 				     unsigned long val1, unsigned long val2,
1167 				     unsigned long carry_in)
1168 {
1169 	unsigned long val = val1 + val2;
1170 
1171 	if (carry_in)
1172 		++val;
1173 	op->type = COMPUTE + SETREG + SETXER;
1174 	op->reg = rd;
1175 	op->val = val;
1176 #ifdef __powerpc64__
1177 	if (!(regs->msr & MSR_64BIT)) {
1178 		val = (unsigned int) val;
1179 		val1 = (unsigned int) val1;
1180 	}
1181 #endif
1182 	op->xerval = regs->xer;
1183 	if (val < val1 || (carry_in && val == val1))
1184 		op->xerval |= XER_CA;
1185 	else
1186 		op->xerval &= ~XER_CA;
1187 
1188 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1189 			(carry_in && (unsigned int)val == (unsigned int)val1));
1190 }
1191 
1192 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1193 					  struct instruction_op *op,
1194 					  long v1, long v2, int crfld)
1195 {
1196 	unsigned int crval, shift;
1197 
1198 	op->type = COMPUTE + SETCC;
1199 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1200 	if (v1 < v2)
1201 		crval |= 8;
1202 	else if (v1 > v2)
1203 		crval |= 4;
1204 	else
1205 		crval |= 2;
1206 	shift = (7 - crfld) * 4;
1207 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1208 }
1209 
1210 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1211 					    struct instruction_op *op,
1212 					    unsigned long v1,
1213 					    unsigned long v2, int crfld)
1214 {
1215 	unsigned int crval, shift;
1216 
1217 	op->type = COMPUTE + SETCC;
1218 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1219 	if (v1 < v2)
1220 		crval |= 8;
1221 	else if (v1 > v2)
1222 		crval |= 4;
1223 	else
1224 		crval |= 2;
1225 	shift = (7 - crfld) * 4;
1226 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1227 }
1228 
1229 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1230 				    struct instruction_op *op,
1231 				    unsigned long v1, unsigned long v2)
1232 {
1233 	unsigned long long out_val, mask;
1234 	int i;
1235 
1236 	out_val = 0;
1237 	for (i = 0; i < 8; i++) {
1238 		mask = 0xffUL << (i * 8);
1239 		if ((v1 & mask) == (v2 & mask))
1240 			out_val |= mask;
1241 	}
1242 	op->val = out_val;
1243 }
1244 
1245 /*
1246  * The size parameter is used to adjust the equivalent popcnt instruction.
1247  * popcntb = 8, popcntw = 32, popcntd = 64
1248  */
1249 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1250 				      struct instruction_op *op,
1251 				      unsigned long v1, int size)
1252 {
1253 	unsigned long long out = v1;
1254 
1255 	out -= (out >> 1) & 0x5555555555555555ULL;
1256 	out = (0x3333333333333333ULL & out) +
1257 	      (0x3333333333333333ULL & (out >> 2));
1258 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1259 
1260 	if (size == 8) {	/* popcntb */
1261 		op->val = out;
1262 		return;
1263 	}
1264 	out += out >> 8;
1265 	out += out >> 16;
1266 	if (size == 32) {	/* popcntw */
1267 		op->val = out & 0x0000003f0000003fULL;
1268 		return;
1269 	}
1270 
1271 	out = (out + (out >> 32)) & 0x7f;
1272 	op->val = out;	/* popcntd */
1273 }
1274 
1275 #ifdef CONFIG_PPC64
1276 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1277 				      struct instruction_op *op,
1278 				      unsigned long v1, unsigned long v2)
1279 {
1280 	unsigned char perm, idx;
1281 	unsigned int i;
1282 
1283 	perm = 0;
1284 	for (i = 0; i < 8; i++) {
1285 		idx = (v1 >> (i * 8)) & 0xff;
1286 		if (idx < 64)
1287 			if (v2 & PPC_BIT(idx))
1288 				perm |= 1 << i;
1289 	}
1290 	op->val = perm;
1291 }
1292 #endif /* CONFIG_PPC64 */
1293 /*
1294  * The size parameter adjusts the equivalent prty instruction.
1295  * prtyw = 32, prtyd = 64
1296  */
1297 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1298 				    struct instruction_op *op,
1299 				    unsigned long v, int size)
1300 {
1301 	unsigned long long res = v ^ (v >> 8);
1302 
1303 	res ^= res >> 16;
1304 	if (size == 32) {		/* prtyw */
1305 		op->val = res & 0x0000000100000001ULL;
1306 		return;
1307 	}
1308 
1309 	res ^= res >> 32;
1310 	op->val = res & 1;	/*prtyd */
1311 }
1312 
1313 static nokprobe_inline int trap_compare(long v1, long v2)
1314 {
1315 	int ret = 0;
1316 
1317 	if (v1 < v2)
1318 		ret |= 0x10;
1319 	else if (v1 > v2)
1320 		ret |= 0x08;
1321 	else
1322 		ret |= 0x04;
1323 	if ((unsigned long)v1 < (unsigned long)v2)
1324 		ret |= 0x02;
1325 	else if ((unsigned long)v1 > (unsigned long)v2)
1326 		ret |= 0x01;
1327 	return ret;
1328 }
1329 
1330 /*
1331  * Elements of 32-bit rotate and mask instructions.
1332  */
1333 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1334 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1335 #ifdef __powerpc64__
1336 #define MASK64_L(mb)	(~0UL >> (mb))
1337 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1338 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1339 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1340 #else
1341 #define DATA32(x)	(x)
1342 #endif
1343 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1344 
1345 /*
1346  * Decode an instruction, and return information about it in *op
1347  * without changing *regs.
1348  * Integer arithmetic and logical instructions, branches, and barrier
1349  * instructions can be emulated just using the information in *op.
1350  *
1351  * Return value is 1 if the instruction can be emulated just by
1352  * updating *regs with the information in *op, -1 if we need the
1353  * GPRs but *regs doesn't contain the full register set, or 0
1354  * otherwise.
1355  */
1356 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1357 		  ppc_inst_t instr)
1358 {
1359 #ifdef CONFIG_PPC64
1360 	unsigned int suffixopcode, prefixtype, prefix_r;
1361 #endif
1362 	unsigned int opcode, ra, rb, rc, rd, spr, u;
1363 	unsigned long int imm;
1364 	unsigned long int val, val2;
1365 	unsigned int mb, me, sh;
1366 	unsigned int word, suffix;
1367 	long ival;
1368 
1369 	word = ppc_inst_val(instr);
1370 	suffix = ppc_inst_suffix(instr);
1371 
1372 	op->type = COMPUTE;
1373 
1374 	opcode = ppc_inst_primary_opcode(instr);
1375 	switch (opcode) {
1376 	case 16:	/* bc */
1377 		op->type = BRANCH;
1378 		imm = (signed short)(word & 0xfffc);
1379 		if ((word & 2) == 0)
1380 			imm += regs->nip;
1381 		op->val = truncate_if_32bit(regs->msr, imm);
1382 		if (word & 1)
1383 			op->type |= SETLK;
1384 		if (branch_taken(word, regs, op))
1385 			op->type |= BRTAKEN;
1386 		return 1;
1387 #ifdef CONFIG_PPC64
1388 	case 17:	/* sc */
1389 		if ((word & 0xfe2) == 2)
1390 			op->type = SYSCALL;
1391 		else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1392 				(word & 0xfe3) == 1) {	/* scv */
1393 			op->type = SYSCALL_VECTORED_0;
1394 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1395 				goto unknown_opcode;
1396 		} else
1397 			op->type = UNKNOWN;
1398 		return 0;
1399 #endif
1400 	case 18:	/* b */
1401 		op->type = BRANCH | BRTAKEN;
1402 		imm = word & 0x03fffffc;
1403 		if (imm & 0x02000000)
1404 			imm -= 0x04000000;
1405 		if ((word & 2) == 0)
1406 			imm += regs->nip;
1407 		op->val = truncate_if_32bit(regs->msr, imm);
1408 		if (word & 1)
1409 			op->type |= SETLK;
1410 		return 1;
1411 	case 19:
1412 		switch ((word >> 1) & 0x3ff) {
1413 		case 0:		/* mcrf */
1414 			op->type = COMPUTE + SETCC;
1415 			rd = 7 - ((word >> 23) & 0x7);
1416 			ra = 7 - ((word >> 18) & 0x7);
1417 			rd *= 4;
1418 			ra *= 4;
1419 			val = (regs->ccr >> ra) & 0xf;
1420 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1421 			return 1;
1422 
1423 		case 16:	/* bclr */
1424 		case 528:	/* bcctr */
1425 			op->type = BRANCH;
1426 			imm = (word & 0x400)? regs->ctr: regs->link;
1427 			op->val = truncate_if_32bit(regs->msr, imm);
1428 			if (word & 1)
1429 				op->type |= SETLK;
1430 			if (branch_taken(word, regs, op))
1431 				op->type |= BRTAKEN;
1432 			return 1;
1433 
1434 		case 18:	/* rfid, scary */
1435 			if (regs->msr & MSR_PR)
1436 				goto priv;
1437 			op->type = RFI;
1438 			return 0;
1439 
1440 		case 150:	/* isync */
1441 			op->type = BARRIER | BARRIER_ISYNC;
1442 			return 1;
1443 
1444 		case 33:	/* crnor */
1445 		case 129:	/* crandc */
1446 		case 193:	/* crxor */
1447 		case 225:	/* crnand */
1448 		case 257:	/* crand */
1449 		case 289:	/* creqv */
1450 		case 417:	/* crorc */
1451 		case 449:	/* cror */
1452 			op->type = COMPUTE + SETCC;
1453 			ra = (word >> 16) & 0x1f;
1454 			rb = (word >> 11) & 0x1f;
1455 			rd = (word >> 21) & 0x1f;
1456 			ra = (regs->ccr >> (31 - ra)) & 1;
1457 			rb = (regs->ccr >> (31 - rb)) & 1;
1458 			val = (word >> (6 + ra * 2 + rb)) & 1;
1459 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1460 				(val << (31 - rd));
1461 			return 1;
1462 		}
1463 		break;
1464 	case 31:
1465 		switch ((word >> 1) & 0x3ff) {
1466 		case 598:	/* sync */
1467 			op->type = BARRIER + BARRIER_SYNC;
1468 #ifdef __powerpc64__
1469 			switch ((word >> 21) & 3) {
1470 			case 1:		/* lwsync */
1471 				op->type = BARRIER + BARRIER_LWSYNC;
1472 				break;
1473 			case 2:		/* ptesync */
1474 				op->type = BARRIER + BARRIER_PTESYNC;
1475 				break;
1476 			}
1477 #endif
1478 			return 1;
1479 
1480 		case 854:	/* eieio */
1481 			op->type = BARRIER + BARRIER_EIEIO;
1482 			return 1;
1483 		}
1484 		break;
1485 	}
1486 
1487 	rd = (word >> 21) & 0x1f;
1488 	ra = (word >> 16) & 0x1f;
1489 	rb = (word >> 11) & 0x1f;
1490 	rc = (word >> 6) & 0x1f;
1491 
1492 	switch (opcode) {
1493 #ifdef __powerpc64__
1494 	case 1:
1495 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
1496 			goto unknown_opcode;
1497 
1498 		prefix_r = GET_PREFIX_R(word);
1499 		ra = GET_PREFIX_RA(suffix);
1500 		rd = (suffix >> 21) & 0x1f;
1501 		op->reg = rd;
1502 		op->val = regs->gpr[rd];
1503 		suffixopcode = get_op(suffix);
1504 		prefixtype = (word >> 24) & 0x3;
1505 		switch (prefixtype) {
1506 		case 2:
1507 			if (prefix_r && ra)
1508 				return 0;
1509 			switch (suffixopcode) {
1510 			case 14:	/* paddi */
1511 				op->type = COMPUTE | PREFIXED;
1512 				op->val = mlsd_8lsd_ea(word, suffix, regs);
1513 				goto compute_done;
1514 			}
1515 		}
1516 		break;
1517 	case 2:		/* tdi */
1518 		if (rd & trap_compare(regs->gpr[ra], (short) word))
1519 			goto trap;
1520 		return 1;
1521 #endif
1522 	case 3:		/* twi */
1523 		if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1524 			goto trap;
1525 		return 1;
1526 
1527 #ifdef __powerpc64__
1528 	case 4:
1529 		/*
1530 		 * There are very many instructions with this primary opcode
1531 		 * introduced in the ISA as early as v2.03. However, the ones
1532 		 * we currently emulate were all introduced with ISA 3.0
1533 		 */
1534 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1535 			goto unknown_opcode;
1536 
1537 		switch (word & 0x3f) {
1538 		case 48:	/* maddhd */
1539 			asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1540 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1541 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1542 			goto compute_done;
1543 
1544 		case 49:	/* maddhdu */
1545 			asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1546 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1547 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1548 			goto compute_done;
1549 
1550 		case 51:	/* maddld */
1551 			asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1552 				     "=r" (op->val) : "r" (regs->gpr[ra]),
1553 				     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1554 			goto compute_done;
1555 		}
1556 
1557 		/*
1558 		 * There are other instructions from ISA 3.0 with the same
1559 		 * primary opcode which do not have emulation support yet.
