xref: /openbmc/linux/arch/powerpc/lib/sstep.c (revision 160b8e75)
1 /*
2  * Single-step support.
3  *
4  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/prefetch.h>
15 #include <asm/sstep.h>
16 #include <asm/processor.h>
17 #include <linux/uaccess.h>
18 #include <asm/cpu_has_feature.h>
19 #include <asm/cputable.h>
20 
21 extern char system_call_common[];
22 
23 #ifdef CONFIG_PPC64
24 /* Bits in SRR1 that are copied from MSR */
25 #define MSR_MASK	0xffffffff87c0ffffUL
26 #else
27 #define MSR_MASK	0x87c0ffff
28 #endif
29 
30 /* Bits in XER */
31 #define XER_SO		0x80000000U
32 #define XER_OV		0x40000000U
33 #define XER_CA		0x20000000U
34 #define XER_OV32	0x00080000U
35 #define XER_CA32	0x00040000U
36 
37 #ifdef CONFIG_PPC_FPU
38 /*
39  * Functions in ldstfp.S
40  */
41 extern void get_fpr(int rn, double *p);
42 extern void put_fpr(int rn, const double *p);
43 extern void get_vr(int rn, __vector128 *p);
44 extern void put_vr(int rn, __vector128 *p);
45 extern void load_vsrn(int vsr, const void *p);
46 extern void store_vsrn(int vsr, void *p);
47 extern void conv_sp_to_dp(const float *sp, double *dp);
48 extern void conv_dp_to_sp(const double *dp, float *sp);
49 #endif
50 
51 #ifdef __powerpc64__
52 /*
53  * Functions in quad.S
54  */
55 extern int do_lq(unsigned long ea, unsigned long *regs);
56 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
57 extern int do_lqarx(unsigned long ea, unsigned long *regs);
58 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
59 		    unsigned int *crp);
60 #endif
61 
62 #ifdef __LITTLE_ENDIAN__
63 #define IS_LE	1
64 #define IS_BE	0
65 #else
66 #define IS_LE	0
67 #define IS_BE	1
68 #endif
69 
70 /*
71  * Emulate the truncation of 64 bit values in 32-bit mode.
72  */
73 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
74 							unsigned long val)
75 {
76 #ifdef __powerpc64__
77 	if ((msr & MSR_64BIT) == 0)
78 		val &= 0xffffffffUL;
79 #endif
80 	return val;
81 }
82 
83 /*
84  * Determine whether a conditional branch instruction would branch.
85  */
86 static nokprobe_inline int branch_taken(unsigned int instr,
87 					const struct pt_regs *regs,
88 					struct instruction_op *op)
89 {
90 	unsigned int bo = (instr >> 21) & 0x1f;
91 	unsigned int bi;
92 
93 	if ((bo & 4) == 0) {
94 		/* decrement counter */
95 		op->type |= DECCTR;
96 		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97 			return 0;
98 	}
99 	if ((bo & 0x10) == 0) {
100 		/* check bit from CR */
101 		bi = (instr >> 16) & 0x1f;
102 		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103 			return 0;
104 	}
105 	return 1;
106 }
107 
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109 				       unsigned long ea, int nb)
110 {
111 	if (!user_mode(regs))
112 		return 1;
113 	if (__access_ok(ea, nb, USER_DS))
114 		return 1;
115 	if (__access_ok(ea, 1, USER_DS))
116 		/* Access overlaps the end of the user region */
117 		regs->dar = USER_DS.seg;
118 	else
119 		regs->dar = ea;
120 	return 0;
121 }
122 
123 /*
124  * Calculate effective address for a D-form instruction
125  */
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 					      const struct pt_regs *regs)
128 {
129 	int ra;
130 	unsigned long ea;
131 
132 	ra = (instr >> 16) & 0x1f;
133 	ea = (signed short) instr;		/* sign-extend */
134 	if (ra)
135 		ea += regs->gpr[ra];
136 
137 	return ea;
138 }
139 
140 #ifdef __powerpc64__
141 /*
142  * Calculate effective address for a DS-form instruction
143  */
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 					       const struct pt_regs *regs)
146 {
147 	int ra;
148 	unsigned long ea;
149 
150 	ra = (instr >> 16) & 0x1f;
151 	ea = (signed short) (instr & ~3);	/* sign-extend */
152 	if (ra)
153 		ea += regs->gpr[ra];
154 
155 	return ea;
156 }
157 
158 /*
159  * Calculate effective address for a DQ-form instruction
160  */
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 					       const struct pt_regs *regs)
163 {
164 	int ra;
165 	unsigned long ea;
166 
167 	ra = (instr >> 16) & 0x1f;
168 	ea = (signed short) (instr & ~0xf);	/* sign-extend */
169 	if (ra)
170 		ea += regs->gpr[ra];
171 
172 	return ea;
173 }
174 #endif /* __powerpc64 */
175 
176 /*
177  * Calculate effective address for an X-form instruction
178  */
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180 					      const struct pt_regs *regs)
181 {
182 	int ra, rb;
183 	unsigned long ea;
184 
185 	ra = (instr >> 16) & 0x1f;
186 	rb = (instr >> 11) & 0x1f;
187 	ea = regs->gpr[rb];
188 	if (ra)
189 		ea += regs->gpr[ra];
190 
191 	return ea;
192 }
193 
194 /*
195  * Return the largest power of 2, not greater than sizeof(unsigned long),
196  * such that x is a multiple of it.
197  */
198 static nokprobe_inline unsigned long max_align(unsigned long x)
199 {
200 	x |= sizeof(unsigned long);
201 	return x & -x;		/* isolates rightmost bit */
202 }
203 
204 static nokprobe_inline unsigned long byterev_2(unsigned long x)
205 {
206 	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
207 }
208 
209 static nokprobe_inline unsigned long byterev_4(unsigned long x)
210 {
211 	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
212 		((x & 0xff00) << 8) | ((x & 0xff) << 24);
213 }
214 
215 #ifdef __powerpc64__
216 static nokprobe_inline unsigned long byterev_8(unsigned long x)
217 {
218 	return (byterev_4(x) << 32) | byterev_4(x >> 32);
219 }
220 #endif
221 
222 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
223 {
224 	switch (nb) {
225 	case 2:
226 		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
227 		break;
228 	case 4:
229 		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
230 		break;
231 #ifdef __powerpc64__
232 	case 8:
233 		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
234 		break;
235 	case 16: {
236 		unsigned long *up = (unsigned long *)ptr;
237 		unsigned long tmp;
238 		tmp = byterev_8(up[0]);
239 		up[0] = byterev_8(up[1]);
240 		up[1] = tmp;
241 		break;
242 	}
243 #endif
244 	default:
245 		WARN_ON_ONCE(1);
246 	}
247 }
248 
249 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
250 					    unsigned long ea, int nb,
251 					    struct pt_regs *regs)
252 {
253 	int err = 0;
254 	unsigned long x = 0;
255 
256 	switch (nb) {
257 	case 1:
258 		err = __get_user(x, (unsigned char __user *) ea);
259 		break;
260 	case 2:
261 		err = __get_user(x, (unsigned short __user *) ea);
262 		break;
263 	case 4:
264 		err = __get_user(x, (unsigned int __user *) ea);
265 		break;
266 #ifdef __powerpc64__
267 	case 8:
268 		err = __get_user(x, (unsigned long __user *) ea);
269 		break;
270 #endif
271 	}
272 	if (!err)
273 		*dest = x;
274 	else
275 		regs->dar = ea;
276 	return err;
277 }
278 
279 /*
280  * Copy from userspace to a buffer, using the largest possible
281  * aligned accesses, up to sizeof(long).
282  */
283 static int nokprobe_inline copy_mem_in(u8 *dest, unsigned long ea, int nb,
284 				       struct pt_regs *regs)
285 {
286 	int err = 0;
287 	int c;
288 
289 	for (; nb > 0; nb -= c) {
290 		c = max_align(ea);
291 		if (c > nb)
292 			c = max_align(nb);
293 		switch (c) {
294 		case 1:
295 			err = __get_user(*dest, (unsigned char __user *) ea);
296 			break;
297 		case 2:
298 			err = __get_user(*(u16 *)dest,
299 					 (unsigned short __user *) ea);
300 			break;
301 		case 4:
302 			err = __get_user(*(u32 *)dest,
303 					 (unsigned int __user *) ea);
304 			break;
305 #ifdef __powerpc64__
306 		case 8:
307 			err = __get_user(*(unsigned long *)dest,
308 					 (unsigned long __user *) ea);
309 			break;
310 #endif
311 		}
312 		if (err) {
313 			regs->dar = ea;
314 			return err;
315 		}
316 		dest += c;
317 		ea += c;
318 	}
319 	return 0;
320 }
321 
322 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
323 					      unsigned long ea, int nb,
324 					      struct pt_regs *regs)
325 {
326 	union {
327 		unsigned long ul;
328 		u8 b[sizeof(unsigned long)];
329 	} u;
330 	int i;
331 	int err;
332 
333 	u.ul = 0;
334 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
335 	err = copy_mem_in(&u.b[i], ea, nb, regs);
336 	if (!err)
337 		*dest = u.ul;
338 	return err;
339 }
340 
341 /*
342  * Read memory at address ea for nb bytes, return 0 for success
343  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
344  * If nb < sizeof(long), the result is right-justified on BE systems.
345  */
346 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
347 			      struct pt_regs *regs)
348 {
349 	if (!address_ok(regs, ea, nb))
350 		return -EFAULT;
351 	if ((ea & (nb - 1)) == 0)
352 		return read_mem_aligned(dest, ea, nb, regs);
353 	return read_mem_unaligned(dest, ea, nb, regs);
354 }
355 NOKPROBE_SYMBOL(read_mem);
356 
357 static nokprobe_inline int write_mem_aligned(unsigned long val,
358 					     unsigned long ea, int nb,
359 					     struct pt_regs *regs)
360 {
361 	int err = 0;
362 
363 	switch (nb) {
364 	case 1:
365 		err = __put_user(val, (unsigned char __user *) ea);
366 		break;
367 	case 2:
368 		err = __put_user(val, (unsigned short __user *) ea);
369 		break;
370 	case 4:
371 		err = __put_user(val, (unsigned int __user *) ea);
372 		break;
373 #ifdef __powerpc64__
374 	case 8:
375 		err = __put_user(val, (unsigned long __user *) ea);
376 		break;
377 #endif
378 	}
379 	if (err)
380 		regs->dar = ea;
381 	return err;
382 }
383 
384 /*
385  * Copy from a buffer to userspace, using the largest possible
386  * aligned accesses, up to sizeof(long).
387  */
388 static int nokprobe_inline copy_mem_out(u8 *dest, unsigned long ea, int nb,
389 					struct pt_regs *regs)
390 {
391 	int err = 0;
392 	int c;
393 
394 	for (; nb > 0; nb -= c) {
395 		c = max_align(ea);
396 		if (c > nb)
397 			c = max_align(nb);
398 		switch (c) {
399 		case 1:
400 			err = __put_user(*dest, (unsigned char __user *) ea);
401 			break;
402 		case 2:
403 			err = __put_user(*(u16 *)dest,
404 					 (unsigned short __user *) ea);
405 			break;
406 		case 4:
407 			err = __put_user(*(u32 *)dest,
408 					 (unsigned int __user *) ea);
409 			break;
410 #ifdef __powerpc64__
411 		case 8:
412 			err = __put_user(*(unsigned long *)dest,
413 					 (unsigned long __user *) ea);
414 			break;
415 #endif
416 		}
417 		if (err) {
418 			regs->dar = ea;
419 			return err;
420 		}
421 		dest += c;
422 		ea += c;
423 	}
424 	return 0;
425 }
426 
427 static nokprobe_inline int write_mem_unaligned(unsigned long val,
428 					       unsigned long ea, int nb,
429 					       struct pt_regs *regs)
430 {
431 	union {
432 		unsigned long ul;
433 		u8 b[sizeof(unsigned long)];
434 	} u;
435 	int i;
436 
437 	u.ul = val;
438 	i = IS_BE ? sizeof(unsigned long) - nb : 0;
439 	return copy_mem_out(&u.b[i], ea, nb, regs);
440 }
441 
442 /*
443  * Write memory at address ea for nb bytes, return 0 for success
444  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
445  */
446 static int write_mem(unsigned long val, unsigned long ea, int nb,
447 			       struct pt_regs *regs)
448 {
449 	if (!address_ok(regs, ea, nb))
450 		return -EFAULT;
451 	if ((ea & (nb - 1)) == 0)
452 		return write_mem_aligned(val, ea, nb, regs);
453 	return write_mem_unaligned(val, ea, nb, regs);
454 }
455 NOKPROBE_SYMBOL(write_mem);
456 
457 #ifdef CONFIG_PPC_FPU
458 /*
459  * These access either the real FP register or the image in the
460  * thread_struct, depending on regs->msr & MSR_FP.
