1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/module.h> 30 #include <linux/irqbypass.h> 31 #include <linux/kvm_irqfd.h> 32 #include <asm/cputable.h> 33 #include <asm/uaccess.h> 34 #include <asm/kvm_ppc.h> 35 #include <asm/tlbflush.h> 36 #include <asm/cputhreads.h> 37 #include <asm/irqflags.h> 38 #include <asm/iommu.h> 39 #include "timing.h" 40 #include "irq.h" 41 #include "../mm/mmu_decl.h" 42 43 #define CREATE_TRACE_POINTS 44 #include "trace.h" 45 46 struct kvmppc_ops *kvmppc_hv_ops; 47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 48 struct kvmppc_ops *kvmppc_pr_ops; 49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 50 51 52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 53 { 54 return !!(v->arch.pending_exceptions) || 55 v->requests; 56 } 57 58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 59 { 60 return 1; 61 } 62 63 /* 64 * Common checks before entering the guest world. Call with interrupts 65 * disabled. 66 * 67 * returns: 68 * 69 * == 1 if we're ready to go into guest state 70 * <= 0 if we need to go back to the host with return value 71 */ 72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 73 { 74 int r; 75 76 WARN_ON(irqs_disabled()); 77 hard_irq_disable(); 78 79 while (true) { 80 if (need_resched()) { 81 local_irq_enable(); 82 cond_resched(); 83 hard_irq_disable(); 84 continue; 85 } 86 87 if (signal_pending(current)) { 88 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 89 vcpu->run->exit_reason = KVM_EXIT_INTR; 90 r = -EINTR; 91 break; 92 } 93 94 vcpu->mode = IN_GUEST_MODE; 95 96 /* 97 * Reading vcpu->requests must happen after setting vcpu->mode, 98 * so we don't miss a request because the requester sees 99 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 100 * before next entering the guest (and thus doesn't IPI). 101 * This also orders the write to mode from any reads 102 * to the page tables done while the VCPU is running. 103 * Please see the comment in kvm_flush_remote_tlbs. 104 */ 105 smp_mb(); 106 107 if (vcpu->requests) { 108 /* Make sure we process requests preemptable */ 109 local_irq_enable(); 110 trace_kvm_check_requests(vcpu); 111 r = kvmppc_core_check_requests(vcpu); 112 hard_irq_disable(); 113 if (r > 0) 114 continue; 115 break; 116 } 117 118 if (kvmppc_core_prepare_to_enter(vcpu)) { 119 /* interrupts got enabled in between, so we 120 are back at square 1 */ 121 continue; 122 } 123 124 guest_enter_irqoff(); 125 return 1; 126 } 127 128 /* return to host */ 129 local_irq_enable(); 130 return r; 131 } 132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 133 134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 136 { 137 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 138 int i; 139 140 shared->sprg0 = swab64(shared->sprg0); 141 shared->sprg1 = swab64(shared->sprg1); 142 shared->sprg2 = swab64(shared->sprg2); 143 shared->sprg3 = swab64(shared->sprg3); 144 shared->srr0 = swab64(shared->srr0); 145 shared->srr1 = swab64(shared->srr1); 146 shared->dar = swab64(shared->dar); 147 shared->msr = swab64(shared->msr); 148 shared->dsisr = swab32(shared->dsisr); 149 shared->int_pending = swab32(shared->int_pending); 150 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 151 shared->sr[i] = swab32(shared->sr[i]); 152 } 153 #endif 154 155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 156 { 157 int nr = kvmppc_get_gpr(vcpu, 11); 158 int r; 159 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 160 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 161 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 162 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 163 unsigned long r2 = 0; 164 165 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 166 /* 32 bit mode */ 167 param1 &= 0xffffffff; 168 param2 &= 0xffffffff; 169 param3 &= 0xffffffff; 170 param4 &= 0xffffffff; 171 } 172 173 switch (nr) { 174 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 175 { 176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 177 /* Book3S can be little endian, find it out here */ 178 int shared_big_endian = true; 179 if (vcpu->arch.intr_msr & MSR_LE) 180 shared_big_endian = false; 181 if (shared_big_endian != vcpu->arch.shared_big_endian) 182 kvmppc_swab_shared(vcpu); 183 vcpu->arch.shared_big_endian = shared_big_endian; 184 #endif 185 186 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 187 /* 188 * Older versions of the Linux magic page code had 189 * a bug where they would map their trampoline code 190 * NX. If that's the case, remove !PR NX capability. 191 */ 192 vcpu->arch.disable_kernel_nx = true; 193 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 194 } 195 196 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 197 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 198 199 #ifdef CONFIG_PPC_64K_PAGES 200 /* 201 * Make sure our 4k magic page is in the same window of a 64k 202 * page within the guest and within the host's page. 203 */ 204 if ((vcpu->arch.magic_page_pa & 0xf000) != 205 ((ulong)vcpu->arch.shared & 0xf000)) { 206 void *old_shared = vcpu->arch.shared; 207 ulong shared = (ulong)vcpu->arch.shared; 208 void *new_shared; 209 210 shared &= PAGE_MASK; 211 shared |= vcpu->arch.magic_page_pa & 0xf000; 212 new_shared = (void*)shared; 213 memcpy(new_shared, old_shared, 0x1000); 214 vcpu->arch.shared = new_shared; 215 } 216 #endif 217 218 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 219 220 r = EV_SUCCESS; 221 break; 222 } 223 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 224 r = EV_SUCCESS; 225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 226 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 227 #endif 228 229 /* Second return value is in r4 */ 230 break; 231 case EV_HCALL_TOKEN(EV_IDLE): 232 r = EV_SUCCESS; 233 kvm_vcpu_block(vcpu); 234 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 235 break; 236 default: 237 r = EV_UNIMPLEMENTED; 238 break; 239 } 240 241 kvmppc_set_gpr(vcpu, 4, r2); 242 243 return r; 244 } 245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 246 247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 248 { 249 int r = false; 250 251 /* We have to know what CPU to virtualize */ 252 if (!vcpu->arch.pvr) 253 goto out; 254 255 /* PAPR only works with book3s_64 */ 256 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 257 goto out; 258 259 /* HV KVM can only do PAPR mode for now */ 260 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 261 goto out; 262 263 #ifdef CONFIG_KVM_BOOKE_HV 264 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 265 goto out; 266 #endif 267 268 r = true; 269 270 out: 271 vcpu->arch.sane = r; 272 return r ? 0 : -EINVAL; 273 } 274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 275 276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 277 { 278 enum emulation_result er; 279 int r; 280 281 er = kvmppc_emulate_loadstore(vcpu); 282 switch (er) { 283 case EMULATE_DONE: 284 /* Future optimization: only reload non-volatiles if they were 285 * actually modified. */ 286 r = RESUME_GUEST_NV; 287 break; 288 case EMULATE_AGAIN: 289 r = RESUME_GUEST; 290 break; 291 case EMULATE_DO_MMIO: 292 run->exit_reason = KVM_EXIT_MMIO; 293 /* We must reload nonvolatiles because "update" load/store 294 * instructions modify register state. */ 295 /* Future optimization: only reload non-volatiles if they were 296 * actually modified. */ 297 r = RESUME_HOST_NV; 298 break; 299 case EMULATE_FAIL: 300 { 301 u32 last_inst; 302 303 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 