1560 		 */
1561 		goto unknown_opcode;
1562 #endif
1563 
1564 	case 7:		/* mulli */
1565 		op->val = regs->gpr[ra] * (short) word;
1566 		goto compute_done;
1567 
1568 	case 8:		/* subfic */
1569 		imm = (short) word;
1570 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1571 		return 1;
1572 
1573 	case 10:	/* cmpli */
1574 		imm = (unsigned short) word;
1575 		val = regs->gpr[ra];
1576 #ifdef __powerpc64__
1577 		if ((rd & 1) == 0)
1578 			val = (unsigned int) val;
1579 #endif
1580 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1581 		return 1;
1582 
1583 	case 11:	/* cmpi */
1584 		imm = (short) word;
1585 		val = regs->gpr[ra];
1586 #ifdef __powerpc64__
1587 		if ((rd & 1) == 0)
1588 			val = (int) val;
1589 #endif
1590 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1591 		return 1;
1592 
1593 	case 12:	/* addic */
1594 		imm = (short) word;
1595 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1596 		return 1;
1597 
1598 	case 13:	/* addic. */
1599 		imm = (short) word;
1600 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1601 		set_cr0(regs, op);
1602 		return 1;
1603 
1604 	case 14:	/* addi */
1605 		imm = (short) word;
1606 		if (ra)
1607 			imm += regs->gpr[ra];
1608 		op->val = imm;
1609 		goto compute_done;
1610 
1611 	case 15:	/* addis */
1612 		imm = ((short) word) << 16;
1613 		if (ra)
1614 			imm += regs->gpr[ra];
1615 		op->val = imm;
1616 		goto compute_done;
1617 
1618 	case 19:
1619 		if (((word >> 1) & 0x1f) == 2) {
1620 			/* addpcis */
1621 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1622 				goto unknown_opcode;
1623 			imm = (short) (word & 0xffc1);	/* d0 + d2 fields */
1624 			imm |= (word >> 15) & 0x3e;	/* d1 field */
1625 			op->val = regs->nip + (imm << 16) + 4;
1626 			goto compute_done;
1627 		}
1628 		op->type = UNKNOWN;
1629 		return 0;
1630 
1631 	case 20:	/* rlwimi */
1632 		mb = (word >> 6) & 0x1f;
1633 		me = (word >> 1) & 0x1f;
1634 		val = DATA32(regs->gpr[rd]);
1635 		imm = MASK32(mb, me);
1636 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1637 		goto logical_done;
1638 
1639 	case 21:	/* rlwinm */
1640 		mb = (word >> 6) & 0x1f;
1641 		me = (word >> 1) & 0x1f;
1642 		val = DATA32(regs->gpr[rd]);
1643 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1644 		goto logical_done;
1645 
1646 	case 23:	/* rlwnm */
1647 		mb = (word >> 6) & 0x1f;
1648 		me = (word >> 1) & 0x1f;
1649 		rb = regs->gpr[rb] & 0x1f;
1650 		val = DATA32(regs->gpr[rd]);
1651 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1652 		goto logical_done;
1653 
1654 	case 24:	/* ori */
1655 		op->val = regs->gpr[rd] | (unsigned short) word;
1656 		goto logical_done_nocc;
1657 
1658 	case 25:	/* oris */
1659 		imm = (unsigned short) word;
1660 		op->val = regs->gpr[rd] | (imm << 16);
1661 		goto logical_done_nocc;
1662 
1663 	case 26:	/* xori */
1664 		op->val = regs->gpr[rd] ^ (unsigned short) word;
1665 		goto logical_done_nocc;
1666 
1667 	case 27:	/* xoris */
1668 		imm = (unsigned short) word;
1669 		op->val = regs->gpr[rd] ^ (imm << 16);
1670 		goto logical_done_nocc;
1671 
1672 	case 28:	/* andi. */
1673 		op->val = regs->gpr[rd] & (unsigned short) word;
1674 		set_cr0(regs, op);
1675 		goto logical_done_nocc;
1676 
1677 	case 29:	/* andis. */
1678 		imm = (unsigned short) word;
1679 		op->val = regs->gpr[rd] & (imm << 16);
1680 		set_cr0(regs, op);
1681 		goto logical_done_nocc;
1682 
1683 #ifdef __powerpc64__
1684 	case 30:	/* rld* */
1685 		mb = ((word >> 6) & 0x1f) | (word & 0x20);
1686 		val = regs->gpr[rd];
1687 		if ((word & 0x10) == 0) {
1688 			sh = rb | ((word & 2) << 4);
1689 			val = ROTATE(val, sh);
1690 			switch ((word >> 2) & 3) {
1691 			case 0:		/* rldicl */
1692 				val &= MASK64_L(mb);
1693 				break;
1694 			case 1:		/* rldicr */
1695 				val &= MASK64_R(mb);
1696 				break;
1697 			case 2:		/* rldic */
1698 				val &= MASK64(mb, 63 - sh);
1699 				break;
1700 			case 3:		/* rldimi */
1701 				imm = MASK64(mb, 63 - sh);
1702 				val = (regs->gpr[ra] & ~imm) |
1703 					(val & imm);
1704 			}
1705 			op->val = val;
1706 			goto logical_done;
1707 		} else {
1708 			sh = regs->gpr[rb] & 0x3f;
1709 			val = ROTATE(val, sh);
1710 			switch ((word >> 1) & 7) {
1711 			case 0:		/* rldcl */
1712 				op->val = val & MASK64_L(mb);
1713 				goto logical_done;
1714 			case 1:		/* rldcr */
1715 				op->val = val & MASK64_R(mb);
1716 				goto logical_done;
1717 			}
1718 		}
1719 #endif
1720 		op->type = UNKNOWN;	/* illegal instruction */
1721 		return 0;
1722 
1723 	case 31:
1724 		/* isel occupies 32 minor opcodes */
1725 		if (((word >> 1) & 0x1f) == 15) {
1726 			mb = (word >> 6) & 0x1f; /* bc field */
1727 			val = (regs->ccr >> (31 - mb)) & 1;
1728 			val2 = (ra) ? regs->gpr[ra] : 0;
1729 
1730 			op->val = (val) ? val2 : regs->gpr[rb];
1731 			goto compute_done;
1732 		}
1733 
1734 		switch ((word >> 1) & 0x3ff) {
1735 		case 4:		/* tw */
1736 			if (rd == 0x1f ||
1737 			    (rd & trap_compare((int)regs->gpr[ra],
1738 					       (int)regs->gpr[rb])))
1739 				goto trap;
1740 			return 1;
1741 #ifdef __powerpc64__
1742 		case 68:	/* td */
1743 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1744 				goto trap;
1745 			return 1;
1746 #endif
1747 		case 83:	/* mfmsr */
1748 			if (regs->msr & MSR_PR)
1749 				goto priv;
1750 			op->type = MFMSR;
1751 			op->reg = rd;
1752 			return 0;
1753 		case 146:	/* mtmsr */
1754 			if (regs->msr & MSR_PR)
1755 				goto priv;
1756 			op->type = MTMSR;
1757 			op->reg = rd;
1758 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1759 			return 0;
1760 #ifdef CONFIG_PPC64
1761 		case 178:	/* mtmsrd */
1762 			if (regs->msr & MSR_PR)
1763 				goto priv;
1764 			op->type = MTMSR;
1765 			op->reg = rd;
1766 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1767 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1768 			imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1769 			op->val = imm;
1770 			return 0;
1771 #endif
1772 
1773 		case 19:	/* mfcr */
1774 			imm = 0xffffffffUL;
1775 			if ((word >> 20) & 1) {
1776 				imm = 0xf0000000UL;
1777 				for (sh = 0; sh < 8; ++sh) {
1778 					if (word & (0x80000 >> sh))
1779 						break;
1780 					imm >>= 4;
1781 				}
1782 			}
1783 			op->val = regs->ccr & imm;
1784 			goto compute_done;
1785 
1786 		case 128:	/* setb */
1787 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1788 				goto unknown_opcode;
1789 			/*
1790 			 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1791 			 * Since each CR field is 4 bits,
1792 			 * we can simply mask off the bottom two bits (bfa * 4)
1793 			 * to yield the first bit in the CR field.
