1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <asm/cputable.h> 23 #include <linux/uaccess.h> 24 #include <asm/kvm_ppc.h> 25 #include <asm/cputhreads.h> 26 #include <asm/irqflags.h> 27 #include <asm/iommu.h> 28 #include <asm/switch_to.h> 29 #include <asm/xive.h> 30 #ifdef CONFIG_PPC_PSERIES 31 #include <asm/hvcall.h> 32 #include <asm/plpar_wrappers.h> 33 #endif 34 35 #include "timing.h" 36 #include "irq.h" 37 #include "../mm/mmu_decl.h" 38 39 #define CREATE_TRACE_POINTS 40 #include "trace.h" 41 42 struct kvmppc_ops *kvmppc_hv_ops; 43 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 44 struct kvmppc_ops *kvmppc_pr_ops; 45 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 46 47 48 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 49 { 50 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 51 } 52 53 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 54 { 55 return kvm_arch_vcpu_runnable(vcpu); 56 } 57 58 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 59 { 60 return false; 61 } 62 63 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 64 { 65 return 1; 66 } 67 68 /* 69 * Common checks before entering the guest world. Call with interrupts 70 * disabled. 71 * 72 * returns: 73 * 74 * == 1 if we're ready to go into guest state 75 * <= 0 if we need to go back to the host with return value 76 */ 77 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 78 { 79 int r; 80 81 WARN_ON(irqs_disabled()); 82 hard_irq_disable(); 83 84 while (true) { 85 if (need_resched()) { 86 local_irq_enable(); 87 cond_resched(); 88 hard_irq_disable(); 89 continue; 90 } 91 92 if (signal_pending(current)) { 93 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 94 vcpu->run->exit_reason = KVM_EXIT_INTR; 95 r = -EINTR; 96 break; 97 } 98 99 vcpu->mode = IN_GUEST_MODE; 100 101 /* 102 * Reading vcpu->requests must happen after setting vcpu->mode, 103 * so we don't miss a request because the requester sees 104 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 105 * before next entering the guest (and thus doesn't IPI). 106 * This also orders the write to mode from any reads 107 * to the page tables done while the VCPU is running. 108 * Please see the comment in kvm_flush_remote_tlbs. 109 */ 110 smp_mb(); 111 112 if (kvm_request_pending(vcpu)) { 113 /* Make sure we process requests preemptable */ 114 local_irq_enable(); 115 trace_kvm_check_requests(vcpu); 116 r = kvmppc_core_check_requests(vcpu); 117 hard_irq_disable(); 118 if (r > 0) 119 continue; 120 break; 121 } 122 123 if (kvmppc_core_prepare_to_enter(vcpu)) { 124 /* interrupts got enabled in between, so we 125 are back at square 1 */ 126 continue; 127 } 128 129 guest_enter_irqoff(); 130 return 1; 131 } 132 133 /* return to host */ 134 local_irq_enable(); 135 return r; 136 } 137 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 138 139 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 140 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 141 { 142 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 143 int i; 144 145 shared->sprg0 = swab64(shared->sprg0); 146 shared->sprg1 = swab64(shared->sprg1); 147 shared->sprg2 = swab64(shared->sprg2); 148 shared->sprg3 = swab64(shared->sprg3); 149 shared->srr0 = swab64(shared->srr0); 150 shared->srr1 = swab64(shared->srr1); 151 shared->dar = swab64(shared->dar); 152 shared->msr = swab64(shared->msr); 153 shared->dsisr = swab32(shared->dsisr); 154 shared->int_pending = swab32(shared->int_pending); 155 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 156 shared->sr[i] = swab32(shared->sr[i]); 157 } 158 #endif 159 160 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 161 { 162 int nr = kvmppc_get_gpr(vcpu, 11); 163 int r; 164 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 165 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 166 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 167 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 168 unsigned long r2 = 0; 169 170 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 171 /* 32 bit mode */ 172 param1 &= 0xffffffff; 173 param2 &= 0xffffffff; 174 param3 &= 0xffffffff; 175 param4 &= 0xffffffff; 176 } 177 178 switch (nr) { 179 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 180 { 181 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 182 /* Book3S can be little endian, find it out here */ 183 int shared_big_endian = true; 184 if (vcpu->arch.intr_msr & MSR_LE) 185 shared_big_endian = false; 186 if (shared_big_endian != vcpu->arch.shared_big_endian) 187 kvmppc_swab_shared(vcpu); 188 vcpu->arch.shared_big_endian = shared_big_endian; 189 #endif 190 191 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 192 /* 193 * Older versions of the Linux magic page code had 194 * a bug where they would map their trampoline code 195 * NX. If that's the case, remove !PR NX capability. 196 */ 197 vcpu->arch.disable_kernel_nx = true; 198 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 199 } 200 201 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 202 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 203 204 #ifdef CONFIG_PPC_64K_PAGES 205 /* 206 * Make sure our 4k magic page is in the same window of a 64k 207 * page within the guest and within the host's page. 208 */ 209 if ((vcpu->arch.magic_page_pa & 0xf000) != 210 ((ulong)vcpu->arch.shared & 0xf000)) { 211 void *old_shared = vcpu->arch.shared; 212 ulong shared = (ulong)vcpu->arch.shared; 213 void *new_shared; 214 215 shared &= PAGE_MASK; 216 shared |= vcpu->arch.magic_page_pa & 0xf000; 217 new_shared = (void*)shared; 218 memcpy(new_shared, old_shared, 0x1000); 219 vcpu->arch.shared = new_shared; 220 } 221 #endif 222 223 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 224 225 r = EV_SUCCESS; 226 break; 227 } 228 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 229 r = EV_SUCCESS; 230 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 231 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 232 #endif 233 234 /* Second return value is in r4 */ 235 break; 236 case EV_HCALL_TOKEN(EV_IDLE): 237 r = EV_SUCCESS; 238 kvm_vcpu_block(vcpu); 239 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 240 break; 241 default: 242 r = EV_UNIMPLEMENTED; 243 break; 244 } 245 246 kvmppc_set_gpr(vcpu, 4, r2); 247 248 return r; 249 } 250 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 251 252 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 253 { 254 int r = false; 255 256 /* We have to know what CPU to virtualize */ 257 if (!vcpu->arch.pvr) 258 goto out; 259 260 /* PAPR only works with book3s_64 */ 261 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 262 goto out; 263 264 /* HV KVM can only do PAPR mode for now */ 265 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 266 goto out; 267 268 #ifdef CONFIG_KVM_BOOKE_HV 269 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 270 goto out; 271 #endif 272 273 r = true; 274 275 out: 276 vcpu->arch.sane = r; 277 return r ? 