304 /* XXX Deliver Program interrupt to guest. */ 305 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 306 r = RESUME_HOST; 307 break; 308 } 309 default: 310 WARN_ON(1); 311 r = RESUME_GUEST; 312 } 313 314 return r; 315 } 316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 317 318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 319 bool data) 320 { 321 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 322 struct kvmppc_pte pte; 323 int r; 324 325 vcpu->stat.st++; 326 327 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 328 XLATE_WRITE, &pte); 329 if (r < 0) 330 return r; 331 332 *eaddr = pte.raddr; 333 334 if (!pte.may_write) 335 return -EPERM; 336 337 /* Magic page override */ 338 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 339 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 340 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 341 void *magic = vcpu->arch.shared; 342 magic += pte.eaddr & 0xfff; 343 memcpy(magic, ptr, size); 344 return EMULATE_DONE; 345 } 346 347 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 348 return EMULATE_DO_MMIO; 349 350 return EMULATE_DONE; 351 } 352 EXPORT_SYMBOL_GPL(kvmppc_st); 353 354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 355 bool data) 356 { 357 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 358 struct kvmppc_pte pte; 359 int rc; 360 361 vcpu->stat.ld++; 362 363 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 364 XLATE_READ, &pte); 365 if (rc) 366 return rc; 367 368 *eaddr = pte.raddr; 369 370 if (!pte.may_read) 371 return -EPERM; 372 373 if (!data && !pte.may_execute) 374 return -ENOEXEC; 375 376 /* Magic page override */ 377 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 378 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 379 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 380 void *magic = vcpu->arch.shared; 381 magic += pte.eaddr & 0xfff; 382 memcpy(ptr, magic, size); 383 return EMULATE_DONE; 384 } 385 386 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 387 return EMULATE_DO_MMIO; 388 389 return EMULATE_DONE; 390 } 391 EXPORT_SYMBOL_GPL(kvmppc_ld); 392 393 int kvm_arch_hardware_enable(void) 394 { 395 return 0; 396 } 397 398 int kvm_arch_hardware_setup(void) 399 { 400 return 0; 401 } 402 403 void kvm_arch_check_processor_compat(void *rtn) 404 { 405 *(int *)rtn = kvmppc_core_check_processor_compat(); 406 } 407 408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 409 { 410 struct kvmppc_ops *kvm_ops = NULL; 411 /* 412 * if we have both HV and PR enabled, default is HV 413 */ 414 if (type == 0) { 415 if (kvmppc_hv_ops) 416 kvm_ops = kvmppc_hv_ops; 417 else 418 kvm_ops = kvmppc_pr_ops; 419 if (!kvm_ops) 420 goto err_out; 421 } else if (type == KVM_VM_PPC_HV) { 422 if (!kvmppc_hv_ops) 423 goto err_out; 424 kvm_ops = kvmppc_hv_ops; 425 } else if (type == KVM_VM_PPC_PR) { 426 if (!kvmppc_pr_ops) 427 goto err_out; 428 kvm_ops = kvmppc_pr_ops; 429 } else 430 goto err_out; 431 432 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 433 return -ENOENT; 434 435 kvm->arch.kvm_ops = kvm_ops; 436 return kvmppc_core_init_vm(kvm); 437 err_out: 438 return -EINVAL; 439 } 440 441 bool kvm_arch_has_vcpu_debugfs(void) 442 { 443 return false; 444 } 445 446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 447 { 448 return 0; 449 } 450 451 void kvm_arch_destroy_vm(struct kvm *kvm) 452 { 453 unsigned int i; 454 struct kvm_vcpu *vcpu; 455 456 #ifdef CONFIG_KVM_XICS 457 /* 458 * We call kick_all_cpus_sync() to ensure that all 459 * CPUs have executed any pending IPIs before we 460 * continue and free VCPUs structures below. 