461  */
462 static int do_fp_load(struct instruction_op *op, unsigned long ea,
463 		      struct pt_regs *regs, bool cross_endian)
464 {
465 	int err, rn, nb;
466 	union {
467 		int i;
468 		unsigned int u;
469 		float f;
470 		double d[2];
471 		unsigned long l[2];
472 		u8 b[2 * sizeof(double)];
473 	} u;
474 
475 	nb = GETSIZE(op->type);
476 	if (!address_ok(regs, ea, nb))
477 		return -EFAULT;
478 	rn = op->reg;
479 	err = copy_mem_in(u.b, ea, nb, regs);
480 	if (err)
481 		return err;
482 	if (unlikely(cross_endian)) {
483 		do_byte_reverse(u.b, min(nb, 8));
484 		if (nb == 16)
485 			do_byte_reverse(&u.b[8], 8);
486 	}
487 	preempt_disable();
488 	if (nb == 4) {
489 		if (op->type & FPCONV)
490 			conv_sp_to_dp(&u.f, &u.d[0]);
491 		else if (op->type & SIGNEXT)
492 			u.l[0] = u.i;
493 		else
494 			u.l[0] = u.u;
495 	}
496 	if (regs->msr & MSR_FP)
497 		put_fpr(rn, &u.d[0]);
498 	else
499 		current->thread.TS_FPR(rn) = u.l[0];
500 	if (nb == 16) {
501 		/* lfdp */
502 		rn |= 1;
503 		if (regs->msr & MSR_FP)
504 			put_fpr(rn, &u.d[1]);
505 		else
506 			current->thread.TS_FPR(rn) = u.l[1];
507 	}
508 	preempt_enable();
509 	return 0;
510 }
511 NOKPROBE_SYMBOL(do_fp_load);
512 
513 static int do_fp_store(struct instruction_op *op, unsigned long ea,
514 		       struct pt_regs *regs, bool cross_endian)
515 {
516 	int rn, nb;
517 	union {
518 		unsigned int u;
519 		float f;
520 		double d[2];
521 		unsigned long l[2];
522 		u8 b[2 * sizeof(double)];
523 	} u;
524 
525 	nb = GETSIZE(op->type);
526 	if (!address_ok(regs, ea, nb))
527 		return -EFAULT;
528 	rn = op->reg;
529 	preempt_disable();
530 	if (regs->msr & MSR_FP)
531 		get_fpr(rn, &u.d[0]);
532 	else
533 		u.l[0] = current->thread.TS_FPR(rn);
534 	if (nb == 4) {
535 		if (op->type & FPCONV)
536 			conv_dp_to_sp(&u.d[0], &u.f);
537 		else
538 			u.u = u.l[0];
539 	}
540 	if (nb == 16) {
541 		rn |= 1;
542 		if (regs->msr & MSR_FP)
543 			get_fpr(rn, &u.d[1]);
544 		else
545 			u.l[1] = current->thread.TS_FPR(rn);
546 	}
547 	preempt_enable();
548 	if (unlikely(cross_endian)) {
549 		do_byte_reverse(u.b, min(nb, 8));
550 		if (nb == 16)
551 			do_byte_reverse(&u.b[8], 8);
552 	}
553 	return copy_mem_out(u.b, ea, nb, regs);
554 }
555 NOKPROBE_SYMBOL(do_fp_store);
556 #endif
557 
558 #ifdef CONFIG_ALTIVEC
559 /* For Altivec/VMX, no need to worry about alignment */
560 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561 				       int size, struct pt_regs *regs,
562 				       bool cross_endian)
563 {
564 	int err;
565 	union {
566 		__vector128 v;
567 		u8 b[sizeof(__vector128)];
568 	} u = {};
569 
570 	if (!address_ok(regs, ea & ~0xfUL, 16))
571 		return -EFAULT;
572 	/* align to multiple of size */
573 	ea &= ~(size - 1);
574 	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
575 	if (err)
576 		return err;
577 	if (unlikely(cross_endian))
578 		do_byte_reverse(&u.b[ea & 0xf], size);
579 	preempt_disable();
580 	if (regs->msr & MSR_VEC)
581 		put_vr(rn, &u.v);
582 	else
583 		current->thread.vr_state.vr[rn] = u.v;
584 	preempt_enable();
585 	return 0;
586 }
587 
588 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
589 					int size, struct pt_regs *regs,
590 					bool cross_endian)
591 {
592 	union {
593 		__vector128 v;
594 		u8 b[sizeof(__vector128)];
595 	} u;
596 
597 	if (!address_ok(regs, ea & ~0xfUL, 16))
598 		return -EFAULT;
599 	/* align to multiple of size */
600 	ea &= ~(size - 1);
601 
602 	preempt_disable();
603 	if (regs->msr & MSR_VEC)
604 		get_vr(rn, &u.v);
605 	else
606 		u.v = current->thread.vr_state.vr[rn];
607 	preempt_enable();
608 	if (unlikely(cross_endian))
609 		do_byte_reverse(&u.b[ea & 0xf], size);
610 	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
611 }
612 #endif /* CONFIG_ALTIVEC */
613 
614 #ifdef __powerpc64__
615 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
616 				      int reg, bool cross_endian)
617 {
618 	int err;
619 
620 	if (!address_ok(regs, ea, 16))
621 		return -EFAULT;
622 	/* if aligned, should be atomic */
623 	if ((ea & 0xf) == 0) {
624 		err = do_lq(ea, &regs->gpr[reg]);
625 	} else {
626 		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
627 		if (!err)
628 			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
629 	}
630 	if (!err && unlikely(cross_endian))
631 		do_byte_reverse(&regs->gpr[reg], 16);
632 	return err;
633 }
634 
635 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
636 				       int reg, bool cross_endian)
637 {
638 	int err;
639 	unsigned long vals[2];
640 
641 	if (!address_ok(regs, ea, 16))
642 		return -EFAULT;
643 	vals[0] = regs->gpr[reg];
644 	vals[1] = regs->gpr[reg + 1];
645 	if (unlikely(cross_endian))
646 		do_byte_reverse(vals, 16);
647 
648 	/* if aligned, should be atomic */
649 	if ((ea & 0xf) == 0)
650 		return do_stq(ea, vals[0], vals[1]);
651 
652 	err = write_mem(vals[IS_LE], ea, 8, regs);
653 	if (!err)
654 		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
655 	return err;
656 }
657 #endif /* __powerpc64 */
658 
659 #ifdef CONFIG_VSX
660 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
661 		      const void *mem, bool rev)
662 {
663 	int size, read_size;
664 	int i, j;
665 	const unsigned int *wp;
666 	const unsigned short *hp;
667 	const unsigned char *bp;
668 
669 	size = GETSIZE(op->type);
670 	reg->d[0] = reg->d[1] = 0;
671 
672 	switch (op->element_size) {
673 	case 16:
674 		/* whole vector; lxv[x] or lxvl[l] */
675 		if (size == 0)
676 			break;
677 		memcpy(reg, mem, size);
678 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
679 			rev = !rev;
680 		if (rev)
681 			do_byte_reverse(reg, 16);
682 		break;
683 	case 8:
684 		/* scalar loads, lxvd2x, lxvdsx */
685 		read_size = (size >= 8) ? 8 : size;
686 		i = IS_LE ? 8 : 8 - read_size;
687 		memcpy(&reg->b[i], mem, read_size);
688 		if (rev)
689 			do_byte_reverse(&reg->b[i], 8);
690 		if (size < 8) {
691 			if (op->type & SIGNEXT) {
692 				/* size == 4 is the only case here */
693 				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
694 			} else if (op->vsx_flags & VSX_FPCONV) {
695 				preempt_disable();
696 				conv_sp_to_dp(&reg->fp[1 + IS_LE],
697 					      &reg->dp[IS_LE]);
698 				preempt_enable();
699 			}
700 		} else {
701 			if (size == 16) {
702 				unsigned long v = *(unsigned long *)(mem + 8);
703 				reg->d[IS_BE] = !rev ? v : byterev_8(v);
704 			} else if (op->vsx_flags & VSX_SPLAT)
705 				reg->d[IS_BE] = reg->d[IS_LE];
706 		}
707 		break;
708 	case 4:
709 		/* lxvw4x, lxvwsx */
710 		wp = mem;
711 		for (j = 0; j < size / 4; ++j) {
712 			i = IS_LE ? 3 - j : j;
713 			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
714 		}
715 		if (op->vsx_flags & VSX_SPLAT) {
716 			u32 val = reg->w[IS_LE ? 3 : 0];
717 			for (; j < 4; ++j) {
718 				i = IS_LE ? 3 - j : j;
719 				reg->w[i] = val;
720 			}
721 		}
722 		break;
723 	case 2:
724 		/* lxvh8x */
725 		hp = mem;
726 		for (j = 0; j < size / 2; ++j) {
727 			i = IS_LE ? 7 - j : j;
728 			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
729 		}
730 		break;
731 	case 1:
732 		/* lxvb16x */
733 		bp = mem;
734 		for (j = 0; j < size; ++j) {
735 			i = IS_LE ? 15 - j : j;
736 			reg->b[i] = *bp++;
737 		}
738 		break;
739 	}
740 }
741 EXPORT_SYMBOL_GPL(emulate_vsx_load);
742 NOKPROBE_SYMBOL(emulate_vsx_load);
743 
744 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
745 		       void *mem, bool rev)
746 {
747 	int size, write_size;
748 	int i, j;
749 	union vsx_reg buf;
750 	unsigned int *wp;
751 	unsigned short *hp;
752 	unsigned char *bp;
753 
754 	size = GETSIZE(op->type);
755 
756 	switch (op->element_size) {
757 	case 16:
758 		/* stxv, stxvx, stxvl, stxvll */
759 		if (size == 0)
760 			break;
761 		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
762 			rev = !rev;
763 		if (rev) {
764 			/* reverse 16 bytes */
765 			buf.d[0] = byterev_8(reg->d[1]);
766 			buf.d[1] = byterev_8(reg->d[0]);
767 			reg = &buf;
768 		}
769 		memcpy(mem, reg, size);
770 		break;
771 	case 8:
772 		/* scalar stores, stxvd2x */
773 		write_size = (size >= 8) ? 8 : size;
774 		i = IS_LE ? 8 : 8 - write_size;
775 		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
776 			buf.d[0] = buf.d[1] = 0;
777 			preempt_disable();
778 			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
779 			preempt_enable();
780 			reg = &buf;
781 		}
782 		memcpy(mem, &reg->b[i], write_size);
783 		if (size == 16)
784 			memcpy(mem + 8, &reg->d[IS_BE], 8);
785 		if (unlikely(rev)) {
786 			do_byte_reverse(mem, write_size);
787 			if (size == 16)
788 				do_byte_reverse(mem + 8, 8);
789 		}
790 		break;
791 	case 4:
792 		/* stxvw4x */
793 		wp = mem;
794 		for (j = 0; j < size / 4; ++j) {
795 			i = IS_LE ? 3 - j : j;
796 			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
797 		}
798 		break;
799 	case 2:
800 		/* stxvh8x */
801 		hp = mem;
802 		for (j = 0; j < size / 2; ++j) {
803 			i = IS_LE ? 7 - j : j;
804 			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
805 		}
806 		break;
807 	case 1:
808 		/* stvxb16x */
809 		bp = mem;
810 		for (j = 0; j < size; ++j) {
811 			i = IS_LE ? 15 - j : j;
812 			*bp++ = reg->b[i];
813 		}
814 		break;
815 	}
816 }
817 EXPORT_SYMBOL_GPL(emulate_vsx_store);
818 NOKPROBE_SYMBOL(emulate_vsx_store);
819 
820 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
821 				       unsigned long ea, struct pt_regs *regs,
822 				       bool cross_endian)
823 {
824 	int reg = op->reg;
825 	u8 mem[16];