0 : -EINVAL; 278 } 279 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 280 281 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 282 { 283 enum emulation_result er; 284 int r; 285 286 er = kvmppc_emulate_loadstore(vcpu); 287 switch (er) { 288 case EMULATE_DONE: 289 /* Future optimization: only reload non-volatiles if they were 290 * actually modified. */ 291 r = RESUME_GUEST_NV; 292 break; 293 case EMULATE_AGAIN: 294 r = RESUME_GUEST; 295 break; 296 case EMULATE_DO_MMIO: 297 run->exit_reason = KVM_EXIT_MMIO; 298 /* We must reload nonvolatiles because "update" load/store 299 * instructions modify register state. */ 300 /* Future optimization: only reload non-volatiles if they were 301 * actually modified. */ 302 r = RESUME_HOST_NV; 303 break; 304 case EMULATE_FAIL: 305 { 306 u32 last_inst; 307 308 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 309 /* XXX Deliver Program interrupt to guest. */ 310 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 311 r = RESUME_HOST; 312 break; 313 } 314 default: 315 WARN_ON(1); 316 r = RESUME_GUEST; 317 } 318 319 return r; 320 } 321 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 322 323 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 324 bool data) 325 { 326 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 327 struct kvmppc_pte pte; 328 int r = -EINVAL; 329 330 vcpu->stat.st++; 331 332 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 333 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 334 size); 335 336 if ((!r) || (r == -EAGAIN)) 337 return r; 338 339 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 340 XLATE_WRITE, &pte); 341 if (r < 0) 342 return r; 343 344 *eaddr = pte.raddr; 345 346 if (!pte.may_write) 347 return -EPERM; 348 349 /* Magic page override */ 350 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 351 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 352 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 353 void *magic = vcpu->arch.shared; 354 magic += pte.eaddr & 0xfff; 355 memcpy(magic, ptr, size); 356 return EMULATE_DONE; 357 } 358 359 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 360 return EMULATE_DO_MMIO; 361 362 return EMULATE_DONE; 363 } 364 EXPORT_SYMBOL_GPL(kvmppc_st); 365 366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 367 bool data) 368 { 369 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 370 struct kvmppc_pte pte; 371 int rc = -EINVAL; 372 373 vcpu->stat.ld++; 374 375 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 376 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 377 size); 378 379 if ((!rc) || (rc == -EAGAIN)) 380 return rc; 381 382 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 383 XLATE_READ, &pte); 384 if (rc) 385 return rc; 386 387 *eaddr = pte.raddr; 388 389 if (!pte.may_read) 390 return -EPERM; 391 392 if (!data && !pte.may_execute) 393 return -ENOEXEC; 394 395 /* Magic page override */ 396 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 397 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 398 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 399 void *magic = vcpu->arch.shared; 400 magic += pte.eaddr & 0xfff; 401 memcpy(ptr, magic, size); 402 return EMULATE_DONE; 403 } 404 405 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 406 return EMULATE_DO_MMIO; 407 408 return EMULATE_DONE; 409 } 410 EXPORT_SYMBOL_GPL(kvmppc_ld); 411 412 int kvm_arch_hardware_enable(void) 413 { 414 return 0; 415 } 416 417 int kvm_arch_hardware_setup(void) 418 { 419 return 0; 420 } 421 422 int kvm_arch_check_processor_compat(void) 423 { 424 return kvmppc_core_check_processor_compat(); 425 } 426 427 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 428 { 429 struct kvmppc_ops *kvm_ops = NULL; 430 /* 431 * if we have both HV and PR enabled, default is HV 432 */ 433 if (type == 0) { 434 if (kvmppc_hv_ops) 435 kvm_ops = kvmppc_hv_ops; 436 else 437 kvm_ops = kvmppc_pr_ops; 438 if (!kvm_ops) 439 goto err_out; 440 } else if (type == KVM_VM_PPC_HV) { 441 if (!kvmppc_hv_ops) 442 goto err_out; 443 kvm_ops = kvmppc_hv_ops; 444 } else if (type == KVM_VM_PPC_PR) { 445 if (!kvmppc_pr_ops) 446 goto err_out; 447 kvm_ops = kvmppc_pr_ops; 448 } else 449 goto err_out; 450 451 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 452 return -ENOENT; 453 454 kvm->arch.kvm_ops = kvm_ops; 455 return kvmppc_core_init_vm(kvm); 456 err_out: 457 return -EINVAL; 458 } 459 460 void kvm_arch_destroy_vm(struct kvm *kvm) 461 { 462 unsigned int i; 463 struct kvm_vcpu *vcpu; 464 465 #ifdef CONFIG_KVM_XICS 466 /* 467 * We call kick_all_cpus_sync() to ensure that all 468 * CPUs have executed any pending IPIs before we 469 * continue and free VCPUs structures below. 470 */ 471 if (is_kvmppc_hv_enabled(kvm)) 472 kick_all_cpus_sync(); 473 #endif 474 475 kvm_for_each_vcpu(i, vcpu, kvm) 476 kvm_arch_vcpu_free(vcpu); 477 478 mutex_lock(&kvm->lock); 479 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 480 kvm->vcpus[i] = NULL; 481 482 atomic_set(&kvm->online_vcpus, 0); 483 484 kvmppc_core_destroy_vm(kvm); 485 486 mutex_unlock(&kvm->lock); 487 488 /* drop the module reference */ 489 module_put(kvm->arch.kvm_ops->owner); 490 } 491 492 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 493 { 494 int r; 495 /* Assume we're using HV mode when the HV module is loaded */ 496 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 497 498 if (kvm) { 499 /* 500 * Hooray - we know which VM type we're running on. Depend on 501 * that rather than the guess above. 502 */ 503 hv_enabled = is_kvmppc_hv_enabled(kvm); 504 } 505 506 switch (ext) { 507 #ifdef CONFIG_BOOKE 508 case KVM_CAP_PPC_BOOKE_SREGS: 509 case KVM_CAP_PPC_BOOKE_WATCHDOG: 510 case KVM_CAP_PPC_EPR: 511 #else 512 case KVM_CAP_PPC_SEGSTATE: 513 case KVM_CAP_PPC_HIOR: 514 case KVM_CAP_PPC_PAPR: 515 #endif 516 case KVM_CAP_PPC_UNSET_IRQ: 517 case KVM_CAP_PPC_IRQ_LEVEL: 518 case KVM_CAP_ENABLE_CAP: 519 case KVM_CAP_ONE_REG: 520 case KVM_CAP_IOEVENTFD: 521 case KVM_CAP_DEVICE_CTRL: 522 case KVM_CAP_IMMEDIATE_EXIT: 523 r = 1; 524 break; 525 case KVM_CAP_PPC_PAIRED_SINGLES: 526 case KVM_CAP_PPC_OSI: 527 case KVM_CAP_PPC_GET_PVINFO: 528 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 529 case KVM_CAP_SW_TLB: 530 #endif 531 /* We support this only for PR */ 532 r = !hv_enabled; 533 break; 534 #ifdef CONFIG_KVM_MPIC 535 case KVM_CAP_IRQ_MPIC: 536 r = 1; 537 break; 538 #endif 539 540 #ifdef CONFIG_PPC_BOOK3S_64 541 case KVM_CAP_SPAPR_TCE: 542 case KVM_CAP_SPAPR_TCE_64: 543 r = 1; 544 break; 545 case KVM_CAP_SPAPR_TCE_VFIO: 546 r = !!cpu_has_feature(CPU_FTR_HVMODE); 547 break; 548 case KVM_CAP_PPC_RTAS: 549 case KVM_CAP_PPC_FIXUP_HCALL: 550 case KVM_CAP_PPC_ENABLE_HCALL: 551 #ifdef CONFIG_KVM_XICS 552 case KVM_CAP_IRQ_XICS: 553 #endif 554 case KVM_CAP_PPC_GET_CPU_CHAR: 555 r = 1; 556 break; 557 #ifdef CONFIG_KVM_XIVE 558 case KVM_CAP_PPC_IRQ_XIVE: 559 /* 560 * We need XIVE to be enabled on the platform (implies 561 * a POWER9 processor) and the PowerNV platform, as 562 * nested is not yet supported. 563 */ 564 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 565 kvmppc_xive_native_supported(); 566 break; 567 #endif 568 569 case KVM_CAP_PPC_ALLOC_HTAB: 570 r = hv_enabled; 571 break; 572 #endif /* CONFIG_PPC_BOOK3S_64 */ 573 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 574 case KVM_CAP_PPC_SMT: 575 r = 0; 576 if (kvm) { 577 if (kvm->arch.emul_smt_mode > 1) 578 r = kvm->arch.emul_smt_mode; 579 else 580 r = kvm->arch.smt_mode; 581 } else if (hv_enabled) { 582 if (cpu_has_feature(CPU_FTR_ARCH_300)) 583 r = 1; 584 else 585 r = threads_per_subcore; 586 } 587 break; 588 case KVM_CAP_PPC_SMT_POSSIBLE: 589 r = 1; 590 if (hv_enabled) { 591 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 592 r = ((threads_per_subcore << 1) - 1); 593 else 594 /* P9 can emulate dbells, so allow any mode */ 595 r = 8 | 4 | 2 | 1; 596 } 597 break; 598 case KVM_CAP_PPC_RMA: 599 r = 0; 600 break; 601 case KVM_CAP_PPC_HWRNG: 602 r = kvmppc_hwrng_present(); 603 break; 604 case KVM_CAP_PPC_MMU_RADIX: 605 r = !!