461 */ 462 if (is_kvmppc_hv_enabled(kvm)) 463 kick_all_cpus_sync(); 464 #endif 465 466 kvm_for_each_vcpu(i, vcpu, kvm) 467 kvm_arch_vcpu_free(vcpu); 468 469 mutex_lock(&kvm->lock); 470 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 471 kvm->vcpus[i] = NULL; 472 473 atomic_set(&kvm->online_vcpus, 0); 474 475 kvmppc_core_destroy_vm(kvm); 476 477 mutex_unlock(&kvm->lock); 478 479 /* drop the module reference */ 480 module_put(kvm->arch.kvm_ops->owner); 481 } 482 483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 484 { 485 int r; 486 /* Assume we're using HV mode when the HV module is loaded */ 487 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 488 489 if (kvm) { 490 /* 491 * Hooray - we know which VM type we're running on. Depend on 492 * that rather than the guess above. 493 */ 494 hv_enabled = is_kvmppc_hv_enabled(kvm); 495 } 496 497 switch (ext) { 498 #ifdef CONFIG_BOOKE 499 case KVM_CAP_PPC_BOOKE_SREGS: 500 case KVM_CAP_PPC_BOOKE_WATCHDOG: 501 case KVM_CAP_PPC_EPR: 502 #else 503 case KVM_CAP_PPC_SEGSTATE: 504 case KVM_CAP_PPC_HIOR: 505 case KVM_CAP_PPC_PAPR: 506 #endif 507 case KVM_CAP_PPC_UNSET_IRQ: 508 case KVM_CAP_PPC_IRQ_LEVEL: 509 case KVM_CAP_ENABLE_CAP: 510 case KVM_CAP_ENABLE_CAP_VM: 511 case KVM_CAP_ONE_REG: 512 case KVM_CAP_IOEVENTFD: 513 case KVM_CAP_DEVICE_CTRL: 514 r = 1; 515 break; 516 case KVM_CAP_PPC_PAIRED_SINGLES: 517 case KVM_CAP_PPC_OSI: 518 case KVM_CAP_PPC_GET_PVINFO: 519 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 520 case KVM_CAP_SW_TLB: 521 #endif 522 /* We support this only for PR */ 523 r = !hv_enabled; 524 break; 525 #ifdef CONFIG_KVM_MMIO 526 case KVM_CAP_COALESCED_MMIO: 527 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 528 break; 529 #endif 530 #ifdef CONFIG_KVM_MPIC 531 case KVM_CAP_IRQ_MPIC: 532 r = 1; 533 break; 534 #endif 535 536 #ifdef CONFIG_PPC_BOOK3S_64 537 case KVM_CAP_SPAPR_TCE: 538 case KVM_CAP_SPAPR_TCE_64: 539 case KVM_CAP_PPC_ALLOC_HTAB: 540 case KVM_CAP_PPC_RTAS: 541 case KVM_CAP_PPC_FIXUP_HCALL: 542 case KVM_CAP_PPC_ENABLE_HCALL: 543 #ifdef CONFIG_KVM_XICS 544 case KVM_CAP_IRQ_XICS: 545 #endif 546 r = 1; 547 break; 548 #endif /* CONFIG_PPC_BOOK3S_64 */ 549 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 550 case KVM_CAP_PPC_SMT: 551 if (hv_enabled) 552 r = threads_per_subcore; 553 else 554 r = 0; 555 break; 556 case KVM_CAP_PPC_RMA: 557 r = 0; 558 break; 559 case KVM_CAP_PPC_HWRNG: 560 r = kvmppc_hwrng_present(); 561 break; 562 #endif 563 case KVM_CAP_SYNC_MMU: 564 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 565 r = hv_enabled; 566 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 567 r = 1; 568 #else 569 r = 0; 570 #endif 571 break; 572 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 573 case KVM_CAP_PPC_HTAB_FD: 574 r = hv_enabled; 575 break; 576 #endif 577 case KVM_CAP_NR_VCPUS: 578 /* 579 * Recommending a number of CPUs is somewhat arbitrary; we 580 * return the number of present CPUs for -HV (since a host 581 * will have secondary threads "offline"), and for other KVM 582 * implementations just count online CPUs. 583 */ 584 if (hv_enabled) 585 r = num_present_cpus(); 586 else 587 r = num_online_cpus(); 588 break; 589 case KVM_CAP_NR_MEMSLOTS: 590 r = KVM_USER_MEM_SLOTS; 591 break; 592 case KVM_CAP_MAX_VCPUS: 593 r = KVM_MAX_VCPUS; 594 break; 595 #ifdef CONFIG_PPC_BOOK3S_64 596 case KVM_CAP_PPC_GET_SMMU_INFO: 597 r = 1; 598 break; 599 case KVM_CAP_SPAPR_MULTITCE: 600 r = 1; 601 break; 602 #endif 603 case KVM_CAP_PPC_HTM: 604 r = cpu_has_feature(CPU_FTR_TM_COMP) && 605 is_kvmppc_hv_enabled(kvm); 606 break; 607 default: 608 r = 0; 609 break; 610 } 611 return r; 612 613 } 614 615 long kvm_arch_dev_ioctl(struct file *filp, 616 unsigned int ioctl, unsigned long arg) 617 { 618 return -EINVAL; 619 } 620 621 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 