1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Single-step support.
4 *
5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6 */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17
18 #ifdef CONFIG_PPC64
19 /* Bits in SRR1 that are copied from MSR */
20 #define MSR_MASK 0xffffffff87c0ffffUL
21 #else
22 #define MSR_MASK 0x87c0ffff
23 #endif
24
25 /* Bits in XER */
26 #define XER_SO 0x80000000U
27 #define XER_OV 0x40000000U
28 #define XER_CA 0x20000000U
29 #define XER_OV32 0x00080000U
30 #define XER_CA32 0x00040000U
31
32 #ifdef CONFIG_VSX
33 #define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe))
34 #endif
35
36 #ifdef CONFIG_PPC_FPU
37 /*
38 * Functions in ldstfp.S
39 */
40 extern void get_fpr(int rn, double *p);
41 extern void put_fpr(int rn, const double *p);
42 extern void get_vr(int rn, __vector128 *p);
43 extern void put_vr(int rn, __vector128 *p);
44 extern void load_vsrn(int vsr, const void *p);
45 extern void store_vsrn(int vsr, void *p);
46 extern void conv_sp_to_dp(const float *sp, double *dp);
47 extern void conv_dp_to_sp(const double *dp, float *sp);
48 #endif
49
50 #ifdef __powerpc64__
51 /*
52 * Functions in quad.S
53 */
54 extern int do_lq(unsigned long ea, unsigned long *regs);
55 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
56 extern int do_lqarx(unsigned long ea, unsigned long *regs);
57 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
58 unsigned int *crp);
59 #endif
60
61 #ifdef __LITTLE_ENDIAN__
62 #define IS_LE 1
63 #define IS_BE 0
64 #else
65 #define IS_LE 0
66 #define IS_BE 1
67 #endif
68
69 /*
70 * Emulate the truncation of 64 bit values in 32-bit mode.
71 */
truncate_if_32bit(unsigned long msr,unsigned long val)72 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
73 unsigned long val)
74 {
75 if ((msr & MSR_64BIT) == 0)
76 val &= 0xffffffffUL;
77 return val;
78 }
79
80 /*
81 * Determine whether a conditional branch instruction would branch.
82 */
branch_taken(unsigned int instr,const struct pt_regs * regs,struct instruction_op * op)83 static nokprobe_inline int branch_taken(unsigned int instr,
84 const struct pt_regs *regs,
85 struct instruction_op *op)
86 {
87 unsigned int bo = (instr >> 21) & 0x1f;
88 unsigned int bi;
89
90 if ((bo & 4) == 0) {
91 /* decrement counter */
92 op->type |= DECCTR;
93 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
94 return 0;
95 }
96 if ((bo & 0x10) == 0) {
97 /* check bit from CR */
98 bi = (instr >> 16) & 0x1f;
99 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
100 return 0;
101 }
102 return 1;
103 }
104
address_ok(struct pt_regs * regs,unsigned long ea,int nb)105 static nokprobe_inline long address_ok(struct pt_regs *regs,
106 unsigned long ea, int nb)
107 {
108 if (!user_mode(regs))
109 return 1;
110 if (access_ok((void __user *)ea, nb))
111 return 1;
112 if (access_ok((void __user *)ea, 1))
113 /* Access overlaps the end of the user region */
114 regs->dar = TASK_SIZE_MAX - 1;
115 else
116 regs->dar = ea;
117 return 0;
118 }
119
120 /*
121 * Calculate effective address for a D-form instruction
122 */
dform_ea(unsigned int instr,const struct pt_regs * regs)123 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
124 const struct pt_regs *regs)
125 {
126 int ra;
127 unsigned long ea;
128
129 ra = (instr >> 16) & 0x1f;
130 ea = (signed short) instr; /* sign-extend */
131 if (ra)
132 ea += regs->gpr[ra];
133
134 return ea;
135 }
136
137 #ifdef __powerpc64__
138 /*
139 * Calculate effective address for a DS-form instruction
140 */
dsform_ea(unsigned int instr,const struct pt_regs * regs)141 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
142 const struct pt_regs *regs)
143 {
144 int ra;
145 unsigned long ea;
146
147 ra = (instr >> 16) & 0x1f;
148 ea = (signed short) (instr & ~3); /* sign-extend */
149 if (ra)
150 ea += regs->gpr[ra];
151
152 return ea;
153 }
154
155 /*
156 * Calculate effective address for a DQ-form instruction
157 */
dqform_ea(unsigned int instr,const struct pt_regs * regs)158 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
159 const struct pt_regs *regs)
160 {
161 int ra;
162 unsigned long ea;
163
164 ra = (instr >> 16) & 0x1f;
165 ea = (signed short) (instr & ~0xf); /* sign-extend */
166 if (ra)
167 ea += regs->gpr[ra];
168
169 return ea;
170 }
171 #endif /* __powerpc64 */
172
173 /*
174 * Calculate effective address for an X-form instruction
175 */
xform_ea(unsigned int instr,const struct pt_regs * regs)176 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
177 const struct pt_regs *regs)
178 {
179 int ra, rb;
180 unsigned long ea;
181
182 ra = (instr >> 16) & 0x1f;
183 rb = (instr >> 11) & 0x1f;
184 ea = regs->gpr[rb];
185 if (ra)
186 ea += regs->gpr[ra];
187
188 return ea;
189 }
190
191 /*
192 * Calculate effective address for a MLS:D-form / 8LS:D-form
193 * prefixed instruction
194 */
mlsd_8lsd_ea(unsigned int instr,unsigned int suffix,const struct pt_regs * regs)195 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
196 unsigned int suffix,
197 const struct pt_regs *regs)
198 {
199 int ra, prefix_r;
200 unsigned int dd;
201 unsigned long ea, d0, d1, d;
202
203 prefix_r = GET_PREFIX_R(instr);
204 ra = GET_PREFIX_RA(suffix);
205
206 d0 = instr & 0x3ffff;
207 d1 = suffix & 0xffff;
208 d = (d0 << 16) | d1;
209
210 /*
211 * sign extend a 34 bit number
212 */
213 dd = (unsigned int)(d >> 2);
214 ea = (signed int)dd;
215 ea = (ea << 2) | (d & 0x3);
216
217 if (!prefix_r && ra)
218 ea += regs->gpr[ra];
219 else if (!prefix_r && !ra)
220 ; /* Leave ea as is */
221 else if (prefix_r)
222 ea += regs->nip;
223
224 /*
225 * (prefix_r && ra) is an invalid form. Should already be
226 * checked for by caller!
227 */
228
229 return ea;
230 }
231
232 /*
233 * Return the largest power of 2, not greater than sizeof(unsigned long),
234 * such that x is a multiple of it.
235 */
max_align(unsigned long x)236 static nokprobe_inline unsigned long max_align(unsigned long x)
237 {
238 x |= sizeof(unsigned long);
239 return x & -x; /* isolates rightmost bit */
240 }
241
byterev_2(unsigned long x)242 static nokprobe_inline unsigned long byterev_2(unsigned long x)
243 {
244 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
245 }
246
byterev_4(unsigned long x)247 static nokprobe_inline unsigned long byterev_4(unsigned long x)
248 {
249 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
250 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
251 }
252
253 #ifdef __powerpc64__
byterev_8(unsigned long x)254 static nokprobe_inline unsigned long byterev_8(unsigned long x)
255 {
256 return (byterev_4(x) << 32) | byterev_4(x >> 32);
257 }
258 #endif
259
do_byte_reverse(void * ptr,int nb)260 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
261 {
262 switch (nb) {
263 case 2:
264 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
265 break;
266 case 4:
267 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
268 break;
269 #ifdef __powerpc64__
270 case 8:
271 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
272 break;
273 case 16: {
274 unsigned long *up = (unsigned long *)ptr;
275 unsigned long tmp;
276 tmp = byterev_8(up[0]);
277 up[0] = byterev_8(up[1]);
278 up[1] = tmp;
279 break;
280 }
281 case 32: {
282 unsigned long *up = (unsigned long *)ptr;
283 unsigned long tmp;
284
285 tmp = byterev_8(up[0]);
286 up[0] = byterev_8(up[3]);
287 up[3] = tmp;
288 tmp = byterev_8(up[2]);
289 up[2] = byterev_8(up[1]);
290 up[1] = tmp;
291 break;
292 }
293
294 #endif
295 default:
296 WARN_ON_ONCE(1);
297 }
298 }
299
300 static __always_inline int
__read_mem_aligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)301 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
302 {
303 unsigned long x = 0;
304
305 switch (nb) {
306 case 1:
307 unsafe_get_user(x, (unsigned char __user *)ea, Efault);
308 break;
309 case 2:
310 unsafe_get_user(x, (unsigned short __user *)ea, Efault);
311 break;
312 case 4:
313 unsafe_get_user(x, (unsigned int __user *)ea, Efault);
314 break;
315 #ifdef __powerpc64__
316 case 8:
317 unsafe_get_user(x, (unsigned long __user *)ea, Efault);
318 break;
319 #endif
320 }
321 *dest = x;
322 return 0;
323
324 Efault:
325 regs->dar = ea;
326 return -EFAULT;
327 }
328
329 static nokprobe_inline int
read_mem_aligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)330 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
331 {
332 int err;
333
334 if (is_kernel_addr(ea))
335 return __read_mem_aligned(dest, ea, nb, regs);
336
337 if (user_read_access_begin((void __user *)ea, nb)) {
338 err = __read_mem_aligned(dest, ea, nb, regs);
339 user_read_access_end();
340 } else {
341 err = -EFAULT;
342 regs->dar = ea;
343 }
344
345 return err;
346 }
347
348 /*
349 * Copy from userspace to a buffer, using the largest possible
350 * aligned accesses, up to sizeof(long).
351 */
__copy_mem_in(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)352 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
353 {
354 int c;
355
356 for (; nb > 0; nb -= c) {
357 c = max_align(ea);
358 if (c > nb)
359 c = max_align(nb);
360 switch (c) {
361 case 1:
362 unsafe_get_user(*dest, (u8 __user *)ea, Efault);
363 break;
364 case 2:
365 unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
366 break;
367 case 4:
368 unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
369 break;
370 #ifdef __powerpc64__
371 case 8:
372 unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
373 break;
374 #endif
375 }
376 dest += c;
377 ea += c;
378 }
379 return 0;
380
381 Efault:
382 regs->dar = ea;
383 return -EFAULT;
384 }
385
copy_mem_in(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)386 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
387 {
388 int err;
389
390 if (is_kernel_addr(ea))
391 return __copy_mem_in(dest, ea, nb, regs);
392
393 if (user_read_access_begin((void __user *)ea, nb)) {
394 err = __copy_mem_in(dest, ea, nb, regs);
395 user_read_access_end();
396 } else {
397 err = -EFAULT;
398 regs->dar = ea;
399 }
400
401 return err;
402 }
403
read_mem_unaligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)404 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
405 unsigned long ea, int nb,
406 struct pt_regs *regs)
407 {
408 union {
409 unsigned long ul;
410 u8 b[sizeof(unsigned long)];
411 } u;
412 int i;
413 int err;
414
415 u.ul = 0;
416 i = IS_BE ? sizeof(unsigned long) - nb : 0;
417 err = copy_mem_in(&u.b[i], ea, nb, regs);
418 if (!err)
419 *dest = u.ul;
420 return err;
421 }
422
423 /*
424 * Read memory at address ea for nb bytes, return 0 for success
425 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
426 * If nb < sizeof(long), the result is right-justified on BE systems.
427 */
read_mem(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)428 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
429 struct pt_regs *regs)
430 {
431 if (!address_ok(regs, ea, nb))
432 return -EFAULT;
433 if ((ea & (nb - 1)) == 0)
434 return read_mem_aligned(dest, ea, nb, regs);
435 return read_mem_unaligned(dest, ea, nb, regs);
436 }
437 NOKPROBE_SYMBOL(read_mem);
438
439 static __always_inline int
__write_mem_aligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)440 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
441 {
442 switch (nb) {
443 case 1:
444 unsafe_put_user(val, (unsigned char __user *)ea, Efault);
445 break;
446 case 2:
447 unsafe_put_user(val, (unsigned short __user *)ea, Efault);
448 break;
449 case 4:
450 unsafe_put_user(val, (unsigned int __user *)ea, Efault);
451 break;
452 #ifdef __powerpc64__
453 case 8:
454 unsafe_put_user(val, (unsigned long __user *)ea, Efault);
455 break;
456 #endif
457 }
458 return 0;
459
460 Efault:
461 regs->dar = ea;
462 return -EFAULT;
463 }
464
465 static nokprobe_inline int
write_mem_aligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)466 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
467 {
468 int err;
469
470 if (is_kernel_addr(ea))
471 return __write_mem_aligned(val, ea, nb, regs);
472
473 if (user_write_access_begin((void __user *)ea, nb)) {
474 err = __write_mem_aligned(val, ea, nb, regs);
475 user_write_access_end();
476 } else {
477 err = -EFAULT;
478 regs->dar = ea;
479 }
480
481 return err;
482 }
483
484 /*
485 * Copy from a buffer to userspace, using the largest possible
486 * aligned accesses, up to sizeof(long).
487 */
__copy_mem_out(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)488 static __always_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
489 {
490 int c;
491
492 for (; nb > 0; nb -= c) {
493 c = max_align(ea);
494 if (c > nb)
495 c = max_align(nb);
496 switch (c) {
497 case 1:
498 unsafe_put_user(*dest, (u8 __user *)ea, Efault);
499 break;
500 case 2:
501 unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
502 break;
503 case 4:
504 unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
505 break;
506 #ifdef __powerpc64__
507 case 8:
508 unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
509 break;
510 #endif
511 }
512 dest += c;
513 ea += c;
514 }
515 return 0;
516
517 Efault:
518 regs->dar = ea;
519 return -EFAULT;
520 }
521
copy_mem_out(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)522 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
523 {
524 int err;
525
526 if (is_kernel_addr(ea))
527 return __copy_mem_out(dest, ea, nb, regs);
528
529 if (user_write_access_begin((void __user *)ea, nb)) {
530 err = __copy_mem_out(dest, ea, nb, regs);
531 user_write_access_end();
532 } else {
533 err = -EFAULT;
534 regs->dar = ea;
535 }
536
537 return err;
538 }
539
write_mem_unaligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)540 static nokprobe_inline int write_mem_unaligned(unsigned long val,
541 unsigned long ea, int nb,
542 struct pt_regs *regs)
543 {
544 union {
545 unsigned long ul;
546 u8 b[sizeof(unsigned long)];
547 } u;
548 int i;
549
550 u.ul = val;
551 i = IS_BE ? sizeof(unsigned long) - nb : 0;
552 return copy_mem_out(&u.b[i], ea, nb, regs);
553 }
554
555 /*
556 * Write memory at address ea for nb bytes, return 0 for success
557 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
558 */
write_mem(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)559 static int write_mem(unsigned long val, unsigned long ea, int nb,
560 struct pt_regs *regs)
561 {
562 if (!address_ok(regs, ea, nb))
563 return -EFAULT;
564 if ((ea & (nb - 1)) == 0)
565 return write_mem_aligned(val, ea, nb, regs);
566 return write_mem_unaligned(val, ea, nb, regs);
567 }
568 NOKPROBE_SYMBOL(write_mem);
569
570 #ifdef CONFIG_PPC_FPU
571 /*
572 * These access either the real FP register or the image in the
573 * thread_struct, depending on regs->msr & MSR_FP.