1794 			 */
1795 			ra = ra & ~0x3;
1796 			/* 'val' stores bits of the CR field (bfa) */
1797 			val = regs->ccr >> (CR0_SHIFT - ra);
1798 			/* checks if the LT bit of CR field (bfa) is set */
1799 			if (val & 8)
1800 				op->val = -1;
1801 			/* checks if the GT bit of CR field (bfa) is set */
1802 			else if (val & 4)
1803 				op->val = 1;
1804 			else
1805 				op->val = 0;
1806 			goto compute_done;
1807 
1808 		case 144:	/* mtcrf */
1809 			op->type = COMPUTE + SETCC;
1810 			imm = 0xf0000000UL;
1811 			val = regs->gpr[rd];
1812 			op->ccval = regs->ccr;
1813 			for (sh = 0; sh < 8; ++sh) {
1814 				if (word & (0x80000 >> sh))
1815 					op->ccval = (op->ccval & ~imm) |
1816 						(val & imm);
1817 				imm >>= 4;
1818 			}
1819 			return 1;
1820 
1821 		case 339:	/* mfspr */
1822 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1823 			op->type = MFSPR;
1824 			op->reg = rd;
1825 			op->spr = spr;
1826 			if (spr == SPRN_XER || spr == SPRN_LR ||
1827 			    spr == SPRN_CTR)
1828 				return 1;
1829 			return 0;
1830 
1831 		case 467:	/* mtspr */
1832 			spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1833 			op->type = MTSPR;
1834 			op->val = regs->gpr[rd];
1835 			op->spr = spr;
1836 			if (spr == SPRN_XER || spr == SPRN_LR ||
1837 			    spr == SPRN_CTR)
1838 				return 1;
1839 			return 0;
1840 
1841 /*
1842  * Compare instructions
1843  */
1844 		case 0:	/* cmp */
1845 			val = regs->gpr[ra];
1846 			val2 = regs->gpr[rb];
1847 #ifdef __powerpc64__
1848 			if ((rd & 1) == 0) {
1849 				/* word (32-bit) compare */
1850 				val = (int) val;
1851 				val2 = (int) val2;
1852 			}
1853 #endif
1854 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1855 			return 1;
1856 
1857 		case 32:	/* cmpl */
1858 			val = regs->gpr[ra];
1859 			val2 = regs->gpr[rb];
1860 #ifdef __powerpc64__
1861 			if ((rd & 1) == 0) {
1862 				/* word (32-bit) compare */
1863 				val = (unsigned int) val;
1864 				val2 = (unsigned int) val2;
1865 			}
1866 #endif
1867 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1868 			return 1;
1869 
1870 		case 508: /* cmpb */
1871 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1872 			goto logical_done_nocc;
1873 
1874 /*
1875  * Arithmetic instructions
1876  */
1877 		case 8:	/* subfc */
1878 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1879 				       regs->gpr[rb], 1);
1880 			goto arith_done;
1881 #ifdef __powerpc64__
1882 		case 9:	/* mulhdu */
1883 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1884 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1885 			goto arith_done;
1886 #endif
1887 		case 10:	/* addc */
1888 			add_with_carry(regs, op, rd, regs->gpr[ra],
1889 				       regs->gpr[rb], 0);
1890 			goto arith_done;
1891 
1892 		case 11:	/* mulhwu */
1893 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1894 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1895 			goto arith_done;
1896 
1897 		case 40:	/* subf */
1898 			op->val = regs->gpr[rb] - regs->gpr[ra];
1899 			goto arith_done;
1900 #ifdef __powerpc64__
1901 		case 73:	/* mulhd */
1902 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1903 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1904 			goto arith_done;
1905 #endif
1906 		case 75:	/* mulhw */
1907 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1908 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1909 			goto arith_done;
1910 
1911 		case 104:	/* neg */
1912 			op->val = -regs->gpr[ra];
1913 			goto arith_done;
1914 
1915 		case 136:	/* subfe */
1916 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1917 				       regs->gpr[rb], regs->xer & XER_CA);
1918 			goto arith_done;
1919 
1920 		case 138:	/* adde */
1921 			add_with_carry(regs, op, rd, regs->gpr[ra],
1922 				       regs->gpr[rb], regs->xer & XER_CA);
1923 			goto arith_done;
1924 
1925 		case 200:	/* subfze */
1926 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1927 				       regs->xer & XER_CA);
1928 			goto arith_done;
1929 
1930 		case 202:	/* addze */
1931 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1932 				       regs->xer & XER_CA);
1933 			goto arith_done;
1934 
1935 		case 232:	/* subfme */
1936 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1937 				       regs->xer & XER_CA);
1938 			goto arith_done;
1939 #ifdef __powerpc64__
1940 		case 233:	/* mulld */
1941 			op->val = regs->gpr[ra] * regs->gpr[rb];
1942 			goto arith_done;
1943 #endif
1944 		case 234:	/* addme */
1945 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1946 				       regs->xer & XER_CA);
1947 			goto arith_done;
1948 
1949 		case 235:	/* mullw */
1950 			op->val = (long)(int) regs->gpr[ra] *
1951 				(int) regs->gpr[rb];
1952 
1953 			goto arith_done;
1954 #ifdef __powerpc64__
1955 		case 265:	/* modud */
1956 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1957 				goto unknown_opcode;
1958 			op->val = regs->gpr[ra] % regs->gpr[rb];
1959 			goto compute_done;
1960 #endif
1961 		case 266:	/* add */
1962 			op->val = regs->gpr[ra] + regs->gpr[rb];
1963 			goto arith_done;
1964 
1965 		case 267:	/* moduw */
1966 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
1967 				goto unknown_opcode;
1968 			op->val = (unsigned int) regs->gpr[ra] %
1969 				(unsigned int) regs->gpr[rb];
1970 			goto compute_done;
1971 #ifdef __powerpc64__
1972 		case 457:	/* divdu */
1973 			op->val = regs->gpr[ra] / regs->gpr[rb];
1974 			goto arith_done;
1975 #endif
1976 		case 459:	/* divwu */
1977 			op->val = (unsigned int) regs->gpr[ra] /
1978 				(unsigned int) regs->gpr[rb];
1979 			goto arith_done;
1980 #ifdef __powerpc64__
1981 		case 489:	/* divd */
1982 			op->val = (long int) regs->gpr[ra] /
1983 				(long int) regs->gpr[rb];
1984 			goto arith_done;
1985 #endif
1986 		case 491:	/* divw */
1987 			op->val = (int) regs->gpr[ra] /
1988 				(int) regs->gpr[rb];
1989 			goto arith_done;
1990 #ifdef __powerpc64__
1991 		case 425:	/* divde[.] */
1992 			asm volatile(PPC_DIVDE(%0, %1, %2) :
1993 				"=r" (op->val) : "r" (regs->gpr[ra]),
1994 				"r" (regs->gpr[rb]));
1995 			goto arith_done;
1996 		case 393:	/* divdeu[.] */
1997 			asm volatile(PPC_DIVDEU(%0, %1, %2) :
1998 				"=r" (op->val) : "r" (regs->gpr[ra]),
1999 				"r" (regs->gpr[rb]));
2000 			goto arith_done;
2001 #endif
2002 		case 755:	/* darn */
2003 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2004 				goto unknown_opcode;
2005 			switch (ra & 0x3) {
2006 			case 0:
2007 				/* 32-bit conditioned */
2008 				asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
2009 				goto compute_done;
2010 
2011 			case 1:
2012 				/* 64-bit conditioned */
2013 				asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2014 				goto compute_done;
2015 
2016 			case 2:
2017 				/* 64-bit raw */
2018 				asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2019 				goto compute_done;
2020 			}
2021 
2022 			goto unknown_opcode;
2023 #ifdef __powerpc64__
2024 		case 777:	/* modsd */
2025 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2026 				goto unknown_opcode;
2027 			op->val = (long int) regs->gpr[ra] %
2028 				(long int) regs->gpr[rb];
2029 			goto compute_done;
2030 #endif
2031 		case 779:	/* modsw */
2032 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2033 				goto unknown_opcode;
2034 			op->val = (int) regs->gpr[ra] %
2035 				(int) regs->gpr[rb];
2036 			goto compute_done;
2037 
2038 
2039 /*
2040  * Logical instructions
2041  */
2042 		case 26:	/* cntlzw */
2043 			val = (unsigned int) regs->gpr[rd];
2044 			op->val = ( val ? __builtin_clz(val) : 32 );
2045 			goto logical_done;
2046 #ifdef __powerpc64__
2047 		case 58:	/* cntlzd */
2048 			val = regs->gpr[rd];
2049 			op->val = ( val ? __builtin_clzl(val) : 64 );
2050 			goto logical_done;
2051 #endif
2052 		case 28:	/* and */
2053 			op->val = regs->gpr[rd] & regs->gpr[rb];
2054 			goto logical_done;
2055 
2056 		case 60:	/* andc */
2057 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
2058 			goto logical_done;
2059 
2060 		case 122:	/* popcntb */
2061 			do_popcnt(regs, op, regs->gpr[rd], 8);