826 	union vsx_reg buf;
827 	int size = GETSIZE(op->type);
828 
829 	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
830 		return -EFAULT;
831 
832 	emulate_vsx_load(op, &buf, mem, cross_endian);
833 	preempt_disable();
834 	if (reg < 32) {
835 		/* FP regs + extensions */
836 		if (regs->msr & MSR_FP) {
837 			load_vsrn(reg, &buf);
838 		} else {
839 			current->thread.fp_state.fpr[reg][0] = buf.d[0];
840 			current->thread.fp_state.fpr[reg][1] = buf.d[1];
841 		}
842 	} else {
843 		if (regs->msr & MSR_VEC)
844 			load_vsrn(reg, &buf);
845 		else
846 			current->thread.vr_state.vr[reg - 32] = buf.v;
847 	}
848 	preempt_enable();
849 	return 0;
850 }
851 
852 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
853 					unsigned long ea, struct pt_regs *regs,
854 					bool cross_endian)
855 {
856 	int reg = op->reg;
857 	u8 mem[16];
858 	union vsx_reg buf;
859 	int size = GETSIZE(op->type);
860 
861 	if (!address_ok(regs, ea, size))
862 		return -EFAULT;
863 
864 	preempt_disable();
865 	if (reg < 32) {
866 		/* FP regs + extensions */
867 		if (regs->msr & MSR_FP) {
868 			store_vsrn(reg, &buf);
869 		} else {
870 			buf.d[0] = current->thread.fp_state.fpr[reg][0];
871 			buf.d[1] = current->thread.fp_state.fpr[reg][1];
872 		}
873 	} else {
874 		if (regs->msr & MSR_VEC)
875 			store_vsrn(reg, &buf);
876 		else
877 			buf.v = current->thread.vr_state.vr[reg - 32];
878 	}
879 	preempt_enable();
880 	emulate_vsx_store(op, &buf, mem, cross_endian);
881 	return  copy_mem_out(mem, ea, size, regs);
882 }
883 #endif /* CONFIG_VSX */
884 
885 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
886 {
887 	int err;
888 	unsigned long i, size;
889 
890 #ifdef __powerpc64__
891 	size = ppc64_caches.l1d.block_size;
892 	if (!(regs->msr & MSR_64BIT))
893 		ea &= 0xffffffffUL;
894 #else
895 	size = L1_CACHE_BYTES;
896 #endif
897 	ea &= ~(size - 1);
898 	if (!address_ok(regs, ea, size))
899 		return -EFAULT;
900 	for (i = 0; i < size; i += sizeof(long)) {
901 		err = __put_user(0, (unsigned long __user *) (ea + i));
902 		if (err) {
903 			regs->dar = ea;
904 			return err;
905 		}
906 	}
907 	return 0;
908 }
909 NOKPROBE_SYMBOL(emulate_dcbz);
910 
911 #define __put_user_asmx(x, addr, err, op, cr)		\
912 	__asm__ __volatile__(				\
913 		"1:	" op " %2,0,%3\n"		\
914 		"	mfcr	%1\n"			\
915 		"2:\n"					\
916 		".section .fixup,\"ax\"\n"		\
917 		"3:	li	%0,%4\n"		\
918 		"	b	2b\n"			\
919 		".previous\n"				\
920 		EX_TABLE(1b, 3b)			\
921 		: "=r" (err), "=r" (cr)			\
922 		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
923 
924 #define __get_user_asmx(x, addr, err, op)		\
925 	__asm__ __volatile__(				\
926 		"1:	"op" %1,0,%2\n"			\
927 		"2:\n"					\
928 		".section .fixup,\"ax\"\n"		\
929 		"3:	li	%0,%3\n"		\
930 		"	b	2b\n"			\
931 		".previous\n"				\
932 		EX_TABLE(1b, 3b)			\
933 		: "=r" (err), "=r" (x)			\
934 		: "r" (addr), "i" (-EFAULT), "0" (err))
935 
936 #define __cacheop_user_asmx(addr, err, op)		\
937 	__asm__ __volatile__(				\
938 		"1:	"op" 0,%1\n"			\
939 		"2:\n"					\
940 		".section .fixup,\"ax\"\n"		\
941 		"3:	li	%0,%3\n"		\
942 		"	b	2b\n"			\
943 		".previous\n"				\
944 		EX_TABLE(1b, 3b)			\
945 		: "=r" (err)				\
946 		: "r" (addr), "i" (-EFAULT), "0" (err))
947 
948 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
949 				    struct instruction_op *op)
950 {
951 	long val = op->val;
952 
953 	op->type |= SETCC;
954 	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
955 #ifdef __powerpc64__
956 	if (!(regs->msr & MSR_64BIT))
957 		val = (int) val;
958 #endif
959 	if (val < 0)
960 		op->ccval |= 0x80000000;
961 	else if (val > 0)
962 		op->ccval |= 0x40000000;
963 	else
964 		op->ccval |= 0x20000000;
965 }
966 
967 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
968 {
969 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
970 		if (val)
971 			op->xerval |= XER_CA32;
972 		else
973 			op->xerval &= ~XER_CA32;
974 	}
975 }
976 
977 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
978 				     struct instruction_op *op, int rd,
979 				     unsigned long val1, unsigned long val2,
980 				     unsigned long carry_in)
981 {
982 	unsigned long val = val1 + val2;
983 
984 	if (carry_in)
985 		++val;
986 	op->type = COMPUTE + SETREG + SETXER;
987 	op->reg = rd;
988 	op->val = val;
989 #ifdef __powerpc64__
990 	if (!(regs->msr & MSR_64BIT)) {
991 		val = (unsigned int) val;
992 		val1 = (unsigned int) val1;
993 	}
994 #endif
995 	op->xerval = regs->xer;
996 	if (val < val1 || (carry_in && val == val1))
997 		op->xerval |= XER_CA;
998 	else
999 		op->xerval &= ~XER_CA;
1000 
1001 	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1002 			(carry_in && (unsigned int)val == (unsigned int)val1));
1003 }
1004 
1005 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1006 					  struct instruction_op *op,
1007 					  long v1, long v2, int crfld)
1008 {
1009 	unsigned int crval, shift;
1010 
1011 	op->type = COMPUTE + SETCC;
1012 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1013 	if (v1 < v2)
1014 		crval |= 8;
1015 	else if (v1 > v2)
1016 		crval |= 4;
1017 	else
1018 		crval |= 2;
1019 	shift = (7 - crfld) * 4;
1020 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1021 }
1022 
1023 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1024 					    struct instruction_op *op,
1025 					    unsigned long v1,
1026 					    unsigned long v2, int crfld)
1027 {
1028 	unsigned int crval, shift;
1029 
1030 	op->type = COMPUTE + SETCC;
1031 	crval = (regs->xer >> 31) & 1;		/* get SO bit */
1032 	if (v1 < v2)
1033 		crval |= 8;
1034 	else if (v1 > v2)
1035 		crval |= 4;
1036 	else
1037 		crval |= 2;
1038 	shift = (7 - crfld) * 4;
1039 	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1040 }
1041 
1042 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1043 				    struct instruction_op *op,
1044 				    unsigned long v1, unsigned long v2)
1045 {
1046 	unsigned long long out_val, mask;
1047 	int i;
1048 
1049 	out_val = 0;
1050 	for (i = 0; i < 8; i++) {
1051 		mask = 0xffUL << (i * 8);
1052 		if ((v1 & mask) == (v2 & mask))
1053 			out_val |= mask;
1054 	}
1055 	op->val = out_val;
1056 }
1057 
1058 /*
1059  * The size parameter is used to adjust the equivalent popcnt instruction.
1060  * popcntb = 8, popcntw = 32, popcntd = 64
1061  */
1062 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1063 				      struct instruction_op *op,
1064 				      unsigned long v1, int size)
1065 {
1066 	unsigned long long out = v1;
1067 
1068 	out -= (out >> 1) & 0x5555555555555555;
1069 	out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2));
1070 	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f;
1071 
1072 	if (size == 8) {	/* popcntb */
1073 		op->val = out;
1074 		return;
1075 	}
1076 	out += out >> 8;
1077 	out += out >> 16;
1078 	if (size == 32) {	/* popcntw */
1079 		op->val = out & 0x0000003f0000003f;
1080 		return;
1081 	}
1082 
1083 	out = (out + (out >> 32)) & 0x7f;
1084 	op->val = out;	/* popcntd */
1085 }
1086 
1087 #ifdef CONFIG_PPC64
1088 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1089 				      struct instruction_op *op,
1090 				      unsigned long v1, unsigned long v2)
1091 {
1092 	unsigned char perm, idx;
1093 	unsigned int i;
1094 
1095 	perm = 0;
1096 	for (i = 0; i < 8; i++) {
1097 		idx = (v1 >> (i * 8)) & 0xff;
1098 		if (idx < 64)
1099 			if (v2 & PPC_BIT(idx))
1100 				perm |= 1 << i;
1101 	}
1102 	op->val = perm;
1103 }
1104 #endif /* CONFIG_PPC64 */
1105 /*
1106  * The size parameter adjusts the equivalent prty instruction.
1107  * prtyw = 32, prtyd = 64
1108  */
1109 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1110 				    struct instruction_op *op,
1111 				    unsigned long v, int size)
1112 {
1113 	unsigned long long res = v ^ (v >> 8);
1114 
1115 	res ^= res >> 16;
1116 	if (size == 32) {		/* prtyw */
1117 		op->val = res & 0x0000000100000001;
1118 		return;
1119 	}
1120 
1121 	res ^= res >> 32;
1122 	op->val = res & 1;	/*prtyd */
1123 }
1124 
1125 static nokprobe_inline int trap_compare(long v1, long v2)
1126 {
1127 	int ret = 0;
1128 
1129 	if (v1 < v2)
1130 		ret |= 0x10;
1131 	else if (v1 > v2)
1132 		ret |= 0x08;
1133 	else
1134 		ret |= 0x04;
1135 	if ((unsigned long)v1 < (unsigned long)v2)
1136 		ret |= 0x02;
1137 	else if ((unsigned long)v1 > (unsigned long)v2)
1138 		ret |= 0x01;
1139 	return ret;
1140 }
1141 
1142 /*
1143  * Elements of 32-bit rotate and mask instructions.
1144  */
1145 #define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
1146 			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1147 #ifdef __powerpc64__
1148 #define MASK64_L(mb)	(~0UL >> (mb))
1149 #define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
1150 #define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1151 #define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1152 #else
1153 #define DATA32(x)	(x)
1154 #endif
1155 #define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1156 
1157 /*
1158  * Decode an instruction, and return information about it in *op
1159  * without changing *regs.
1160  * Integer arithmetic and logical instructions, branches, and barrier
1161  * instructions can be emulated just using the information in *op.
1162  *
1163  * Return value is 1 if the instruction can be emulated just by
1164  * updating *regs with the information in *op, -1 if we need the
1165  * GPRs but *regs doesn't contain the full register set, or 0
1166  * otherwise.