574 */
do_fp_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)575 static int do_fp_load(struct instruction_op *op, unsigned long ea,
576 struct pt_regs *regs, bool cross_endian)
577 {
578 int err, rn, nb;
579 union {
580 int i;
581 unsigned int u;
582 float f;
583 double d[2];
584 unsigned long l[2];
585 u8 b[2 * sizeof(double)];
586 } u;
587
588 nb = GETSIZE(op->type);
589 if (nb > sizeof(u))
590 return -EINVAL;
591 if (!address_ok(regs, ea, nb))
592 return -EFAULT;
593 rn = op->reg;
594 err = copy_mem_in(u.b, ea, nb, regs);
595 if (err)
596 return err;
597 if (unlikely(cross_endian)) {
598 do_byte_reverse(u.b, min(nb, 8));
599 if (nb == 16)
600 do_byte_reverse(&u.b[8], 8);
601 }
602 preempt_disable();
603 if (nb == 4) {
604 if (op->type & FPCONV)
605 conv_sp_to_dp(&u.f, &u.d[0]);
606 else if (op->type & SIGNEXT)
607 u.l[0] = u.i;
608 else
609 u.l[0] = u.u;
610 }
611 if (regs->msr & MSR_FP)
612 put_fpr(rn, &u.d[0]);
613 else
614 current->thread.TS_FPR(rn) = u.l[0];
615 if (nb == 16) {
616 /* lfdp */
617 rn |= 1;
618 if (regs->msr & MSR_FP)
619 put_fpr(rn, &u.d[1]);
620 else
621 current->thread.TS_FPR(rn) = u.l[1];
622 }
623 preempt_enable();
624 return 0;
625 }
626 NOKPROBE_SYMBOL(do_fp_load);
627
do_fp_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)628 static int do_fp_store(struct instruction_op *op, unsigned long ea,
629 struct pt_regs *regs, bool cross_endian)
630 {
631 int rn, nb;
632 union {
633 unsigned int u;
634 float f;
635 double d[2];
636 unsigned long l[2];
637 u8 b[2 * sizeof(double)];
638 } u;
639
640 nb = GETSIZE(op->type);
641 if (nb > sizeof(u))
642 return -EINVAL;
643 if (!address_ok(regs, ea, nb))
644 return -EFAULT;
645 rn = op->reg;
646 preempt_disable();
647 if (regs->msr & MSR_FP)
648 get_fpr(rn, &u.d[0]);
649 else
650 u.l[0] = current->thread.TS_FPR(rn);
651 if (nb == 4) {
652 if (op->type & FPCONV)
653 conv_dp_to_sp(&u.d[0], &u.f);
654 else
655 u.u = u.l[0];
656 }
657 if (nb == 16) {
658 rn |= 1;
659 if (regs->msr & MSR_FP)
660 get_fpr(rn, &u.d[1]);
661 else
662 u.l[1] = current->thread.TS_FPR(rn);
663 }
664 preempt_enable();
665 if (unlikely(cross_endian)) {
666 do_byte_reverse(u.b, min(nb, 8));
667 if (nb == 16)
668 do_byte_reverse(&u.b[8], 8);
669 }
670 return copy_mem_out(u.b, ea, nb, regs);
671 }
672 NOKPROBE_SYMBOL(do_fp_store);
673 #endif
674
675 #ifdef CONFIG_ALTIVEC
676 /* For Altivec/VMX, no need to worry about alignment */
do_vec_load(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)677 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
678 int size, struct pt_regs *regs,
679 bool cross_endian)
680 {
681 int err;
682 union {
683 __vector128 v;
684 u8 b[sizeof(__vector128)];
685 } u = {};
686
687 if (size > sizeof(u))
688 return -EINVAL;
689
690 if (!address_ok(regs, ea & ~0xfUL, 16))
691 return -EFAULT;
692 /* align to multiple of size */
693 ea &= ~(size - 1);
694 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
695 if (err)
696 return err;
697 if (unlikely(cross_endian))
698 do_byte_reverse(&u.b[ea & 0xf], size);
699 preempt_disable();
700 if (regs->msr & MSR_VEC)
701 put_vr(rn, &u.v);
702 else
703 current->thread.vr_state.vr[rn] = u.v;
704 preempt_enable();
705 return 0;
706 }
707
do_vec_store(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)708 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
709 int size, struct pt_regs *regs,
710 bool cross_endian)
711 {
712 union {
713 __vector128 v;
714 u8 b[sizeof(__vector128)];
715 } u;
716
717 if (size > sizeof(u))
718 return -EINVAL;
719
720 if (!address_ok(regs, ea & ~0xfUL, 16))
721 return -EFAULT;
722 /* align to multiple of size */
723 ea &= ~(size - 1);
724
725 preempt_disable();
726 if (regs->msr & MSR_VEC)
727 get_vr(rn, &u.v);
728 else
729 u.v = current->thread.vr_state.vr[rn];
730 preempt_enable();
731 if (unlikely(cross_endian))
732 do_byte_reverse(&u.b[ea & 0xf], size);
733 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
734 }
735 #endif /* CONFIG_ALTIVEC */
736
737 #ifdef __powerpc64__
emulate_lq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)738 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
739 int reg, bool cross_endian)
740 {
741 int err;
742
743 if (!address_ok(regs, ea, 16))
744 return -EFAULT;
745 /* if aligned, should be atomic */
746 if ((ea & 0xf) == 0) {
747 err = do_lq(ea, ®s->gpr[reg]);
748 } else {
749 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
750 if (!err)
751 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
752 }
753 if (!err && unlikely(cross_endian))
754 do_byte_reverse(®s->gpr[reg], 16);
755 return err;
756 }
757
emulate_stq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)758 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
759 int reg, bool cross_endian)
760 {
761 int err;
762 unsigned long vals[2];
763
764 if (!address_ok(regs, ea, 16))
765 return -EFAULT;
766 vals[0] = regs->gpr[reg];
767 vals[1] = regs->gpr[reg + 1];
768 if (unlikely(cross_endian))
769 do_byte_reverse(vals, 16);
770
771 /* if aligned, should be atomic */
772 if ((ea & 0xf) == 0)
773 return do_stq(ea, vals[0], vals[1]);
774
775 err = write_mem(vals[IS_LE], ea, 8, regs);
776 if (!err)
777 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
778 return err;
779 }
780 #endif /* __powerpc64 */
781
782 #ifdef CONFIG_VSX
emulate_vsx_load(struct instruction_op * op,union vsx_reg * reg,const void * mem,bool rev)783 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
784 const void *mem, bool rev)
785 {
786 int size, read_size;
787 int i, j;
788 const unsigned int *wp;
789 const unsigned short *hp;
790 const unsigned char *bp;
791
792 size = GETSIZE(op->type);
793 reg->d[0] = reg->d[1] = 0;
794
795 switch (op->element_size) {
796 case 32:
797 /* [p]lxvp[x] */
798 case 16:
799 /* whole vector; lxv[x] or lxvl[l] */
800 if (size == 0)
801 break;
802 memcpy(reg, mem, size);
803 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
804 rev = !rev;
805 if (rev)
806 do_byte_reverse(reg, size);
807 break;
808 case 8:
809 /* scalar loads, lxvd2x, lxvdsx */
810 read_size = (size >= 8) ? 8 : size;
811 i = IS_LE ? 8 : 8 - read_size;
812 memcpy(®->b[i], mem, read_size);
813 if (rev)
814 do_byte_reverse(®->b[i], 8);
815 if (size < 8) {
816 if (op->type & SIGNEXT) {
817 /* size == 4 is the only case here */
818 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
819 } else if (op->vsx_flags & VSX_FPCONV) {
820 preempt_disable();
821 conv_sp_to_dp(®->fp[1 + IS_LE],
822 ®->dp[IS_LE]);
823 preempt_enable();
824 }
825 } else {
826 if (size == 16) {
827 unsigned long v = *(unsigned long *)(mem + 8);
828 reg->d[IS_BE] = !rev ? v : byterev_8(v);
829 } else if (op->vsx_flags & VSX_SPLAT)
830 reg->d[IS_BE] = reg->d[IS_LE];
831 }
832 break;
833 case 4:
834 /* lxvw4x, lxvwsx */
835 wp = mem;
836 for (j = 0; j < size / 4; ++j) {
837 i = IS_LE ? 3 - j : j;
838 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
839 }
840 if (op->vsx_flags & VSX_SPLAT) {
841 u32 val = reg->w[IS_LE ? 3 : 0];
842 for (; j < 4; ++j) {
843 i = IS_LE ? 3 - j : j;
844 reg->w[i] = val;
845 }
846 }
847 break;
848 case 2:
849 /* lxvh8x */
850 hp = mem;
851 for (j = 0; j < size / 2; ++j) {
852 i = IS_LE ? 7 - j : j;
853 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
854 }
855 break;
856 case 1:
857 /* lxvb16x */
858 bp = mem;
859 for (j = 0; j < size; ++j) {
860 i = IS_LE ? 15 - j : j;
861 reg->b[i] = *bp++;
862 }
863 break;
864 }
865 }
866 EXPORT_SYMBOL_GPL(emulate_vsx_load);
867 NOKPROBE_SYMBOL(emulate_vsx_load);
868
emulate_vsx_store(struct instruction_op * op,const union vsx_reg * reg,void * mem,bool rev)869 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
870 void *mem, bool rev)
871 {
872 int size, write_size;
873 int i, j;
874 union vsx_reg buf;
875 unsigned int *wp;
876 unsigned short *hp;
877 unsigned char *bp;
878
879 size = GETSIZE(op->type);
880
881 switch (op->element_size) {
882 case 32:
883 /* [p]stxvp[x] */
884 if (size == 0)
885 break;
886 if (rev) {
887 /* reverse 32 bytes */
888 union vsx_reg buf32[2];
889 buf32[0].d[0] = byterev_8(reg[1].d[1]);
890 buf32[0].d[1] = byterev_8(reg[1].d[0]);
891 buf32[1].d[0] = byterev_8(reg[0].d[1]);
892 buf32[1].d[1] = byterev_8(reg[0].d[0]);
893 memcpy(mem, buf32, size);
894 } else {
895 memcpy(mem, reg, size);
896 }
897 break;
898 case 16:
899 /* stxv, stxvx, stxvl, stxvll */
900 if (size == 0)
901 break;
902 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
903 rev = !rev;
904 if (rev) {
905 /* reverse 16 bytes */
906 buf.d[0] = byterev_8(reg->d[1]);
907 buf.d[1] = byterev_8(reg->d[0]);
908 reg = &buf;
909 }
910 memcpy(mem, reg, size);
911 break;
912 case 8:
913 /* scalar stores, stxvd2x */
914 write_size = (size >= 8) ? 8 : size;
915 i = IS_LE ? 8 : 8 - write_size;
916 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
917 buf.d[0] = buf.d[1] = 0;
918 preempt_disable();
919 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
920 preempt_enable();
921 reg = &buf;
922 }
923 memcpy(mem, ®->b[i], write_size);
924 if (size == 16)
925 memcpy(mem + 8, ®->d[IS_BE], 8);
926 if (unlikely(rev)) {
927 do_byte_reverse(mem, write_size);
928 if (size == 16)
929 do_byte_reverse(mem + 8, 8);
930 }
931 break;
932 case 4:
933 /* stxvw4x */
934 wp = mem;
935 for (j = 0; j < size / 4; ++j) {
936 i = IS_LE ? 3 - j : j;
937 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
938 }
939 break;
940 case 2:
941 /* stxvh8x */
942 hp = mem;
943 for (j = 0; j < size / 2; ++j) {
944 i = IS_LE ? 7 - j : j;
945 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
946 }
947 break;
948 case 1:
949 /* stvxb16x */
950 bp = mem;
951 for (j = 0; j < size; ++j) {
952 i = IS_LE ? 15 - j : j;
953 *bp++ = reg->b[i];
954 }
955 break;
956 }
957 }
958 EXPORT_SYMBOL_GPL(emulate_vsx_store);
959 NOKPROBE_SYMBOL(emulate_vsx_store);
960
do_vsx_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)961 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
962 unsigned long ea, struct pt_regs *regs,
963 bool cross_endian)
964 {
965 int reg = op->reg;
966 int i, j, nr_vsx_regs;
967 u8 mem[32];
968 union vsx_reg buf[2];
969 int size = GETSIZE(op->type);
970
971 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
972 return -EFAULT;
973
974 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
975 emulate_vsx_load(op, buf, mem, cross_endian);
976 preempt_disable();
977 if (reg < 32) {
978 /* FP regs + extensions */
979 if (regs->msr & MSR_FP) {
980 for (i = 0; i < nr_vsx_regs; i++) {
981 j = IS_LE ? nr_vsx_regs - i - 1 : i;
982 load_vsrn(reg + i, &buf[j].v);
983 }
984 } else {
985 for (i = 0; i < nr_vsx_regs; i++) {
986 j = IS_LE ? nr_vsx_regs - i - 1 : i;
987 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