2062 			goto logical_done_nocc;
2063 
2064 		case 124:	/* nor */
2065 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2066 			goto logical_done;
2067 
2068 		case 154:	/* prtyw */
2069 			do_prty(regs, op, regs->gpr[rd], 32);
2070 			goto logical_done_nocc;
2071 
2072 		case 186:	/* prtyd */
2073 			do_prty(regs, op, regs->gpr[rd], 64);
2074 			goto logical_done_nocc;
2075 #ifdef CONFIG_PPC64
2076 		case 252:	/* bpermd */
2077 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2078 			goto logical_done_nocc;
2079 #endif
2080 		case 284:	/* xor */
2081 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2082 			goto logical_done;
2083 
2084 		case 316:	/* xor */
2085 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
2086 			goto logical_done;
2087 
2088 		case 378:	/* popcntw */
2089 			do_popcnt(regs, op, regs->gpr[rd], 32);
2090 			goto logical_done_nocc;
2091 
2092 		case 412:	/* orc */
2093 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
2094 			goto logical_done;
2095 
2096 		case 444:	/* or */
2097 			op->val = regs->gpr[rd] | regs->gpr[rb];
2098 			goto logical_done;
2099 
2100 		case 476:	/* nand */
2101 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2102 			goto logical_done;
2103 #ifdef CONFIG_PPC64
2104 		case 506:	/* popcntd */
2105 			do_popcnt(regs, op, regs->gpr[rd], 64);
2106 			goto logical_done_nocc;
2107 #endif
2108 		case 538:	/* cnttzw */
2109 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2110 				goto unknown_opcode;
2111 			val = (unsigned int) regs->gpr[rd];
2112 			op->val = (val ? __builtin_ctz(val) : 32);
2113 			goto logical_done;
2114 #ifdef __powerpc64__
2115 		case 570:	/* cnttzd */
2116 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2117 				goto unknown_opcode;
2118 			val = regs->gpr[rd];
2119 			op->val = (val ? __builtin_ctzl(val) : 64);
2120 			goto logical_done;
2121 #endif
2122 		case 922:	/* extsh */
2123 			op->val = (signed short) regs->gpr[rd];
2124 			goto logical_done;
2125 
2126 		case 954:	/* extsb */
2127 			op->val = (signed char) regs->gpr[rd];
2128 			goto logical_done;
2129 #ifdef __powerpc64__
2130 		case 986:	/* extsw */
2131 			op->val = (signed int) regs->gpr[rd];
2132 			goto logical_done;
2133 #endif
2134 
2135 /*
2136  * Shift instructions
2137  */
2138 		case 24:	/* slw */
2139 			sh = regs->gpr[rb] & 0x3f;
2140 			if (sh < 32)
2141 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2142 			else
2143 				op->val = 0;
2144 			goto logical_done;
2145 
2146 		case 536:	/* srw */
2147 			sh = regs->gpr[rb] & 0x3f;
2148 			if (sh < 32)
2149 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2150 			else
2151 				op->val = 0;
2152 			goto logical_done;
2153 
2154 		case 792:	/* sraw */
2155 			op->type = COMPUTE + SETREG + SETXER;
2156 			sh = regs->gpr[rb] & 0x3f;
2157 			ival = (signed int) regs->gpr[rd];
2158 			op->val = ival >> (sh < 32 ? sh : 31);
2159 			op->xerval = regs->xer;
2160 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2161 				op->xerval |= XER_CA;
2162 			else
2163 				op->xerval &= ~XER_CA;
2164 			set_ca32(op, op->xerval & XER_CA);
2165 			goto logical_done;
2166 
2167 		case 824:	/* srawi */
2168 			op->type = COMPUTE + SETREG + SETXER;
2169 			sh = rb;
2170 			ival = (signed int) regs->gpr[rd];
2171 			op->val = ival >> sh;
2172 			op->xerval = regs->xer;
2173 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2174 				op->xerval |= XER_CA;
2175 			else
2176 				op->xerval &= ~XER_CA;
2177 			set_ca32(op, op->xerval & XER_CA);
2178 			goto logical_done;
2179 
2180 #ifdef __powerpc64__
2181 		case 27:	/* sld */
2182 			sh = regs->gpr[rb] & 0x7f;
2183 			if (sh < 64)
2184 				op->val = regs->gpr[rd] << sh;
2185 			else
2186 				op->val = 0;
2187 			goto logical_done;
2188 
2189 		case 539:	/* srd */
2190 			sh = regs->gpr[rb] & 0x7f;
2191 			if (sh < 64)
2192 				op->val = regs->gpr[rd] >> sh;
2193 			else
2194 				op->val = 0;
2195 			goto logical_done;
2196 
2197 		case 794:	/* srad */
2198 			op->type = COMPUTE + SETREG + SETXER;
2199 			sh = regs->gpr[rb] & 0x7f;
2200 			ival = (signed long int) regs->gpr[rd];
2201 			op->val = ival >> (sh < 64 ? sh : 63);
2202 			op->xerval = regs->xer;
2203 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2204 				op->xerval |= XER_CA;
2205 			else
2206 				op->xerval &= ~XER_CA;
2207 			set_ca32(op, op->xerval & XER_CA);
2208 			goto logical_done;
2209 
2210 		case 826:	/* sradi with sh_5 = 0 */
2211 		case 827:	/* sradi with sh_5 = 1 */
2212 			op->type = COMPUTE + SETREG + SETXER;
2213 			sh = rb | ((word & 2) << 4);
2214 			ival = (signed long int) regs->gpr[rd];
2215 			op->val = ival >> sh;
2216 			op->xerval = regs->xer;
2217 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2218 				op->xerval |= XER_CA;
2219 			else
2220 				op->xerval &= ~XER_CA;
2221 			set_ca32(op, op->xerval & XER_CA);
2222 			goto logical_done;
2223 
2224 		case 890:	/* extswsli with sh_5 = 0 */
2225 		case 891:	/* extswsli with sh_5 = 1 */
2226 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2227 				goto unknown_opcode;
2228 			op->type = COMPUTE + SETREG;
2229 			sh = rb | ((word & 2) << 4);
2230 			val = (signed int) regs->gpr[rd];
2231 			if (sh)
2232 				op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2233 			else
2234 				op->val = val;
2235 			goto logical_done;
2236 
2237 #endif /* __powerpc64__ */
2238 
2239 /*
2240  * Cache instructions
2241  */
2242 		case 54:	/* dcbst */
2243 			op->type = MKOP(CACHEOP, DCBST, 0);
2244 			op->ea = xform_ea(word, regs);
2245 			return 0;
2246 
2247 		case 86:	/* dcbf */
2248 			op->type = MKOP(CACHEOP, DCBF, 0);
2249 			op->ea = xform_ea(word, regs);
2250 			return 0;
2251 
2252 		case 246:	/* dcbtst */
2253 			op->type = MKOP(CACHEOP, DCBTST, 0);
2254 			op->ea = xform_ea(word, regs);
2255 			op->reg = rd;
2256 			return 0;
2257 
2258 		case 278:	/* dcbt */
2259 			op->type = MKOP(CACHEOP, DCBTST, 0);
2260 			op->ea = xform_ea(word, regs);
2261 			op->reg = rd;
2262 			return 0;
2263 
2264 		case 982:	/* icbi */
2265 			op->type = MKOP(CACHEOP, ICBI, 0);
2266 			op->ea = xform_ea(word, regs);
2267 			return 0;
2268 
2269 		case 1014:	/* dcbz */
2270 			op->type = MKOP(CACHEOP, DCBZ, 0);
2271 			op->ea = xform_ea(word, regs);
2272 			return 0;
2273 		}
2274 		break;
2275 	}
2276 
2277 /*
2278  * Loads and stores.
2279  */
2280 	op->type = UNKNOWN;
2281 	op->update_reg = ra;
2282 	op->reg = rd;
2283 	op->val = regs->gpr[rd];
2284 	u = (word >> 20) & UPDATE;
2285 	op->vsx_flags = 0;
2286 
2287 	switch (opcode) {
2288 	case 31:
2289 		u = word & UPDATE;
2290 		op->ea = xform_ea(word, regs);
2291 		switch ((word >> 1) & 0x3ff) {
2292 		case 20:	/* lwarx */
2293 			op->type = MKOP(LARX, 0, 4);
2294 			break;
2295 
2296 		case 150:	/* stwcx. */
2297 			op->type = MKOP(STCX, 0, 4);
2298 			break;
2299 
2300 #ifdef __powerpc64__
2301 		case 84:	/* ldarx */
2302 			op->type = MKOP(LARX, 0, 8);
2303 			break;
2304 
2305 		case 214:	/* stdcx. */
2306 			op->type = MKOP(STCX, 0, 8);
2307 			break;
2308 
2309 		case 52:	/* lbarx */
2310 			op->type = MKOP(LARX, 0, 1);
2311 			break;
2312 
2313 		case 694:	/* stbcx. */
2314 			op->type = MKOP(STCX, 0, 1);
2315 			break;
2316 
2317 		case 116:	/* lharx */
2318 			op->type = MKOP(LARX, 0, 2);
2319 			break;
2320 
2321 		case 726:	/* sthcx. */
2322 			op->type = MKOP(STCX, 0, 2);
2323 			break;
2324 
2325 		case 276:	/* lqarx */
2326 			if (!((rd & 1) || rd == ra || rd == rb))
2327 				op->type = MKOP(LARX, 0, 16);
2328 			break;
2329 
2330 		case 182:	/* stqcx. */
2331 			if (!(rd & 1))
2332 				op->type = MKOP(STCX, 0, 16);
2333 			break;
2334 #endif
2335 
2336 		case 23:	/* lwzx */
2337 		case 55:	/* lwzux */
2338 			op->type = MKOP(LOAD, u, 4);
2339 			break;
2340 
2341 		case 87:	/* lbzx */
2342 		case 119:	/* lbzux */
2343 			op->type = MKOP(LOAD, u, 1);
2344 			break;
2345 
2346 #ifdef CONFIG_ALTIVEC
2347 		/*
2348 		 * Note: for the load/store vector element instructions,
2349 		 * bits of the EA say which field of the VMX register to use.