1167  */
1168 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1169 		  unsigned int instr)
1170 {
1171 	unsigned int opcode, ra, rb, rd, spr, u;
1172 	unsigned long int imm;
1173 	unsigned long int val, val2;
1174 	unsigned int mb, me, sh;
1175 	long ival;
1176 
1177 	op->type = COMPUTE;
1178 
1179 	opcode = instr >> 26;
1180 	switch (opcode) {
1181 	case 16:	/* bc */
1182 		op->type = BRANCH;
1183 		imm = (signed short)(instr & 0xfffc);
1184 		if ((instr & 2) == 0)
1185 			imm += regs->nip;
1186 		op->val = truncate_if_32bit(regs->msr, imm);
1187 		if (instr & 1)
1188 			op->type |= SETLK;
1189 		if (branch_taken(instr, regs, op))
1190 			op->type |= BRTAKEN;
1191 		return 1;
1192 #ifdef CONFIG_PPC64
1193 	case 17:	/* sc */
1194 		if ((instr & 0xfe2) == 2)
1195 			op->type = SYSCALL;
1196 		else
1197 			op->type = UNKNOWN;
1198 		return 0;
1199 #endif
1200 	case 18:	/* b */
1201 		op->type = BRANCH | BRTAKEN;
1202 		imm = instr & 0x03fffffc;
1203 		if (imm & 0x02000000)
1204 			imm -= 0x04000000;
1205 		if ((instr & 2) == 0)
1206 			imm += regs->nip;
1207 		op->val = truncate_if_32bit(regs->msr, imm);
1208 		if (instr & 1)
1209 			op->type |= SETLK;
1210 		return 1;
1211 	case 19:
1212 		switch ((instr >> 1) & 0x3ff) {
1213 		case 0:		/* mcrf */
1214 			op->type = COMPUTE + SETCC;
1215 			rd = 7 - ((instr >> 23) & 0x7);
1216 			ra = 7 - ((instr >> 18) & 0x7);
1217 			rd *= 4;
1218 			ra *= 4;
1219 			val = (regs->ccr >> ra) & 0xf;
1220 			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1221 			return 1;
1222 
1223 		case 16:	/* bclr */
1224 		case 528:	/* bcctr */
1225 			op->type = BRANCH;
1226 			imm = (instr & 0x400)? regs->ctr: regs->link;
1227 			op->val = truncate_if_32bit(regs->msr, imm);
1228 			if (instr & 1)
1229 				op->type |= SETLK;
1230 			if (branch_taken(instr, regs, op))
1231 				op->type |= BRTAKEN;
1232 			return 1;
1233 
1234 		case 18:	/* rfid, scary */
1235 			if (regs->msr & MSR_PR)
1236 				goto priv;
1237 			op->type = RFI;
1238 			return 0;
1239 
1240 		case 150:	/* isync */
1241 			op->type = BARRIER | BARRIER_ISYNC;
1242 			return 1;
1243 
1244 		case 33:	/* crnor */
1245 		case 129:	/* crandc */
1246 		case 193:	/* crxor */
1247 		case 225:	/* crnand */
1248 		case 257:	/* crand */
1249 		case 289:	/* creqv */
1250 		case 417:	/* crorc */
1251 		case 449:	/* cror */
1252 			op->type = COMPUTE + SETCC;
1253 			ra = (instr >> 16) & 0x1f;
1254 			rb = (instr >> 11) & 0x1f;
1255 			rd = (instr >> 21) & 0x1f;
1256 			ra = (regs->ccr >> (31 - ra)) & 1;
1257 			rb = (regs->ccr >> (31 - rb)) & 1;
1258 			val = (instr >> (6 + ra * 2 + rb)) & 1;
1259 			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1260 				(val << (31 - rd));
1261 			return 1;
1262 		}
1263 		break;
1264 	case 31:
1265 		switch ((instr >> 1) & 0x3ff) {
1266 		case 598:	/* sync */
1267 			op->type = BARRIER + BARRIER_SYNC;
1268 #ifdef __powerpc64__
1269 			switch ((instr >> 21) & 3) {
1270 			case 1:		/* lwsync */
1271 				op->type = BARRIER + BARRIER_LWSYNC;
1272 				break;
1273 			case 2:		/* ptesync */
1274 				op->type = BARRIER + BARRIER_PTESYNC;
1275 				break;
1276 			}
1277 #endif
1278 			return 1;
1279 
1280 		case 854:	/* eieio */
1281 			op->type = BARRIER + BARRIER_EIEIO;
1282 			return 1;
1283 		}
1284 		break;
1285 	}
1286 
1287 	/* Following cases refer to regs->gpr[], so we need all regs */
1288 	if (!FULL_REGS(regs))
1289 		return -1;
1290 
1291 	rd = (instr >> 21) & 0x1f;
1292 	ra = (instr >> 16) & 0x1f;
1293 	rb = (instr >> 11) & 0x1f;
1294 
1295 	switch (opcode) {
1296 #ifdef __powerpc64__
1297 	case 2:		/* tdi */
1298 		if (rd & trap_compare(regs->gpr[ra], (short) instr))
1299 			goto trap;
1300 		return 1;
1301 #endif
1302 	case 3:		/* twi */
1303 		if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1304 			goto trap;
1305 		return 1;
1306 
1307 	case 7:		/* mulli */
1308 		op->val = regs->gpr[ra] * (short) instr;
1309 		goto compute_done;
1310 
1311 	case 8:		/* subfic */
1312 		imm = (short) instr;
1313 		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1314 		return 1;
1315 
1316 	case 10:	/* cmpli */
1317 		imm = (unsigned short) instr;
1318 		val = regs->gpr[ra];
1319 #ifdef __powerpc64__
1320 		if ((rd & 1) == 0)
1321 			val = (unsigned int) val;
1322 #endif
1323 		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1324 		return 1;
1325 
1326 	case 11:	/* cmpi */
1327 		imm = (short) instr;
1328 		val = regs->gpr[ra];
1329 #ifdef __powerpc64__
1330 		if ((rd & 1) == 0)
1331 			val = (int) val;
1332 #endif
1333 		do_cmp_signed(regs, op, val, imm, rd >> 2);
1334 		return 1;
1335 
1336 	case 12:	/* addic */
1337 		imm = (short) instr;
1338 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1339 		return 1;
1340 
1341 	case 13:	/* addic. */
1342 		imm = (short) instr;
1343 		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1344 		set_cr0(regs, op);
1345 		return 1;
1346 
1347 	case 14:	/* addi */
1348 		imm = (short) instr;
1349 		if (ra)
1350 			imm += regs->gpr[ra];
1351 		op->val = imm;
1352 		goto compute_done;
1353 
1354 	case 15:	/* addis */
1355 		imm = ((short) instr) << 16;
1356 		if (ra)
1357 			imm += regs->gpr[ra];
1358 		op->val = imm;
1359 		goto compute_done;
1360 
1361 	case 19:
1362 		if (((instr >> 1) & 0x1f) == 2) {
1363 			/* addpcis */
1364 			imm = (short) (instr & 0xffc1);	/* d0 + d2 fields */
1365 			imm |= (instr >> 15) & 0x3e;	/* d1 field */
1366 			op->val = regs->nip + (imm << 16) + 4;
1367 			goto compute_done;
1368 		}
1369 		op->type = UNKNOWN;
1370 		return 0;
1371 
1372 	case 20:	/* rlwimi */
1373 		mb = (instr >> 6) & 0x1f;
1374 		me = (instr >> 1) & 0x1f;
1375 		val = DATA32(regs->gpr[rd]);
1376 		imm = MASK32(mb, me);
1377 		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1378 		goto logical_done;
1379 
1380 	case 21:	/* rlwinm */
1381 		mb = (instr >> 6) & 0x1f;
1382 		me = (instr >> 1) & 0x1f;
1383 		val = DATA32(regs->gpr[rd]);
1384 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1385 		goto logical_done;
1386 
1387 	case 23:	/* rlwnm */
1388 		mb = (instr >> 6) & 0x1f;
1389 		me = (instr >> 1) & 0x1f;
1390 		rb = regs->gpr[rb] & 0x1f;
1391 		val = DATA32(regs->gpr[rd]);
1392 		op->val = ROTATE(val, rb) & MASK32(mb, me);
1393 		goto logical_done;
1394 
1395 	case 24:	/* ori */
1396 		op->val = regs->gpr[rd] | (unsigned short) instr;
1397 		goto logical_done_nocc;
1398 
1399 	case 25:	/* oris */
1400 		imm = (unsigned short) instr;
1401 		op->val = regs->gpr[rd] | (imm << 16);
1402 		goto logical_done_nocc;
1403 
1404 	case 26:	/* xori */
1405 		op->val = regs->gpr[rd] ^ (unsigned short) instr;
1406 		goto logical_done_nocc;
1407 
1408 	case 27:	/* xoris */
1409 		imm = (unsigned short) instr;
1410 		op->val = regs->gpr[rd] ^ (imm << 16);
1411 		goto logical_done_nocc;
1412 
1413 	case 28:	/* andi. */
1414 		op->val = regs->gpr[rd] & (unsigned short) instr;
1415 		set_cr0(regs, op);
1416 		goto logical_done_nocc;
1417 
1418 	case 29:	/* andis. */
1419 		imm = (unsigned short) instr;
1420 		op->val = regs->gpr[rd] & (imm << 16);
1421 		set_cr0(regs, op);
1422 		goto logical_done_nocc;
1423 
1424 #ifdef __powerpc64__
1425 	case 30:	/* rld* */
1426 		mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1427 		val = regs->gpr[rd];
1428 		if ((instr & 0x10) == 0) {
1429 			sh = rb | ((instr & 2) << 4);
1430 			val = ROTATE(val, sh);
1431 			switch ((instr >> 2) & 3) {
1432 			case 0:		/* rldicl */
1433 				val &= MASK64_L(mb);
1434 				break;
1435 			case 1:		/* rldicr */
1436 				val &= MASK64_R(mb);
1437 				break;
1438 			case 2:		/* rldic */
1439 				val &= MASK64(mb, 63 - sh);
1440 				break;
1441 			case 3:		/* rldimi */
1442 				imm = MASK64(mb, 63 - sh);
1443 				val = (regs->gpr[ra] & ~imm) |
1444 					(val & imm);
1445 			}
1446 			op->val = val;
1447 			goto logical_done;
1448 		} else {
1449 			sh = regs->gpr[rb] & 0x3f;
1450 			val = ROTATE(val, sh);
1451 			switch ((instr >> 1) & 7) {
1452 			case 0:		/* rldcl */
1453 				op->val = val & MASK64_L(mb);
1454 				goto logical_done;
1455 			case 1:		/* rldcr */
1456 				op->val = val & MASK64_R(mb);
1457 				goto logical_done;
1458 			}
1459 		}
1460 #endif
1461 		op->type = UNKNOWN;	/* illegal instruction */
1462 		return 0;
1463 
1464 	case 31:
1465 		/* isel occupies 32 minor opcodes */
1466 		if (((instr >> 1) & 0x1f) == 15) {
1467 			mb = (instr >> 6) & 0x1f; /* bc field */
1468 			val = (regs->ccr >> (31 - mb)) & 1;
1469 			val2 = (ra) ? regs->gpr[ra] : 0;
1470 
1471 			op->val = (val) ? val2 : regs->gpr[rb];
1472 			goto compute_done;
1473 		}
1474 
1475 		switch ((instr >> 1) & 0x3ff) {
1476 		case 4:		/* tw */
1477 			if (rd == 0x1f ||
1478 			    (rd & trap_compare((int)regs->gpr[ra],
1479 					       (int)regs->gpr[rb])))
1480 				goto trap;
1481 			return 1;
1482 #ifdef __powerpc64__
1483 		case 68:	/* td */
1484 			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1485 				goto trap;
1486 			return 1;
1487 #endif
1488 		case 83:	/* mfmsr */
1489 			if (regs->msr & MSR_PR)
1490 				goto priv;
1491 			op->type = MFMSR;
1492 			op->reg = rd;
1493 			return 0;
1494 		case 146:	/* mtmsr */
1495 			if (regs->msr & MSR_PR)
1496 				goto priv;
1497 			op->type = MTMSR;
1498 			op->reg = rd;
1499 			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1500 			return 0;
1501 #ifdef CONFIG_PPC64
1502 		case 178:	/* mtmsrd */
1503 			if (regs->msr & MSR_PR)
1504 				goto priv;
1505 			op->type = MTMSR;
1506 			op->reg = rd;
1507 			/* only MSR_EE and MSR_RI get changed if bit 15 set */
1508 			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1509 			imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1510 			op->val = imm;
1511 			return 0;
1512 #endif
1513 
1514 		case 19:	/* mfcr */
1515 			imm = 0xffffffffUL;
1516 			if ((instr >> 20) & 1) {
1517 				imm = 0xf0000000UL;
1518 				for (sh = 0; sh < 8; ++sh) {
1519 					if (instr & (0x80000 >> sh))
1520 						break;
1521 					imm >>= 4;
1522 				}
1523 			}
1524 			op->val = regs->ccr & imm;
1525 			goto compute_done;
1526 
1527 		case 144:	/* mtcrf */
1528 			op->type = COMPUTE + SETCC;
1529 			imm = 0xf0000000UL;
1530 			val = regs->gpr[rd];
1531 			op->ccval = regs->ccr;
1532 			for (sh = 0; sh < 8; ++sh) {
1533 				if (instr & (0x80000 >> sh))
1534 					op->ccval = (op->ccval & ~imm) |
1535 						(val & imm);
1536 				imm >>= 4;
1537 			}
1538 			return 1;
1539 
1540 		case 339:	/* mfspr */
1541 			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1542 			op->type = MFSPR;
1543 			op->reg = rd;
1544 			op->spr = spr;
1545 			if (spr == SPRN_XER || spr == SPRN_LR ||
1546 			    spr == SPRN_CTR)
1547 				return 1;
1548 			return 0;
1549 
1550 		case 467:	/* mtspr */
1551 			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1552 			op->type = MTSPR;
1553 			op->val = regs->gpr[rd];
1554 			op->spr = spr;
1555 			if (spr == SPRN_XER || spr == SPRN_LR ||
1556 			    spr == SPRN_CTR)
1557 				return 1;
1558 			return 0;
1559 
1560 /*
1561  * Compare instructions
1562  */
1563 		case 0:	/* cmp */
1564 			val = regs->gpr[ra];
1565 			val2 = regs->gpr[rb];
1566 #ifdef __powerpc64__
1567 			if ((rd & 1) == 0) {
1568 				/* word (32-bit) compare */
1569 				val = (int) val;
1570 				val2 = (int) val2;
1571 			}
1572 #endif
1573 			do_cmp_signed(regs, op, val, val2, rd >> 2);
1574 			return 1;
1575 
1576 		case 32:	/* cmpl */
1577 			val = regs->gpr[ra];
1578 			val2 = regs->gpr[rb];