622 struct kvm_memory_slot *dont) 623 { 624 kvmppc_core_free_memslot(kvm, free, dont); 625 } 626 627 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 628 unsigned long npages) 629 { 630 return kvmppc_core_create_memslot(kvm, slot, npages); 631 } 632 633 int kvm_arch_prepare_memory_region(struct kvm *kvm, 634 struct kvm_memory_slot *memslot, 635 const struct kvm_userspace_memory_region *mem, 636 enum kvm_mr_change change) 637 { 638 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 639 } 640 641 void kvm_arch_commit_memory_region(struct kvm *kvm, 642 const struct kvm_userspace_memory_region *mem, 643 const struct kvm_memory_slot *old, 644 const struct kvm_memory_slot *new, 645 enum kvm_mr_change change) 646 { 647 kvmppc_core_commit_memory_region(kvm, mem, old, new); 648 } 649 650 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 651 struct kvm_memory_slot *slot) 652 { 653 kvmppc_core_flush_memslot(kvm, slot); 654 } 655 656 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 657 { 658 struct kvm_vcpu *vcpu; 659 vcpu = kvmppc_core_vcpu_create(kvm, id); 660 if (!IS_ERR(vcpu)) { 661 vcpu->arch.wqp = &vcpu->wq; 662 kvmppc_create_vcpu_debugfs(vcpu, id); 663 } 664 return vcpu; 665 } 666 667 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 668 { 669 } 670 671 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 672 { 673 /* Make sure we're not using the vcpu anymore */ 674 hrtimer_cancel(&vcpu->arch.dec_timer); 675 676 kvmppc_remove_vcpu_debugfs(vcpu); 677 678 switch (vcpu->arch.irq_type) { 679 case KVMPPC_IRQ_MPIC: 680 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 681 break; 682 case KVMPPC_IRQ_XICS: 683 kvmppc_xics_free_icp(vcpu); 684 break; 685 } 686 687 kvmppc_core_vcpu_free(vcpu); 688 } 689 690 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 691 { 692 kvm_arch_vcpu_free(vcpu); 693 } 694 695 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 696 { 697 return kvmppc_core_pending_dec(vcpu); 698 } 699 700 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 701 { 702 struct kvm_vcpu *vcpu; 703 704 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 705 kvmppc_decrementer_func(vcpu); 706 707 return HRTIMER_NORESTART; 708 } 709 710 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 711 { 712 int ret; 713 714 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 715 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 716 vcpu->arch.dec_expires = ~(u64)0; 717 718 #ifdef CONFIG_KVM_EXIT_TIMING 719 mutex_init(&vcpu->arch.exit_timing_lock); 720 #endif 721 ret = kvmppc_subarch_vcpu_init(vcpu); 722 return ret; 723 } 724 725 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 726 { 727 kvmppc_mmu_destroy(vcpu); 728 kvmppc_subarch_vcpu_uninit(vcpu); 729 } 730 731 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 732 { 733 #ifdef CONFIG_BOOKE 734 /* 735 * vrsave (formerly usprg0) isn't used by Linux, but may 736 * be used by the guest. 737 * 738 * On non-booke this is associated with Altivec and 739 * is handled by code in book3s.c. 740 */ 741 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 742 #endif 743 kvmppc_core_vcpu_load(vcpu, cpu); 744 } 745 746 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 747 { 748 kvmppc_core_vcpu_put(vcpu); 749 #ifdef CONFIG_BOOKE 750 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 751 #endif 752 } 753 754 /* 755 * irq_bypass_add_producer and irq_bypass_del_producer are only 756 * useful if the architecture supports PCI passthrough. 