988 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
989 }
990 }
991 } else {
992 if (regs->msr & MSR_VEC) {
993 for (i = 0; i < nr_vsx_regs; i++) {
994 j = IS_LE ? nr_vsx_regs - i - 1 : i;
995 load_vsrn(reg + i, &buf[j].v);
996 }
997 } else {
998 for (i = 0; i < nr_vsx_regs; i++) {
999 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1000 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
1001 }
1002 }
1003 }
1004 preempt_enable();
1005 return 0;
1006 }
1007
do_vsx_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)1008 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
1009 unsigned long ea, struct pt_regs *regs,
1010 bool cross_endian)
1011 {
1012 int reg = op->reg;
1013 int i, j, nr_vsx_regs;
1014 u8 mem[32];
1015 union vsx_reg buf[2];
1016 int size = GETSIZE(op->type);
1017
1018 if (!address_ok(regs, ea, size))
1019 return -EFAULT;
1020
1021 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1022 preempt_disable();
1023 if (reg < 32) {
1024 /* FP regs + extensions */
1025 if (regs->msr & MSR_FP) {
1026 for (i = 0; i < nr_vsx_regs; i++) {
1027 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1028 store_vsrn(reg + i, &buf[j].v);
1029 }
1030 } else {
1031 for (i = 0; i < nr_vsx_regs; i++) {
1032 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1033 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1034 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1035 }
1036 }
1037 } else {
1038 if (regs->msr & MSR_VEC) {
1039 for (i = 0; i < nr_vsx_regs; i++) {
1040 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1041 store_vsrn(reg + i, &buf[j].v);
1042 }
1043 } else {
1044 for (i = 0; i < nr_vsx_regs; i++) {
1045 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1046 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1047 }
1048 }
1049 }
1050 preempt_enable();
1051 emulate_vsx_store(op, buf, mem, cross_endian);
1052 return copy_mem_out(mem, ea, size, regs);
1053 }
1054 #endif /* CONFIG_VSX */
1055
__emulate_dcbz(unsigned long ea)1056 static __always_inline int __emulate_dcbz(unsigned long ea)
1057 {
1058 unsigned long i;
1059 unsigned long size = l1_dcache_bytes();
1060
1061 for (i = 0; i < size; i += sizeof(long))
1062 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1063
1064 return 0;
1065
1066 Efault:
1067 return -EFAULT;
1068 }
1069
emulate_dcbz(unsigned long ea,struct pt_regs * regs)1070 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1071 {
1072 int err;
1073 unsigned long size = l1_dcache_bytes();
1074
1075 ea = truncate_if_32bit(regs->msr, ea);
1076 ea &= ~(size - 1);
1077 if (!address_ok(regs, ea, size))
1078 return -EFAULT;
1079
1080 if (is_kernel_addr(ea)) {
1081 err = __emulate_dcbz(ea);
1082 } else if (user_write_access_begin((void __user *)ea, size)) {
1083 err = __emulate_dcbz(ea);
1084 user_write_access_end();
1085 } else {
1086 err = -EFAULT;
1087 }
1088
1089 if (err)
1090 regs->dar = ea;
1091
1092
1093 return err;
1094 }
1095 NOKPROBE_SYMBOL(emulate_dcbz);
1096
1097 #define __put_user_asmx(x, addr, err, op, cr) \
1098 __asm__ __volatile__( \
1099 ".machine push\n" \
1100 ".machine power8\n" \
1101 "1: " op " %2,0,%3\n" \
1102 ".machine pop\n" \
1103 " mfcr %1\n" \
1104 "2:\n" \
1105 ".section .fixup,\"ax\"\n" \
1106 "3: li %0,%4\n" \
1107 " b 2b\n" \
1108 ".previous\n" \
1109 EX_TABLE(1b, 3b) \
1110 : "=r" (err), "=r" (cr) \
1111 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1112
1113 #define __get_user_asmx(x, addr, err, op) \
1114 __asm__ __volatile__( \
1115 ".machine push\n" \
1116 ".machine power8\n" \
1117 "1: "op" %1,0,%2\n" \
1118 ".machine pop\n" \
1119 "2:\n" \
1120 ".section .fixup,\"ax\"\n" \
1121 "3: li %0,%3\n" \
1122 " b 2b\n" \
1123 ".previous\n" \
1124 EX_TABLE(1b, 3b) \
1125 : "=r" (err), "=r" (x) \
1126 : "r" (addr), "i" (-EFAULT), "0" (err))
1127
1128 #define __cacheop_user_asmx(addr, err, op) \
1129 __asm__ __volatile__( \
1130 "1: "op" 0,%1\n" \
1131 "2:\n" \
1132 ".section .fixup,\"ax\"\n" \
1133 "3: li %0,%3\n" \
1134 " b 2b\n" \
1135 ".previous\n" \
1136 EX_TABLE(1b, 3b) \
1137 : "=r" (err) \
1138 : "r" (addr), "i" (-EFAULT), "0" (err))
1139
set_cr0(const struct pt_regs * regs,struct instruction_op * op)1140 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1141 struct instruction_op *op)
1142 {
1143 long val = op->val;
1144
1145 op->type |= SETCC;
1146 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1147 if (!(regs->msr & MSR_64BIT))
1148 val = (int) val;
1149 if (val < 0)
1150 op->ccval |= 0x80000000;
1151 else if (val > 0)
1152 op->ccval |= 0x40000000;
1153 else
1154 op->ccval |= 0x20000000;
1155 }
1156
set_ca32(struct instruction_op * op,bool val)1157 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1158 {
1159 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1160 if (val)
1161 op->xerval |= XER_CA32;
1162 else
1163 op->xerval &= ~XER_CA32;
1164 }
1165 }
1166
add_with_carry(const struct pt_regs * regs,struct instruction_op * op,int rd,unsigned long val1,unsigned long val2,unsigned long carry_in)1167 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1168 struct instruction_op *op, int rd,
1169 unsigned long val1, unsigned long val2,
1170 unsigned long carry_in)
1171 {
1172 unsigned long val = val1 + val2;
1173
1174 if (carry_in)
1175 ++val;
1176 op->type = COMPUTE | SETREG | SETXER;
1177 op->reg = rd;
1178 op->val = val;
1179 val = truncate_if_32bit(regs->msr, val);
1180 val1 = truncate_if_32bit(regs->msr, val1);
1181 op->xerval = regs->xer;
1182 if (val < val1 || (carry_in && val == val1))
1183 op->xerval |= XER_CA;
1184 else
1185 op->xerval &= ~XER_CA;
1186
1187 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1188 (carry_in && (unsigned int)val == (unsigned int)val1));
1189 }
1190
do_cmp_signed(const struct pt_regs * regs,struct instruction_op * op,long v1,long v2,int crfld)1191 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1192 struct instruction_op *op,
1193 long v1, long v2, int crfld)
1194 {
1195 unsigned int crval, shift;
1196
1197 op->type = COMPUTE | SETCC;
1198 crval = (regs->xer >> 31) & 1; /* get SO bit */
1199 if (v1 < v2)
1200 crval |= 8;
1201 else if (v1 > v2)
1202 crval |= 4;
1203 else
1204 crval |= 2;
1205 shift = (7 - crfld) * 4;
1206 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1207 }
1208
do_cmp_unsigned(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2,int crfld)1209 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1210 struct instruction_op *op,
1211 unsigned long v1,
1212 unsigned long v2, int crfld)
1213 {
1214 unsigned int crval, shift;
1215
1216 op->type = COMPUTE | SETCC;
1217 crval = (regs->xer >> 31) & 1; /* get SO bit */
1218 if (v1 < v2)
1219 crval |= 8;
1220 else if (v1 > v2)
1221 crval |= 4;
1222 else
1223 crval |= 2;
1224 shift = (7 - crfld) * 4;
1225 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1226 }
1227
do_cmpb(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1228 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1229 struct instruction_op *op,
1230 unsigned long v1, unsigned long v2)
1231 {
1232 unsigned long long out_val, mask;
1233 int i;
1234
1235 out_val = 0;
1236 for (i = 0; i < 8; i++) {
1237 mask = 0xffUL << (i * 8);
1238 if ((v1 & mask) == (v2 & mask))
1239 out_val |= mask;
1240 }
1241 op->val = out_val;
1242 }
1243
1244 /*
1245 * The size parameter is used to adjust the equivalent popcnt instruction.
1246 * popcntb = 8, popcntw = 32, popcntd = 64
1247 */
do_popcnt(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,int size)1248 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1249 struct instruction_op *op,
1250 unsigned long v1, int size)
1251 {
1252 unsigned long long out = v1;
1253
1254 out -= (out >> 1) & 0x5555555555555555ULL;
1255 out = (0x3333333333333333ULL & out) +
1256 (0x3333333333333333ULL & (out >> 2));
1257 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1258
1259 if (size == 8) { /* popcntb */
1260 op->val = out;
1261 return;
1262 }
1263 out += out >> 8;
1264 out += out >> 16;
1265 if (size == 32) { /* popcntw */
1266 op->val = out & 0x0000003f0000003fULL;
1267 return;
1268 }
1269
1270 out = (out + (out >> 32)) & 0x7f;
1271 op->val = out; /* popcntd */
1272 }
1273
1274 #ifdef CONFIG_PPC64
do_bpermd(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1275 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1276 struct instruction_op *op,
1277 unsigned long v1, unsigned long v2)
1278 {
1279 unsigned char perm, idx;
1280 unsigned int i;
1281
1282 perm = 0;
1283 for (i = 0; i < 8; i++) {
1284 idx = (v1 >> (i * 8)) & 0xff;
1285 if (idx < 64)
1286 if (v2 & PPC_BIT(idx))
1287 perm |= 1 << i;
1288 }
1289 op->val = perm;
1290 }
1291 #endif /* CONFIG_PPC64 */
1292 /*
1293 * The size parameter adjusts the equivalent prty instruction.
1294 * prtyw = 32, prtyd = 64
1295 */
do_prty(const struct pt_regs * regs,struct instruction_op * op,unsigned long v,int size)1296 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1297 struct instruction_op *op,
1298 unsigned long v, int size)
1299 {
1300 unsigned long long res = v ^ (v >> 8);
1301
1302 res ^= res >> 16;
1303 if (size == 32) { /* prtyw */
1304 op->val = res & 0x0000000100000001ULL;
1305 return;
1306 }
1307
1308 res ^= res >> 32;
1309 op->val = res & 1; /*prtyd */
1310 }
1311
trap_compare(long v1,long v2)1312 static nokprobe_inline int trap_compare(long v1, long v2)
1313 {
1314 int ret = 0;
1315
1316 if (v1 < v2)
1317 ret |= 0x10;
1318 else if (v1 > v2)
1319 ret |= 0x08;
1320 else
1321 ret |= 0x04;
1322 if ((unsigned long)v1 < (unsigned long)v2)
1323 ret |= 0x02;
1324 else if ((unsigned long)v1 > (unsigned long)v2)
1325 ret |= 0x01;
1326 return ret;
1327 }
1328
1329 /*
1330 * Elements of 32-bit rotate and mask instructions.
1331 */
1332 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1333 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1334 #ifdef __powerpc64__
1335 #define MASK64_L(mb) (~0UL >> (mb))
1336 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1337 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1338 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1339 #else
1340 #define DATA32(x) (x)
1341 #endif
1342 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1343
1344 /*
1345 * Decode an instruction, and return information about it in *op
1346 * without changing *regs.
1347 * Integer arithmetic and logical instructions, branches, and barrier
1348 * instructions can be emulated just using the information in *op.
1349 *
1350 * Return value is 1 if the instruction can be emulated just by
1351 * updating *regs with the information in *op, -1 if we need the
1352 * GPRs but *regs doesn't contain the full register set, or 0
1353 * otherwise.