(hv_enabled && radix_enabled()); 606 break; 607 case KVM_CAP_PPC_MMU_HASH_V3: 608 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) && 609 cpu_has_feature(CPU_FTR_HVMODE)); 610 break; 611 case KVM_CAP_PPC_NESTED_HV: 612 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 613 !kvmppc_hv_ops->enable_nested(NULL)); 614 break; 615 #endif 616 case KVM_CAP_SYNC_MMU: 617 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 618 r = hv_enabled; 619 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 620 r = 1; 621 #else 622 r = 0; 623 #endif 624 break; 625 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 626 case KVM_CAP_PPC_HTAB_FD: 627 r = hv_enabled; 628 break; 629 #endif 630 case KVM_CAP_NR_VCPUS: 631 /* 632 * Recommending a number of CPUs is somewhat arbitrary; we 633 * return the number of present CPUs for -HV (since a host 634 * will have secondary threads "offline"), and for other KVM 635 * implementations just count online CPUs. 636 */ 637 if (hv_enabled) 638 r = num_present_cpus(); 639 else 640 r = num_online_cpus(); 641 break; 642 case KVM_CAP_MAX_VCPUS: 643 r = KVM_MAX_VCPUS; 644 break; 645 case KVM_CAP_MAX_VCPU_ID: 646 r = KVM_MAX_VCPU_ID; 647 break; 648 #ifdef CONFIG_PPC_BOOK3S_64 649 case KVM_CAP_PPC_GET_SMMU_INFO: 650 r = 1; 651 break; 652 case KVM_CAP_SPAPR_MULTITCE: 653 r = 1; 654 break; 655 case KVM_CAP_SPAPR_RESIZE_HPT: 656 r = !!hv_enabled; 657 break; 658 #endif 659 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 660 case KVM_CAP_PPC_FWNMI: 661 r = hv_enabled; 662 break; 663 #endif 664 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 665 case KVM_CAP_PPC_HTM: 666 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 667 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 668 break; 669 #endif 670 default: 671 r = 0; 672 break; 673 } 674 return r; 675 676 } 677 678 long kvm_arch_dev_ioctl(struct file *filp, 679 unsigned int ioctl, unsigned long arg) 680 { 681 return -EINVAL; 682 } 683 684 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 685 struct kvm_memory_slot *dont) 686 { 687 kvmppc_core_free_memslot(kvm, free, dont); 688 } 689 690 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 691 unsigned long npages) 692 { 693 return kvmppc_core_create_memslot(kvm, slot, npages); 694 } 695 696 int kvm_arch_prepare_memory_region(struct kvm *kvm, 697 struct kvm_memory_slot *memslot, 698 const struct kvm_userspace_memory_region *mem, 699 enum kvm_mr_change change) 700 { 701 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 702 } 703 704 void kvm_arch_commit_memory_region(struct kvm *kvm, 705 const struct kvm_userspace_memory_region *mem, 706 const struct kvm_memory_slot *old, 707 const struct kvm_memory_slot *new, 708 enum kvm_mr_change change) 709 { 710 kvmppc_core_commit_memory_region(kvm, mem, old, new, change); 711 } 712 713 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 714 struct kvm_memory_slot *slot) 715 { 716 kvmppc_core_flush_memslot(kvm, slot); 717 } 718 719 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 720 { 721 struct kvm_vcpu *vcpu; 722 vcpu = kvmppc_core_vcpu_create(kvm, id); 723 if (!IS_ERR(vcpu)) { 724 vcpu->arch.wqp = &vcpu->wq; 725 kvmppc_create_vcpu_debugfs(vcpu, id); 726 } 727 return vcpu; 728 } 729 730 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 731 { 732 } 733 734 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 735 { 736 /* Make sure we're not using the vcpu anymore */ 737 hrtimer_cancel(&vcpu->arch.dec_timer); 738 739 kvmppc_remove_vcpu_debugfs(vcpu); 740 741 switch (vcpu->arch.irq_type) { 742 case KVMPPC_IRQ_MPIC: 743 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 744 break; 745 case KVMPPC_IRQ_XICS: 746 if (xics_on_xive()) 747 kvmppc_xive_cleanup_vcpu(vcpu); 748 else 749 kvmppc_xics_free_icp(vcpu); 750 break; 751 case KVMPPC_IRQ_XIVE: 752 kvmppc_xive_native_cleanup_vcpu(vcpu); 753 break; 754 } 755 756 kvmppc_core_vcpu_free(vcpu); 757 } 758 759 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 760 { 761 kvm_arch_vcpu_free(vcpu); 762 } 763 764 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 765 { 766 return kvmppc_core_pending_dec(vcpu); 767 } 768 769 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 770 { 771 struct kvm_vcpu *vcpu; 772 773 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 774 kvmppc_decrementer_func(vcpu); 775 776 return HRTIMER_NORESTART; 777 } 778 779 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 780 { 781 int ret; 782 783 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 784 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 785 vcpu->arch.dec_expires = get_tb(); 786 787 #ifdef CONFIG_KVM_EXIT_TIMING 788 mutex_init(&vcpu->arch.exit_timing_lock); 789 #endif 790 ret = kvmppc_subarch_vcpu_init(vcpu); 791 return ret; 792 } 793 794 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 795 { 796 kvmppc_mmu_destroy(vcpu); 797 kvmppc_subarch_vcpu_uninit(vcpu); 798 } 799 800 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 801 { 802 #ifdef CONFIG_BOOKE 803 /* 804 * vrsave (formerly usprg0) isn't used by Linux, but may 805 * be used by the guest. 806 * 807 * On non-booke this is associated with Altivec and 808 * is handled by code in book3s.c. 809 */ 810 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 811 #endif 812 kvmppc_core_vcpu_load(vcpu, cpu); 813 } 814 815 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 816 { 817 kvmppc_core_vcpu_put(vcpu); 818 #ifdef CONFIG_BOOKE 819 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 820 #endif 821 } 822 823 /* 824 * irq_bypass_add_producer and irq_bypass_del_producer are only 825 * useful if the architecture supports PCI passthrough. 826 * irq_bypass_stop and irq_bypass_start are not needed and so 827 * kvm_ops are not defined for them. 828 */ 829 bool kvm_arch_has_irq_bypass(void) 830 { 831 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 832 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 833 } 834 835 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 836 struct irq_bypass_producer *prod) 837 { 838 struct kvm_kernel_irqfd *irqfd = 839 container_of(cons, struct kvm_kernel_irqfd, consumer); 840 struct kvm *kvm = irqfd->kvm; 841 842 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 843 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 844 845 return 0; 846 } 847 848 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 849 struct irq_bypass_producer *prod) 850 { 851 struct kvm_kernel_irqfd *irqfd = 852 container_of(cons, struct kvm_kernel_irqfd, consumer); 853 struct kvm *kvm = irqfd->kvm; 854 855 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 856 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 857 } 858 859 #ifdef CONFIG_VSX 860 static inline int kvmppc_get_vsr_dword_offset(int index) 861 { 862 int offset; 863 864 if ((index != 0) && (index != 1)) 865 return -1; 866 867 #ifdef __BIG_ENDIAN 868 offset = index; 869 #else 870 offset = 1 - index; 871 #endif 872 873 return offset; 874 } 875 876 static inline int kvmppc_get_vsr_word_offset(int index) 877 { 878 int offset; 879 880 if ((index > 3) || (index < 0)) 881 return -1; 882 883 #ifdef __BIG_ENDIAN 884 offset = index; 885 #else 886 offset = 3 - index; 887 #endif 888 return offset; 889 } 890 891 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 892 u64 gpr) 893 { 894 union kvmppc_one_reg val; 895 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 896 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 897 898 if (offset == -1) 899 return; 900 901 if (index >= 32) { 902 val.vval = VCPU_VSX_VR(vcpu, index - 32); 903 val.vsxval[offset] = gpr; 904 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 905 } else { 906 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 907 } 908 } 909 910 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 911 u64 gpr) 912 { 913 union kvmppc_one_reg val; 914 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 915 916 if (index >= 32) { 917 val.vval = VCPU_VSX_VR(vcpu, index - 32); 918 val.vsxval[0] = gpr; 919 val.vsxval[1] = gpr; 920 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 921 } else { 922 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 923 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 924 } 925 } 926 927 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 928 u32 gpr) 929 { 930 union kvmppc_one_reg val; 931 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 932 933 if (index >= 32) { 934 val.vsx32val[0] = gpr; 935 val.vsx32val[1] = gpr; 936 val.vsx32val[2] = gpr; 937 val.vsx32val[3] = gpr; 938 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 939 } else { 940 val.vsx32val[0] = gpr; 941 val.vsx32val[1] = gpr; 942 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 943 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 944 } 945 } 946 947 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 948 u32 gpr32) 949 { 950 union kvmppc_one_reg val; 951 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 952 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 953 int dword_offset, word_offset; 954 955 if (offset == -1) 956 return; 957 958 if (index >= 32) { 959 val.vval = VCPU_VSX_VR(vcpu, index - 32); 960 val.vsx32val[offset] = gpr32; 961 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 