1579 #ifdef __powerpc64__
1580 			if ((rd & 1) == 0) {
1581 				/* word (32-bit) compare */
1582 				val = (unsigned int) val;
1583 				val2 = (unsigned int) val2;
1584 			}
1585 #endif
1586 			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1587 			return 1;
1588 
1589 		case 508: /* cmpb */
1590 			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1591 			goto logical_done_nocc;
1592 
1593 /*
1594  * Arithmetic instructions
1595  */
1596 		case 8:	/* subfc */
1597 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1598 				       regs->gpr[rb], 1);
1599 			goto arith_done;
1600 #ifdef __powerpc64__
1601 		case 9:	/* mulhdu */
1602 			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1603 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1604 			goto arith_done;
1605 #endif
1606 		case 10:	/* addc */
1607 			add_with_carry(regs, op, rd, regs->gpr[ra],
1608 				       regs->gpr[rb], 0);
1609 			goto arith_done;
1610 
1611 		case 11:	/* mulhwu */
1612 			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1613 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1614 			goto arith_done;
1615 
1616 		case 40:	/* subf */
1617 			op->val = regs->gpr[rb] - regs->gpr[ra];
1618 			goto arith_done;
1619 #ifdef __powerpc64__
1620 		case 73:	/* mulhd */
1621 			asm("mulhd %0,%1,%2" : "=r" (op->val) :
1622 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1623 			goto arith_done;
1624 #endif
1625 		case 75:	/* mulhw */
1626 			asm("mulhw %0,%1,%2" : "=r" (op->val) :
1627 			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1628 			goto arith_done;
1629 
1630 		case 104:	/* neg */
1631 			op->val = -regs->gpr[ra];
1632 			goto arith_done;
1633 
1634 		case 136:	/* subfe */
1635 			add_with_carry(regs, op, rd, ~regs->gpr[ra],
1636 				       regs->gpr[rb], regs->xer & XER_CA);
1637 			goto arith_done;
1638 
1639 		case 138:	/* adde */
1640 			add_with_carry(regs, op, rd, regs->gpr[ra],
1641 				       regs->gpr[rb], regs->xer & XER_CA);
1642 			goto arith_done;
1643 
1644 		case 200:	/* subfze */
1645 			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1646 				       regs->xer & XER_CA);
1647 			goto arith_done;
1648 
1649 		case 202:	/* addze */
1650 			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1651 				       regs->xer & XER_CA);
1652 			goto arith_done;
1653 
1654 		case 232:	/* subfme */
1655 			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1656 				       regs->xer & XER_CA);
1657 			goto arith_done;
1658 #ifdef __powerpc64__
1659 		case 233:	/* mulld */
1660 			op->val = regs->gpr[ra] * regs->gpr[rb];
1661 			goto arith_done;
1662 #endif
1663 		case 234:	/* addme */
1664 			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1665 				       regs->xer & XER_CA);
1666 			goto arith_done;
1667 
1668 		case 235:	/* mullw */
1669 			op->val = (long)(int) regs->gpr[ra] *
1670 				(int) regs->gpr[rb];
1671 
1672 			goto arith_done;
1673 
1674 		case 266:	/* add */
1675 			op->val = regs->gpr[ra] + regs->gpr[rb];
1676 			goto arith_done;
1677 #ifdef __powerpc64__
1678 		case 457:	/* divdu */
1679 			op->val = regs->gpr[ra] / regs->gpr[rb];
1680 			goto arith_done;
1681 #endif
1682 		case 459:	/* divwu */
1683 			op->val = (unsigned int) regs->gpr[ra] /
1684 				(unsigned int) regs->gpr[rb];
1685 			goto arith_done;
1686 #ifdef __powerpc64__
1687 		case 489:	/* divd */
1688 			op->val = (long int) regs->gpr[ra] /
1689 				(long int) regs->gpr[rb];
1690 			goto arith_done;
1691 #endif
1692 		case 491:	/* divw */
1693 			op->val = (int) regs->gpr[ra] /
1694 				(int) regs->gpr[rb];
1695 			goto arith_done;
1696 
1697 
1698 /*
1699  * Logical instructions
1700  */
1701 		case 26:	/* cntlzw */
1702 			val = (unsigned int) regs->gpr[rd];
1703 			op->val = ( val ? __builtin_clz(val) : 32 );
1704 			goto logical_done;
1705 #ifdef __powerpc64__
1706 		case 58:	/* cntlzd */
1707 			val = regs->gpr[rd];
1708 			op->val = ( val ? __builtin_clzl(val) : 64 );
1709 			goto logical_done;
1710 #endif
1711 		case 28:	/* and */
1712 			op->val = regs->gpr[rd] & regs->gpr[rb];
1713 			goto logical_done;
1714 
1715 		case 60:	/* andc */
1716 			op->val = regs->gpr[rd] & ~regs->gpr[rb];
1717 			goto logical_done;
1718 
1719 		case 122:	/* popcntb */
1720 			do_popcnt(regs, op, regs->gpr[rd], 8);
1721 			goto logical_done_nocc;
1722 
1723 		case 124:	/* nor */
1724 			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1725 			goto logical_done;
1726 
1727 		case 154:	/* prtyw */
1728 			do_prty(regs, op, regs->gpr[rd], 32);
1729 			goto logical_done_nocc;
1730 
1731 		case 186:	/* prtyd */
1732 			do_prty(regs, op, regs->gpr[rd], 64);
1733 			goto logical_done_nocc;
1734 #ifdef CONFIG_PPC64
1735 		case 252:	/* bpermd */
1736 			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1737 			goto logical_done_nocc;
1738 #endif
1739 		case 284:	/* xor */
1740 			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1741 			goto logical_done;
1742 
1743 		case 316:	/* xor */
1744 			op->val = regs->gpr[rd] ^ regs->gpr[rb];
1745 			goto logical_done;
1746 
1747 		case 378:	/* popcntw */
1748 			do_popcnt(regs, op, regs->gpr[rd], 32);
1749 			goto logical_done_nocc;
1750 
1751 		case 412:	/* orc */
1752 			op->val = regs->gpr[rd] | ~regs->gpr[rb];
1753 			goto logical_done;
1754 
1755 		case 444:	/* or */
1756 			op->val = regs->gpr[rd] | regs->gpr[rb];
1757 			goto logical_done;
1758 
1759 		case 476:	/* nand */
1760 			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1761 			goto logical_done;
1762 #ifdef CONFIG_PPC64
1763 		case 506:	/* popcntd */
1764 			do_popcnt(regs, op, regs->gpr[rd], 64);
1765 			goto logical_done_nocc;
1766 #endif
1767 		case 922:	/* extsh */
1768 			op->val = (signed short) regs->gpr[rd];
1769 			goto logical_done;
1770 
1771 		case 954:	/* extsb */
1772 			op->val = (signed char) regs->gpr[rd];
1773 			goto logical_done;
1774 #ifdef __powerpc64__
1775 		case 986:	/* extsw */
1776 			op->val = (signed int) regs->gpr[rd];
1777 			goto logical_done;
1778 #endif
1779 
1780 /*
1781  * Shift instructions
1782  */
1783 		case 24:	/* slw */
1784 			sh = regs->gpr[rb] & 0x3f;
1785 			if (sh < 32)
1786 				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1787 			else
1788 				op->val = 0;
1789 			goto logical_done;
1790 
1791 		case 536:	/* srw */
1792 			sh = regs->gpr[rb] & 0x3f;
1793 			if (sh < 32)
1794 				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1795 			else
1796 				op->val = 0;
1797 			goto logical_done;
1798 
1799 		case 792:	/* sraw */
1800 			op->type = COMPUTE + SETREG + SETXER;
1801 			sh = regs->gpr[rb] & 0x3f;
1802 			ival = (signed int) regs->gpr[rd];
1803 			op->val = ival >> (sh < 32 ? sh : 31);
1804 			op->xerval = regs->xer;
1805 			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1806 				op->xerval |= XER_CA;
1807 			else
1808 				op->xerval &= ~XER_CA;
1809 			set_ca32(op, op->xerval & XER_CA);
1810 			goto logical_done;
1811 
1812 		case 824:	/* srawi */
1813 			op->type = COMPUTE + SETREG + SETXER;
1814 			sh = rb;
1815 			ival = (signed int) regs->gpr[rd];
1816 			op->val = ival >> sh;
1817 			op->xerval = regs->xer;
1818 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1819 				op->xerval |= XER_CA;
1820 			else
1821 				op->xerval &= ~XER_CA;
1822 			set_ca32(op, op->xerval & XER_CA);
1823 			goto logical_done;
1824 
1825 #ifdef __powerpc64__
1826 		case 27:	/* sld */
1827 			sh = regs->gpr[rb] & 0x7f;
1828 			if (sh < 64)
1829 				op->val = regs->gpr[rd] << sh;
1830 			else
1831 				op->val = 0;
1832 			goto logical_done;
1833 
1834 		case 539:	/* srd */
1835 			sh = regs->gpr[rb] & 0x7f;
1836 			if (sh < 64)
1837 				op->val = regs->gpr[rd] >> sh;
1838 			else
1839 				op->val = 0;
1840 			goto logical_done;
1841 
1842 		case 794:	/* srad */
1843 			op->type = COMPUTE + SETREG + SETXER;
1844 			sh = regs->gpr[rb] & 0x7f;
1845 			ival = (signed long int) regs->gpr[rd];
1846 			op->val = ival >> (sh < 64 ? sh : 63);
1847 			op->xerval = regs->xer;
1848 			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1849 				op->xerval |= XER_CA;
1850 			else
1851 				op->xerval &= ~XER_CA;
1852 			set_ca32(op, op->xerval & XER_CA);
1853 			goto logical_done;
1854 
1855 		case 826:	/* sradi with sh_5 = 0 */
1856 		case 827:	/* sradi with sh_5 = 1 */
1857 			op->type = COMPUTE + SETREG + SETXER;
1858 			sh = rb | ((instr & 2) << 4);
1859 			ival = (signed long int) regs->gpr[rd];
1860 			op->val = ival >> sh;
1861 			op->xerval = regs->xer;
1862 			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1863 				op->xerval |= XER_CA;
1864 			else
1865 				op->xerval &= ~XER_CA;
1866 			set_ca32(op, op->xerval & XER_CA);
1867 			goto logical_done;
1868 #endif /* __powerpc64__ */
1869 
1870 /*
1871  * Cache instructions
1872  */
1873 		case 54:	/* dcbst */
1874 			op->type = MKOP(CACHEOP, DCBST, 0);
1875 			op->ea = xform_ea(instr, regs);
1876 			return 0;
1877 
1878 		case 86:	/* dcbf */
1879 			op->type = MKOP(CACHEOP, DCBF, 0);
1880 			op->ea = xform_ea(instr, regs);
1881 			return 0;
1882 
1883 		case 246:	/* dcbtst */
1884 			op->type = MKOP(CACHEOP, DCBTST, 0);
1885 			op->ea = xform_ea(instr, regs);
1886 			op->reg = rd;
1887 			return 0;
1888 
1889 		case 278:	/* dcbt */
1890 			op->type = MKOP(CACHEOP, DCBTST, 0);
1891 			op->ea = xform_ea(instr, regs);
1892 			op->reg = rd;
1893 			return 0;
1894 
1895 		case 982:	/* icbi */
1896 			op->type = MKOP(CACHEOP, ICBI, 0);
1897 			op->ea = xform_ea(instr, regs);
1898 			return 0;
1899 
1900 		case 1014:	/* dcbz */
1901 			op->type = MKOP(CACHEOP, DCBZ, 0);
1902 			op->ea = xform_ea(instr, regs);
1903 			return 0;
1904 		}
1905 		break;
1906 	}
1907 
1908 /*
1909  * Loads and stores.
1910  */
1911 	op->type = UNKNOWN;
1912 	op->update_reg = ra;
1913 	op->reg = rd;
1914 	op->val = regs->gpr[rd];
1915 	u = (instr >> 20) & UPDATE;
1916 	op->vsx_flags = 0;
1917 
1918 	switch (opcode) {
1919 	case 31:
1920 		u = instr & UPDATE;
1921 		op->ea = xform_ea(instr, regs);
1922 		switch ((instr >> 1) & 0x3ff) {
1923 		case 20:	/* lwarx */
1924 			op->type = MKOP(LARX, 0, 4);
1925 			break;
1926 
1927 		case 150:	/* stwcx. */
1928 			op->type = MKOP(STCX, 0, 4);
1929 			break;
1930 
1931 #ifdef __powerpc64__
1932 		case 84:	/* ldarx */
1933 			op->type = MKOP(LARX, 0, 8);
1934 			break;
1935 
1936 		case 214:	/* stdcx. */
1937 			op->type = MKOP(STCX, 0, 8);
1938 			break;
1939 
1940 		case 52:	/* lbarx */
1941 			op->type = MKOP(LARX, 0, 1);
1942 			break;
1943 
1944 		case 694:	/* stbcx. */
1945 			op->type = MKOP(STCX, 0, 1);
1946 			break;
1947 
1948 		case 116:	/* lharx */
1949 			op->type = MKOP(LARX, 0, 2);
1950 			break;
1951 
1952 		case 726:	/* sthcx. */
1953 			op->type = MKOP(STCX, 0, 2);
1954 			break;
1955 
1956 		case 276:	/* lqarx */
1957 			if (!((rd & 1) || rd == ra || rd == rb))
1958 				op->type = MKOP(LARX, 0, 16);
1959 			break;
1960 
1961 		case 182:	/* stqcx. */
1962 			if (!(rd & 1))
1963 				op->type = MKOP(STCX, 0, 16);
1964 			break;
1965 #endif
1966 
1967 		case 23:	/* lwzx */
1968 		case 55:	/* lwzux */
1969 			op->type = MKOP(LOAD, u, 4);
1970 			break;
1971 
1972 		case 87:	/* lbzx */
1973 		case 119:	/* lbzux */
1974 			op->type = MKOP(LOAD, u, 1);
1975 			break;
1976 
1977 #ifdef CONFIG_ALTIVEC
1978 		/*
1979 		 * Note: for the load/store vector element instructions,
1980 		 * bits of the EA say which field of the VMX register to use.