2350 		 */
2351 		case 7:		/* lvebx */
2352 			op->type = MKOP(LOAD_VMX, 0, 1);
2353 			op->element_size = 1;
2354 			break;
2355 
2356 		case 39:	/* lvehx */
2357 			op->type = MKOP(LOAD_VMX, 0, 2);
2358 			op->element_size = 2;
2359 			break;
2360 
2361 		case 71:	/* lvewx */
2362 			op->type = MKOP(LOAD_VMX, 0, 4);
2363 			op->element_size = 4;
2364 			break;
2365 
2366 		case 103:	/* lvx */
2367 		case 359:	/* lvxl */
2368 			op->type = MKOP(LOAD_VMX, 0, 16);
2369 			op->element_size = 16;
2370 			break;
2371 
2372 		case 135:	/* stvebx */
2373 			op->type = MKOP(STORE_VMX, 0, 1);
2374 			op->element_size = 1;
2375 			break;
2376 
2377 		case 167:	/* stvehx */
2378 			op->type = MKOP(STORE_VMX, 0, 2);
2379 			op->element_size = 2;
2380 			break;
2381 
2382 		case 199:	/* stvewx */
2383 			op->type = MKOP(STORE_VMX, 0, 4);
2384 			op->element_size = 4;
2385 			break;
2386 
2387 		case 231:	/* stvx */
2388 		case 487:	/* stvxl */
2389 			op->type = MKOP(STORE_VMX, 0, 16);
2390 			break;
2391 #endif /* CONFIG_ALTIVEC */
2392 
2393 #ifdef __powerpc64__
2394 		case 21:	/* ldx */
2395 		case 53:	/* ldux */
2396 			op->type = MKOP(LOAD, u, 8);
2397 			break;
2398 
2399 		case 149:	/* stdx */
2400 		case 181:	/* stdux */
2401 			op->type = MKOP(STORE, u, 8);
2402 			break;
2403 #endif
2404 
2405 		case 151:	/* stwx */
2406 		case 183:	/* stwux */
2407 			op->type = MKOP(STORE, u, 4);
2408 			break;
2409 
2410 		case 215:	/* stbx */
2411 		case 247:	/* stbux */
2412 			op->type = MKOP(STORE, u, 1);
2413 			break;
2414 
2415 		case 279:	/* lhzx */
2416 		case 311:	/* lhzux */
2417 			op->type = MKOP(LOAD, u, 2);
2418 			break;
2419 
2420 #ifdef __powerpc64__
2421 		case 341:	/* lwax */
2422 		case 373:	/* lwaux */
2423 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2424 			break;
2425 #endif
2426 
2427 		case 343:	/* lhax */
2428 		case 375:	/* lhaux */
2429 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2430 			break;
2431 
2432 		case 407:	/* sthx */
2433 		case 439:	/* sthux */
2434 			op->type = MKOP(STORE, u, 2);
2435 			break;
2436 
2437 #ifdef __powerpc64__
2438 		case 532:	/* ldbrx */
2439 			op->type = MKOP(LOAD, BYTEREV, 8);
2440 			break;
2441 
2442 #endif
2443 		case 533:	/* lswx */
2444 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2445 			break;
2446 
2447 		case 534:	/* lwbrx */
2448 			op->type = MKOP(LOAD, BYTEREV, 4);
2449 			break;
2450 
2451 		case 597:	/* lswi */
2452 			if (rb == 0)
2453 				rb = 32;	/* # bytes to load */
2454 			op->type = MKOP(LOAD_MULTI, 0, rb);
2455 			op->ea = ra ? regs->gpr[ra] : 0;
2456 			break;
2457 
2458 #ifdef CONFIG_PPC_FPU
2459 		case 535:	/* lfsx */
2460 		case 567:	/* lfsux */
2461 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2462 			break;
2463 
2464 		case 599:	/* lfdx */
2465 		case 631:	/* lfdux */
2466 			op->type = MKOP(LOAD_FP, u, 8);
2467 			break;
2468 
2469 		case 663:	/* stfsx */
2470 		case 695:	/* stfsux */
2471 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2472 			break;
2473 
2474 		case 727:	/* stfdx */
2475 		case 759:	/* stfdux */
2476 			op->type = MKOP(STORE_FP, u, 8);
2477 			break;
2478 
2479 #ifdef __powerpc64__
2480 		case 791:	/* lfdpx */
2481 			op->type = MKOP(LOAD_FP, 0, 16);
2482 			break;
2483 
2484 		case 855:	/* lfiwax */
2485 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2486 			break;
2487 
2488 		case 887:	/* lfiwzx */
2489 			op->type = MKOP(LOAD_FP, 0, 4);
2490 			break;
2491 
2492 		case 919:	/* stfdpx */
2493 			op->type = MKOP(STORE_FP, 0, 16);
2494 			break;
2495 
2496 		case 983:	/* stfiwx */
2497 			op->type = MKOP(STORE_FP, 0, 4);
2498 			break;
2499 #endif /* __powerpc64 */
2500 #endif /* CONFIG_PPC_FPU */
2501 
2502 #ifdef __powerpc64__
2503 		case 660:	/* stdbrx */
2504 			op->type = MKOP(STORE, BYTEREV, 8);
2505 			op->val = byterev_8(regs->gpr[rd]);
2506 			break;
2507 
2508 #endif
2509 		case 661:	/* stswx */
2510 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2511 			break;
2512 
2513 		case 662:	/* stwbrx */
2514 			op->type = MKOP(STORE, BYTEREV, 4);
2515 			op->val = byterev_4(regs->gpr[rd]);
2516 			break;
2517 
2518 		case 725:	/* stswi */
2519 			if (rb == 0)
2520 				rb = 32;	/* # bytes to store */
2521 			op->type = MKOP(STORE_MULTI, 0, rb);
2522 			op->ea = ra ? regs->gpr[ra] : 0;
2523 			break;
2524 
2525 		case 790:	/* lhbrx */
2526 			op->type = MKOP(LOAD, BYTEREV, 2);
2527 			break;
2528 
2529 		case 918:	/* sthbrx */
2530 			op->type = MKOP(STORE, BYTEREV, 2);
2531 			op->val = byterev_2(regs->gpr[rd]);
2532 			break;
2533 
2534 #ifdef CONFIG_VSX
2535 		case 12:	/* lxsiwzx */
2536 			op->reg = rd | ((word & 1) << 5);
2537 			op->type = MKOP(LOAD_VSX, 0, 4);
2538 			op->element_size = 8;
2539 			break;
2540 
2541 		case 76:	/* lxsiwax */
2542 			op->reg = rd | ((word & 1) << 5);
2543 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2544 			op->element_size = 8;
2545 			break;
2546 
2547 		case 140:	/* stxsiwx */
2548 			op->reg = rd | ((word & 1) << 5);
2549 			op->type = MKOP(STORE_VSX, 0, 4);
2550 			op->element_size = 8;
2551 			break;
2552 
2553 		case 268:	/* lxvx */
2554 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2555 				goto unknown_opcode;
2556 			op->reg = rd | ((word & 1) << 5);
2557 			op->type = MKOP(LOAD_VSX, 0, 16);
2558 			op->element_size = 16;
2559 			op->vsx_flags = VSX_CHECK_VEC;
2560 			break;
2561 
2562 		case 269:	/* lxvl */
2563 		case 301: {	/* lxvll */
2564 			int nb;
2565 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2566 				goto unknown_opcode;
2567 			op->reg = rd | ((word & 1) << 5);
2568 			op->ea = ra ? regs->gpr[ra] : 0;
2569 			nb = regs->gpr[rb] & 0xff;
2570 			if (nb > 16)
2571 				nb = 16;
2572 			op->type = MKOP(LOAD_VSX, 0, nb);
2573 			op->element_size = 16;
2574 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2575 				VSX_CHECK_VEC;
2576 			break;
2577 		}
2578 		case 332:	/* lxvdsx */
2579 			op->reg = rd | ((word & 1) << 5);
2580 			op->type = MKOP(LOAD_VSX, 0, 8);
2581 			op->element_size = 8;
2582 			op->vsx_flags = VSX_SPLAT;
2583 			break;
2584 
2585 		case 333:       /* lxvpx */
2586 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2587 				goto unknown_opcode;
2588 			op->reg = VSX_REGISTER_XTP(rd);
2589 			op->type = MKOP(LOAD_VSX, 0, 32);
2590 			op->element_size = 32;
2591 			break;
2592 
2593 		case 364:	/* lxvwsx */
2594 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2595 				goto unknown_opcode;
2596 			op->reg = rd | ((word & 1) << 5);
2597 			op->type = MKOP(LOAD_VSX, 0, 4);
2598 			op->element_size = 4;
2599 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2600 			break;
2601 
2602 		case 396:	/* stxvx */
2603 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2604 				goto unknown_opcode;
2605 			op->reg = rd | ((word & 1) << 5);
2606 			op->type = MKOP(STORE_VSX, 0, 16);
2607 			op->element_size = 16;
2608 			op->vsx_flags = VSX_CHECK_VEC;
2609 			break;
2610 
2611 		case 397:	/* stxvl */
2612 		case 429: {	/* stxvll */
2613 			int nb;
2614 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2615 				goto unknown_opcode;
2616 			op->reg = rd | ((word & 1) << 5);
2617 			op->ea = ra ? regs->gpr[ra] : 0;
2618 			nb = regs->gpr[rb] & 0xff;
2619 			if (nb > 16)
2620 				nb = 16;
2621 			op->type = MKOP(STORE_VSX, 0, nb);
2622 			op->element_size = 16;
2623 			op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2624 				VSX_CHECK_VEC;
2625 			break;
2626 		}
2627 		case 461:       /* stxvpx */
2628 			if (!cpu_has_feature(CPU_FTR_ARCH_31))
2629 				goto unknown_opcode;
2630 			op->reg = VSX_REGISTER_XTP(rd);
2631 			op->type = MKOP(STORE_VSX, 0, 32);
2632 			op->element_size = 32;
2633 			break;
2634 		case 524:	/* lxsspx */
2635 			op->reg = rd | ((word & 1) << 5);
2636 			op->type = MKOP(LOAD_VSX, 0, 4);
2637 			op->element_size = 8;
2638 			op->vsx_flags = VSX_FPCONV;
2639 			break;
2640 
2641 		case 588:	/* lxsdx */
2642 			op->reg = rd | ((word & 1) << 5);
2643 			op->type = MKOP(LOAD_VSX, 0, 8);
2644 			op->element_size = 8;
2645 			break;
2646 
2647 		case 652:	/* stxsspx */
2648 			op->reg = rd | ((word & 1) << 5);
2649 			op->type = MKOP(STORE_VSX, 0, 4);
2650 			op->element_size = 8;
2651 			op->vsx_flags = VSX_FPCONV;
2652 			break;
2653 
2654 		case 716:	/* stxsdx */
2655 			op->reg = rd | ((word & 1) << 5);
2656 			op->type = MKOP(STORE_VSX, 0, 8);
2657 			op->element_size = 8;
2658 			break;
2659 
2660 		case 780:	/* lxvw4x */
2661 			op->reg = rd | ((word & 1) << 5);
2662 			op->type = MKOP(LOAD_VSX, 0, 16);
2663 			op->element_size = 4;
2664 			break;
2665 
2666 		case 781:	/* lxsibzx */
2667 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2668 				goto unknown_opcode;
2669 			op->reg = rd | ((word & 1) << 5);
2670 			op->type = MKOP(LOAD_VSX, 0, 1);
2671 			op->element_size = 8;
2672 			op->vsx_flags = VSX_CHECK_VEC;
2673 			break;
2674 
2675 		case 812:	/* lxvh8x */
2676 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2677 				goto unknown_opcode;