962 } else { 963 dword_offset = offset / 2; 964 word_offset = offset % 2; 965 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 966 val.vsx32val[word_offset] = gpr32; 967 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 968 } 969 } 970 #endif /* CONFIG_VSX */ 971 972 #ifdef CONFIG_ALTIVEC 973 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 974 int index, int element_size) 975 { 976 int offset; 977 int elts = sizeof(vector128)/element_size; 978 979 if ((index < 0) || (index >= elts)) 980 return -1; 981 982 if (kvmppc_need_byteswap(vcpu)) 983 offset = elts - index - 1; 984 else 985 offset = index; 986 987 return offset; 988 } 989 990 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 991 int index) 992 { 993 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 994 } 995 996 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 997 int index) 998 { 999 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1000 } 1001 1002 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1003 int index) 1004 { 1005 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1006 } 1007 1008 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1009 int index) 1010 { 1011 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1012 } 1013 1014 1015 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1016 u64 gpr) 1017 { 1018 union kvmppc_one_reg val; 1019 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1020 vcpu->arch.mmio_vmx_offset); 1021 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1022 1023 if (offset == -1) 1024 return; 1025 1026 val.vval = VCPU_VSX_VR(vcpu, index); 1027 val.vsxval[offset] = gpr; 1028 VCPU_VSX_VR(vcpu, index) = val.vval; 1029 } 1030 1031 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1032 u32 gpr32) 1033 { 1034 union kvmppc_one_reg val; 1035 int offset = kvmppc_get_vmx_word_offset(vcpu, 1036 vcpu->arch.mmio_vmx_offset); 1037 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1038 1039 if (offset == -1) 1040 return; 1041 1042 val.vval = VCPU_VSX_VR(vcpu, index); 1043 val.vsx32val[offset] = gpr32; 1044 VCPU_VSX_VR(vcpu, index) = val.vval; 1045 } 1046 1047 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1048 u16 gpr16) 1049 { 1050 union kvmppc_one_reg val; 1051 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1052 vcpu->arch.mmio_vmx_offset); 1053 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1054 1055 if (offset == -1) 1056 return; 1057 1058 val.vval = VCPU_VSX_VR(vcpu, index); 1059 val.vsx16val[offset] = gpr16; 1060 VCPU_VSX_VR(vcpu, index) = val.vval; 1061 } 1062 1063 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1064 u8 gpr8) 1065 { 1066 union kvmppc_one_reg val; 1067 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1068 vcpu->arch.mmio_vmx_offset); 1069 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1070 1071 if (offset == -1) 1072 return; 1073 1074 val.vval = VCPU_VSX_VR(vcpu, index); 1075 val.vsx8val[offset] = gpr8; 1076 VCPU_VSX_VR(vcpu, index) = val.vval; 1077 } 1078 #endif /* CONFIG_ALTIVEC */ 1079 1080 #ifdef CONFIG_PPC_FPU 1081 static inline u64 sp_to_dp(u32 fprs) 1082 { 1083 u64 fprd; 1084 1085 preempt_disable(); 1086 enable_kernel_fp(); 1087 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 1088 : "fr0"); 1089 preempt_enable(); 1090 return fprd; 1091 } 1092 1093 static inline u32 dp_to_sp(u64 fprd) 1094 { 1095 u32 fprs; 1096 1097 preempt_disable(); 1098 enable_kernel_fp(); 1099 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 1100 : "fr0"); 1101 preempt_enable(); 1102 return fprs; 1103 } 1104 1105 #else 1106 #define sp_to_dp(x) (x) 1107 #define dp_to_sp(x) (x) 1108 #endif /* CONFIG_PPC_FPU */ 1109 1110 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 1111 struct kvm_run *run) 1112 { 1113 u64 uninitialized_var(gpr); 1114 1115 if (run->mmio.len > sizeof(gpr)) { 1116 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1117 return; 1118 } 1119 1120 if (!vcpu->arch.mmio_host_swabbed) { 1121 switch (run->mmio.len) { 1122 case 8: gpr = *(u64 *)run->mmio.data; break; 1123 case 4: gpr = *(u32 *)run->mmio.data; break; 1124 case 2: gpr = *(u16 *)run->mmio.data; break; 1125 case 1: gpr = *(u8 *)run->mmio.data; break; 1126 } 1127 } else { 1128 switch (run->mmio.len) { 1129 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1130 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1131 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1132 case 1: gpr = *(u8 *)run->mmio.data; break; 1133 } 1134 } 1135 1136 /* conversion between single and double precision */ 1137 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1138 gpr = sp_to_dp(gpr); 1139 1140 if (vcpu->arch.mmio_sign_extend) { 1141 switch (run->mmio.len) { 1142 #ifdef CONFIG_PPC64 1143 case 4: 1144 gpr = (s64)(s32)gpr; 1145 break; 1146 #endif 1147 case 2: 1148 gpr = (s64)(s16)gpr; 1149 break; 1150 case 1: 1151 gpr = (s64)(s8)gpr; 1152 break; 1153 } 1154 } 1155 1156 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1157 case KVM_MMIO_REG_GPR: 1158 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1159 break; 1160 case KVM_MMIO_REG_FPR: 1161 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1162 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1163 1164 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1165 break; 1166 #ifdef CONFIG_PPC_BOOK3S 1167 case KVM_MMIO_REG_QPR: 1168 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1169 break; 1170 case KVM_MMIO_REG_FQPR: 1171 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1172 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1173 break; 1174 #endif 1175 #ifdef CONFIG_VSX 1176 case KVM_MMIO_REG_VSX: 1177 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1178 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1179 1180 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1181 kvmppc_set_vsr_dword(vcpu, gpr); 1182 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1183 kvmppc_set_vsr_word(vcpu, gpr); 1184 else if (vcpu->arch.mmio_copy_type == 1185 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1186 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1187 else if (vcpu->arch.mmio_copy_type == 1188 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1189 kvmppc_set_vsr_word_dump(vcpu, gpr); 1190 break; 1191 #endif 1192 #ifdef CONFIG_ALTIVEC 1193 case KVM_MMIO_REG_VMX: 1194 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1195 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1196 1197 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1198 kvmppc_set_vmx_dword(vcpu, gpr); 1199 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1200 kvmppc_set_vmx_word(vcpu, gpr); 1201 else if (vcpu->arch.mmio_copy_type == 1202 KVMPPC_VMX_COPY_HWORD) 1203 kvmppc_set_vmx_hword(vcpu, gpr); 1204 else if (vcpu->arch.mmio_copy_type == 1205 KVMPPC_VMX_COPY_BYTE) 1206 kvmppc_set_vmx_byte(vcpu, gpr); 1207 break; 1208 #endif 1209 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1210 case KVM_MMIO_REG_NESTED_GPR: 1211 if (kvmppc_need_byteswap(vcpu)) 1212 gpr = swab64(gpr); 1213 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1214 sizeof(gpr)); 1215 break; 1216 #endif 1217 default: 1218 BUG(); 1219 } 1220 } 1221 1222 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1223 unsigned int rt, unsigned int bytes, 1224 int is_default_endian, int sign_extend) 1225 { 1226 int idx, ret; 1227 bool host_swabbed; 1228 1229 /* Pity C doesn't have a logical XOR operator */ 1230 if (kvmppc_need_byteswap(vcpu)) { 1231 host_swabbed = is_default_endian; 1232 } else { 1233 host_swabbed = !is_default_endian; 1234 } 1235 1236 if (bytes > sizeof(run->mmio.data)) { 1237 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1238 run->mmio.len); 1239 } 1240 1241 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1242 run->mmio.len = bytes; 1243 run->mmio.is_write = 0; 1244 1245 vcpu->arch.io_gpr = rt; 1246 vcpu->arch.mmio_host_swabbed = host_swabbed; 1247 vcpu->mmio_needed = 1; 1248 vcpu->mmio_is_write = 0; 1249 vcpu->arch.mmio_sign_extend = sign_extend; 1250 1251 idx = srcu_read_lock(&vcpu->kvm->srcu); 1252 