1981 		 */
1982 		case 7:		/* lvebx */
1983 			op->type = MKOP(LOAD_VMX, 0, 1);
1984 			op->element_size = 1;
1985 			break;
1986 
1987 		case 39:	/* lvehx */
1988 			op->type = MKOP(LOAD_VMX, 0, 2);
1989 			op->element_size = 2;
1990 			break;
1991 
1992 		case 71:	/* lvewx */
1993 			op->type = MKOP(LOAD_VMX, 0, 4);
1994 			op->element_size = 4;
1995 			break;
1996 
1997 		case 103:	/* lvx */
1998 		case 359:	/* lvxl */
1999 			op->type = MKOP(LOAD_VMX, 0, 16);
2000 			op->element_size = 16;
2001 			break;
2002 
2003 		case 135:	/* stvebx */
2004 			op->type = MKOP(STORE_VMX, 0, 1);
2005 			op->element_size = 1;
2006 			break;
2007 
2008 		case 167:	/* stvehx */
2009 			op->type = MKOP(STORE_VMX, 0, 2);
2010 			op->element_size = 2;
2011 			break;
2012 
2013 		case 199:	/* stvewx */
2014 			op->type = MKOP(STORE_VMX, 0, 4);
2015 			op->element_size = 4;
2016 			break;
2017 
2018 		case 231:	/* stvx */
2019 		case 487:	/* stvxl */
2020 			op->type = MKOP(STORE_VMX, 0, 16);
2021 			break;
2022 #endif /* CONFIG_ALTIVEC */
2023 
2024 #ifdef __powerpc64__
2025 		case 21:	/* ldx */
2026 		case 53:	/* ldux */
2027 			op->type = MKOP(LOAD, u, 8);
2028 			break;
2029 
2030 		case 149:	/* stdx */
2031 		case 181:	/* stdux */
2032 			op->type = MKOP(STORE, u, 8);
2033 			break;
2034 #endif
2035 
2036 		case 151:	/* stwx */
2037 		case 183:	/* stwux */
2038 			op->type = MKOP(STORE, u, 4);
2039 			break;
2040 
2041 		case 215:	/* stbx */
2042 		case 247:	/* stbux */
2043 			op->type = MKOP(STORE, u, 1);
2044 			break;
2045 
2046 		case 279:	/* lhzx */
2047 		case 311:	/* lhzux */
2048 			op->type = MKOP(LOAD, u, 2);
2049 			break;
2050 
2051 #ifdef __powerpc64__
2052 		case 341:	/* lwax */
2053 		case 373:	/* lwaux */
2054 			op->type = MKOP(LOAD, SIGNEXT | u, 4);
2055 			break;
2056 #endif
2057 
2058 		case 343:	/* lhax */
2059 		case 375:	/* lhaux */
2060 			op->type = MKOP(LOAD, SIGNEXT | u, 2);
2061 			break;
2062 
2063 		case 407:	/* sthx */
2064 		case 439:	/* sthux */
2065 			op->type = MKOP(STORE, u, 2);
2066 			break;
2067 
2068 #ifdef __powerpc64__
2069 		case 532:	/* ldbrx */
2070 			op->type = MKOP(LOAD, BYTEREV, 8);
2071 			break;
2072 
2073 #endif
2074 		case 533:	/* lswx */
2075 			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2076 			break;
2077 
2078 		case 534:	/* lwbrx */
2079 			op->type = MKOP(LOAD, BYTEREV, 4);
2080 			break;
2081 
2082 		case 597:	/* lswi */
2083 			if (rb == 0)
2084 				rb = 32;	/* # bytes to load */
2085 			op->type = MKOP(LOAD_MULTI, 0, rb);
2086 			op->ea = ra ? regs->gpr[ra] : 0;
2087 			break;
2088 
2089 #ifdef CONFIG_PPC_FPU
2090 		case 535:	/* lfsx */
2091 		case 567:	/* lfsux */
2092 			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2093 			break;
2094 
2095 		case 599:	/* lfdx */
2096 		case 631:	/* lfdux */
2097 			op->type = MKOP(LOAD_FP, u, 8);
2098 			break;
2099 
2100 		case 663:	/* stfsx */
2101 		case 695:	/* stfsux */
2102 			op->type = MKOP(STORE_FP, u | FPCONV, 4);
2103 			break;
2104 
2105 		case 727:	/* stfdx */
2106 		case 759:	/* stfdux */
2107 			op->type = MKOP(STORE_FP, u, 8);
2108 			break;
2109 
2110 #ifdef __powerpc64__
2111 		case 791:	/* lfdpx */
2112 			op->type = MKOP(LOAD_FP, 0, 16);
2113 			break;
2114 
2115 		case 855:	/* lfiwax */
2116 			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2117 			break;
2118 
2119 		case 887:	/* lfiwzx */
2120 			op->type = MKOP(LOAD_FP, 0, 4);
2121 			break;
2122 
2123 		case 919:	/* stfdpx */
2124 			op->type = MKOP(STORE_FP, 0, 16);
2125 			break;
2126 
2127 		case 983:	/* stfiwx */
2128 			op->type = MKOP(STORE_FP, 0, 4);
2129 			break;
2130 #endif /* __powerpc64 */
2131 #endif /* CONFIG_PPC_FPU */
2132 
2133 #ifdef __powerpc64__
2134 		case 660:	/* stdbrx */
2135 			op->type = MKOP(STORE, BYTEREV, 8);
2136 			op->val = byterev_8(regs->gpr[rd]);
2137 			break;
2138 
2139 #endif
2140 		case 661:	/* stswx */
2141 			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2142 			break;
2143 
2144 		case 662:	/* stwbrx */
2145 			op->type = MKOP(STORE, BYTEREV, 4);
2146 			op->val = byterev_4(regs->gpr[rd]);
2147 			break;
2148 
2149 		case 725:	/* stswi */
2150 			if (rb == 0)
2151 				rb = 32;	/* # bytes to store */
2152 			op->type = MKOP(STORE_MULTI, 0, rb);
2153 			op->ea = ra ? regs->gpr[ra] : 0;
2154 			break;
2155 
2156 		case 790:	/* lhbrx */
2157 			op->type = MKOP(LOAD, BYTEREV, 2);
2158 			break;
2159 
2160 		case 918:	/* sthbrx */
2161 			op->type = MKOP(STORE, BYTEREV, 2);
2162 			op->val = byterev_2(regs->gpr[rd]);
2163 			break;
2164 
2165 #ifdef CONFIG_VSX
2166 		case 12:	/* lxsiwzx */
2167 			op->reg = rd | ((instr & 1) << 5);
2168 			op->type = MKOP(LOAD_VSX, 0, 4);
2169 			op->element_size = 8;
2170 			break;
2171 
2172 		case 76:	/* lxsiwax */
2173 			op->reg = rd | ((instr & 1) << 5);
2174 			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2175 			op->element_size = 8;
2176 			break;
2177 
2178 		case 140:	/* stxsiwx */
2179 			op->reg = rd | ((instr & 1) << 5);
2180 			op->type = MKOP(STORE_VSX, 0, 4);
2181 			op->element_size = 8;
2182 			break;
2183 
2184 		case 268:	/* lxvx */
2185 			op->reg = rd | ((instr & 1) << 5);
2186 			op->type = MKOP(LOAD_VSX, 0, 16);
2187 			op->element_size = 16;
2188 			op->vsx_flags = VSX_CHECK_VEC;
2189 			break;
2190 
2191 		case 269:	/* lxvl */
2192 		case 301: {	/* lxvll */
2193 			int nb;
2194 			op->reg = rd | ((instr & 1) << 5);
2195 			op->ea = ra ? regs->gpr[ra] : 0;
2196 			nb = regs->gpr[rb] & 0xff;
2197 			if (nb > 16)
2198 				nb = 16;
2199 			op->type = MKOP(LOAD_VSX, 0, nb);
2200 			op->element_size = 16;
2201 			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2202 				VSX_CHECK_VEC;
2203 			break;
2204 		}
2205 		case 332:	/* lxvdsx */
2206 			op->reg = rd | ((instr & 1) << 5);
2207 			op->type = MKOP(LOAD_VSX, 0, 8);
2208 			op->element_size = 8;
2209 			op->vsx_flags = VSX_SPLAT;
2210 			break;
2211 
2212 		case 364:	/* lxvwsx */
2213 			op->reg = rd | ((instr & 1) << 5);
2214 			op->type = MKOP(LOAD_VSX, 0, 4);
2215 			op->element_size = 4;
2216 			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2217 			break;
2218 
2219 		case 396:	/* stxvx */
2220 			op->reg = rd | ((instr & 1) << 5);
2221 			op->type = MKOP(STORE_VSX, 0, 16);
2222 			op->element_size = 16;
2223 			op->vsx_flags = VSX_CHECK_VEC;
2224 			break;
2225 
2226 		case 397:	/* stxvl */
2227 		case 429: {	/* stxvll */
2228 			int nb;
2229 			op->reg = rd | ((instr & 1) << 5);
2230 			op->ea = ra ? regs->gpr[ra] : 0;
2231 			nb = regs->gpr[rb] & 0xff;
2232 			if (nb > 16)
2233 				nb = 16;
2234 			op->type = MKOP(STORE_VSX, 0, nb);
2235 			op->element_size = 16;
2236 			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2237 				VSX_CHECK_VEC;
2238 			break;
2239 		}
2240 		case 524:	/* lxsspx */
2241 			op->reg = rd | ((instr & 1) << 5);
2242 			op->type = MKOP(LOAD_VSX, 0, 4);
2243 			op->element_size = 8;
2244 			op->vsx_flags = VSX_FPCONV;
2245 			break;
2246 
2247 		case 588:	/* lxsdx */
2248 			op->reg = rd | ((instr & 1) << 5);
2249 			op->type = MKOP(LOAD_VSX, 0, 8);
2250 			op->element_size = 8;
2251 			break;
2252 
2253 		case 652:	/* stxsspx */
2254 			op->reg = rd | ((instr & 1) << 5);
2255 			op->type = MKOP(STORE_VSX, 0, 4);
2256 			op->element_size = 8;
2257 			op->vsx_flags = VSX_FPCONV;
2258 			break;
2259 
2260 		case 716:	/* stxsdx */
2261 			op->reg = rd | ((instr & 1) << 5);
2262 			op->type = MKOP(STORE_VSX, 0, 8);
2263 			op->element_size = 8;
2264 			break;
2265 
2266 		case 780:	/* lxvw4x */
2267 			op->reg = rd | ((instr & 1) << 5);
2268 			op->type = MKOP(LOAD_VSX, 0, 16);
2269 			op->element_size = 4;
2270 			break;
2271 
2272 		case 781:	/* lxsibzx */
2273 			op->reg = rd | ((instr & 1) << 5);
2274 			op->type = MKOP(LOAD_VSX, 0, 1);
2275 			op->element_size = 8;
2276 			op->vsx_flags = VSX_CHECK_VEC;
2277 			break;
2278 
2279 		case 812:	/* lxvh8x */
2280 			op->reg = rd | ((instr & 1) << 5);
2281 			op->type = MKOP(LOAD_VSX, 0, 16);
2282 			op->element_size = 2;
2283 			op->vsx_flags = VSX_CHECK_VEC;
2284 			break;
2285 
2286 		case 813:	/* lxsihzx */
2287 			op->reg = rd | ((instr & 1) << 5);
2288 			op->type = MKOP(LOAD_VSX, 0, 2);
2289 			op->element_size = 8;
2290 			op->vsx_flags = VSX_CHECK_VEC;
2291 			break;
2292 
2293 		case 844:	/* lxvd2x */
2294 			op->reg = rd | ((instr & 1) << 5);
2295 			op->type = MKOP(LOAD_VSX, 0, 16);
2296 			op->element_size = 8;
2297 			break;
2298 
2299 		case 876:	/* lxvb16x */
2300 			op->reg = rd | ((instr & 1) << 5);
2301 			op->type = MKOP(LOAD_VSX, 0, 16);
2302 			op->element_size = 1;
2303 			op->vsx_flags = VSX_CHECK_VEC;
2304 			break;
2305 
2306 		case 908:	/* stxvw4x */
2307 			op->reg = rd | ((instr & 1) << 5);
2308 			op->type = MKOP(STORE_VSX, 0, 16);
2309 			op->element_size = 4;
2310 			break;
2311 
2312 		case 909:	/* stxsibx */
2313 			op->reg = rd | ((instr & 1) << 5);
2314 			op->type = MKOP(STORE_VSX, 0, 1);
2315 			op->element_size = 8;
2316 			op->vsx_flags = VSX_CHECK_VEC;
2317 			break;
2318 
2319 		case 940:	/* stxvh8x */
2320 			op->reg = rd | ((instr & 1) << 5);
2321 			op->type = MKOP(STORE_VSX, 0, 16);
2322 			op->element_size = 2;
2323 			op->vsx_flags = VSX_CHECK_VEC;
2324 			break;
2325 
2326 		case 941:	/* stxsihx */
2327 			op->reg = rd | ((instr & 1) << 5);
2328 			op->type = MKOP(STORE_VSX, 0, 2);
2329 			op->element_size = 8;
2330 			op->vsx_flags = VSX_CHECK_VEC;
2331 			break;
2332 
2333 		case 972:	/* stxvd2x */
2334 			op->reg = rd | ((instr & 1) << 5);
2335 			op->type = MKOP(STORE_VSX, 0, 16);
2336 			op->element_size = 8;
2337 			break;
2338 
2339 		case 1004:	/* stxvb16x */
2340 			op->reg = rd | ((instr & 1) << 5);
2341 			op->type = MKOP(STORE_VSX, 0, 16);
2342 			op->element_size = 1;
2343 			op->vsx_flags = VSX_CHECK_VEC;