757 * irq_bypass_stop and irq_bypass_start are not needed and so 758 * kvm_ops are not defined for them. 759 */ 760 bool kvm_arch_has_irq_bypass(void) 761 { 762 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 763 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 764 } 765 766 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 767 struct irq_bypass_producer *prod) 768 { 769 struct kvm_kernel_irqfd *irqfd = 770 container_of(cons, struct kvm_kernel_irqfd, consumer); 771 struct kvm *kvm = irqfd->kvm; 772 773 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 774 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 775 776 return 0; 777 } 778 779 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 780 struct irq_bypass_producer *prod) 781 { 782 struct kvm_kernel_irqfd *irqfd = 783 container_of(cons, struct kvm_kernel_irqfd, consumer); 784 struct kvm *kvm = irqfd->kvm; 785 786 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 787 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 788 } 789 790 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 791 struct kvm_run *run) 792 { 793 u64 uninitialized_var(gpr); 794 795 if (run->mmio.len > sizeof(gpr)) { 796 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 797 return; 798 } 799 800 if (!vcpu->arch.mmio_host_swabbed) { 801 switch (run->mmio.len) { 802 case 8: gpr = *(u64 *)run->mmio.data; break; 803 case 4: gpr = *(u32 *)run->mmio.data; break; 804 case 2: gpr = *(u16 *)run->mmio.data; break; 805 case 1: gpr = *(u8 *)run->mmio.data; break; 806 } 807 } else { 808 switch (run->mmio.len) { 809 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 810 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 811 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 812 case 1: gpr = *(u8 *)run->mmio.data; break; 813 } 814 } 815 816 if (vcpu->arch.mmio_sign_extend) { 817 switch (run->mmio.len) { 818 #ifdef CONFIG_PPC64 819 case 4: 820 gpr = (s64)(s32)gpr; 821 break; 822 #endif 823 case 2: 824 gpr = (s64)(s16)gpr; 825 break; 826 case 1: 827 gpr = (s64)(s8)gpr; 828 break; 829 } 830 } 831 832 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 833 834 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 835 case KVM_MMIO_REG_GPR: 836 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 837 break; 838 case KVM_MMIO_REG_FPR: 839 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 840 break; 841 #ifdef CONFIG_PPC_BOOK3S 842 case KVM_MMIO_REG_QPR: 843 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 844 break; 845 case KVM_MMIO_REG_FQPR: 846 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 847 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 848 break; 849 #endif 850 default: 851 BUG(); 852 } 853 } 854 855 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 856 unsigned int rt, unsigned int bytes, 857 int is_default_endian, int sign_extend) 858 { 859 int idx, ret; 860 bool host_swabbed; 861 862 /* Pity C doesn't have a logical XOR operator */ 863 if (kvmppc_need_byteswap(vcpu)) { 864 host_swabbed = is_default_endian; 865 } else { 866 host_swabbed = !is_default_endian; 867 } 868 869 if (bytes > sizeof(run->mmio.data)) { 870 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 871 run->mmio.len); 872 } 873 874 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 875 run->mmio.len = bytes; 876 run->mmio.is_write = 0; 877 878 vcpu->arch.io_gpr = rt; 879 vcpu->arch.mmio_host_swabbed = host_swabbed; 880 vcpu->mmio_needed = 1; 881 vcpu->mmio_is_write = 0; 882 vcpu->arch.mmio_sign_extend = sign_extend; 883 884 idx = srcu_read_lock(&vcpu->kvm->srcu); 885 886 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 887 bytes, &run->mmio.data); 888 889 srcu_read_unlock(&vcpu->kvm->srcu, idx); 890 891 if (!ret) { 892 kvmppc_complete_mmio_load(vcpu, run); 893 vcpu->mmio_needed = 0; 894 return EMULATE_DONE; 895 } 896 897 return EMULATE_DO_MMIO; 898 } 899 900 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 901 unsigned int rt, unsigned int bytes, 902 