1253 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1254 bytes, &run->mmio.data); 1255 1256 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1257 1258 if (!ret) { 1259 kvmppc_complete_mmio_load(vcpu, run); 1260 vcpu->mmio_needed = 0; 1261 return EMULATE_DONE; 1262 } 1263 1264 return EMULATE_DO_MMIO; 1265 } 1266 1267 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1268 unsigned int rt, unsigned int bytes, 1269 int is_default_endian) 1270 { 1271 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 1272 } 1273 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1274 1275 /* Same as above, but sign extends */ 1276 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 1277 unsigned int rt, unsigned int bytes, 1278 int is_default_endian) 1279 { 1280 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 1281 } 1282 1283 #ifdef CONFIG_VSX 1284 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1285 unsigned int rt, unsigned int bytes, 1286 int is_default_endian, int mmio_sign_extend) 1287 { 1288 enum emulation_result emulated = EMULATE_DONE; 1289 1290 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1291 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1292 return EMULATE_FAIL; 1293 1294 while (vcpu->arch.mmio_vsx_copy_nums) { 1295 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1296 is_default_endian, mmio_sign_extend); 1297 1298 if (emulated != EMULATE_DONE) 1299 break; 1300 1301 vcpu->arch.paddr_accessed += run->mmio.len; 1302 1303 vcpu->arch.mmio_vsx_copy_nums--; 1304 vcpu->arch.mmio_vsx_offset++; 1305 } 1306 return emulated; 1307 } 1308 #endif /* CONFIG_VSX */ 1309 1310 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1311 u64 val, unsigned int bytes, int is_default_endian) 1312 { 1313 void *data = run->mmio.data; 1314 int idx, ret; 1315 bool host_swabbed; 1316 1317 /* Pity C doesn't have a logical XOR operator */ 1318 if (kvmppc_need_byteswap(vcpu)) { 1319 host_swabbed = is_default_endian; 1320 } else { 1321 host_swabbed = !is_default_endian; 1322 } 1323 1324 if (bytes > sizeof(run->mmio.data)) { 1325 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1326 run->mmio.len); 1327 } 1328 1329 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1330 run->mmio.len = bytes; 1331 run->mmio.is_write = 1; 1332 vcpu->mmio_needed = 1; 1333 vcpu->mmio_is_write = 1; 1334 1335 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1336 val = dp_to_sp(val); 1337 1338 /* Store the value at the lowest bytes in 'data'. */ 1339 if (!host_swabbed) { 1340 switch (bytes) { 1341 case 8: *(u64 *)data = val; break; 1342 case 4: *(u32 *)data = val; break; 1343 case 2: *(u16 *)data = val; break; 1344 case 1: *(u8 *)data = val; break; 1345 } 1346 } else { 1347 switch (bytes) { 1348 case 8: *(u64 *)data = swab64(val); break; 1349 case 4: *(u32 *)data = swab32(val); break; 1350 case 2: *(u16 *)data = swab16(val); break; 1351 case 1: *(u8 *)data = val; break; 1352 } 1353 } 1354 1355 idx = srcu_read_lock(&vcpu->kvm->srcu); 1356 1357 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1358 bytes, &run->mmio.data); 1359 1360 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1361 1362 if (!ret) { 1363 vcpu->mmio_needed = 0; 1364 return EMULATE_DONE; 1365 } 1366 1367 return EMULATE_DO_MMIO; 1368 } 1369 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1370 1371 #ifdef CONFIG_VSX 1372 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1373 { 1374 u32 dword_offset, word_offset; 1375 union kvmppc_one_reg reg; 1376 int vsx_offset = 0; 1377 int copy_type = vcpu->arch.mmio_copy_type; 1378 int result = 0; 1379 1380 switch (copy_type) { 1381 case KVMPPC_VSX_COPY_DWORD: 1382 vsx_offset = 1383 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1384 1385 if (vsx_offset == -1) { 1386 result = -1; 1387 break; 1388 } 1389 1390 if (rs < 32) { 1391 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1392 } else { 1393 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1394 *val = reg.vsxval[vsx_offset]; 1395 } 1396 break; 1397 1398 case KVMPPC_VSX_COPY_WORD: 1399 vsx_offset = 1400 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1401 1402 if (vsx_offset == -1) { 1403 result = -1; 1404 break; 1405 } 1406 1407 if (rs < 32) { 1408 dword_offset = vsx_offset / 2; 1409 word_offset = vsx_offset % 2; 1410 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1411 *val = reg.vsx32val[word_offset]; 1412 } else { 1413 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1414 *val = reg.vsx32val[vsx_offset]; 1415 } 1416 break; 1417 1418 default: 1419 result = -1; 1420 break; 1421 } 1422 1423 return result; 1424 } 1425 1426 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1427 int rs, unsigned int bytes, int is_default_endian) 1428 { 1429 u64 val; 1430 enum emulation_result emulated = EMULATE_DONE; 1431 1432 vcpu->arch.io_gpr = rs; 1433 1434 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1435 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1436 return EMULATE_FAIL; 1437 1438 while (vcpu->arch.mmio_vsx_copy_nums) { 1439 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1440 return EMULATE_FAIL; 1441 1442 emulated = kvmppc_handle_store(run, vcpu, 1443 val, bytes, is_default_endian); 1444 1445 if (emulated != EMULATE_DONE) 1446 break; 1447 1448 vcpu->arch.paddr_accessed += run->mmio.len; 1449 1450 vcpu->arch.mmio_vsx_copy_nums--; 1451 vcpu->arch.mmio_vsx_offset++; 1452 } 1453 1454 return emulated; 1455 } 1456 1457 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu, 1458 struct kvm_run *run) 1459 { 1460 enum emulation_result emulated = EMULATE_FAIL; 1461 int r; 1462 1463 vcpu->arch.paddr_accessed += run->mmio.len; 1464 1465 if (!vcpu->mmio_is_write) { 1466 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr, 1467 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1468 } else { 1469 emulated = kvmppc_handle_vsx_store(run, vcpu, 1470 vcpu->arch.io_gpr, run->mmio.len, 1); 1471 } 1472 1473 switch (emulated) { 1474 case EMULATE_DO_MMIO: 1475 run->exit_reason = KVM_EXIT_MMIO; 1476 r = RESUME_HOST; 1477 break; 1478 case EMULATE_FAIL: 1479 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1480 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1481 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1482 r = RESUME_HOST; 1483 break; 1484 default: 1485 r = RESUME_GUEST; 1486 break; 1487 } 1488 return r; 1489 } 1490 #endif /* CONFIG_VSX */ 1491 1492 #ifdef CONFIG_ALTIVEC 1493 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1494 unsigned int rt, unsigned int bytes, int is_default_endian) 1495 { 1496 enum emulation_result emulated = EMULATE_DONE; 1497 1498 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1499 return EMULATE_FAIL; 1500 1501 while (vcpu->arch.mmio_vmx_copy_nums) { 1502 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1503 is_default_endian, 0); 1504 1505 if (emulated != EMULATE_DONE) 1506 break; 1507 1508 vcpu->arch.paddr_accessed += run->mmio.len; 1509 vcpu->arch.mmio_vmx_copy_nums--; 1510 vcpu->arch.mmio_vmx_offset++; 1511 } 1512 1513 return emulated; 1514 } 1515 1516 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1517 { 1518 union kvmppc_one_reg reg; 1519 int vmx_offset = 0; 1520 int result = 0; 1521 1522 vmx_offset = 1523 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1524 1525 if (vmx_offset == -1) 1526 return -1; 1527 1528 reg.vval = VCPU_VSX_VR(vcpu, index); 1529 *val = reg.vsxval[vmx_offset]; 1530 1531 return result; 1532 } 1533 1534 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1535 { 1536 union kvmppc_one_reg reg; 1537 int vmx_offset = 0; 1538 int result = 0; 1539 1540 vmx_offset = 1541 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1542 1543 if (vmx_offset == -1) 1544 return -1; 1545 1546 reg.vval = VCPU_VSX_VR(vcpu, index); 1547 *val = reg.vsx32val[vmx_offset]; 1548 1549 return result; 1550 } 1551 1552 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1553 { 1554 union kvmppc_one_reg reg; 1555 int vmx_offset = 0; 1556 int result = 0; 1557 1558 vmx_offset = 1559 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1560 1561 if (vmx_offset == -1) 