2344 			break;
2345 
2346 #endif /* CONFIG_VSX */
2347 		}
2348 		break;
2349 
2350 	case 32:	/* lwz */
2351 	case 33:	/* lwzu */
2352 		op->type = MKOP(LOAD, u, 4);
2353 		op->ea = dform_ea(instr, regs);
2354 		break;
2355 
2356 	case 34:	/* lbz */
2357 	case 35:	/* lbzu */
2358 		op->type = MKOP(LOAD, u, 1);
2359 		op->ea = dform_ea(instr, regs);
2360 		break;
2361 
2362 	case 36:	/* stw */
2363 	case 37:	/* stwu */
2364 		op->type = MKOP(STORE, u, 4);
2365 		op->ea = dform_ea(instr, regs);
2366 		break;
2367 
2368 	case 38:	/* stb */
2369 	case 39:	/* stbu */
2370 		op->type = MKOP(STORE, u, 1);
2371 		op->ea = dform_ea(instr, regs);
2372 		break;
2373 
2374 	case 40:	/* lhz */
2375 	case 41:	/* lhzu */
2376 		op->type = MKOP(LOAD, u, 2);
2377 		op->ea = dform_ea(instr, regs);
2378 		break;
2379 
2380 	case 42:	/* lha */
2381 	case 43:	/* lhau */
2382 		op->type = MKOP(LOAD, SIGNEXT | u, 2);
2383 		op->ea = dform_ea(instr, regs);
2384 		break;
2385 
2386 	case 44:	/* sth */
2387 	case 45:	/* sthu */
2388 		op->type = MKOP(STORE, u, 2);
2389 		op->ea = dform_ea(instr, regs);
2390 		break;
2391 
2392 	case 46:	/* lmw */
2393 		if (ra >= rd)
2394 			break;		/* invalid form, ra in range to load */
2395 		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2396 		op->ea = dform_ea(instr, regs);
2397 		break;
2398 
2399 	case 47:	/* stmw */
2400 		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2401 		op->ea = dform_ea(instr, regs);
2402 		break;
2403 
2404 #ifdef CONFIG_PPC_FPU
2405 	case 48:	/* lfs */
2406 	case 49:	/* lfsu */
2407 		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2408 		op->ea = dform_ea(instr, regs);
2409 		break;
2410 
2411 	case 50:	/* lfd */
2412 	case 51:	/* lfdu */
2413 		op->type = MKOP(LOAD_FP, u, 8);
2414 		op->ea = dform_ea(instr, regs);
2415 		break;
2416 
2417 	case 52:	/* stfs */
2418 	case 53:	/* stfsu */
2419 		op->type = MKOP(STORE_FP, u | FPCONV, 4);
2420 		op->ea = dform_ea(instr, regs);
2421 		break;
2422 
2423 	case 54:	/* stfd */
2424 	case 55:	/* stfdu */
2425 		op->type = MKOP(STORE_FP, u, 8);
2426 		op->ea = dform_ea(instr, regs);
2427 		break;
2428 #endif
2429 
2430 #ifdef __powerpc64__
2431 	case 56:	/* lq */
2432 		if (!((rd & 1) || (rd == ra)))
2433 			op->type = MKOP(LOAD, 0, 16);
2434 		op->ea = dqform_ea(instr, regs);
2435 		break;
2436 #endif
2437 
2438 #ifdef CONFIG_VSX
2439 	case 57:	/* lfdp, lxsd, lxssp */
2440 		op->ea = dsform_ea(instr, regs);
2441 		switch (instr & 3) {
2442 		case 0:		/* lfdp */
2443 			if (rd & 1)
2444 				break;		/* reg must be even */
2445 			op->type = MKOP(LOAD_FP, 0, 16);
2446 			break;
2447 		case 2:		/* lxsd */
2448 			op->reg = rd + 32;
2449 			op->type = MKOP(LOAD_VSX, 0, 8);
2450 			op->element_size = 8;
2451 			op->vsx_flags = VSX_CHECK_VEC;
2452 			break;
2453 		case 3:		/* lxssp */
2454 			op->reg = rd + 32;
2455 			op->type = MKOP(LOAD_VSX, 0, 4);
2456 			op->element_size = 8;
2457 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2458 			break;
2459 		}
2460 		break;
2461 #endif /* CONFIG_VSX */
2462 
2463 #ifdef __powerpc64__
2464 	case 58:	/* ld[u], lwa */
2465 		op->ea = dsform_ea(instr, regs);
2466 		switch (instr & 3) {
2467 		case 0:		/* ld */
2468 			op->type = MKOP(LOAD, 0, 8);
2469 			break;
2470 		case 1:		/* ldu */
2471 			op->type = MKOP(LOAD, UPDATE, 8);
2472 			break;
2473 		case 2:		/* lwa */
2474 			op->type = MKOP(LOAD, SIGNEXT, 4);
2475 			break;
2476 		}
2477 		break;
2478 #endif
2479 
2480 #ifdef CONFIG_VSX
2481 	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
2482 		switch (instr & 7) {
2483 		case 0:		/* stfdp with LSB of DS field = 0 */
2484 		case 4:		/* stfdp with LSB of DS field = 1 */
2485 			op->ea = dsform_ea(instr, regs);
2486 			op->type = MKOP(STORE_FP, 0, 16);
2487 			break;
2488 
2489 		case 1:		/* lxv */
2490 			op->ea = dqform_ea(instr, regs);
2491 			if (instr & 8)
2492 				op->reg = rd + 32;
2493 			op->type = MKOP(LOAD_VSX, 0, 16);
2494 			op->element_size = 16;
2495 			op->vsx_flags = VSX_CHECK_VEC;
2496 			break;
2497 
2498 		case 2:		/* stxsd with LSB of DS field = 0 */
2499 		case 6:		/* stxsd with LSB of DS field = 1 */
2500 			op->ea = dsform_ea(instr, regs);
2501 			op->reg = rd + 32;
2502 			op->type = MKOP(STORE_VSX, 0, 8);
2503 			op->element_size = 8;
2504 			op->vsx_flags = VSX_CHECK_VEC;
2505 			break;
2506 
2507 		case 3:		/* stxssp with LSB of DS field = 0 */
2508 		case 7:		/* stxssp with LSB of DS field = 1 */
2509 			op->ea = dsform_ea(instr, regs);
2510 			op->reg = rd + 32;
2511 			op->type = MKOP(STORE_VSX, 0, 4);
2512 			op->element_size = 8;
2513 			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2514 			break;
2515 
2516 		case 5:		/* stxv */
2517 			op->ea = dqform_ea(instr, regs);
2518 			if (instr & 8)
2519 				op->reg = rd + 32;
2520 			op->type = MKOP(STORE_VSX, 0, 16);
2521 			op->element_size = 16;
2522 			op->vsx_flags = VSX_CHECK_VEC;
2523 			break;
2524 		}
2525 		break;
2526 #endif /* CONFIG_VSX */
2527 
2528 #ifdef __powerpc64__
2529 	case 62:	/* std[u] */
2530 		op->ea = dsform_ea(instr, regs);
2531 		switch (instr & 3) {
2532 		case 0:		/* std */
2533 			op->type = MKOP(STORE, 0, 8);
2534 			break;
2535 		case 1:		/* stdu */
2536 			op->type = MKOP(STORE, UPDATE, 8);
2537 			break;
2538 		case 2:		/* stq */
2539 			if (!(rd & 1))
2540 				op->type = MKOP(STORE, 0, 16);
2541 			break;
2542 		}
2543 		break;
2544 #endif /* __powerpc64__ */
2545 
2546 	}
2547 	return 0;
2548 
2549  logical_done:
2550 	if (instr & 1)
2551 		set_cr0(regs, op);
2552  logical_done_nocc:
2553 	op->reg = ra;
2554 	op->type |= SETREG;
2555 	return 1;
2556 
2557  arith_done:
2558 	if (instr & 1)
2559 		set_cr0(regs, op);
2560  compute_done:
2561 	op->reg = rd;
2562 	op->type |= SETREG;
2563 	return 1;
2564 
2565  priv:
2566 	op->type = INTERRUPT | 0x700;
2567 	op->val = SRR1_PROGPRIV;
2568 	return 0;
2569 
2570  trap:
2571 	op->type = INTERRUPT | 0x700;
2572 	op->val = SRR1_PROGTRAP;
2573 	return 0;
2574 }
2575 EXPORT_SYMBOL_GPL(analyse_instr);
2576 NOKPROBE_SYMBOL(analyse_instr);
2577 
2578 /*
2579  * For PPC32 we always use stwu with r1 to change the stack pointer.
2580  * So this emulated store may corrupt the exception frame, now we
2581  * have to provide the exception frame trampoline, which is pushed
2582  * below the kprobed function stack. So we only update gpr[1] but
2583  * don't emulate the real store operation. We will do real store
2584  * operation safely in exception return code by checking this flag.
2585  */
2586 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2587 {
2588 #ifdef CONFIG_PPC32
2589 	/*
2590 	 * Check if we will touch kernel stack overflow
2591 	 */
2592 	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2593 		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2594 		return -EINVAL;
2595 	}
2596 #endif /* CONFIG_PPC32 */
2597 	/*
2598 	 * Check if we already set since that means we'll
2599 	 * lose the previous value.
2600 	 */
2601 	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2602 	set_thread_flag(TIF_EMULATE_STACK_STORE);
2603 	return 0;
2604 }
2605 
2606 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2607 {
2608 	switch (size) {
2609 	case 2:
2610 		*valp = (signed short) *valp;
2611 		break;
2612 	case 4:
2613 		*valp = (signed int) *valp;
2614 		break;
2615 	}
2616 }
2617 
2618 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2619 {
2620 	switch (size) {
2621 	case 2:
2622 		*valp = byterev_2(*valp);
2623 		break;
2624 	case 4:
2625 		*valp = byterev_4(*valp);
2626 		break;
2627 #ifdef __powerpc64__
2628 	case 8:
2629 		*valp = byterev_8(*valp);
2630 		break;
2631 #endif
2632 	}
2633 }
2634 
2635 /*
2636  * Emulate an instruction that can be executed just by updating
2637  * fields in *regs.
2638  */
2639 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2640 {
2641 	unsigned long next_pc;
2642 
2643 	next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2644 	switch (op->type & INSTR_TYPE_MASK) {
2645 	case COMPUTE:
2646 		if (op->type & SETREG)
2647 			regs->gpr[op->reg] = op->val;
2648 		if (op->type & SETCC)
2649 			regs->ccr = op->ccval;
2650 		if (op->type & SETXER)
2651 			regs->xer = op->xerval;
2652 		break;
2653 
2654 	case BRANCH:
2655 		if (op->type & SETLK)
2656 			regs->link = next_pc;
2657 		if (op->type & BRTAKEN)
2658 			next_pc = op->val;
2659 		if (op->type & DECCTR)
2660 			--regs->ctr;
2661 		break;
2662 
2663 	case BARRIER:
2664 		switch (op->type & BARRIER_MASK) {
2665 		case BARRIER_SYNC:
2666 			mb();
2667 			break;
2668 		case BARRIER_ISYNC:
2669 			isync();
2670 			break;
2671 		case BARRIER_EIEIO:
2672 			eieio();
2673 			break;
2674 		case BARRIER_LWSYNC:
2675 			asm volatile("lwsync" : : : "memory");
2676 			break;
2677 		case BARRIER_PTESYNC:
2678 			asm volatile("ptesync" : : : "memory");
2679 			break;
2680 		}
2681 		break;
2682 
2683 	case MFSPR:
2684 		switch (op->spr) {
2685 		case SPRN_XER:
2686 			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2687 			break;
2688 		case SPRN_LR:
2689 			regs->gpr[op->reg] = regs->link;
2690 			break;
2691 		case SPRN_CTR:
2692 			regs->gpr[op->reg] = regs->ctr;
2693 			break;
2694 		default:
2695 			WARN_ON_ONCE(1);
2696 		}
2697 		break;
2698 
2699 	case MTSPR:
2700 		switch (op->spr) {
2701 		case SPRN_XER:
2702 			regs->xer = op->val & 0xffffffffUL;
2703 			break;
2704 		case SPRN_LR:
2705 			regs->link = op->val;
2706 			break;
2707 		case SPRN_CTR:
2708 			regs->ctr = op->val;
2709 			break;
2710 		default:
2711 			WARN_ON_ONCE(1);
2712 		}
2713 		break;
2714 
2715 	default:
2716 		WARN_ON_ONCE(1);
2717 	}
2718 	regs->nip = next_pc;
2719 }
2720 NOKPROBE_SYMBOL(emulate_update_regs);
2721 
2722 /*
2723  * Emulate a previously-analysed load or store instruction.