1354 */
analyse_instr(struct instruction_op * op,const struct pt_regs * regs,ppc_inst_t instr)1355 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1356 ppc_inst_t instr)
1357 {
1358 #ifdef CONFIG_PPC64
1359 unsigned int suffixopcode, prefixtype, prefix_r;
1360 #endif
1361 unsigned int opcode, ra, rb, rc, rd, spr, u;
1362 unsigned long int imm;
1363 unsigned long int val, val2;
1364 unsigned int mb, me, sh;
1365 unsigned int word, suffix;
1366 long ival;
1367
1368 word = ppc_inst_val(instr);
1369 suffix = ppc_inst_suffix(instr);
1370
1371 op->type = COMPUTE;
1372
1373 opcode = ppc_inst_primary_opcode(instr);
1374 switch (opcode) {
1375 case 16: /* bc */
1376 op->type = BRANCH;
1377 imm = (signed short)(word & 0xfffc);
1378 if ((word & 2) == 0)
1379 imm += regs->nip;
1380 op->val = truncate_if_32bit(regs->msr, imm);
1381 if (word & 1)
1382 op->type |= SETLK;
1383 if (branch_taken(word, regs, op))
1384 op->type |= BRTAKEN;
1385 return 1;
1386 case 17: /* sc */
1387 if ((word & 0xfe2) == 2)
1388 op->type = SYSCALL;
1389 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1390 (word & 0xfe3) == 1) { /* scv */
1391 op->type = SYSCALL_VECTORED_0;
1392 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1393 goto unknown_opcode;
1394 } else
1395 op->type = UNKNOWN;
1396 return 0;
1397 case 18: /* b */
1398 op->type = BRANCH | BRTAKEN;
1399 imm = word & 0x03fffffc;
1400 if (imm & 0x02000000)
1401 imm -= 0x04000000;
1402 if ((word & 2) == 0)
1403 imm += regs->nip;
1404 op->val = truncate_if_32bit(regs->msr, imm);
1405 if (word & 1)
1406 op->type |= SETLK;
1407 return 1;
1408 case 19:
1409 switch ((word >> 1) & 0x3ff) {
1410 case 0: /* mcrf */
1411 op->type = COMPUTE + SETCC;
1412 rd = 7 - ((word >> 23) & 0x7);
1413 ra = 7 - ((word >> 18) & 0x7);
1414 rd *= 4;
1415 ra *= 4;
1416 val = (regs->ccr >> ra) & 0xf;
1417 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1418 return 1;
1419
1420 case 16: /* bclr */
1421 case 528: /* bcctr */
1422 op->type = BRANCH;
1423 imm = (word & 0x400)? regs->ctr: regs->link;
1424 op->val = truncate_if_32bit(regs->msr, imm);
1425 if (word & 1)
1426 op->type |= SETLK;
1427 if (branch_taken(word, regs, op))
1428 op->type |= BRTAKEN;
1429 return 1;
1430
1431 case 18: /* rfid, scary */
1432 if (regs->msr & MSR_PR)
1433 goto priv;
1434 op->type = RFI;
1435 return 0;
1436
1437 case 150: /* isync */
1438 op->type = BARRIER | BARRIER_ISYNC;
1439 return 1;
1440
1441 case 33: /* crnor */
1442 case 129: /* crandc */
1443 case 193: /* crxor */
1444 case 225: /* crnand */
1445 case 257: /* crand */
1446 case 289: /* creqv */
1447 case 417: /* crorc */
1448 case 449: /* cror */
1449 op->type = COMPUTE + SETCC;
1450 ra = (word >> 16) & 0x1f;
1451 rb = (word >> 11) & 0x1f;
1452 rd = (word >> 21) & 0x1f;
1453 ra = (regs->ccr >> (31 - ra)) & 1;
1454 rb = (regs->ccr >> (31 - rb)) & 1;
1455 val = (word >> (6 + ra * 2 + rb)) & 1;
1456 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1457 (val << (31 - rd));
1458 return 1;
1459 }
1460 break;
1461 case 31:
1462 switch ((word >> 1) & 0x3ff) {
1463 case 598: /* sync */
1464 op->type = BARRIER + BARRIER_SYNC;
1465 #ifdef __powerpc64__
1466 switch ((word >> 21) & 3) {
1467 case 1: /* lwsync */
1468 op->type = BARRIER + BARRIER_LWSYNC;
1469 break;
1470 case 2: /* ptesync */
1471 op->type = BARRIER + BARRIER_PTESYNC;
1472 break;
1473 }
1474 #endif
1475 return 1;
1476
1477 case 854: /* eieio */
1478 op->type = BARRIER + BARRIER_EIEIO;
1479 return 1;
1480 }
1481 break;
1482 }
1483
1484 rd = (word >> 21) & 0x1f;
1485 ra = (word >> 16) & 0x1f;
1486 rb = (word >> 11) & 0x1f;
1487 rc = (word >> 6) & 0x1f;
1488
1489 switch (opcode) {
1490 #ifdef __powerpc64__
1491 case 1:
1492 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1493 goto unknown_opcode;
1494
1495 prefix_r = GET_PREFIX_R(word);
1496 ra = GET_PREFIX_RA(suffix);
1497 rd = (suffix >> 21) & 0x1f;
1498 op->reg = rd;
1499 op->val = regs->gpr[rd];
1500 suffixopcode = get_op(suffix);
1501 prefixtype = (word >> 24) & 0x3;
1502 switch (prefixtype) {
1503 case 2:
1504 if (prefix_r && ra)
1505 return 0;
1506 switch (suffixopcode) {
1507 case 14: /* paddi */
1508 op->type = COMPUTE | PREFIXED;
1509 op->val = mlsd_8lsd_ea(word, suffix, regs);
1510 goto compute_done;
1511 }
1512 }
1513 break;
1514 case 2: /* tdi */
1515 if (rd & trap_compare(regs->gpr[ra], (short) word))
1516 goto trap;
1517 return 1;
1518 #endif
1519 case 3: /* twi */
1520 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1521 goto trap;
1522 return 1;
1523
1524 #ifdef __powerpc64__
1525 case 4:
1526 /*
1527 * There are very many instructions with this primary opcode
1528 * introduced in the ISA as early as v2.03. However, the ones
1529 * we currently emulate were all introduced with ISA 3.0
1530 */
1531 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1532 goto unknown_opcode;
1533
1534 switch (word & 0x3f) {
1535 case 48: /* maddhd */
1536 asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1537 "=r" (op->val) : "r" (regs->gpr[ra]),
1538 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1539 goto compute_done;
1540
1541 case 49: /* maddhdu */
1542 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1543 "=r" (op->val) : "r" (regs->gpr[ra]),
1544 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1545 goto compute_done;
1546
1547 case 51: /* maddld */
1548 asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1549 "=r" (op->val) : "r" (regs->gpr[ra]),
1550 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1551 goto compute_done;
1552 }
1553
1554 /*
1555 * There are other instructions from ISA 3.0 with the same
1556 * primary opcode which do not have emulation support yet.
1557 */
1558 goto unknown_opcode;
1559 #endif
1560
1561 case 7: /* mulli */
1562 op->val = regs->gpr[ra] * (short) word;
1563 goto compute_done;
1564
1565 case 8: /* subfic */
1566 imm = (short) word;
1567 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1568 return 1;
1569
1570 case 10: /* cmpli */
1571 imm = (unsigned short) word;
1572 val = regs->gpr[ra];
1573 #ifdef __powerpc64__
1574 if ((rd & 1) == 0)
1575 val = (unsigned int) val;
1576 #endif
1577 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1578 return 1;
1579
1580 case 11: /* cmpi */
1581 imm = (short) word;
1582 val = regs->gpr[ra];
1583 #ifdef __powerpc64__
1584 if ((rd & 1) == 0)
1585 val = (int) val;
1586 #endif
1587 do_cmp_signed(regs, op, val, imm, rd >> 2);
1588 return 1;
1589
1590 case 12: /* addic */
1591 imm = (short) word;
1592 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1593 return 1;
1594
1595 case 13: /* addic. */
1596 imm = (short) word;
1597 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1598 set_cr0(regs, op);
1599 return 1;
1600
1601 case 14: /* addi */
1602 imm = (short) word;
1603 if (ra)
1604 imm += regs->gpr[ra];
1605 op->val = imm;
1606 goto compute_done;
1607
1608 case 15: /* addis */
1609 imm = ((short) word) << 16;
1610 if (ra)
1611 imm += regs->gpr[ra];
1612 op->val = imm;
1613 goto compute_done;
1614
1615 case 19:
1616 if (((word >> 1) & 0x1f) == 2) {
1617 /* addpcis */
1618 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1619 goto unknown_opcode;
1620 imm = (short) (word & 0xffc1); /* d0 + d2 fields */
1621 imm |= (word >> 15) & 0x3e; /* d1 field */
1622 op->val = regs->nip + (imm << 16) + 4;
1623 goto compute_done;
1624 }
1625 op->type = UNKNOWN;
1626 return 0;
1627
1628 case 20: /* rlwimi */
1629 mb = (word >> 6) & 0x1f;
1630 me = (word >> 1) & 0x1f;
1631 val = DATA32(regs->gpr[rd]);
1632 imm = MASK32(mb, me);
1633 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1634 goto logical_done;
1635
1636 case 21: /* rlwinm */
1637 mb = (word >> 6) & 0x1f;
1638 me = (word >> 1) & 0x1f;
1639 val = DATA32(regs->gpr[rd]);
1640 op->val = ROTATE(val, rb) & MASK32(mb, me);
1641 goto logical_done;
1642
1643 case 23: /* rlwnm */
1644 mb = (word >> 6) & 0x1f;
1645 me = (word >> 1) & 0x1f;
1646 rb = regs->gpr[rb] & 0x1f;
1647 val = DATA32(regs->gpr[rd]);
1648 op->val = ROTATE(val, rb) & MASK32(mb, me);
1649 goto logical_done;
1650
1651 case 24: /* ori */
1652 op->val = regs->gpr[rd] | (unsigned short) word;
1653 goto logical_done_nocc;
1654
1655 case 25: /* oris */
1656 imm = (unsigned short) word;
1657 op->val = regs->gpr[rd] | (imm << 16);
1658 goto logical_done_nocc;
1659
1660 case 26: /* xori */
1661 op->val = regs->gpr[rd] ^ (unsigned short) word;
1662 goto logical_done_nocc;
1663
1664 case 27: /* xoris */
1665 imm = (unsigned short) word;
1666 op->val = regs->gpr[rd] ^ (imm << 16);
1667 goto logical_done_nocc;
1668
1669 case 28: /* andi. */
1670 op->val = regs->gpr[rd] & (unsigned short) word;
1671 set_cr0(regs, op);
1672 goto logical_done_nocc;
1673
1674 case 29: /* andis. */
1675 imm = (unsigned short) word;
1676 op->val = regs->gpr[rd] & (imm << 16);
1677 set_cr0(regs, op);
1678 goto logical_done_nocc;
1679
1680 #ifdef __powerpc64__
1681 case 30: /* rld* */
1682 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1683 val = regs->gpr[rd];
1684 if ((word & 0x10) == 0) {
1685 sh = rb | ((word & 2) << 4);
1686 val = ROTATE(val, sh);
1687 switch ((word >> 2) & 3) {
1688 case 0: /* rldicl */
1689 val &= MASK64_L(mb);
1690 break;
1691 case 1: /* rldicr */
1692 val &= MASK64_R(mb);
1693 break;
1694 case 2: /* rldic */
1695 val &= MASK64(mb, 63 - sh);
1696 break;
1697 case 3: /* rldimi */
1698 imm = MASK64(mb, 63 - sh);
1699 val = (regs->gpr[ra] & ~imm) |
1700 (val & imm);
1701 }
1702 op->val = val;
1703 goto logical_done;
1704 } else {
1705 sh = regs->gpr[rb] & 0x3f;
1706 val = ROTATE(val, sh);
1707 switch ((word >> 1) & 7) {
1708 case 0: /* rldcl */
1709 op->val = val & MASK64_L(mb);
1710 goto logical_done;
1711 case 1: /* rldcr */
1712 op->val = val & MASK64_R(mb);
1713 goto logical_done;
1714 }
1715 }
1716 #endif
1717 op->type = UNKNOWN; /* illegal instruction */
1718 return 0;
1719
1720 case 31:
1721 /* isel occupies 32 minor opcodes */
1722 if (((word >> 1) & 0x1f) == 15) {
1723 mb = (word >> 6) & 0x1f; /* bc field */
1724 val = (regs->ccr >> (31 - mb)) & 1;
1725 val2 = (ra) ? regs->gpr[ra] : 0;
1726
1727 op->val = (val) ? val2 : regs->gpr[rb];
1728 goto compute_done;
1729 }
1730
1731 switch ((word >> 1) & 0x3ff) {
1732 case 4: /* tw */
1733 if (rd == 0x1f ||
1734 (rd & trap_compare((int)regs->gpr[ra],
1735 (int)regs->gpr[rb])))
1736 goto trap;
1737 return 1;
1738 #ifdef __powerpc64__
1739 case 68: /* td */
1740 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1741 goto trap;
1742 return 1;
1743 #endif
1744 case 83: /* mfmsr */
1745 if (regs->msr & MSR_PR)
1746 goto priv;
1747 op->type = MFMSR;
1748 op->reg = rd;
1749 return 0;
1750 case 146: /* mtmsr */
1751 if (regs->msr & MSR_PR)
1752 goto priv;
1753 op->type = MTMSR;
1754 op->reg = rd;
1755 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1756 return 0;
1757 #ifdef CONFIG_PPC64
1758 case 178: /* mtmsrd */
1759 if (regs->msr & MSR_PR)
1760 goto priv;
1761 op->type = MTMSR;
1762 op->reg = rd;
1763 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1764 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1765 imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1766 op->val = imm;
1767 return 0;
1768 #endif
1769
1770 case 19: /* mfcr */
1771 imm = 0xffffffffUL;
1772 if ((word >> 20) & 1) {
1773 imm = 0xf0000000UL;
1774 for (sh = 0; sh < 8; ++sh) {
1775 if (word & (0x80000 >> sh))
1776 break;
1777 imm >>= 4;
1778 }
1779 }
1780 op->val = regs->ccr & imm;
1781 goto compute_done;
1782
1783 case 128: /* setb */
1784 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1785 goto unknown_opcode;
1786 /*
1787 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1788 * Since each CR field is 4 bits,
1789 * we can simply mask off the bottom two bits (bfa * 4)
1790 * to yield the first bit in the CR field.