1562 return -1; 1563 1564 reg.vval = VCPU_VSX_VR(vcpu, index); 1565 *val = reg.vsx16val[vmx_offset]; 1566 1567 return result; 1568 } 1569 1570 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1571 { 1572 union kvmppc_one_reg reg; 1573 int vmx_offset = 0; 1574 int result = 0; 1575 1576 vmx_offset = 1577 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1578 1579 if (vmx_offset == -1) 1580 return -1; 1581 1582 reg.vval = VCPU_VSX_VR(vcpu, index); 1583 *val = reg.vsx8val[vmx_offset]; 1584 1585 return result; 1586 } 1587 1588 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1589 unsigned int rs, unsigned int bytes, int is_default_endian) 1590 { 1591 u64 val = 0; 1592 unsigned int index = rs & KVM_MMIO_REG_MASK; 1593 enum emulation_result emulated = EMULATE_DONE; 1594 1595 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1596 return EMULATE_FAIL; 1597 1598 vcpu->arch.io_gpr = rs; 1599 1600 while (vcpu->arch.mmio_vmx_copy_nums) { 1601 switch (vcpu->arch.mmio_copy_type) { 1602 case KVMPPC_VMX_COPY_DWORD: 1603 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1604 return EMULATE_FAIL; 1605 1606 break; 1607 case KVMPPC_VMX_COPY_WORD: 1608 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1609 return EMULATE_FAIL; 1610 break; 1611 case KVMPPC_VMX_COPY_HWORD: 1612 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1613 return EMULATE_FAIL; 1614 break; 1615 case KVMPPC_VMX_COPY_BYTE: 1616 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1617 return EMULATE_FAIL; 1618 break; 1619 default: 1620 return EMULATE_FAIL; 1621 } 1622 1623 emulated = kvmppc_handle_store(run, vcpu, val, bytes, 1624 is_default_endian); 1625 if (emulated != EMULATE_DONE) 1626 break; 1627 1628 vcpu->arch.paddr_accessed += run->mmio.len; 1629 vcpu->arch.mmio_vmx_copy_nums--; 1630 vcpu->arch.mmio_vmx_offset++; 1631 } 1632 1633 return emulated; 1634 } 1635 1636 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu, 1637 struct kvm_run *run) 1638 { 1639 enum emulation_result emulated = EMULATE_FAIL; 1640 int r; 1641 1642 vcpu->arch.paddr_accessed += run->mmio.len; 1643 1644 if (!vcpu->mmio_is_write) { 1645 emulated = kvmppc_handle_vmx_load(run, vcpu, 1646 vcpu->arch.io_gpr, run->mmio.len, 1); 1647 } else { 1648 emulated = kvmppc_handle_vmx_store(run, vcpu, 1649 vcpu->arch.io_gpr, run->mmio.len, 1); 1650 } 1651 1652 switch (emulated) { 1653 case EMULATE_DO_MMIO: 1654 run->exit_reason = KVM_EXIT_MMIO; 1655 r = RESUME_HOST; 1656 break; 1657 case EMULATE_FAIL: 1658 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1659 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1660 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1661 r = RESUME_HOST; 1662 break; 1663 default: 1664 r = RESUME_GUEST; 1665 break; 1666 } 1667 return r; 1668 } 1669 #endif /* CONFIG_ALTIVEC */ 1670 1671 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1672 { 1673 int r = 0; 1674 union kvmppc_one_reg val; 1675 int size; 1676 1677 size = one_reg_size(reg->id); 1678 if (size > sizeof(val)) 1679 return -EINVAL; 1680 1681 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1682 if (r == -EINVAL) { 1683 r = 0; 1684 switch (reg->id) { 1685 #ifdef CONFIG_ALTIVEC 1686 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1687 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1688 r = -ENXIO; 1689 break; 1690 } 1691 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1692 break; 1693 case KVM_REG_PPC_VSCR: 1694 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1695 r = -ENXIO; 1696 break; 1697 } 1698 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1699 break; 1700 case KVM_REG_PPC_VRSAVE: 1701 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1702 break; 1703 #endif /* CONFIG_ALTIVEC */ 1704 default: 1705 r = -EINVAL; 1706 break; 1707 } 1708 } 1709 1710 if (r) 1711 return r; 1712 1713 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1714 r = -EFAULT; 1715 1716 return r; 1717 } 1718 1719 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1720 { 1721 int r; 1722 union kvmppc_one_reg val; 1723 int size; 1724 1725 size = one_reg_size(reg->id); 1726 if (size > sizeof(val)) 1727 return -EINVAL; 1728 1729 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1730 return -EFAULT; 1731 1732 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1733 if (r == -EINVAL) { 1734 r = 0; 1735 switch (reg->id) { 1736 #ifdef CONFIG_ALTIVEC 1737 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1738 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1739 r = -ENXIO; 1740 break; 1741 } 1742 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1743 break; 1744 case KVM_REG_PPC_VSCR: 1745 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1746 r = -ENXIO; 1747 break; 1748 } 1749 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1750 break; 1751 case KVM_REG_PPC_VRSAVE: 1752 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1753 r = -ENXIO; 1754 break; 1755 } 1756 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1757 break; 1758 #endif /* CONFIG_ALTIVEC */ 1759 default: 1760 r = -EINVAL; 1761 break; 1762 } 1763 } 1764 1765 return r; 1766 } 1767 1768 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1769 { 1770 int r; 1771 1772 vcpu_load(vcpu); 1773 1774 if (vcpu->mmio_needed) { 1775 vcpu->mmio_needed = 0; 1776 if (!vcpu->mmio_is_write) 1777 kvmppc_complete_mmio_load(vcpu, run); 1778 #ifdef CONFIG_VSX 1779 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1780 vcpu->arch.mmio_vsx_copy_nums--; 1781 vcpu->arch.mmio_vsx_offset++; 1782 } 1783 1784 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1785 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run); 1786 if (r == RESUME_HOST) { 1787 vcpu->mmio_needed = 1; 1788 goto out; 1789 } 1790 } 1791 #endif 1792 #ifdef CONFIG_ALTIVEC 1793 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1794 vcpu->arch.mmio_vmx_copy_nums--; 1795 vcpu->arch.mmio_vmx_offset++; 1796 } 1797 1798 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1799 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run); 1800 if (r == RESUME_HOST) { 1801 vcpu->mmio_needed = 1; 1802 goto out; 1803 } 1804 } 1805 #endif 1806 } else if (vcpu->arch.osi_needed) { 1807 u64 *gprs = run->osi.gprs; 1808 int i; 1809 1810 for (i = 0; i < 32; i++) 1811 kvmppc_set_gpr(vcpu, i, gprs[i]); 1812 vcpu->arch.osi_needed = 0; 1813 } else if (vcpu->arch.hcall_needed) { 1814 int i; 1815 1816 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1817 for (i = 0; i < 9; ++i) 1818 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1819 vcpu->arch.hcall_needed = 0; 1820 #ifdef CONFIG_BOOKE 1821 } else if (vcpu->arch.epr_needed) { 1822 kvmppc_set_epr(vcpu, run->epr.epr); 1823 vcpu->arch.epr_needed = 0; 1824 #endif 1825 } 1826 1827 kvm_sigset_activate(vcpu); 1828 1829 if (run->immediate_exit) 1830 r = -EINTR; 1831 else 1832 r = kvmppc_vcpu_run(run, vcpu); 1833 1834 kvm_sigset_deactivate(vcpu); 1835 1836 #ifdef CONFIG_ALTIVEC 1837 out: 1838 #endif 1839 vcpu_put(vcpu); 1840 return r; 1841 } 1842 1843 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1844 { 1845 if (irq->irq == KVM_INTERRUPT_UNSET) { 1846 kvmppc_core_dequeue_external(vcpu); 1847 return 0; 1848 } 1849 1850 kvmppc_core_queue_external(vcpu, irq); 1851 1852 kvm_vcpu_kick(vcpu); 1853 1854 return 0; 1855 } 1856 1857 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1858 struct kvm_enable_cap *cap) 1859 { 1860 int r; 1861 1862 if (cap->flags) 1863 return -EINVAL; 1864 1865 switch (cap->cap) { 1866 case KVM_CAP_PPC_OSI: 1867 r = 0; 1868 vcpu->arch.osi_enabled = true; 1869 break; 1870 case KVM_CAP_PPC_PAPR: 1871 r = 0; 1872 vcpu->arch.papr_enabled = true; 1873 break; 1874 case KVM_CAP_PPC_EPR: 1875 r = 0; 1876 if (cap->args[0]) 1877 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1878 else 1879 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1880 break; 1881 #ifdef CONFIG_BOOKE 1882 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1883 r = 0; 1884 vcpu->arch.watchdog_enabled = true; 1885 break; 1886 #endif 1887 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1888 case