2678 			op->reg = rd | ((word & 1) << 5);
2679 			op->type = MKOP(LOAD_VSX, 0, 16);
2680 			op->element_size = 2;
2681 			op->vsx_flags = VSX_CHECK_VEC;
2682 			break;
2683 
2684 		case 813:	/* lxsihzx */
2685 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2686 				goto unknown_opcode;
2687 			op->reg = rd | ((word & 1) << 5);
2688 			op->type = MKOP(LOAD_VSX, 0, 2);
2689 			op->element_size = 8;
2690 			op->vsx_flags = VSX_CHECK_VEC;
2691 			break;
2692 
2693 		case 844:	/* lxvd2x */
2694 			op->reg = rd | ((word & 1) << 5);
2695 			op->type = MKOP(LOAD_VSX, 0, 16);
2696 			op->element_size = 8;
2697 			break;
2698 
2699 		case 876:	/* lxvb16x */
2700 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2701 				goto unknown_opcode;
2702 			op->reg = rd | ((word & 1) << 5);
2703 			op->type = MKOP(LOAD_VSX, 0, 16);
2704 			op->element_size = 1;
2705 			op->vsx_flags = VSX_CHECK_VEC;
2706 			break;
2707 
2708 		case 908:	/* stxvw4x */
2709 			op->reg = rd | ((word & 1) << 5);
2710 			op->type = MKOP(STORE_VSX, 0, 16);
2711 			op->element_size = 4;
2712 			break;
2713 
2714 		case 909:	/* stxsibx */
2715 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2716 				goto unknown_opcode;
2717 			op->reg = rd | ((word & 1) << 5);
2718 			op->type = MKOP(STORE_VSX, 0, 1);
2719 			op->element_size = 8;
2720 			op->vsx_flags = VSX_CHECK_VEC;
2721 			break;
2722 
2723 		case 940:	/* stxvh8x */
2724 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2725 				goto unknown_opcode;
2726 			op->reg = rd | ((word & 1) << 5);
2727 			op->type = MKOP(STORE_VSX, 0, 16);
2728 			op->element_size = 2;
2729 			op->vsx_flags = VSX_CHECK_VEC;
2730 			break;
2731 
2732 		case 941:	/* stxsihx */
2733 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2734 				goto unknown_opcode;
2735 			op->reg = rd | ((word & 1) << 5);
2736 			op->type = MKOP(STORE_VSX, 0, 2);
2737 			op->element_size = 8;
2738 			op->vsx_flags = VSX_CHECK_VEC;
2739 			break;
2740 
2741 		case 972:	/* stxvd2x */
2742 			op->reg = rd | ((word & 1) << 5);
2743 			op->type = MKOP(STORE_VSX, 0, 16);
2744 			op->element_size = 8;
2745 			break;
2746 
2747 		case 1004:	/* stxvb16x */
2748 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2749 				goto unknown_opcode;
2750 			op->reg = rd | ((word & 1) << 5);
2751 			op->type = MKOP(STORE_VSX, 0, 16);
2752 			op->element_size = 1;
2753 			op->vsx_flags = VSX_CHECK_VEC;
2754 			break;
2755 
2756 #endif /* CONFIG_VSX */
2757 		}
2758 		break;
2759 
2760 	case 32:	/* lwz */
2761 	case 33:	/* lwzu */
2762 		op->type = MKOP(LOAD, u, 4);
2763 		op->ea = dform_ea(word, regs);
2764 		break;
2765 
2766 	case 34:	/* lbz */
2767 	case 35:	/* lbzu */
2768 		op->type = MKOP(LOAD, u, 1);
2769 		op->ea = dform_ea(word, regs);
2770 		break;
2771 
2772 	case 36:	/* stw */
2773 	case 37:	/* stwu */
2774 		op->type = MKOP(STORE, u, 4);
2775 		op->ea = dform_ea(word, regs);
2776 		break;
2777 
2778 	case 38:	/* stb */
2779 	case 39:	/* stbu */
2780 		op->type = MKOP(STORE, u, 1);
2781 		op->ea = dform_ea(word, regs);
2782 		break;
2783 
2784 	case 40:	/* lhz */
2785 	case 41:	/* lhzu */
2786 		op->type = MKOP(LOAD, u, 2);
2787 		op->ea = dform_ea(word, regs);
2788 		break;
2789 
2790 	case 42:	/* lha */
2791 	case 43:	/* lhau */
2792 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2793 		op->ea = dform_ea(word, regs);
2794 		break;
2795 
2796 	case 44:	/* sth */
2797 	case 45:	/* sthu */
2798 		op->type = MKOP(STORE, u, 2);
2799 		op->ea = dform_ea(word, regs);
2800 		break;
2801 
2802 	case 46:	/* lmw */
2803 		if (ra >= rd)
2804 			break;		/* invalid form, ra in range to load */
2805 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2806 		op->ea = dform_ea(word, regs);
2807 		break;
2808 
2809 	case 47:	/* stmw */
2810 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2811 		op->ea = dform_ea(word, regs);
2812 		break;
2813 
2814 #ifdef CONFIG_PPC_FPU
2815 	case 48:	/* lfs */
2816 	case 49:	/* lfsu */
2817 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2818 		op->ea = dform_ea(word, regs);
2819 		break;
2820 
2821 	case 50:	/* lfd */
2822 	case 51:	/* lfdu */
2823 		op->type = MKOP(LOAD_FP, u, 8);
2824 		op->ea = dform_ea(word, regs);
2825 		break;
2826 
2827 	case 52:	/* stfs */
2828 	case 53:	/* stfsu */
2829 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2830 		op->ea = dform_ea(word, regs);
2831 		break;
2832 
2833 	case 54:	/* stfd */
2834 	case 55:	/* stfdu */
2835 		op->type = MKOP(STORE_FP, u, 8);
2836 		op->ea = dform_ea(word, regs);
2837 		break;
2838 #endif
2839 
2840 #ifdef __powerpc64__
2841 	case 56:	/* lq */
2842 		if (!((rd & 1) || (rd == ra)))
2843 			op->type = MKOP(LOAD, 0, 16);
2844 		op->ea = dqform_ea(word, regs);
2845 		break;
2846 #endif
2847 
2848 #ifdef CONFIG_VSX
2849 	case 57:	/* lfdp, lxsd, lxssp */
2850 		op->ea = dsform_ea(word, regs);
2851 		switch (word & 3) {
2852 		case 0:		/* lfdp */
2853 			if (rd & 1)
2854 				break;		/* reg must be even */
2855 			op->type = MKOP(LOAD_FP, 0, 16);
2856 			break;
2857 		case 2:		/* lxsd */
2858 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2859 				goto unknown_opcode;
2860 			op->reg = rd + 32;
2861 			op->type = MKOP(LOAD_VSX, 0, 8);
2862 			op->element_size = 8;
2863 			op->vsx_flags = VSX_CHECK_VEC;
2864 			break;
2865 		case 3:		/* lxssp */
2866 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2867 				goto unknown_opcode;
2868 			op->reg = rd + 32;
2869 			op->type = MKOP(LOAD_VSX, 0, 4);
2870 			op->element_size = 8;
2871 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2872 			break;
2873 		}
2874 		break;
2875 #endif /* CONFIG_VSX */
2876 
2877 #ifdef __powerpc64__
2878 	case 58:	/* ld[u], lwa */
2879 		op->ea = dsform_ea(word, regs);
2880 		switch (word & 3) {
2881 		case 0:		/* ld */
2882 			op->type = MKOP(LOAD, 0, 8);
2883 			break;
2884 		case 1:		/* ldu */
2885 			op->type = MKOP(LOAD, UPDATE, 8);
2886 			break;
2887 		case 2:		/* lwa */
2888 			op->type = MKOP(LOAD, SIGNEXT, 4);
2889 			break;
2890 		}
2891 		break;
2892 #endif
2893 
2894 #ifdef CONFIG_VSX
2895 	case 6:
2896 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2897 			goto unknown_opcode;
2898 		op->ea = dqform_ea(word, regs);
2899 		op->reg = VSX_REGISTER_XTP(rd);
2900 		op->element_size = 32;
2901 		switch (word & 0xf) {
2902 		case 0:         /* lxvp */
2903 			op->type = MKOP(LOAD_VSX, 0, 32);
2904 			break;
2905 		case 1:         /* stxvp */
2906 			op->type = MKOP(STORE_VSX, 0, 32);
2907 			break;
2908 		}
2909 		break;
2910 
2911 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2912 		switch (word & 7) {
2913 		case 0:		/* stfdp with LSB of DS field = 0 */
2914 		case 4:		/* stfdp with LSB of DS field = 1 */
2915 			op->ea = dsform_ea(word, regs);
2916 			op->type = MKOP(STORE_FP, 0, 16);
2917 			break;
2918 
2919 		case 1:		/* lxv */
2920 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2921 				goto unknown_opcode;
2922 			op->ea = dqform_ea(word, regs);
2923 			if (word & 8)
2924 				op->reg = rd + 32;
2925 			op->type = MKOP(LOAD_VSX, 0, 16);
2926 			op->element_size = 16;
2927 			op->vsx_flags = VSX_CHECK_VEC;
2928 			break;
2929 
2930 		case 2:		/* stxsd with LSB of DS field = 0 */
2931 		case 6:		/* stxsd with LSB of DS field = 1 */
2932 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2933 				goto unknown_opcode;
2934 			op->ea = dsform_ea(word, regs);
2935 			op->reg = rd + 32;
2936 			op->type = MKOP(STORE_VSX, 0, 8);
2937 			op->element_size = 8;
2938 			op->vsx_flags = VSX_CHECK_VEC;
2939 			break;
2940 
2941 		case 3:		/* stxssp with LSB of DS field = 0 */
2942 		case 7:		/* stxssp with LSB of DS field = 1 */
2943 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2944 				goto unknown_opcode;
2945 			op->ea = dsform_ea(word, regs);
2946 			op->reg = rd + 32;
2947 			op->type = MKOP(STORE_VSX, 0, 4);
2948 			op->element_size = 8;
2949 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2950 			break;
2951 
2952 		case 5:		/* stxv */
2953 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
2954 				goto unknown_opcode;
2955 			op->ea = dqform_ea(word, regs);
2956 			if (word & 8)
2957 				op->reg = rd + 32;
2958 			op->type = MKOP(STORE_VSX, 0, 16);
2959 			op->element_size = 16;
2960 			op->vsx_flags = VSX_CHECK_VEC;
2961 			break;
2962 		}
2963 		break;
2964 #endif /* CONFIG_VSX */
2965 
2966 #ifdef __powerpc64__
2967 	case 62:	/* std[u] */
2968 		op->ea = dsform_ea(word, regs);
2969 		switch (word & 3) {
2970 		case 0:		/* std */
2971 			op->type = MKOP(STORE, 0, 8);
2972 			break;
2973 		case 1:		/* stdu */
2974 			op->type = MKOP(STORE, UPDATE, 8);
2975 			break;
2976 		case 2:		/* stq */
2977 			if (!(rd & 1))
2978 				op->type = MKOP(STORE, 0, 16);
2979 			break;
2980 		}
2981 		break;
2982 	case 1: /* Prefixed instructions */
2983 		if (!cpu_has_feature(CPU_FTR_ARCH_31))
2984 			goto unknown_opcode;
2985 
2986 		prefix_r = GET_PREFIX_R(word);