1791 */
1792 ra = ra & ~0x3;
1793 /* 'val' stores bits of the CR field (bfa) */
1794 val = regs->ccr >> (CR0_SHIFT - ra);
1795 /* checks if the LT bit of CR field (bfa) is set */
1796 if (val & 8)
1797 op->val = -1;
1798 /* checks if the GT bit of CR field (bfa) is set */
1799 else if (val & 4)
1800 op->val = 1;
1801 else
1802 op->val = 0;
1803 goto compute_done;
1804
1805 case 144: /* mtcrf */
1806 op->type = COMPUTE + SETCC;
1807 imm = 0xf0000000UL;
1808 val = regs->gpr[rd];
1809 op->ccval = regs->ccr;
1810 for (sh = 0; sh < 8; ++sh) {
1811 if (word & (0x80000 >> sh))
1812 op->ccval = (op->ccval & ~imm) |
1813 (val & imm);
1814 imm >>= 4;
1815 }
1816 return 1;
1817
1818 case 339: /* mfspr */
1819 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1820 op->type = MFSPR;
1821 op->reg = rd;
1822 op->spr = spr;
1823 if (spr == SPRN_XER || spr == SPRN_LR ||
1824 spr == SPRN_CTR)
1825 return 1;
1826 return 0;
1827
1828 case 467: /* mtspr */
1829 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1830 op->type = MTSPR;
1831 op->val = regs->gpr[rd];
1832 op->spr = spr;
1833 if (spr == SPRN_XER || spr == SPRN_LR ||
1834 spr == SPRN_CTR)
1835 return 1;
1836 return 0;
1837
1838 /*
1839 * Compare instructions
1840 */
1841 case 0: /* cmp */
1842 val = regs->gpr[ra];
1843 val2 = regs->gpr[rb];
1844 #ifdef __powerpc64__
1845 if ((rd & 1) == 0) {
1846 /* word (32-bit) compare */
1847 val = (int) val;
1848 val2 = (int) val2;
1849 }
1850 #endif
1851 do_cmp_signed(regs, op, val, val2, rd >> 2);
1852 return 1;
1853
1854 case 32: /* cmpl */
1855 val = regs->gpr[ra];
1856 val2 = regs->gpr[rb];
1857 #ifdef __powerpc64__
1858 if ((rd & 1) == 0) {
1859 /* word (32-bit) compare */
1860 val = (unsigned int) val;
1861 val2 = (unsigned int) val2;
1862 }
1863 #endif
1864 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1865 return 1;
1866
1867 case 508: /* cmpb */
1868 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1869 goto logical_done_nocc;
1870
1871 /*
1872 * Arithmetic instructions
1873 */
1874 case 8: /* subfc */
1875 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1876 regs->gpr[rb], 1);
1877 goto arith_done;
1878 #ifdef __powerpc64__
1879 case 9: /* mulhdu */
1880 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1881 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1882 goto arith_done;
1883 #endif
1884 case 10: /* addc */
1885 add_with_carry(regs, op, rd, regs->gpr[ra],
1886 regs->gpr[rb], 0);
1887 goto arith_done;
1888
1889 case 11: /* mulhwu */
1890 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1891 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1892 goto arith_done;
1893
1894 case 40: /* subf */
1895 op->val = regs->gpr[rb] - regs->gpr[ra];
1896 goto arith_done;
1897 #ifdef __powerpc64__
1898 case 73: /* mulhd */
1899 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1900 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1901 goto arith_done;
1902 #endif
1903 case 75: /* mulhw */
1904 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1905 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1906 goto arith_done;
1907
1908 case 104: /* neg */
1909 op->val = -regs->gpr[ra];
1910 goto arith_done;
1911
1912 case 136: /* subfe */
1913 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1914 regs->gpr[rb], regs->xer & XER_CA);
1915 goto arith_done;
1916
1917 case 138: /* adde */
1918 add_with_carry(regs, op, rd, regs->gpr[ra],
1919 regs->gpr[rb], regs->xer & XER_CA);
1920 goto arith_done;
1921
1922 case 200: /* subfze */
1923 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1924 regs->xer & XER_CA);
1925 goto arith_done;
1926
1927 case 202: /* addze */
1928 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1929 regs->xer & XER_CA);
1930 goto arith_done;
1931
1932 case 232: /* subfme */
1933 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1934 regs->xer & XER_CA);
1935 goto arith_done;
1936 #ifdef __powerpc64__
1937 case 233: /* mulld */
1938 op->val = regs->gpr[ra] * regs->gpr[rb];
1939 goto arith_done;
1940 #endif
1941 case 234: /* addme */
1942 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1943 regs->xer & XER_CA);
1944 goto arith_done;
1945
1946 case 235: /* mullw */
1947 op->val = (long)(int) regs->gpr[ra] *
1948 (int) regs->gpr[rb];
1949
1950 goto arith_done;
1951 #ifdef __powerpc64__
1952 case 265: /* modud */
1953 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1954 goto unknown_opcode;
1955 op->val = regs->gpr[ra] % regs->gpr[rb];
1956 goto compute_done;
1957 #endif
1958 case 266: /* add */
1959 op->val = regs->gpr[ra] + regs->gpr[rb];
1960 goto arith_done;
1961
1962 case 267: /* moduw */
1963 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1964 goto unknown_opcode;
1965 op->val = (unsigned int) regs->gpr[ra] %
1966 (unsigned int) regs->gpr[rb];
1967 goto compute_done;
1968 #ifdef __powerpc64__
1969 case 457: /* divdu */
1970 op->val = regs->gpr[ra] / regs->gpr[rb];
1971 goto arith_done;
1972 #endif
1973 case 459: /* divwu */
1974 op->val = (unsigned int) regs->gpr[ra] /
1975 (unsigned int) regs->gpr[rb];
1976 goto arith_done;
1977 #ifdef __powerpc64__
1978 case 489: /* divd */
1979 op->val = (long int) regs->gpr[ra] /
1980 (long int) regs->gpr[rb];
1981 goto arith_done;
1982 #endif
1983 case 491: /* divw */
1984 op->val = (int) regs->gpr[ra] /
1985 (int) regs->gpr[rb];
1986 goto arith_done;
1987 #ifdef __powerpc64__
1988 case 425: /* divde[.] */
1989 asm volatile(PPC_DIVDE(%0, %1, %2) :
1990 "=r" (op->val) : "r" (regs->gpr[ra]),
1991 "r" (regs->gpr[rb]));
1992 goto arith_done;
1993 case 393: /* divdeu[.] */
1994 asm volatile(PPC_DIVDEU(%0, %1, %2) :
1995 "=r" (op->val) : "r" (regs->gpr[ra]),
1996 "r" (regs->gpr[rb]));
1997 goto arith_done;
1998 #endif
1999 case 755: /* darn */
2000 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2001 goto unknown_opcode;
2002 switch (ra & 0x3) {
2003 case 0:
2004 /* 32-bit conditioned */
2005 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
2006 goto compute_done;
2007
2008 case 1:
2009 /* 64-bit conditioned */
2010 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2011 goto compute_done;
2012
2013 case 2:
2014 /* 64-bit raw */
2015 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2016 goto compute_done;
2017 }
2018
2019 goto unknown_opcode;
2020 #ifdef __powerpc64__
2021 case 777: /* modsd */
2022 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2023 goto unknown_opcode;
2024 op->val = (long int) regs->gpr[ra] %
2025 (long int) regs->gpr[rb];
2026 goto compute_done;
2027 #endif
2028 case 779: /* modsw */
2029 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2030 goto unknown_opcode;
2031 op->val = (int) regs->gpr[ra] %
2032 (int) regs->gpr[rb];
2033 goto compute_done;
2034
2035
2036 /*
2037 * Logical instructions
2038 */
2039 case 26: /* cntlzw */
2040 val = (unsigned int) regs->gpr[rd];
2041 op->val = ( val ? __builtin_clz(val) : 32 );
2042 goto logical_done;
2043 #ifdef __powerpc64__
2044 case 58: /* cntlzd */
2045 val = regs->gpr[rd];
2046 op->val = ( val ? __builtin_clzl(val) : 64 );
2047 goto logical_done;
2048 #endif
2049 case 28: /* and */
2050 op->val = regs->gpr[rd] & regs->gpr[rb];
2051 goto logical_done;
2052
2053 case 60: /* andc */
2054 op->val = regs->gpr[rd] & ~regs->gpr[rb];
2055 goto logical_done;
2056
2057 case 122: /* popcntb */
2058 do_popcnt(regs, op, regs->gpr[rd], 8);
2059 goto logical_done_nocc;
2060
2061 case 124: /* nor */
2062 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2063 goto logical_done;
2064
2065 case 154: /* prtyw */
2066 do_prty(regs, op, regs->gpr[rd], 32);
2067 goto logical_done_nocc;
2068
2069 case 186: /* prtyd */
2070 do_prty(regs, op, regs->gpr[rd], 64);
2071 goto logical_done_nocc;
2072 #ifdef CONFIG_PPC64
2073 case 252: /* bpermd */
2074 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2075 goto logical_done_nocc;
2076 #endif
2077 case 284: /* xor */
2078 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2079 goto logical_done;
2080
2081 case 316: /* xor */
2082 op->val = regs->gpr[rd] ^ regs->gpr[rb];
2083 goto logical_done;
2084
2085 case 378: /* popcntw */
2086 do_popcnt(regs, op, regs->gpr[rd], 32);
2087 goto logical_done_nocc;
2088
2089 case 412: /* orc */
2090 op->val = regs->gpr[rd] | ~regs->gpr[rb];
2091 goto logical_done;
2092
2093 case 444: /* or */
2094 op->val = regs->gpr[rd] | regs->gpr[rb];
2095 goto logical_done;
2096
2097 case 476: /* nand */
2098 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2099 goto logical_done;
2100 #ifdef CONFIG_PPC64
2101 case 506: /* popcntd */
2102 do_popcnt(regs, op, regs->gpr[rd], 64);
2103 goto logical_done_nocc;
2104 #endif
2105 case 538: /* cnttzw */
2106 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2107 goto unknown_opcode;
2108 val = (unsigned int) regs->gpr[rd];
2109 op->val = (val ? __builtin_ctz(val) : 32);
2110 goto logical_done;
2111 #ifdef __powerpc64__
2112 case 570: /* cnttzd */
2113 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2114 goto unknown_opcode;
2115 val = regs->gpr[rd];
2116 op->val = (val ? __builtin_ctzl(val) : 64);
2117 goto logical_done;
2118 #endif
2119 case 922: /* extsh */
2120 op->val = (signed short) regs->gpr[rd];
2121 goto logical_done;
2122
2123 case 954: /* extsb */
2124 op->val = (signed char) regs->gpr[rd];
2125 goto logical_done;
2126 #ifdef __powerpc64__
2127 case 986: /* extsw */
2128 op->val = (signed int) regs->gpr[rd];
2129 goto logical_done;
2130 #endif
2131
2132 /*
2133 * Shift instructions
2134 */
2135 case 24: /* slw */
2136 sh = regs->gpr[rb] & 0x3f;
2137 if (sh < 32)
2138 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2139 else
2140 op->val = 0;
2141 goto logical_done;
2142
2143 case 536: /* srw */
2144 sh = regs->gpr[rb] & 0x3f;
2145 if (sh < 32)
2146 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2147 else
2148 op->val = 0;
2149 goto logical_done;
2150
2151 case 792: /* sraw */
2152 op->type = COMPUTE + SETREG + SETXER;
2153 sh = regs->gpr[rb] & 0x3f;
2154 ival = (signed int) regs->gpr[rd];
2155 op->val = ival >> (sh < 32 ? sh : 31);
2156 op->xerval = regs->xer;
2157 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2158 op->xerval |= XER_CA;
2159 else
2160 op->xerval &= ~XER_CA;
2161 set_ca32(op, op->xerval & XER_CA);
2162 goto logical_done;
2163
2164 case 824: /* srawi */
2165 op->type = COMPUTE + SETREG + SETXER;
2166 sh = rb;
2167 ival = (signed int) regs->gpr[rd];
2168 op->val = ival >> sh;
2169 op->xerval = regs->xer;
2170 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2171 op->xerval |= XER_CA;
2172 else
2173 op->xerval &= ~XER_CA;
2174 set_ca32(op, op->xerval & XER_CA);
2175 goto logical_done;
2176
2177 #ifdef __powerpc64__
2178 case 27: /* sld */
2179 sh = regs->gpr[rb] & 0x7f;
2180 if (sh < 64)
2181 op->val = regs->gpr[rd] << sh;
2182 else
2183 op->val = 0;
2184 goto logical_done;
2185
2186 case 539: /* srd */
2187 sh = regs->gpr[rb] & 0x7f;
2188 if (sh < 64)
2189 op->val = regs->gpr[rd] >> sh;
2190 else
2191 op->val = 0;
2192 goto logical_done;
2193
2194 case 794: /* srad */
2195 op->type = COMPUTE + SETREG + SETXER;
2196 sh = regs->gpr[rb] & 0x7f;
2197 ival = (signed long int) regs->gpr[rd];
2198 op->val = ival >> (sh < 64 ? sh : 63);
2199 op->xerval = regs->xer;
2200 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2201 op->xerval |= XER_CA;
2202 else
2203 op->xerval &= ~XER_CA;
2204 set_ca32(op, op->xerval & XER_CA);
2205 goto logical_done;
2206
2207 case 826: /* sradi with sh_5 = 0 */
2208 case 827: /* sradi with sh_5 = 1 */
2209 op->type = COMPUTE + SETREG + SETXER;
2210 sh = rb | ((word & 2) << 4);
2211 ival = (signed long int) regs->gpr[rd];
2212 op->val = ival >> sh;
2213 op->xerval = regs->xer;
2214 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2215 op->xerval |= XER_CA;
2216 else
2217 op->xerval &= ~XER_CA;
2218 set_ca32(op, op->xerval & XER_CA);
2219 goto logical_done;
2220
2221 case 890: /* extswsli with sh_5 = 0 */
2222 case 891: /* extswsli with sh_5 = 1 */
2223 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2224 goto unknown_opcode;
2225 op->type = COMPUTE + SETREG;
2226 sh = rb | ((word & 2) << 4);
2227 val = (signed int) regs->gpr[rd];
2228 if (sh)
2229 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2230 else
2231 op->val = val;
2232 goto logical_done;
2233
2234 #endif /* __powerpc64__ */
2235
2236 /*
2237 * Cache instructions
2238 */
2239 case 54: /* dcbst */
2240 op->type = MKOP(CACHEOP, DCBST, 0);
2241 op->ea = xform_ea(word, regs);
2242 return 0;
2243
2244 case 86: /* dcbf */
2245 op->type = MKOP(CACHEOP, DCBF, 0);
2246 op->ea = xform_ea(word, regs);
2247 return 0;
2248
2249 case 246: /* dcbtst */
2250 op->type = MKOP(CACHEOP, DCBTST, 0);
2251 op->ea = xform_ea(word, regs);
2252 op->reg = rd;
2253 return 0;
2254
2255 case 278: /* dcbt */
2256 op->type = MKOP(CACHEOP, DCBTST, 0);
2257 op->ea = xform_ea(word, regs);
2258 op->reg = rd;
2259 return 0;
2260
2261 case 982: /* icbi */
2262 op->type = MKOP(CACHEOP, ICBI, 0);
2263 op->ea = xform_ea(word, regs);
2264 return 0;
2265
2266 case 1014: /* dcbz */
2267 op->type = MKOP(CACHEOP, DCBZ, 0);
2268 op->ea = xform_ea(word, regs);
2269 return 0;
2270 }
2271 break;
2272 }
2273
2274 /*
2275 * Loads and stores.
2276 */
2277 op->type = UNKNOWN;
2278 op->update_reg = ra;
2279 op->reg = rd;
2280 op->val = regs->gpr[rd];
2281 u = (word >> 20) & UPDATE;
2282 op->vsx_flags = 0;
2283
2284 switch (opcode) {
2285 case 31:
2286 u = word & UPDATE;
2287 op->ea = xform_ea(word, regs);
2288 switch ((word >> 1) & 0x3ff) {
2289 case 20: /* lwarx */
2290 op->type = MKOP(LARX, 0, 4);
2291 break;
2292
2293 case 150: /* stwcx. */
2294 op->type = MKOP(STCX, 0, 4);
2295 break;
2296
2297 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
2298 case 52: /* lbarx */
2299 op->type = MKOP(LARX, 0, 1);
2300 break;
2301
2302 case 694: /* stbcx. */
2303 op->type = MKOP(STCX, 0, 1);
2304 break;
2305
2306 case 116: /* lharx */
2307 op->type = MKOP(LARX, 0, 2);
2308 break;
2309
2310 case 726: /* sthcx. */
2311 op->type = MKOP(STCX, 0, 2);
2312 break;
2313 #endif
2314 #ifdef __powerpc64__
2315 case 84: /* ldarx */
2316 op->type = MKOP(LARX, 0, 8);
2317 break;
2318
2319 case 214: /* stdcx. */
2320 op->type = MKOP(STCX, 0, 8);
2321 break;
2322
2323 case 276: /* lqarx */
2324 if (!((rd & 1) || rd == ra || rd == rb))
2325 op->type = MKOP(LARX, 0, 16);
2326 break;
2327
2328 case 182: /* stqcx. */
2329 if (!(rd & 1))
2330 op->type = MKOP(STCX, 0, 16);
2331 break;
2332 #endif
2333
2334 case 23: /* lwzx */
2335 case 55: /* lwzux */
2336 op->type = MKOP(LOAD, u, 4);
2337 break;
2338
2339 case 87: /* lbzx */
2340 case 119: /* lbzux */
2341 op->type = MKOP(LOAD, u, 1);
2342 break;
2343
2344 #ifdef CONFIG_ALTIVEC
2345 /*
2346 * Note: for the load/store vector element instructions,
2347 * bits of the EA say which field of the VMX register to use.