KVM_CAP_SW_TLB: { 1889 struct kvm_config_tlb cfg; 1890 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1891 1892 r = -EFAULT; 1893 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1894 break; 1895 1896 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1897 break; 1898 } 1899 #endif 1900 #ifdef CONFIG_KVM_MPIC 1901 case KVM_CAP_IRQ_MPIC: { 1902 struct fd f; 1903 struct kvm_device *dev; 1904 1905 r = -EBADF; 1906 f = fdget(cap->args[0]); 1907 if (!f.file) 1908 break; 1909 1910 r = -EPERM; 1911 dev = kvm_device_from_filp(f.file); 1912 if (dev) 1913 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1914 1915 fdput(f); 1916 break; 1917 } 1918 #endif 1919 #ifdef CONFIG_KVM_XICS 1920 case KVM_CAP_IRQ_XICS: { 1921 struct fd f; 1922 struct kvm_device *dev; 1923 1924 r = -EBADF; 1925 f = fdget(cap->args[0]); 1926 if (!f.file) 1927 break; 1928 1929 r = -EPERM; 1930 dev = kvm_device_from_filp(f.file); 1931 if (dev) { 1932 if (xics_on_xive()) 1933 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1934 else 1935 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1936 } 1937 1938 fdput(f); 1939 break; 1940 } 1941 #endif /* CONFIG_KVM_XICS */ 1942 #ifdef CONFIG_KVM_XIVE 1943 case KVM_CAP_PPC_IRQ_XIVE: { 1944 struct fd f; 1945 struct kvm_device *dev; 1946 1947 r = -EBADF; 1948 f = fdget(cap->args[0]); 1949 if (!f.file) 1950 break; 1951 1952 r = -ENXIO; 1953 if (!xive_enabled()) 1954 break; 1955 1956 r = -EPERM; 1957 dev = kvm_device_from_filp(f.file); 1958 if (dev) 1959 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1960 cap->args[1]); 1961 1962 fdput(f); 1963 break; 1964 } 1965 #endif /* CONFIG_KVM_XIVE */ 1966 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1967 case KVM_CAP_PPC_FWNMI: 1968 r = -EINVAL; 1969 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1970 break; 1971 r = 0; 1972 vcpu->kvm->arch.fwnmi_enabled = true; 1973 break; 1974 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1975 default: 1976 r = -EINVAL; 1977 break; 1978 } 1979 1980 if (!r) 1981 r = kvmppc_sanity_check(vcpu); 1982 1983 return r; 1984 } 1985 1986 bool kvm_arch_intc_initialized(struct kvm *kvm) 1987 { 1988 #ifdef CONFIG_KVM_MPIC 1989 if (kvm->arch.mpic) 1990 return true; 1991 #endif 1992 #ifdef CONFIG_KVM_XICS 1993 if (kvm->arch.xics || kvm->arch.xive) 1994 return true; 1995 #endif 1996 return false; 1997 } 1998 1999 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2000 struct kvm_mp_state *mp_state) 2001 { 2002 return -EINVAL; 2003 } 2004 2005 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2006 struct kvm_mp_state *mp_state) 2007 { 2008 return -EINVAL; 2009 } 2010 2011 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2012 unsigned int ioctl, unsigned long arg) 2013 { 2014 struct kvm_vcpu *vcpu = filp->private_data; 2015 void __user *argp = (void __user *)arg; 2016 2017 if (ioctl == KVM_INTERRUPT) { 2018 struct kvm_interrupt irq; 2019 if (copy_from_user(&irq, argp, sizeof(irq))) 2020 return -EFAULT; 2021 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2022 } 2023 return -ENOIOCTLCMD; 2024 } 2025 2026 long kvm_arch_vcpu_ioctl(struct file *filp, 2027 unsigned int ioctl, unsigned long arg) 2028 { 2029 struct kvm_vcpu *vcpu = filp->private_data; 2030 void __user *argp = (void __user *)arg; 2031 long r; 2032 2033 switch (ioctl) { 2034 case KVM_ENABLE_CAP: 2035 { 2036 struct kvm_enable_cap cap; 2037 r = -EFAULT; 2038 vcpu_load(vcpu); 2039 if (copy_from_user(&cap, argp, sizeof(cap))) 2040 goto out; 2041 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2042 vcpu_put(vcpu); 2043 break; 2044 } 2045 2046 case KVM_SET_ONE_REG: 2047 case KVM_GET_ONE_REG: 2048 { 2049 struct kvm_one_reg reg; 2050 r = -EFAULT; 2051 if (copy_from_user(®, argp, sizeof(reg))) 2052 goto out; 2053 if (ioctl == KVM_SET_ONE_REG) 2054 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2055 else 2056 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2057 break; 2058 } 2059 2060 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2061 case KVM_DIRTY_TLB: { 2062 struct kvm_dirty_tlb dirty; 2063 r = -EFAULT; 2064 vcpu_load(vcpu); 2065 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2066 goto out; 2067 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2068 vcpu_put(vcpu); 2069 break; 2070 } 2071 #endif 2072 default: 2073 r = -EINVAL; 2074 } 2075 2076 out: 2077 return r; 2078 } 2079 2080 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2081 { 2082 return VM_FAULT_SIGBUS; 2083 } 2084 2085 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2086 { 2087 u32 inst_nop = 0x60000000; 2088 #ifdef CONFIG_KVM_BOOKE_HV 2089 u32 inst_sc1 = 0x44000022; 2090 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2091 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2092 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2093 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2094 #else 2095 u32 inst_lis = 0x3c000000; 2096 u32 inst_ori = 0x60000000; 2097 u32 inst_sc = 0x44000002; 2098 u32 inst_imm_mask = 0xffff; 2099 2100 /* 2101 * The hypercall to get into KVM from within guest context is as 2102 * follows: 2103 * 2104 * lis r0, r0, KVM_SC_MAGIC_R0@h 2105 * ori r0, KVM_SC_MAGIC_R0@l 2106 * sc 2107 * nop 2108 */ 2109 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2110 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2111 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2112 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2113 #endif 2114 2115 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2116 2117 return 0; 2118 } 2119 2120 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2121 bool line_status) 2122 { 2123 if (!irqchip_in_kernel(kvm)) 2124 return -ENXIO; 2125 2126 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2127 irq_event->irq, irq_event->level, 2128 line_status); 2129 return 0; 2130 } 2131 2132 2133 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2134 struct kvm_enable_cap *cap) 2135 { 2136 int r; 2137 2138 if (cap->flags) 2139 return -EINVAL; 2140 2141 switch (cap->cap) { 2142 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2143 case KVM_CAP_PPC_ENABLE_HCALL: { 2144 unsigned long hcall = cap->args[0]; 2145 2146 r = -EINVAL; 2147 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2148 cap->args[1] > 1) 2149 break; 2150 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2151 break; 2152 if (cap->args[1]) 2153 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2154 else 2155 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2156 r = 0; 2157 break; 2158 } 2159 case KVM_CAP_PPC_SMT: { 2160 unsigned long mode = cap->args[0]; 2161 unsigned long flags = cap->args[1]; 2162 2163 r = -EINVAL; 2164 if (kvm->arch.kvm_ops->set_smt_mode) 2165 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2166 break; 2167 } 2168 2169 case KVM_CAP_PPC_NESTED_HV: 2170 r = -EINVAL; 2171 if (!is_kvmppc_hv_enabled(kvm) || 2172 !kvm->arch.kvm_ops->enable_nested) 2173 break; 2174 r = kvm->arch.kvm_ops->enable_nested(kvm); 2175 break; 2176 #endif 2177 default: 2178 r = -EINVAL; 2179 break; 2180 } 2181 2182 return r; 2183 } 2184 2185 #ifdef CONFIG_PPC_BOOK3S_64 2186 /* 2187 * These functions check whether the underlying hardware is safe 2188 * against attacks based on observing the effects of speculatively 2189 * executed instructions, and whether it supplies instructions for 2190 * use in workarounds. The information comes from firmware, either 2191 * via the device tree on powernv platforms or from an hcall on 2192 * pseries platforms. 