2724  * Return values are:
2725  * 0 = instruction emulated successfully
2726  * -EFAULT = address out of range or access faulted (regs->dar
2727  *	     contains the faulting address)
2728  * -EACCES = misaligned access, instruction requires alignment
2729  * -EINVAL = unknown operation in *op
2730  */
2731 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2732 {
2733 	int err, size, type;
2734 	int i, rd, nb;
2735 	unsigned int cr;
2736 	unsigned long val;
2737 	unsigned long ea;
2738 	bool cross_endian;
2739 
2740 	err = 0;
2741 	size = GETSIZE(op->type);
2742 	type = op->type & INSTR_TYPE_MASK;
2743 	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2744 	ea = truncate_if_32bit(regs->msr, op->ea);
2745 
2746 	switch (type) {
2747 	case LARX:
2748 		if (ea & (size - 1))
2749 			return -EACCES;		/* can't handle misaligned */
2750 		if (!address_ok(regs, ea, size))
2751 			return -EFAULT;
2752 		err = 0;
2753 		val = 0;
2754 		switch (size) {
2755 #ifdef __powerpc64__
2756 		case 1:
2757 			__get_user_asmx(val, ea, err, "lbarx");
2758 			break;
2759 		case 2:
2760 			__get_user_asmx(val, ea, err, "lharx");
2761 			break;
2762 #endif
2763 		case 4:
2764 			__get_user_asmx(val, ea, err, "lwarx");
2765 			break;
2766 #ifdef __powerpc64__
2767 		case 8:
2768 			__get_user_asmx(val, ea, err, "ldarx");
2769 			break;
2770 		case 16:
2771 			err = do_lqarx(ea, &regs->gpr[op->reg]);
2772 			break;
2773 #endif
2774 		default:
2775 			return -EINVAL;
2776 		}
2777 		if (err) {
2778 			regs->dar = ea;
2779 			break;
2780 		}
2781 		if (size < 16)
2782 			regs->gpr[op->reg] = val;
2783 		break;
2784 
2785 	case STCX:
2786 		if (ea & (size - 1))
2787 			return -EACCES;		/* can't handle misaligned */
2788 		if (!address_ok(regs, ea, size))
2789 			return -EFAULT;
2790 		err = 0;
2791 		switch (size) {
2792 #ifdef __powerpc64__
2793 		case 1:
2794 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
2795 			break;
2796 		case 2:
2797 			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
2798 			break;
2799 #endif
2800 		case 4:
2801 			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
2802 			break;
2803 #ifdef __powerpc64__
2804 		case 8:
2805 			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
2806 			break;
2807 		case 16:
2808 			err = do_stqcx(ea, regs->gpr[op->reg],
2809 				       regs->gpr[op->reg + 1], &cr);
2810 			break;
2811 #endif
2812 		default:
2813 			return -EINVAL;
2814 		}
2815 		if (!err)
2816 			regs->ccr = (regs->ccr & 0x0fffffff) |
2817 				(cr & 0xe0000000) |
2818 				((regs->xer >> 3) & 0x10000000);
2819 		else
2820 			regs->dar = ea;
2821 		break;
2822 
2823 	case LOAD:
2824 #ifdef __powerpc64__
2825 		if (size == 16) {
2826 			err = emulate_lq(regs, ea, op->reg, cross_endian);
2827 			break;
2828 		}
2829 #endif
2830 		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2831 		if (!err) {
2832 			if (op->type & SIGNEXT)
2833 				do_signext(&regs->gpr[op->reg], size);
2834 			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2835 				do_byterev(&regs->gpr[op->reg], size);
2836 		}
2837 		break;
2838 
2839 #ifdef CONFIG_PPC_FPU
2840 	case LOAD_FP:
2841 		/*
2842 		 * If the instruction is in userspace, we can emulate it even
2843 		 * if the VMX state is not live, because we have the state
2844 		 * stored in the thread_struct.  If the instruction is in
2845 		 * the kernel, we must not touch the state in the thread_struct.
2846 		 */
2847 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2848 			return 0;
2849 		err = do_fp_load(op, ea, regs, cross_endian);
2850 		break;
2851 #endif
2852 #ifdef CONFIG_ALTIVEC
2853 	case LOAD_VMX:
2854 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2855 			return 0;
2856 		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2857 		break;
2858 #endif
2859 #ifdef CONFIG_VSX
2860 	case LOAD_VSX: {
2861 		unsigned long msrbit = MSR_VSX;
2862 
2863 		/*
2864 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2865 		 * when the target of the instruction is a vector register.
2866 		 */
2867 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2868 			msrbit = MSR_VEC;
2869 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2870 			return 0;
2871 		err = do_vsx_load(op, ea, regs, cross_endian);
2872 		break;
2873 	}
2874 #endif
2875 	case LOAD_MULTI:
2876 		if (!address_ok(regs, ea, size))
2877 			return -EFAULT;
2878 		rd = op->reg;
2879 		for (i = 0; i < size; i += 4) {
2880 			unsigned int v32 = 0;
2881 
2882 			nb = size - i;
2883 			if (nb > 4)
2884 				nb = 4;
2885 			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
2886 			if (err)
2887 				break;
2888 			if (unlikely(cross_endian))
2889 				v32 = byterev_4(v32);
2890 			regs->gpr[rd] = v32;
2891 			ea += 4;
2892 			/* reg number wraps from 31 to 0 for lsw[ix] */
2893 			rd = (rd + 1) & 0x1f;
2894 		}
2895 		break;
2896 
2897 	case STORE:
2898 #ifdef __powerpc64__
2899 		if (size == 16) {
2900 			err = emulate_stq(regs, ea, op->reg, cross_endian);
2901 			break;
2902 		}
2903 #endif
2904 		if ((op->type & UPDATE) && size == sizeof(long) &&
2905 		    op->reg == 1 && op->update_reg == 1 &&
2906 		    !(regs->msr & MSR_PR) &&
2907 		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
2908 			err = handle_stack_update(ea, regs);
2909 			break;
2910 		}
2911 		if (unlikely(cross_endian))
2912 			do_byterev(&op->val, size);
2913 		err = write_mem(op->val, ea, size, regs);
2914 		break;
2915 
2916 #ifdef CONFIG_PPC_FPU
2917 	case STORE_FP:
2918 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2919 			return 0;
2920 		err = do_fp_store(op, ea, regs, cross_endian);
2921 		break;
2922 #endif
2923 #ifdef CONFIG_ALTIVEC
2924 	case STORE_VMX:
2925 		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2926 			return 0;
2927 		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
2928 		break;
2929 #endif
2930 #ifdef CONFIG_VSX
2931 	case STORE_VSX: {
2932 		unsigned long msrbit = MSR_VSX;
2933 
2934 		/*
2935 		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2936 		 * when the target of the instruction is a vector register.
2937 		 */
2938 		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2939 			msrbit = MSR_VEC;
2940 		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2941 			return 0;
2942 		err = do_vsx_store(op, ea, regs, cross_endian);
2943 		break;
2944 	}
2945 #endif
2946 	case STORE_MULTI:
2947 		if (!address_ok(regs, ea, size))
2948 			return -EFAULT;
2949 		rd = op->reg;
2950 		for (i = 0; i < size; i += 4) {
2951 			unsigned int v32 = regs->gpr[rd];
2952 
2953 			nb = size - i;
2954 			if (nb > 4)
2955 				nb = 4;
2956 			if (unlikely(cross_endian))
2957 				v32 = byterev_4(v32);
2958 			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
2959 			if (err)
2960 				break;
2961 			ea += 4;
2962 			/* reg number wraps from 31 to 0 for stsw[ix] */
2963 			rd = (rd + 1) & 0x1f;
2964 		}
2965 		break;
2966 
2967 	default:
2968 		return -EINVAL;
2969 	}
2970 
2971 	if (err)
2972 		return err;
2973 
2974 	if (op->type & UPDATE)
2975 		regs->gpr[op->update_reg] = op->ea;
2976 
2977 	return 0;
2978 }
2979 NOKPROBE_SYMBOL(emulate_loadstore);
2980 
2981 /*
2982  * Emulate instructions that cause a transfer of control,
2983  * loads and stores, and a few other instructions.
2984  * Returns 1 if the step was emulated, 0 if not,
2985  * or -1 if the instruction is one that should not be stepped,
2986  * such as an rfid, or a mtmsrd that would clear MSR_RI.
2987  */
2988 int emulate_step(struct pt_regs *regs, unsigned int instr)
2989 {
2990 	struct instruction_op op;
2991 	int r, err, type;
2992 	unsigned long val;
2993 	unsigned long ea;
2994 
2995 	r = analyse_instr(&op, regs, instr);
2996 	if (r < 0)
2997 		return r;
2998 	if (r > 0) {
2999 		emulate_update_regs(regs, &op);
3000 		return 1;
3001 	}
3002 
3003 	err = 0;
3004 	type = op.type & INSTR_TYPE_MASK;
3005 
3006 	if (OP_IS_LOAD_STORE(type)) {
3007 		err = emulate_loadstore(regs, &op);
3008 		if (err)
3009 			return 0;
3010 		goto instr_done;
3011 	}
3012 
3013 	switch (type) {
3014 	case CACHEOP:
3015 		ea = truncate_if_32bit(regs->msr, op.ea);
3016 		if (!address_ok(regs, ea, 8))
3017 			return 0;
3018 		switch (op.type & CACHEOP_MASK) {
3019 		case DCBST:
3020 			__cacheop_user_asmx(ea, err, "dcbst");
3021 			break;
3022 		case DCBF:
3023 			__cacheop_user_asmx(ea, err, "dcbf");
3024 			break;
3025 		case DCBTST:
3026 			if (op.reg == 0)
3027 				prefetchw((void *) ea);
3028 			break;
3029 		case DCBT:
3030 			if (op.reg == 0)
3031 				prefetch((void *) ea);
3032 			break;
3033 		case ICBI:
3034 			__cacheop_user_asmx(ea, err, "icbi");
3035 			break;
3036 		case DCBZ:
3037 			err = emulate_dcbz(ea, regs);
3038 			break;
3039 		}
3040 		if (err) {
3041 			regs->dar = ea;
3042 			return 0;
3043 		}
3044 		goto instr_done;
3045 
3046 	case MFMSR:
3047 		regs->gpr[op.reg] = regs->msr & MSR_MASK;
3048 		goto instr_done;
3049 
3050 	case MTMSR:
3051 		val = regs->gpr[op.reg];
3052 		if ((val & MSR_RI) == 0)
3053 			/* can't step mtmsr[d] that would clear MSR_RI */
3054 			return -1;
3055 		/* here op.val is the mask of bits to change */
3056 		regs->msr = (regs->msr & ~op.val) | (val & op.val);
3057 		goto instr_done;
3058 
3059 #ifdef CONFIG_PPC64
3060 	case SYSCALL:	/* sc */
3061 		/*
3062 		 * N.B. this uses knowledge about how the syscall
3063 		 * entry code works.  If that is changed, this will
3064 		 * need to be changed also.
3065 		 */
3066 		if (regs->gpr[0] == 0x1ebe &&
3067 		    cpu_has_feature(CPU_FTR_REAL_LE)) {
3068 			regs->msr ^= MSR_LE;
3069 			goto instr_done;
3070 		}
3071 		regs->gpr[9] = regs->gpr[13];
3072 		regs->gpr[10] = MSR_KERNEL;
3073 		regs->gpr[11] = regs->nip + 4;
3074 		regs->gpr[12] = regs->msr & MSR_MASK;
3075 		regs->gpr[13] = (unsigned long) get_paca();
3076 		regs->nip = (unsigned long) &system_call_common;
3077 		regs->msr = MSR_KERNEL;
3078 		return 1;
3079 
3080 	case RFI:
3081 		return -1;
3082 #endif
3083 	}
3084 	return 0;
3085 
3086  instr_done:
3087 	regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3088 	return 1;
3089 }
3090 NOKPROBE_SYMBOL(emulate_step);
3091