2348 */
2349 case 7: /* lvebx */
2350 op->type = MKOP(LOAD_VMX, 0, 1);
2351 op->element_size = 1;
2352 break;
2353
2354 case 39: /* lvehx */
2355 op->type = MKOP(LOAD_VMX, 0, 2);
2356 op->element_size = 2;
2357 break;
2358
2359 case 71: /* lvewx */
2360 op->type = MKOP(LOAD_VMX, 0, 4);
2361 op->element_size = 4;
2362 break;
2363
2364 case 103: /* lvx */
2365 case 359: /* lvxl */
2366 op->type = MKOP(LOAD_VMX, 0, 16);
2367 op->element_size = 16;
2368 break;
2369
2370 case 135: /* stvebx */
2371 op->type = MKOP(STORE_VMX, 0, 1);
2372 op->element_size = 1;
2373 break;
2374
2375 case 167: /* stvehx */
2376 op->type = MKOP(STORE_VMX, 0, 2);
2377 op->element_size = 2;
2378 break;
2379
2380 case 199: /* stvewx */
2381 op->type = MKOP(STORE_VMX, 0, 4);
2382 op->element_size = 4;
2383 break;
2384
2385 case 231: /* stvx */
2386 case 487: /* stvxl */
2387 op->type = MKOP(STORE_VMX, 0, 16);
2388 break;
2389 #endif /* CONFIG_ALTIVEC */
2390
2391 #ifdef __powerpc64__
2392 case 21: /* ldx */
2393 case 53: /* ldux */
2394 op->type = MKOP(LOAD, u, 8);
2395 break;
2396
2397 case 149: /* stdx */
2398 case 181: /* stdux */
2399 op->type = MKOP(STORE, u, 8);
2400 break;
2401 #endif
2402
2403 case 151: /* stwx */
2404 case 183: /* stwux */
2405 op->type = MKOP(STORE, u, 4);
2406 break;
2407
2408 case 215: /* stbx */
2409 case 247: /* stbux */
2410 op->type = MKOP(STORE, u, 1);
2411 break;
2412
2413 case 279: /* lhzx */
2414 case 311: /* lhzux */
2415 op->type = MKOP(LOAD, u, 2);
2416 break;
2417
2418 #ifdef __powerpc64__
2419 case 341: /* lwax */
2420 case 373: /* lwaux */
2421 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2422 break;
2423 #endif
2424
2425 case 343: /* lhax */
2426 case 375: /* lhaux */
2427 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2428 break;
2429
2430 case 407: /* sthx */
2431 case 439: /* sthux */
2432 op->type = MKOP(STORE, u, 2);
2433 break;
2434
2435 #ifdef __powerpc64__
2436 case 532: /* ldbrx */
2437 op->type = MKOP(LOAD, BYTEREV, 8);
2438 break;
2439
2440 #endif
2441 case 533: /* lswx */
2442 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2443 break;
2444
2445 case 534: /* lwbrx */
2446 op->type = MKOP(LOAD, BYTEREV, 4);
2447 break;
2448
2449 case 597: /* lswi */
2450 if (rb == 0)
2451 rb = 32; /* # bytes to load */
2452 op->type = MKOP(LOAD_MULTI, 0, rb);
2453 op->ea = ra ? regs->gpr[ra] : 0;
2454 break;
2455
2456 #ifdef CONFIG_PPC_FPU
2457 case 535: /* lfsx */
2458 case 567: /* lfsux */
2459 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2460 break;
2461
2462 case 599: /* lfdx */
2463 case 631: /* lfdux */
2464 op->type = MKOP(LOAD_FP, u, 8);
2465 break;
2466
2467 case 663: /* stfsx */
2468 case 695: /* stfsux */
2469 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2470 break;
2471
2472 case 727: /* stfdx */
2473 case 759: /* stfdux */
2474 op->type = MKOP(STORE_FP, u, 8);
2475 break;
2476
2477 #ifdef __powerpc64__
2478 case 791: /* lfdpx */
2479 op->type = MKOP(LOAD_FP, 0, 16);
2480 break;
2481
2482 case 855: /* lfiwax */
2483 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2484 break;
2485
2486 case 887: /* lfiwzx */
2487 op->type = MKOP(LOAD_FP, 0, 4);
2488 break;
2489
2490 case 919: /* stfdpx */
2491 op->type = MKOP(STORE_FP, 0, 16);
2492 break;
2493
2494 case 983: /* stfiwx */
2495 op->type = MKOP(STORE_FP, 0, 4);
2496 break;
2497 #endif /* __powerpc64 */
2498 #endif /* CONFIG_PPC_FPU */
2499
2500 #ifdef __powerpc64__
2501 case 660: /* stdbrx */
2502 op->type = MKOP(STORE, BYTEREV, 8);
2503 op->val = byterev_8(regs->gpr[rd]);
2504 break;
2505
2506 #endif
2507 case 661: /* stswx */
2508 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2509 break;
2510
2511 case 662: /* stwbrx */
2512 op->type = MKOP(STORE, BYTEREV, 4);
2513 op->val = byterev_4(regs->gpr[rd]);
2514 break;
2515
2516 case 725: /* stswi */
2517 if (rb == 0)
2518 rb = 32; /* # bytes to store */
2519 op->type = MKOP(STORE_MULTI, 0, rb);
2520 op->ea = ra ? regs->gpr[ra] : 0;
2521 break;
2522
2523 case 790: /* lhbrx */
2524 op->type = MKOP(LOAD, BYTEREV, 2);
2525 break;
2526
2527 case 918: /* sthbrx */
2528 op->type = MKOP(STORE, BYTEREV, 2);
2529 op->val = byterev_2(regs->gpr[rd]);
2530 break;
2531
2532 #ifdef CONFIG_VSX
2533 case 12: /* lxsiwzx */
2534 op->reg = rd | ((word & 1) << 5);
2535 op->type = MKOP(LOAD_VSX, 0, 4);
2536 op->element_size = 8;
2537 break;
2538
2539 case 76: /* lxsiwax */
2540 op->reg = rd | ((word & 1) << 5);
2541 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2542 op->element_size = 8;
2543 break;
2544
2545 case 140: /* stxsiwx */
2546 op->reg = rd | ((word & 1) << 5);
2547 op->type = MKOP(STORE_VSX, 0, 4);
2548 op->element_size = 8;
2549 break;
2550
2551 case 268: /* lxvx */
2552 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2553 goto unknown_opcode;
2554 op->reg = rd | ((word & 1) << 5);
2555 op->type = MKOP(LOAD_VSX, 0, 16);
2556 op->element_size = 16;
2557 op->vsx_flags = VSX_CHECK_VEC;
2558 break;
2559
2560 case 269: /* lxvl */
2561 case 301: { /* lxvll */
2562 int nb;
2563 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2564 goto unknown_opcode;
2565 op->reg = rd | ((word & 1) << 5);
2566 op->ea = ra ? regs->gpr[ra] : 0;
2567 nb = regs->gpr[rb] & 0xff;
2568 if (nb > 16)
2569 nb = 16;
2570 op->type = MKOP(LOAD_VSX, 0, nb);
2571 op->element_size = 16;
2572 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2573 VSX_CHECK_VEC;
2574 break;
2575 }
2576 case 332: /* lxvdsx */
2577 op->reg = rd | ((word & 1) << 5);
2578 op->type = MKOP(LOAD_VSX, 0, 8);
2579 op->element_size = 8;
2580 op->vsx_flags = VSX_SPLAT;
2581 break;
2582
2583 case 333: /* lxvpx */
2584 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2585 goto unknown_opcode;
2586 op->reg = VSX_REGISTER_XTP(rd);
2587 op->type = MKOP(LOAD_VSX, 0, 32);
2588 op->element_size = 32;
2589 break;
2590
2591 case 364: /* lxvwsx */
2592 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2593 goto unknown_opcode;
2594 op->reg = rd | ((word & 1) << 5);
2595 op->type = MKOP(LOAD_VSX, 0, 4);
2596 op->element_size = 4;
2597 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2598 break;
2599
2600 case 396: /* stxvx */
2601 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2602 goto unknown_opcode;
2603 op->reg = rd | ((word & 1) << 5);
2604 op->type = MKOP(STORE_VSX, 0, 16);
2605 op->element_size = 16;
2606 op->vsx_flags = VSX_CHECK_VEC;
2607 break;
2608
2609 case 397: /* stxvl */
2610 case 429: { /* stxvll */
2611 int nb;
2612 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2613 goto unknown_opcode;
2614 op->reg = rd | ((word & 1) << 5);
2615 op->ea = ra ? regs->gpr[ra] : 0;
2616 nb = regs->gpr[rb] & 0xff;
2617 if (nb > 16)
2618 nb = 16;
2619 op->type = MKOP(STORE_VSX, 0, nb);
2620 op->element_size = 16;
2621 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2622 VSX_CHECK_VEC;
2623 break;
2624 }
2625 case 461: /* stxvpx */
2626 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2627 goto unknown_opcode;
2628 op->reg = VSX_REGISTER_XTP(rd);
2629 op->type = MKOP(STORE_VSX, 0, 32);
2630 op->element_size = 32;
2631 break;
2632 case 524: /* lxsspx */
2633 op->reg = rd | ((word & 1) << 5);
2634 op->type = MKOP(LOAD_VSX, 0, 4);
2635 op->element_size = 8;
2636 op->vsx_flags = VSX_FPCONV;
2637 break;
2638
2639 case 588: /* lxsdx */
2640 op->reg = rd | ((word & 1) << 5);
2641 op->type = MKOP(LOAD_VSX, 0, 8);
2642 op->element_size = 8;
2643 break;
2644
2645 case 652: /* stxsspx */
2646 op->reg = rd | ((word & 1) << 5);
2647 op->type = MKOP(STORE_VSX, 0, 4);
2648 op->element_size = 8;
2649 op->vsx_flags = VSX_FPCONV;
2650 break;
2651
2652 case 716: /* stxsdx */
2653 op->reg = rd | ((word & 1) << 5);
2654 op->type = MKOP(STORE_VSX, 0, 8);
2655 op->element_size = 8;
2656 break;
2657
2658 case 780: /* lxvw4x */
2659 op->reg = rd | ((word & 1) << 5);
2660 op->type = MKOP(LOAD_VSX, 0, 16);
2661 op->element_size = 4;
2662 break;
2663
2664 case 781: /* lxsibzx */
2665 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2666 goto unknown_opcode;
2667 op->reg = rd | ((word & 1) << 5);
2668 op->type = MKOP(LOAD_VSX, 0, 1);
2669 op->element_size = 8;
2670 op->vsx_flags = VSX_CHECK_VEC;
2671 break;
2672
2673 case 812: /* lxvh8x */
2674 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2675 goto unknown_opcode;
2676 op->reg = rd | ((word & 1) << 5);
2677 op->type = MKOP(LOAD_VSX, 0, 16);
2678 op->element_size = 2;
2679 op->vsx_flags = VSX_CHECK_VEC;
2680 break;
2681
2682 case 813: /* lxsihzx */
2683 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2684 goto unknown_opcode;
2685 op->reg = rd | ((word & 1) << 5);
2686 op->type = MKOP(LOAD_VSX, 0, 2);
2687 op->element_size = 8;
2688 op->vsx_flags = VSX_CHECK_VEC;
2689 break;
2690
2691 case 844: /* lxvd2x */
2692 op->reg = rd | ((word & 1) << 5);
2693 op->type = MKOP(LOAD_VSX, 0, 16);
2694 op->element_size = 8;
2695 break;
2696
2697 case 876: /* lxvb16x */
2698 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2699 goto unknown_opcode;
2700 op->reg = rd | ((word & 1) << 5);
2701 op->type = MKOP(LOAD_VSX, 0, 16);
2702 op->element_size = 1;
2703 op->vsx_flags = VSX_CHECK_VEC;
2704 break;
2705
2706 case 908: /* stxvw4x */
2707 op->reg = rd | ((word & 1) << 5);
2708 op->type = MKOP(STORE_VSX, 0, 16);
2709 op->element_size = 4;
2710 break;
2711
2712 case 909: /* stxsibx */
2713 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2714 goto unknown_opcode;
2715 op->reg = rd | ((word & 1) << 5);
2716 op->type = MKOP(STORE_VSX, 0, 1);
2717 op->element_size = 8;
2718 op->vsx_flags = VSX_CHECK_VEC;
2719 break;
2720
2721 case 940: /* stxvh8x */
2722 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2723 goto unknown_opcode;
2724 op->reg = rd | ((word & 1) << 5);
2725 op->type = MKOP(STORE_VSX, 0, 16);
2726 op->element_size = 2;
2727 op->vsx_flags = VSX_CHECK_VEC;
2728 break;
2729
2730 case 941: /* stxsihx */
2731 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2732 goto unknown_opcode;
2733 op->reg = rd | ((word & 1) << 5);
2734 op->type = MKOP(STORE_VSX, 0, 2);
2735 op->element_size = 8;
2736 op->vsx_flags = VSX_CHECK_VEC;
2737 break;
2738
2739 case 972: /* stxvd2x */
2740 op->reg = rd | ((word & 1) << 5);
2741 op->type = MKOP(STORE_VSX, 0, 16);
2742 op->element_size = 8;
2743 break;
2744
2745 case 1004: /* stxvb16x */
2746 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2747 goto unknown_opcode;
2748 op->reg = rd | ((word & 1) << 5);
2749 op->type = MKOP(STORE_VSX, 0, 16);
2750 op->element_size = 1;
2751 op->vsx_flags = VSX_CHECK_VEC;
2752 break;
2753
2754 #endif /* CONFIG_VSX */
2755 }
2756 break;
2757
2758 case 32: /* lwz */
2759 case 33: /* lwzu */
2760 op->type = MKOP(LOAD, u, 4);
2761 op->ea = dform_ea(word, regs);
2762 break;
2763
2764 case 34: /* lbz */
2765 case 35: /* lbzu */
2766 op->type = MKOP(LOAD, u, 1);
2767 op->ea = dform_ea(word, regs);
2768 break;
2769
2770 case 36: /* stw */
2771 case 37: /* stwu */
2772 op->type = MKOP(STORE, u, 4);
2773 op->ea = dform_ea(word, regs);
2774 break;
2775