2987 		ra = GET_PREFIX_RA(suffix);
2988 		op->update_reg = ra;
2989 		rd = (suffix >> 21) & 0x1f;
2990 		op->reg = rd;
2991 		op->val = regs->gpr[rd];
2992 
2993 		suffixopcode = get_op(suffix);
2994 		prefixtype = (word >> 24) & 0x3;
2995 		switch (prefixtype) {
2996 		case 0: /* Type 00  Eight-Byte Load/Store */
2997 			if (prefix_r && ra)
2998 				break;
2999 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
3000 			switch (suffixopcode) {
3001 			case 41:	/* plwa */
3002 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
3003 				break;
3004 #ifdef CONFIG_VSX
3005 			case 42:        /* plxsd */
3006 				op->reg = rd + 32;
3007 				op->type = MKOP(LOAD_VSX, PREFIXED, 8);
3008 				op->element_size = 8;
3009 				op->vsx_flags = VSX_CHECK_VEC;
3010 				break;
3011 			case 43:	/* plxssp */
3012 				op->reg = rd + 32;
3013 				op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3014 				op->element_size = 8;
3015 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3016 				break;
3017 			case 46:	/* pstxsd */
3018 				op->reg = rd + 32;
3019 				op->type = MKOP(STORE_VSX, PREFIXED, 8);
3020 				op->element_size = 8;
3021 				op->vsx_flags = VSX_CHECK_VEC;
3022 				break;
3023 			case 47:	/* pstxssp */
3024 				op->reg = rd + 32;
3025 				op->type = MKOP(STORE_VSX, PREFIXED, 4);
3026 				op->element_size = 8;
3027 				op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3028 				break;
3029 			case 51:	/* plxv1 */
3030 				op->reg += 32;
3031 				fallthrough;
3032 			case 50:	/* plxv0 */
3033 				op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3034 				op->element_size = 16;
3035 				op->vsx_flags = VSX_CHECK_VEC;
3036 				break;
3037 			case 55:	/* pstxv1 */
3038 				op->reg = rd + 32;
3039 				fallthrough;
3040 			case 54:	/* pstxv0 */
3041 				op->type = MKOP(STORE_VSX, PREFIXED, 16);
3042 				op->element_size = 16;
3043 				op->vsx_flags = VSX_CHECK_VEC;
3044 				break;
3045 #endif /* CONFIG_VSX */
3046 			case 56:        /* plq */
3047 				op->type = MKOP(LOAD, PREFIXED, 16);
3048 				break;
3049 			case 57:	/* pld */
3050 				op->type = MKOP(LOAD, PREFIXED, 8);
3051 				break;
3052 #ifdef CONFIG_VSX
3053 			case 58:        /* plxvp */
3054 				op->reg = VSX_REGISTER_XTP(rd);
3055 				op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3056 				op->element_size = 32;
3057 				break;
3058 #endif /* CONFIG_VSX */
3059 			case 60:        /* pstq */
3060 				op->type = MKOP(STORE, PREFIXED, 16);
3061 				break;
3062 			case 61:	/* pstd */
3063 				op->type = MKOP(STORE, PREFIXED, 8);
3064 				break;
3065 #ifdef CONFIG_VSX
3066 			case 62:        /* pstxvp */
3067 				op->reg = VSX_REGISTER_XTP(rd);
3068 				op->type = MKOP(STORE_VSX, PREFIXED, 32);
3069 				op->element_size = 32;
3070 				break;
3071 #endif /* CONFIG_VSX */
3072 			}
3073 			break;
3074 		case 1: /* Type 01 Eight-Byte Register-to-Register */
3075 			break;
3076 		case 2: /* Type 10 Modified Load/Store */
3077 			if (prefix_r && ra)
3078 				break;
3079 			op->ea = mlsd_8lsd_ea(word, suffix, regs);
3080 			switch (suffixopcode) {
3081 			case 32:	/* plwz */
3082 				op->type = MKOP(LOAD, PREFIXED, 4);
3083 				break;
3084 			case 34:	/* plbz */
3085 				op->type = MKOP(LOAD, PREFIXED, 1);
3086 				break;
3087 			case 36:	/* pstw */
3088 				op->type = MKOP(STORE, PREFIXED, 4);
3089 				break;
3090 			case 38:	/* pstb */
3091 				op->type = MKOP(STORE, PREFIXED, 1);
3092 				break;
3093 			case 40:	/* plhz */
3094 				op->type = MKOP(LOAD, PREFIXED, 2);
3095 				break;
3096 			case 42:	/* plha */
3097 				op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3098 				break;
3099 			case 44:	/* psth */
3100 				op->type = MKOP(STORE, PREFIXED, 2);
3101 				break;
3102 			case 48:        /* plfs */
3103 				op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3104 				break;
3105 			case 50:        /* plfd */
3106 				op->type = MKOP(LOAD_FP, PREFIXED, 8);
3107 				break;
3108 			case 52:        /* pstfs */
3109 				op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3110 				break;
3111 			case 54:        /* pstfd */
3112 				op->type = MKOP(STORE_FP, PREFIXED, 8);
3113 				break;
3114 			}
3115 			break;
3116 		case 3: /* Type 11 Modified Register-to-Register */
3117 			break;
3118 		}
3119 #endif /* __powerpc64__ */
3120 
3121 	}
3122 
3123 	if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3124 		switch (GETTYPE(op->type)) {
3125 		case LOAD:
3126 			if (ra == rd)
3127 				goto unknown_opcode;
3128 			fallthrough;
3129 		case STORE:
3130 		case LOAD_FP:
3131 		case STORE_FP:
3132 			if (ra == 0)
3133 				goto unknown_opcode;
3134 		}
3135 	}
3136 
3137 #ifdef CONFIG_VSX
3138 	if ((GETTYPE(op->type) == LOAD_VSX ||
3139 	     GETTYPE(op->type) == STORE_VSX) &&
3140 	    !cpu_has_feature(CPU_FTR_VSX)) {
3141 		return -1;
3142 	}
3143 #endif /* CONFIG_VSX */
3144 
3145 	return 0;
3146 
3147  unknown_opcode:
3148 	op->type = UNKNOWN;
3149 	return 0;
3150 
3151  logical_done:
3152 	if (word & 1)
3153 		set_cr0(regs, op);
3154  logical_done_nocc:
3155 	op->reg = ra;
3156 	op->type |= SETREG;
3157 	return 1;
3158 
3159  arith_done:
3160 	if (word & 1)
3161 		set_cr0(regs, op);
3162  compute_done:
3163 	op->reg = rd;
3164 	op->type |= SETREG;
3165 	return 1;
3166 
3167  priv:
3168 	op->type = INTERRUPT | 0x700;
3169 	op->val = SRR1_PROGPRIV;
3170 	return 0;
3171 
3172  trap:
3173 	op->type = INTERRUPT | 0x700;
3174 	op->val = SRR1_PROGTRAP;
3175 	return 0;
3176 }
3177 EXPORT_SYMBOL_GPL(analyse_instr);
3178 NOKPROBE_SYMBOL(analyse_instr);
3179 
3180 /*
3181  * For PPC32 we always use stwu with r1 to change the stack pointer.
3182  * So this emulated store may corrupt the exception frame, now we
3183  * have to provide the exception frame trampoline, which is pushed
3184  * below the kprobed function stack. So we only update gpr[1] but
3185  * don't emulate the real store operation. We will do real store
3186  * operation safely in exception return code by checking this flag.
3187  */
3188 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3189 {
3190 	/*
3191 	 * Check if we already set since that means we'll
3192 	 * lose the previous value.
3193 	 */
3194 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3195 	set_thread_flag(TIF_EMULATE_STACK_STORE);
3196 	return 0;
3197 }
3198 
3199 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3200 {
3201 	switch (size) {
3202 	case 2:
3203 		*valp = (signed short) *valp;
3204 		break;
3205 	case 4:
3206 		*valp = (signed int) *valp;
3207 		break;
3208 	}
3209 }
3210 
3211 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3212 {
3213 	switch (size) {
3214 	case 2:
3215 		*valp = byterev_2(*valp);
3216 		break;
3217 	case 4:
3218 		*valp = byterev_4(*valp);
3219 		break;
3220 #ifdef __powerpc64__
3221 	case 8:
3222 		*valp = byterev_8(*valp);
3223 		break;
3224 #endif
3225 	}
3226 }
3227 
3228 /*
3229  * Emulate an instruction that can be executed just by updating
3230  * fields in *regs.
3231  */
3232 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3233 {
3234 	unsigned long next_pc;
3235 
3236 	next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3237 	switch (GETTYPE(op->type)) {
3238 	case COMPUTE:
3239 		if (op->type & SETREG)
3240 			regs->gpr[op->reg] = op->val;
3241 		if (op->type & SETCC)
3242 			regs->ccr = op->ccval;
3243 		if (op->type & SETXER)
3244 			regs->xer = op->xerval;
3245 		break;
3246 
3247 	case BRANCH:
3248 		if (op->type & SETLK)
3249 			regs->link = next_pc;
3250 		if (op->type & BRTAKEN)
3251 			next_pc = op->val;
3252 		if (op->type & DECCTR)
3253 			--regs->ctr;
3254 		break;
3255 
3256 	case BARRIER:
3257 		switch (op->type & BARRIER_MASK) {
3258 		case BARRIER_SYNC:
3259 			mb();
3260 			break;
3261 		case BARRIER_ISYNC:
3262 			isync();
3263 			break;
3264 		case BARRIER_EIEIO:
3265 			eieio();
3266 			break;
3267 		case BARRIER_LWSYNC:
3268 			asm volatile("lwsync" : : : "memory");
3269 			break;
3270 		case BARRIER_PTESYNC:
3271 			asm volatile("ptesync" : : : "memory");
3272 			break;
3273 		}
3274 		break;
3275 
3276 	case MFSPR:
3277 		switch (op->spr) {
3278 		case SPRN_XER:
3279 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3280 			break;
3281 		case SPRN_LR:
3282 			regs->gpr[op->reg] = regs->link;
3283 			break;
3284 		case SPRN_CTR:
3285 			regs->gpr[op->reg] = regs->ctr;
3286 			break;
3287 		default:
3288 			WARN_ON_ONCE(1);
3289 		}
3290 		break;
3291 
3292 	case MTSPR:
3293 		switch (op->spr) {
3294 		case SPRN_XER:
3295 			regs->xer = op->val & 0xffffffffUL;
3296 			break;
3297 		case SPRN_LR:
3298 			regs->link = op->val;
3299 			break;
3300 		case SPRN_CTR:
3301 			regs->ctr = op->val;
3302 			break;
3303 		default:
3304 			WARN_ON_ONCE(1);
3305 		}
3306 		break;
3307 
3308 	default:
3309 		WARN_ON_ONCE(1);
3310 	}
3311 	regs_set_return_ip(regs, next_pc);
3312 }
3313 NOKPROBE_SYMBOL(emulate_update_regs);
3314 
3315 /*
3316  * Emulate a previously-analysed load or store instruction.