2193 */ 2194 #ifdef CONFIG_PPC_PSERIES 2195 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2196 { 2197 struct h_cpu_char_result c; 2198 unsigned long rc; 2199 2200 if (!machine_is(pseries)) 2201 return -ENOTTY; 2202 2203 rc = plpar_get_cpu_characteristics(&c); 2204 if (rc == H_SUCCESS) { 2205 cp->character = c.character; 2206 cp->behaviour = c.behaviour; 2207 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2208 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2209 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2210 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2211 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2212 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2213 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2214 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2215 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2216 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2217 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2218 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2219 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2220 } 2221 return 0; 2222 } 2223 #else 2224 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2225 { 2226 return -ENOTTY; 2227 } 2228 #endif 2229 2230 static inline bool have_fw_feat(struct device_node *fw_features, 2231 const char *state, const char *name) 2232 { 2233 struct device_node *np; 2234 bool r = false; 2235 2236 np = of_get_child_by_name(fw_features, name); 2237 if (np) { 2238 r = of_property_read_bool(np, state); 2239 of_node_put(np); 2240 } 2241 return r; 2242 } 2243 2244 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2245 { 2246 struct device_node *np, *fw_features; 2247 int r; 2248 2249 memset(cp, 0, sizeof(*cp)); 2250 r = pseries_get_cpu_char(cp); 2251 if (r != -ENOTTY) 2252 return r; 2253 2254 np = of_find_node_by_name(NULL, "ibm,opal"); 2255 if (np) { 2256 fw_features = of_get_child_by_name(np, "fw-features"); 2257 of_node_put(np); 2258 if (!fw_features) 2259 return 0; 2260 if (have_fw_feat(fw_features, "enabled", 2261 "inst-spec-barrier-ori31,31,0")) 2262 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2263 if (have_fw_feat(fw_features, "enabled", 2264 "fw-bcctrl-serialized")) 2265 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2266 if (have_fw_feat(fw_features, "enabled", 2267 "inst-l1d-flush-ori30,30,0")) 2268 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2269 if (have_fw_feat(fw_features, "enabled", 2270 "inst-l1d-flush-trig2")) 2271 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2272 if (have_fw_feat(fw_features, "enabled", 2273 "fw-l1d-thread-split")) 2274 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2275 if (have_fw_feat(fw_features, "enabled", 2276 "fw-count-cache-disabled")) 2277 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2278 if (have_fw_feat(fw_features, "enabled", 2279 "fw-count-cache-flush-bcctr2,0,0")) 2280 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2281 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2282 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2283 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2284 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2285 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2286 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2287 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2288 2289 if (have_fw_feat(fw_features, "enabled", 2290 "speculation-policy-favor-security")) 2291 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2292 if (!have_fw_feat(fw_features, "disabled", 2293 "needs-l1d-flush-msr-pr-0-to-1")) 2294 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2295 if (!have_fw_feat(fw_features, "disabled", 2296 "needs-spec-barrier-for-bound-checks")) 2297 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2298 if (have_fw_feat(fw_features, "enabled", 2299 "needs-count-cache-flush-on-context-switch")) 2300 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2301 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2302 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2303 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2304 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2305 2306 of_node_put(fw_features); 2307 } 2308 2309 return 0; 2310 } 2311 #endif 2312 2313 long kvm_arch_vm_ioctl(struct file *filp, 2314 unsigned int ioctl, unsigned long arg) 2315 { 2316 struct kvm *kvm __maybe_unused = filp->private_data; 2317 void __user *argp = (void __user *)arg; 2318 long r; 2319 2320 switch (ioctl) { 2321 case KVM_PPC_GET_PVINFO: { 2322 struct kvm_ppc_pvinfo pvinfo; 2323 memset(&pvinfo, 0, sizeof(pvinfo)); 2324 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2325 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2326 r = -EFAULT; 2327 goto out; 2328 } 2329 2330 break; 2331 } 2332 #ifdef CONFIG_SPAPR_TCE_IOMMU 2333 case KVM_CREATE_SPAPR_TCE_64: { 2334 struct kvm_create_spapr_tce_64 create_tce_64; 2335 2336 r = -EFAULT; 2337 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2338 goto out; 2339 if (create_tce_64.flags) { 2340 r = -EINVAL; 2341 goto out; 2342 } 2343 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2344 goto out; 2345 } 2346 case KVM_CREATE_SPAPR_TCE: { 2347 struct kvm_create_spapr_tce create_tce; 2348 struct kvm_create_spapr_tce_64 create_tce_64; 2349 2350 r = -EFAULT; 2351 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2352 goto out; 2353 2354 create_tce_64.liobn = create_tce.liobn; 2355 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2356 create_tce_64.offset = 0; 2357 create_tce_64.size = create_tce.window_size >> 2358 IOMMU_PAGE_SHIFT_4K; 2359 create_tce_64.flags = 0; 2360 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2361 goto out; 2362 } 2363 #endif 2364 #ifdef CONFIG_PPC_BOOK3S_64 2365 case KVM_PPC_GET_SMMU_INFO: { 2366 struct kvm_ppc_smmu_info info; 2367 struct kvm *kvm = filp->private_data; 2368 2369 memset(&info, 0, sizeof(info)); 2370 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2371 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2372 r = -EFAULT; 2373 break; 2374 } 2375 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2376 struct kvm *kvm = filp->private_data; 2377 2378 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2379 break; 2380 } 2381 case KVM_PPC_CONFIGURE_V3_MMU: { 2382 struct kvm *kvm = filp->private_data; 2383 struct kvm_ppc_mmuv3_cfg cfg; 2384 2385 r = -EINVAL; 2386 if (!kvm->arch.kvm_ops->configure_mmu) 2387 goto out; 2388 r = -EFAULT; 2389 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2390 goto out; 2391 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2392 break; 2393 } 2394 case KVM_PPC_GET_RMMU_INFO: { 2395 struct kvm *kvm = filp->private_data; 2396 struct kvm_ppc_rmmu_info info; 2397 2398 r = -EINVAL; 2399 if (!kvm->arch.kvm_ops->get_rmmu_info) 2400 goto out; 2401 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2402 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2403 r = -EFAULT; 2404 break; 2405 } 2406 case KVM_PPC_GET_CPU_CHAR: { 2407 struct kvm_ppc_cpu_char cpuchar; 2408 2409 r = kvmppc_get_cpu_char(&cpuchar); 2410 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2411 r = -EFAULT; 2412 break; 2413 } 2414 default: { 2415 struct kvm *kvm = filp->private_data; 2416 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2417 } 2418 #else /* CONFIG_PPC_BOOK3S_64 */ 2419 default: 2420 r = -ENOTTY; 2421 #endif 2422 } 2423 out: 2424 return r; 2425 } 2426 2427 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2428 static unsigned long nr_lpids; 2429 2430 long kvmppc_alloc_lpid(void) 2431 { 2432 long lpid; 2433 2434 do { 2435 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2436 if (lpid >= nr_lpids) { 2437 pr_err("%s: No LPIDs free\n", __func__); 2438 return -ENOMEM; 2439 } 2440 } while (test_and_set_bit(lpid, lpid_inuse)); 2441 2442 return lpid; 2443 } 2444 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2445 2446 void kvmppc_claim_lpid(long lpid) 2447 { 2448 set_bit(lpid, lpid_inuse); 2449 } 2450 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2451 2452 void kvmppc_free_lpid(long lpid) 2453 { 2454 clear_bit(lpid, lpid_inuse); 2455 } 2456 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2457 2458 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2459 { 2460 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2461 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2462 } 2463 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2464 2465 int kvm_arch_init(void *opaque) 2466 { 2467 return 0; 2468 } 2469 2470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2471