2776 case 38: /* stb */
2777 case 39: /* stbu */
2778 op->type = MKOP(STORE, u, 1);
2779 op->ea = dform_ea(word, regs);
2780 break;
2781
2782 case 40: /* lhz */
2783 case 41: /* lhzu */
2784 op->type = MKOP(LOAD, u, 2);
2785 op->ea = dform_ea(word, regs);
2786 break;
2787
2788 case 42: /* lha */
2789 case 43: /* lhau */
2790 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2791 op->ea = dform_ea(word, regs);
2792 break;
2793
2794 case 44: /* sth */
2795 case 45: /* sthu */
2796 op->type = MKOP(STORE, u, 2);
2797 op->ea = dform_ea(word, regs);
2798 break;
2799
2800 case 46: /* lmw */
2801 if (ra >= rd)
2802 break; /* invalid form, ra in range to load */
2803 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2804 op->ea = dform_ea(word, regs);
2805 break;
2806
2807 case 47: /* stmw */
2808 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2809 op->ea = dform_ea(word, regs);
2810 break;
2811
2812 #ifdef CONFIG_PPC_FPU
2813 case 48: /* lfs */
2814 case 49: /* lfsu */
2815 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2816 op->ea = dform_ea(word, regs);
2817 break;
2818
2819 case 50: /* lfd */
2820 case 51: /* lfdu */
2821 op->type = MKOP(LOAD_FP, u, 8);
2822 op->ea = dform_ea(word, regs);
2823 break;
2824
2825 case 52: /* stfs */
2826 case 53: /* stfsu */
2827 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2828 op->ea = dform_ea(word, regs);
2829 break;
2830
2831 case 54: /* stfd */
2832 case 55: /* stfdu */
2833 op->type = MKOP(STORE_FP, u, 8);
2834 op->ea = dform_ea(word, regs);
2835 break;
2836 #endif
2837
2838 #ifdef __powerpc64__
2839 case 56: /* lq */
2840 if (!((rd & 1) || (rd == ra)))
2841 op->type = MKOP(LOAD, 0, 16);
2842 op->ea = dqform_ea(word, regs);
2843 break;
2844 #endif
2845
2846 #ifdef CONFIG_VSX
2847 case 57: /* lfdp, lxsd, lxssp */
2848 op->ea = dsform_ea(word, regs);
2849 switch (word & 3) {
2850 case 0: /* lfdp */
2851 if (rd & 1)
2852 break; /* reg must be even */
2853 op->type = MKOP(LOAD_FP, 0, 16);
2854 break;
2855 case 2: /* lxsd */
2856 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2857 goto unknown_opcode;
2858 op->reg = rd + 32;
2859 op->type = MKOP(LOAD_VSX, 0, 8);
2860 op->element_size = 8;
2861 op->vsx_flags = VSX_CHECK_VEC;
2862 break;
2863 case 3: /* lxssp */
2864 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2865 goto unknown_opcode;
2866 op->reg = rd + 32;
2867 op->type = MKOP(LOAD_VSX, 0, 4);
2868 op->element_size = 8;
2869 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2870 break;
2871 }
2872 break;
2873 #endif /* CONFIG_VSX */
2874
2875 #ifdef __powerpc64__
2876 case 58: /* ld[u], lwa */
2877 op->ea = dsform_ea(word, regs);
2878 switch (word & 3) {
2879 case 0: /* ld */
2880 op->type = MKOP(LOAD, 0, 8);
2881 break;
2882 case 1: /* ldu */
2883 op->type = MKOP(LOAD, UPDATE, 8);
2884 break;
2885 case 2: /* lwa */
2886 op->type = MKOP(LOAD, SIGNEXT, 4);
2887 break;
2888 }
2889 break;
2890 #endif
2891
2892 #ifdef CONFIG_VSX
2893 case 6:
2894 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2895 goto unknown_opcode;
2896 op->ea = dqform_ea(word, regs);
2897 op->reg = VSX_REGISTER_XTP(rd);
2898 op->element_size = 32;
2899 switch (word & 0xf) {
2900 case 0: /* lxvp */
2901 op->type = MKOP(LOAD_VSX, 0, 32);
2902 break;
2903 case 1: /* stxvp */
2904 op->type = MKOP(STORE_VSX, 0, 32);
2905 break;
2906 }
2907 break;
2908
2909 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2910 switch (word & 7) {
2911 case 0: /* stfdp with LSB of DS field = 0 */
2912 case 4: /* stfdp with LSB of DS field = 1 */
2913 op->ea = dsform_ea(word, regs);
2914 op->type = MKOP(STORE_FP, 0, 16);
2915 break;
2916
2917 case 1: /* lxv */
2918 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2919 goto unknown_opcode;
2920 op->ea = dqform_ea(word, regs);
2921 if (word & 8)
2922 op->reg = rd + 32;
2923 op->type = MKOP(LOAD_VSX, 0, 16);
2924 op->element_size = 16;
2925 op->vsx_flags = VSX_CHECK_VEC;
2926 break;
2927
2928 case 2: /* stxsd with LSB of DS field = 0 */
2929 case 6: /* stxsd with LSB of DS field = 1 */
2930 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2931 goto unknown_opcode;
2932 op->ea = dsform_ea(word, regs);
2933 op->reg = rd + 32;
2934 op->type = MKOP(STORE_VSX, 0, 8);
2935 op->element_size = 8;
2936 op->vsx_flags = VSX_CHECK_VEC;
2937 break;
2938
2939 case 3: /* stxssp with LSB of DS field = 0 */
2940 case 7: /* stxssp with LSB of DS field = 1 */
2941 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2942 goto unknown_opcode;
2943 op->ea = dsform_ea(word, regs);
2944 op->reg = rd + 32;
2945 op->type = MKOP(STORE_VSX, 0, 4);
2946 op->element_size = 8;
2947 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2948 break;
2949
2950 case 5: /* stxv */
2951 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2952 goto unknown_opcode;
2953 op->ea = dqform_ea(word, regs);
2954 if (word & 8)
2955 op->reg = rd + 32;
2956 op->type = MKOP(STORE_VSX, 0, 16);
2957 op->element_size = 16;
2958 op->vsx_flags = VSX_CHECK_VEC;
2959 break;
2960 }
2961 break;
2962 #endif /* CONFIG_VSX */
2963
2964 #ifdef __powerpc64__
2965 case 62: /* std[u] */
2966 op->ea = dsform_ea(word, regs);
2967 switch (word & 3) {
2968 case 0: /* std */
2969 op->type = MKOP(STORE, 0, 8);
2970 break;
2971 case 1: /* stdu */
2972 op->type = MKOP(STORE, UPDATE, 8);
2973 break;
2974 case 2: /* stq */
2975 if (!(rd & 1))
2976 op->type = MKOP(STORE, 0, 16);
2977 break;
2978 }
2979 break;
2980 case 1: /* Prefixed instructions */
2981 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2982 goto unknown_opcode;
2983
2984 prefix_r = GET_PREFIX_R(word);
2985 ra = GET_PREFIX_RA(suffix);
2986 op->update_reg = ra;
2987 rd = (suffix >> 21) & 0x1f;
2988 op->reg = rd;
2989 op->val = regs->gpr[rd];
2990
2991 suffixopcode = get_op(suffix);
2992 prefixtype = (word >> 24) & 0x3;
2993 switch (prefixtype) {
2994 case 0: /* Type 00 Eight-Byte Load/Store */
2995 if (prefix_r && ra)
2996 break;
2997 op->ea = mlsd_8lsd_ea(word, suffix, regs);
2998 switch (suffixopcode) {
2999 case 41: /* plwa */
3000 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
3001 break;
3002 #ifdef CONFIG_VSX
3003 case 42: /* plxsd */
3004 op->reg = rd + 32;
3005 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
3006 op->element_size = 8;
3007 op->vsx_flags = VSX_CHECK_VEC;
3008 break;
3009 case 43: /* plxssp */
3010 op->reg = rd + 32;
3011 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3012 op->element_size = 8;
3013 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3014 break;
3015 case 46: /* pstxsd */
3016 op->reg = rd + 32;
3017 op->type = MKOP(STORE_VSX, PREFIXED, 8);
3018 op->element_size = 8;
3019 op->vsx_flags = VSX_CHECK_VEC;
3020 break;
3021 case 47: /* pstxssp */
3022 op->reg = rd + 32;
3023 op->type = MKOP(STORE_VSX, PREFIXED, 4);
3024 op->element_size = 8;
3025 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3026 break;
3027 case 51: /* plxv1 */
3028 op->reg += 32;
3029 fallthrough;
3030 case 50: /* plxv0 */
3031 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3032 op->element_size = 16;
3033 op->vsx_flags = VSX_CHECK_VEC;
3034 break;
3035 case 55: /* pstxv1 */
3036 op->reg = rd + 32;
3037 fallthrough;
3038 case 54: /* pstxv0 */
3039 op->type = MKOP(STORE_VSX, PREFIXED, 16);
3040 op->element_size = 16;
3041 op->vsx_flags = VSX_CHECK_VEC;
3042 break;
3043 #endif /* CONFIG_VSX */
3044 case 56: /* plq */
3045 op->type = MKOP(LOAD, PREFIXED, 16);
3046 break;
3047 case 57: /* pld */
3048 op->type = MKOP(LOAD, PREFIXED, 8);
3049 break;
3050 #ifdef CONFIG_VSX
3051 case 58: /* plxvp */
3052 op->reg = VSX_REGISTER_XTP(rd);
3053 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3054 op->element_size = 32;
3055 break;
3056 #endif /* CONFIG_VSX */
3057 case 60: /* pstq */
3058 op->type = MKOP(STORE, PREFIXED, 16);
3059 break;
3060 case 61: /* pstd */
3061 op->type = MKOP(STORE, PREFIXED, 8);
3062 break;
3063 #ifdef CONFIG_VSX
3064 case 62: /* pstxvp */
3065 op->reg = VSX_REGISTER_XTP(rd);
3066 op->type = MKOP(STORE_VSX, PREFIXED, 32);
3067 op->element_size = 32;
3068 break;
3069 #endif /* CONFIG_VSX */
3070 }
3071 break;
3072 case 1: /* Type 01 Eight-Byte Register-to-Register */
3073 break;
3074 case 2: /* Type 10 Modified Load/Store */
3075 if (prefix_r && ra)
3076 break;
3077 op->ea = mlsd_8lsd_ea(word, suffix, regs);
3078 switch (suffixopcode) {
3079 case 32: /* plwz */
3080 op->type = MKOP(LOAD, PREFIXED, 4);
3081 break;
3082 case 34: /* plbz */
3083 op->type = MKOP(LOAD, PREFIXED, 1);
3084 break;
3085 case 36: /* pstw */
3086 op->type = MKOP(STORE, PREFIXED, 4);
3087 break;
3088 case 38: /* pstb */
3089 op->type = MKOP(STORE, PREFIXED, 1);
3090 break;
3091 case 40: /* plhz */
3092 op->type = MKOP(LOAD, PREFIXED, 2);
3093 break;
3094 case 42: /* plha */
3095 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3096 break;
3097 case 44: /* psth */
3098 op->type = MKOP(STORE, PREFIXED, 2);
3099 break;
3100 case 48: /* plfs */
3101 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3102 break;
3103 case 50: /* plfd */
3104 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3105 break;
3106 case 52: /* pstfs */
3107 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3108 break;
3109 case 54: /* pstfd */
3110 op->type = MKOP(STORE_FP, PREFIXED, 8);
3111 break;
3112 }
3113 break;
3114 case 3: /* Type 11 Modified Register-to-Register */
3115 break;
3116 }
3117 #endif /* __powerpc64__ */
3118
3119 }
3120
3121 if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3122 switch (GETTYPE(op->type)) {
3123 case LOAD:
3124 if (ra == rd)
3125 goto unknown_opcode;
3126 fallthrough;
3127 case STORE:
3128 case LOAD_FP:
3129 case STORE_FP:
3130 if (ra == 0)
3131 goto unknown_opcode;
3132 }
3133 }
3134
3135 #ifdef CONFIG_VSX
3136 if ((GETTYPE(op->type) == LOAD_VSX ||
3137 GETTYPE(op->type) == STORE_VSX) &&
3138 !cpu_has_feature(CPU_FTR_VSX)) {
3139 return -1;
3140 }
3141 #endif /* CONFIG_VSX */
3142
3143 return 0;
3144
3145 unknown_opcode:
3146 op->type = UNKNOWN;
3147 return 0;
3148
3149 logical_done:
3150 if (word & 1)
3151 set_cr0(regs, op);
3152 logical_done_nocc:
3153 op->reg = ra;
3154 op->type |= SETREG;
3155 return 1;
3156
3157 arith_done:
3158 if (word & 1)
3159 set_cr0(regs, op);
3160 compute_done:
3161 op->reg = rd;
3162 op->type |= SETREG;
3163 return 1;
3164
3165 priv:
3166 op->type = INTERRUPT | 0x700;
3167 op->val = SRR1_PROGPRIV;
3168 return 0;
3169
3170 trap:
3171 op->type = INTERRUPT | 0x700;
3172 op->val = SRR1_PROGTRAP;
3173 return 0;
3174 }
3175 EXPORT_SYMBOL_GPL(analyse_instr);
3176 NOKPROBE_SYMBOL(analyse_instr);
3177
3178 /*
3179 * For PPC32 we always use stwu with r1 to change the stack pointer.
3180 * So this emulated store may corrupt the exception frame, now we
3181 * have to provide the exception frame trampoline, which is pushed
3182 * below the kprobed function stack. So we only update gpr[1] but
3183 * don't emulate the real store operation. We will do real store
3184 * operation safely in exception return code by checking this flag.