3317  * Return values are:
3318  * 0 = instruction emulated successfully
3319  * -EFAULT = address out of range or access faulted (regs->dar
3320  *	     contains the faulting address)
3321  * -EACCES = misaligned access, instruction requires alignment
3322  * -EINVAL = unknown operation in *op
3323  */
3324 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3325 {
3326 	int err, size, type;
3327 	int i, rd, nb;
3328 	unsigned int cr;
3329 	unsigned long val;
3330 	unsigned long ea;
3331 	bool cross_endian;
3332 
3333 	err = 0;
3334 	size = GETSIZE(op->type);
3335 	type = GETTYPE(op->type);
3336 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3337 	ea = truncate_if_32bit(regs->msr, op->ea);
3338 
3339 	switch (type) {
3340 	case LARX:
3341 		if (ea & (size - 1))
3342 			return -EACCES;		/* can't handle misaligned */
3343 		if (!address_ok(regs, ea, size))
3344 			return -EFAULT;
3345 		err = 0;
3346 		val = 0;
3347 		switch (size) {
3348 #ifdef __powerpc64__
3349 		case 1:
3350 			__get_user_asmx(val, ea, err, "lbarx");
3351 			break;
3352 		case 2:
3353 			__get_user_asmx(val, ea, err, "lharx");
3354 			break;
3355 #endif
3356 		case 4:
3357 			__get_user_asmx(val, ea, err, "lwarx");
3358 			break;
3359 #ifdef __powerpc64__
3360 		case 8:
3361 			__get_user_asmx(val, ea, err, "ldarx");
3362 			break;
3363 		case 16:
3364 			err = do_lqarx(ea, &regs->gpr[op->reg]);
3365 			break;
3366 #endif
3367 		default:
3368 			return -EINVAL;
3369 		}
3370 		if (err) {
3371 			regs->dar = ea;
3372 			break;
3373 		}
3374 		if (size < 16)
3375 			regs->gpr[op->reg] = val;
3376 		break;
3377 
3378 	case STCX:
3379 		if (ea & (size - 1))
3380 			return -EACCES;		/* can't handle misaligned */
3381 		if (!address_ok(regs, ea, size))
3382 			return -EFAULT;
3383 		err = 0;
3384 		switch (size) {
3385 #ifdef __powerpc64__
3386 		case 1:
3387 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3388 			break;
3389 		case 2:
3390 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
3391 			break;
3392 #endif
3393 		case 4:
3394 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
3395 			break;
3396 #ifdef __powerpc64__
3397 		case 8:
3398 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
3399 			break;
3400 		case 16:
3401 			err = do_stqcx(ea, regs->gpr[op->reg],
3402 				       regs->gpr[op->reg + 1], &cr);
3403 			break;
3404 #endif
3405 		default:
3406 			return -EINVAL;
3407 		}
3408 		if (!err)
3409 			regs->ccr = (regs->ccr & 0x0fffffff) |
3410 				(cr & 0xe0000000) |
3411 				((regs->xer >> 3) & 0x10000000);
3412 		else
3413 			regs->dar = ea;
3414 		break;
3415 
3416 	case LOAD:
3417 #ifdef __powerpc64__
3418 		if (size == 16) {
3419 			err = emulate_lq(regs, ea, op->reg, cross_endian);
3420 			break;
3421 		}
3422 #endif
3423 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3424 		if (!err) {
3425 			if (op->type & SIGNEXT)
3426 				do_signext(&regs->gpr[op->reg], size);
3427 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3428 				do_byterev(&regs->gpr[op->reg], size);
3429 		}
3430 		break;
3431 
3432 #ifdef CONFIG_PPC_FPU
3433 	case LOAD_FP:
3434 		/*
3435 		 * If the instruction is in userspace, we can emulate it even
3436 		 * if the VMX state is not live, because we have the state
3437 		 * stored in the thread_struct.  If the instruction is in
3438 		 * the kernel, we must not touch the state in the thread_struct.
3439 		 */
3440 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3441 			return 0;
3442 		err = do_fp_load(op, ea, regs, cross_endian);
3443 		break;
3444 #endif
3445 #ifdef CONFIG_ALTIVEC
3446 	case LOAD_VMX:
3447 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3448 			return 0;
3449 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3450 		break;
3451 #endif
3452 #ifdef CONFIG_VSX
3453 	case LOAD_VSX: {
3454 		unsigned long msrbit = MSR_VSX;
3455 
3456 		/*
3457 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3458 		 * when the target of the instruction is a vector register.
3459 		 */
3460 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3461 			msrbit = MSR_VEC;
3462 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3463 			return 0;
3464 		err = do_vsx_load(op, ea, regs, cross_endian);
3465 		break;
3466 	}
3467 #endif
3468 	case LOAD_MULTI:
3469 		if (!address_ok(regs, ea, size))
3470 			return -EFAULT;
3471 		rd = op->reg;
3472 		for (i = 0; i < size; i += 4) {
3473 			unsigned int v32 = 0;
3474 
3475 			nb = size - i;
3476 			if (nb > 4)
3477 				nb = 4;
3478 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3479 			if (err)
3480 				break;
3481 			if (unlikely(cross_endian))
3482 				v32 = byterev_4(v32);
3483 			regs->gpr[rd] = v32;
3484 			ea += 4;
3485 			/* reg number wraps from 31 to 0 for lsw[ix] */
3486 			rd = (rd + 1) & 0x1f;
3487 		}
3488 		break;
3489 
3490 	case STORE:
3491 #ifdef __powerpc64__
3492 		if (size == 16) {
3493 			err = emulate_stq(regs, ea, op->reg, cross_endian);
3494 			break;
3495 		}
3496 #endif
3497 		if ((op->type & UPDATE) && size == sizeof(long) &&
3498 		    op->reg == 1 && op->update_reg == 1 &&
3499 		    !(regs->msr & MSR_PR) &&
3500 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3501 			err = handle_stack_update(ea, regs);
3502 			break;
3503 		}
3504 		if (unlikely(cross_endian))
3505 			do_byterev(&op->val, size);
3506 		err = write_mem(op->val, ea, size, regs);
3507 		break;
3508 
3509 #ifdef CONFIG_PPC_FPU
3510 	case STORE_FP:
3511 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3512 			return 0;
3513 		err = do_fp_store(op, ea, regs, cross_endian);
3514 		break;
3515 #endif
3516 #ifdef CONFIG_ALTIVEC
3517 	case STORE_VMX:
3518 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3519 			return 0;
3520 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3521 		break;
3522 #endif
3523 #ifdef CONFIG_VSX
3524 	case STORE_VSX: {
3525 		unsigned long msrbit = MSR_VSX;
3526 
3527 		/*
3528 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3529 		 * when the target of the instruction is a vector register.
3530 		 */
3531 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3532 			msrbit = MSR_VEC;
3533 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3534 			return 0;
3535 		err = do_vsx_store(op, ea, regs, cross_endian);
3536 		break;
3537 	}
3538 #endif
3539 	case STORE_MULTI:
3540 		if (!address_ok(regs, ea, size))
3541 			return -EFAULT;
3542 		rd = op->reg;
3543 		for (i = 0; i < size; i += 4) {
3544 			unsigned int v32 = regs->gpr[rd];
3545 
3546 			nb = size - i;
3547 			if (nb > 4)
3548 				nb = 4;
3549 			if (unlikely(cross_endian))
3550 				v32 = byterev_4(v32);
3551 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3552 			if (err)
3553 				break;
3554 			ea += 4;
3555 			/* reg number wraps from 31 to 0 for stsw[ix] */
3556 			rd = (rd + 1) & 0x1f;
3557 		}
3558 		break;
3559 
3560 	default:
3561 		return -EINVAL;
3562 	}
3563 
3564 	if (err)
3565 		return err;
3566 
3567 	if (op->type & UPDATE)
3568 		regs->gpr[op->update_reg] = op->ea;
3569 
3570 	return 0;
3571 }
3572 NOKPROBE_SYMBOL(emulate_loadstore);
3573 
3574 /*
3575  * Emulate instructions that cause a transfer of control,
3576  * loads and stores, and a few other instructions.
3577  * Returns 1 if the step was emulated, 0 if not,
3578  * or -1 if the instruction is one that should not be stepped,
3579  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3580  */
3581 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3582 {
3583 	struct instruction_op op;
3584 	int r, err, type;
3585 	unsigned long val;
3586 	unsigned long ea;
3587 
3588 	r = analyse_instr(&op, regs, instr);
3589 	if (r < 0)
3590 		return r;
3591 	if (r > 0) {
3592 		emulate_update_regs(regs, &op);
3593 		return 1;
3594 	}
3595 
3596 	err = 0;
3597 	type = GETTYPE(op.type);
3598 
3599 	if (OP_IS_LOAD_STORE(type)) {
3600 		err = emulate_loadstore(regs, &op);
3601 		if (err)
3602 			return 0;
3603 		goto instr_done;
3604 	}
3605 
3606 	switch (type) {
3607 	case CACHEOP:
3608 		ea = truncate_if_32bit(regs->msr, op.ea);
3609 		if (!address_ok(regs, ea, 8))
3610 			return 0;
3611 		switch (op.type & CACHEOP_MASK) {
3612 		case DCBST:
3613 			__cacheop_user_asmx(ea, err, "dcbst");
3614 			break;
3615 		case DCBF:
3616 			__cacheop_user_asmx(ea, err, "dcbf");
3617 			break;
3618 		case DCBTST:
3619 			if (op.reg == 0)
3620 				prefetchw((void *) ea);
3621 			break;
3622 		case DCBT:
3623 			if (op.reg == 0)
3624 				prefetch((void *) ea);
3625 			break;
3626 		case ICBI:
3627 			__cacheop_user_asmx(ea, err, "icbi");
3628 			break;
3629 		case DCBZ:
3630 			err = emulate_dcbz(ea, regs);
3631 			break;
3632 		}
3633 		if (err) {
3634 			regs->dar = ea;
3635 			return 0;
3636 		}
3637 		goto instr_done;
3638 
3639 	case MFMSR:
3640 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3641 		goto instr_done;
3642 
3643 	case MTMSR:
3644 		val = regs->gpr[op.reg];
3645 		if ((val & MSR_RI) == 0)
3646 			/* can't step mtmsr[d] that would clear MSR_RI */
3647 			return -1;
3648 		/* here op.val is the mask of bits to change */
3649 		regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3650 		goto instr_done;
3651 
3652 #ifdef CONFIG_PPC64
3653 	case SYSCALL:	/* sc */
3654 		/*
3655 		 * N.B. this uses knowledge about how the syscall
3656 		 * entry code works.  If that is changed, this will
3657 		 * need to be changed also.
3658 		 */
3659 		if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3660 				cpu_has_feature(CPU_FTR_REAL_LE) &&
3661 				regs->gpr[0] == 0x1ebe) {
3662 			regs_set_return_msr(regs, regs->msr ^ MSR_LE);
3663 			goto instr_done;
3664 		}
3665 		regs->gpr[9] = regs->gpr[13];
3666 		regs->gpr[10] = MSR_KERNEL;
3667 		regs->gpr[11] = regs->nip + 4;
3668 		regs->gpr[12] = regs->msr & MSR_MASK;
3669 		regs->gpr[13] = (unsigned long) get_paca();
3670 		regs_set_return_ip(regs, (unsigned long) &system_call_common);
3671 		regs_set_return_msr(regs, MSR_KERNEL);
3672 		return 1;
3673 
3674 #ifdef CONFIG_PPC_BOOK3S_64
3675 	case SYSCALL_VECTORED_0:	/* scv 0 */
3676 		regs->gpr[9] = regs->gpr[13];
3677 		regs->gpr[10] = MSR_KERNEL;
3678 		regs->gpr[11] = regs->nip + 4;
3679 		regs->gpr[12] = regs->msr & MSR_MASK;
3680 		regs->gpr[13] = (unsigned long) get_paca();
3681 		regs_set_return_ip(regs, (unsigned long) &system_call_vectored_emulate);
3682 		regs_set_return_msr(regs, MSR_KERNEL);
3683 		return 1;
3684 #endif
3685 
3686 	case RFI:
3687 		return -1;
3688 #endif
3689 	}
3690 	return 0;
3691 
3692  instr_done:
3693 	regs_set_return_ip(regs,
3694 		truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3695 	return 1;
3696 }
3697 NOKPROBE_SYMBOL(emulate_step);
3698