3185 */
handle_stack_update(unsigned long ea,struct pt_regs * regs)3186 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3187 {
3188 /*
3189 * Check if we already set since that means we'll
3190 * lose the previous value.
3191 */
3192 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3193 set_thread_flag(TIF_EMULATE_STACK_STORE);
3194 return 0;
3195 }
3196
do_signext(unsigned long * valp,int size)3197 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3198 {
3199 switch (size) {
3200 case 2:
3201 *valp = (signed short) *valp;
3202 break;
3203 case 4:
3204 *valp = (signed int) *valp;
3205 break;
3206 }
3207 }
3208
do_byterev(unsigned long * valp,int size)3209 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3210 {
3211 switch (size) {
3212 case 2:
3213 *valp = byterev_2(*valp);
3214 break;
3215 case 4:
3216 *valp = byterev_4(*valp);
3217 break;
3218 #ifdef __powerpc64__
3219 case 8:
3220 *valp = byterev_8(*valp);
3221 break;
3222 #endif
3223 }
3224 }
3225
3226 /*
3227 * Emulate an instruction that can be executed just by updating
3228 * fields in *regs.
3229 */
emulate_update_regs(struct pt_regs * regs,struct instruction_op * op)3230 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3231 {
3232 unsigned long next_pc;
3233
3234 next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3235 switch (GETTYPE(op->type)) {
3236 case COMPUTE:
3237 if (op->type & SETREG)
3238 regs->gpr[op->reg] = op->val;
3239 if (op->type & SETCC)
3240 regs->ccr = op->ccval;
3241 if (op->type & SETXER)
3242 regs->xer = op->xerval;
3243 break;
3244
3245 case BRANCH:
3246 if (op->type & SETLK)
3247 regs->link = next_pc;
3248 if (op->type & BRTAKEN)
3249 next_pc = op->val;
3250 if (op->type & DECCTR)
3251 --regs->ctr;
3252 break;
3253
3254 case BARRIER:
3255 switch (op->type & BARRIER_MASK) {
3256 case BARRIER_SYNC:
3257 mb();
3258 break;
3259 case BARRIER_ISYNC:
3260 isync();
3261 break;
3262 case BARRIER_EIEIO:
3263 eieio();
3264 break;
3265 #ifdef CONFIG_PPC64
3266 case BARRIER_LWSYNC:
3267 asm volatile("lwsync" : : : "memory");
3268 break;
3269 case BARRIER_PTESYNC:
3270 asm volatile("ptesync" : : : "memory");
3271 break;
3272 #endif
3273 }
3274 break;
3275
3276 case MFSPR:
3277 switch (op->spr) {
3278 case SPRN_XER:
3279 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3280 break;
3281 case SPRN_LR:
3282 regs->gpr[op->reg] = regs->link;
3283 break;
3284 case SPRN_CTR:
3285 regs->gpr[op->reg] = regs->ctr;
3286 break;
3287 default:
3288 WARN_ON_ONCE(1);
3289 }
3290 break;
3291
3292 case MTSPR:
3293 switch (op->spr) {
3294 case SPRN_XER:
3295 regs->xer = op->val & 0xffffffffUL;
3296 break;
3297 case SPRN_LR:
3298 regs->link = op->val;
3299 break;
3300 case SPRN_CTR:
3301 regs->ctr = op->val;
3302 break;
3303 default:
3304 WARN_ON_ONCE(1);
3305 }
3306 break;
3307
3308 default:
3309 WARN_ON_ONCE(1);
3310 }
3311 regs_set_return_ip(regs, next_pc);
3312 }
3313 NOKPROBE_SYMBOL(emulate_update_regs);
3314
3315 /*
3316 * Emulate a previously-analysed load or store instruction.
3317 * Return values are:
3318 * 0 = instruction emulated successfully
3319 * -EFAULT = address out of range or access faulted (regs->dar
3320 * contains the faulting address)
3321 * -EACCES = misaligned access, instruction requires alignment
3322 * -EINVAL = unknown operation in *op
3323 */
emulate_loadstore(struct pt_regs * regs,struct instruction_op * op)3324 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3325 {
3326 int err, size, type;
3327 int i, rd, nb;
3328 unsigned int cr;
3329 unsigned long val;
3330 unsigned long ea;
3331 bool cross_endian;
3332
3333 err = 0;
3334 size = GETSIZE(op->type);
3335 type = GETTYPE(op->type);
3336 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3337 ea = truncate_if_32bit(regs->msr, op->ea);
3338
3339 switch (type) {
3340 case LARX:
3341 if (ea & (size - 1))
3342 return -EACCES; /* can't handle misaligned */
3343 if (!address_ok(regs, ea, size))
3344 return -EFAULT;
3345 err = 0;
3346 val = 0;
3347 switch (size) {
3348 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
3349 case 1:
3350 __get_user_asmx(val, ea, err, "lbarx");
3351 break;
3352 case 2:
3353 __get_user_asmx(val, ea, err, "lharx");
3354 break;
3355 #endif
3356 case 4:
3357 __get_user_asmx(val, ea, err, "lwarx");
3358 break;
3359 #ifdef __powerpc64__
3360 case 8:
3361 __get_user_asmx(val, ea, err, "ldarx");
3362 break;
3363 case 16:
3364 err = do_lqarx(ea, ®s->gpr[op->reg]);
3365 break;
3366 #endif
3367 default:
3368 return -EINVAL;
3369 }
3370 if (err) {
3371 regs->dar = ea;
3372 break;
3373 }
3374 if (size < 16)
3375 regs->gpr[op->reg] = val;
3376 break;
3377
3378 case STCX:
3379 if (ea & (size - 1))
3380 return -EACCES; /* can't handle misaligned */
3381 if (!address_ok(regs, ea, size))
3382 return -EFAULT;
3383 err = 0;
3384 switch (size) {
3385 #ifdef __powerpc64__
3386 case 1:
3387 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3388 break;
3389 case 2:
3390 __put_user_asmx(op->val, ea, err, "sthcx.", cr);
3391 break;
3392 #endif
3393 case 4:
3394 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3395 break;
3396 #ifdef __powerpc64__
3397 case 8:
3398 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3399 break;
3400 case 16:
3401 err = do_stqcx(ea, regs->gpr[op->reg],
3402 regs->gpr[op->reg + 1], &cr);
3403 break;
3404 #endif
3405 default:
3406 return -EINVAL;
3407 }
3408 if (!err)
3409 regs->ccr = (regs->ccr & 0x0fffffff) |
3410 (cr & 0xe0000000) |
3411 ((regs->xer >> 3) & 0x10000000);
3412 else
3413 regs->dar = ea;
3414 break;
3415
3416 case LOAD:
3417 #ifdef __powerpc64__
3418 if (size == 16) {
3419 err = emulate_lq(regs, ea, op->reg, cross_endian);
3420 break;
3421 }
3422 #endif
3423 err = read_mem(®s->gpr[op->reg], ea, size, regs);
3424 if (!err) {
3425 if (op->type & SIGNEXT)
3426 do_signext(®s->gpr[op->reg], size);
3427 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3428 do_byterev(®s->gpr[op->reg], size);
3429 }
3430 break;
3431
3432 #ifdef CONFIG_PPC_FPU
3433 case LOAD_FP:
3434 /*
3435 * If the instruction is in userspace, we can emulate it even
3436 * if the VMX state is not live, because we have the state
3437 * stored in the thread_struct. If the instruction is in
3438 * the kernel, we must not touch the state in the thread_struct.
3439 */
3440 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3441 return 0;
3442 err = do_fp_load(op, ea, regs, cross_endian);
3443 break;
3444 #endif
3445 #ifdef CONFIG_ALTIVEC
3446 case LOAD_VMX:
3447 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3448 return 0;
3449 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3450 break;
3451 #endif
3452 #ifdef CONFIG_VSX
3453 case LOAD_VSX: {
3454 unsigned long msrbit = MSR_VSX;
3455
3456 /*
3457 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3458 * when the target of the instruction is a vector register.
3459 */
3460 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3461 msrbit = MSR_VEC;
3462 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3463 return 0;
3464 err = do_vsx_load(op, ea, regs, cross_endian);
3465 break;
3466 }
3467 #endif
3468 case LOAD_MULTI:
3469 if (!address_ok(regs, ea, size))
3470 return -EFAULT;
3471 rd = op->reg;
3472 for (i = 0; i < size; i += 4) {
3473 unsigned int v32 = 0;
3474
3475 nb = size - i;
3476 if (nb > 4)
3477 nb = 4;
3478 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3479 if (err)
3480 break;
3481 if (unlikely(cross_endian))
3482 v32 = byterev_4(v32);
3483 regs->gpr[rd] = v32;
3484 ea += 4;
3485 /* reg number wraps from 31 to 0 for lsw[ix] */
3486 rd = (rd + 1) & 0x1f;
3487 }
3488 break;
3489
3490 case STORE:
3491 #ifdef __powerpc64__
3492 if (size == 16) {
3493 err = emulate_stq(regs, ea, op->reg, cross_endian);
3494 break;
3495 }
3496 #endif
3497 if ((op->type & UPDATE) && size == sizeof(long) &&
3498 op->reg == 1 && op->update_reg == 1 &&
3499 !(regs->msr & MSR_PR) &&
3500 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3501 err = handle_stack_update(ea, regs);
3502 break;
3503 }
3504 if (unlikely(cross_endian))
3505 do_byterev(&op->val, size);
3506 err = write_mem(op->val, ea, size, regs);
3507 break;
3508
3509 #ifdef CONFIG_PPC_FPU
3510 case STORE_FP:
3511 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3512 return 0;
3513 err = do_fp_store(op, ea, regs, cross_endian);
3514 break;
3515 #endif
3516 #ifdef CONFIG_ALTIVEC
3517 case STORE_VMX:
3518 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3519 return 0;
3520 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3521 break;
3522 #endif
3523 #ifdef CONFIG_VSX
3524 case STORE_VSX: {
3525 unsigned long msrbit = MSR_VSX;
3526
3527 /*
3528 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3529 * when the target of the instruction is a vector register.
3530 */
3531 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3532 msrbit = MSR_VEC;
3533 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3534 return 0;
3535 err = do_vsx_store(op, ea, regs, cross_endian);
3536 break;
3537 }
3538 #endif
3539 case STORE_MULTI:
3540 if (!address_ok(regs, ea, size))
3541 return -EFAULT;
3542 rd = op->reg;
3543 for (i = 0; i < size; i += 4) {
3544 unsigned int v32 = regs->gpr[rd];
3545
3546 nb = size - i;
3547 if (nb > 4)
3548 nb = 4;
3549 if (unlikely(cross_endian))
3550 v32 = byterev_4(v32);
3551 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3552 if (err)
3553 break;
3554 ea += 4;
3555 /* reg number wraps from 31 to 0 for stsw[ix] */
3556 rd = (rd + 1) & 0x1f;
3557 }
3558 break;
3559
3560 default:
3561 return -EINVAL;
3562 }
3563
3564 if (err)
3565 return err;
3566
3567 if (op->type & UPDATE)
3568 regs->gpr[op->update_reg] = op->ea;
3569
3570 return 0;
3571 }
3572 NOKPROBE_SYMBOL(emulate_loadstore);
3573
3574 /*
3575 * Emulate instructions that cause a transfer of control,
3576 * loads and stores, and a few other instructions.
3577 * Returns 1 if the step was emulated, 0 if not,
3578 * or -1 if the instruction is one that should not be stepped,
3579 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3580 */
emulate_step(struct pt_regs * regs,ppc_inst_t instr)3581 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3582 {
3583 struct instruction_op op;
3584 int r, err, type;
3585 unsigned long val;
3586 unsigned long ea;
3587
3588 r = analyse_instr(&op, regs, instr);
3589 if (r < 0)
3590 return r;
3591 if (r > 0) {
3592 emulate_update_regs(regs, &op);
3593 return 1;
3594 }
3595
3596 err = 0;
3597 type = GETTYPE(op.type);
3598
3599 if (OP_IS_LOAD_STORE(type)) {
3600 err = emulate_loadstore(regs, &op);
3601 if (err)
3602 return 0;
3603 goto instr_done;
3604 }
3605
3606 switch (type) {
3607 case CACHEOP:
3608 ea = truncate_if_32bit(regs->msr, op.ea);
3609 if (!address_ok(regs, ea, 8))
3610 return 0;
3611 switch (op.type & CACHEOP_MASK) {
3612 case DCBST:
3613 __cacheop_user_asmx(ea, err, "dcbst");
3614 break;
3615 case DCBF:
3616 __cacheop_user_asmx(ea, err, "dcbf");
3617 break;
3618 case DCBTST:
3619 if (op.reg == 0)
3620 prefetchw((void *) ea);
3621 break;
3622 case DCBT:
3623 if (op.reg == 0)
3624 prefetch((void *) ea);
3625 break;
3626 case ICBI:
3627 __cacheop_user_asmx(ea, err, "icbi");
3628 break;
3629 case DCBZ:
3630 err = emulate_dcbz(ea, regs);
3631 break;
3632 }
3633 if (err) {
3634 regs->dar = ea;
3635 return 0;
3636 }
3637 goto instr_done;
3638
3639 case MFMSR:
3640 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3641 goto instr_done;
3642
3643 case MTMSR:
3644 val = regs->gpr[op.reg];
3645 if ((val & MSR_RI) == 0)
3646 /* can't step mtmsr[d] that would clear MSR_RI */
3647 return -1;
3648 /* here op.val is the mask of bits to change */
3649 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3650 goto instr_done;
3651
3652 case SYSCALL: /* sc */
3653 /*
3654 * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't
3655 * single step a system call instruction:
3656 *
3657 * Successful completion for an instruction means that the
3658 * instruction caused no other interrupt. Thus a Trace
3659 * interrupt never occurs for a System Call or System Call
3660 * Vectored instruction, or for a Trap instruction that
3661 * traps.
3662 */
3663 return -1;
3664 case SYSCALL_VECTORED_0: /* scv 0 */
3665 return -1;
3666 case RFI:
3667 return -1;
3668 }
3669 return 0;
3670
3671 instr_done:
3672 regs_set_return_ip(regs,
3673 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3674 return 1;
3675 }
3676 NOKPROBE_SYMBOL(emulate_step);
3677