int is_default_endian) 903 { 904 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 905 } 906 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 907 908 /* Same as above, but sign extends */ 909 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 910 unsigned int rt, unsigned int bytes, 911 int is_default_endian) 912 { 913 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 914 } 915 916 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 917 u64 val, unsigned int bytes, int is_default_endian) 918 { 919 void *data = run->mmio.data; 920 int idx, ret; 921 bool host_swabbed; 922 923 /* Pity C doesn't have a logical XOR operator */ 924 if (kvmppc_need_byteswap(vcpu)) { 925 host_swabbed = is_default_endian; 926 } else { 927 host_swabbed = !is_default_endian; 928 } 929 930 if (bytes > sizeof(run->mmio.data)) { 931 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 932 run->mmio.len); 933 } 934 935 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 936 run->mmio.len = bytes; 937 run->mmio.is_write = 1; 938 vcpu->mmio_needed = 1; 939 vcpu->mmio_is_write = 1; 940 941 /* Store the value at the lowest bytes in 'data'. */ 942 if (!host_swabbed) { 943 switch (bytes) { 944 case 8: *(u64 *)data = val; break; 945 case 4: *(u32 *)data = val; break; 946 case 2: *(u16 *)data = val; break; 947 case 1: *(u8 *)data = val; break; 948 } 949 } else { 950 switch (bytes) { 951 case 8: *(u64 *)data = swab64(val); break; 952 case 4: *(u32 *)data = swab32(val); break; 953 case 2: *(u16 *)data = swab16(val); break; 954 case 1: *(u8 *)data = val; break; 955 } 956 } 957 958 idx = srcu_read_lock(&vcpu->kvm->srcu); 959 960 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 961 bytes, &run->mmio.data); 962 963 srcu_read_unlock(&vcpu->kvm->srcu, idx); 964 965 if (!ret) { 966 vcpu->mmio_needed = 0; 967 return EMULATE_DONE; 968 } 969 970 return EMULATE_DO_MMIO; 971 } 972 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 973 974 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 975 { 976 int r = 0; 977 union kvmppc_one_reg val; 978 int size; 979 980 size = one_reg_size(reg->id); 981 if (size > sizeof(val)) 982 return -EINVAL; 983 984 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 985 if (r == -EINVAL) { 986 r = 0; 987 switch (reg->id) { 988 #ifdef CONFIG_ALTIVEC 989 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 990 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 991 r = -ENXIO; 992 break; 993 } 994 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 995 break; 996 case KVM_REG_PPC_VSCR: 997 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 998 r = -ENXIO; 999 break; 1000 } 1001 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1002 break; 1003 case KVM_REG_PPC_VRSAVE: 1004 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1005 break; 1006 #endif /* CONFIG_ALTIVEC */ 1007 default: 1008 r = -EINVAL; 1009 break; 1010 } 1011 } 1012 1013 if (r) 1014 return r; 1015 1016 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1017 r = -EFAULT; 1018 1019 return r; 1020 } 1021 1022 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1023 { 1024 int r; 1025 union kvmppc_one_reg val; 1026 int size; 1027 1028 size = one_reg_size(reg->id); 1029 if (size > sizeof(val)) 1030 return -EINVAL; 1031 1032 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1033 return -EFAULT; 1034 1035 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1036 if (r == -EINVAL) { 1037 r = 0; 1038 switch (reg->id) { 1039 #ifdef CONFIG_ALTIVEC 1040 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1041 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1042 r = -ENXIO; 1043 break; 1044 } 1045 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1046 break; 1047 case KVM_REG_PPC_VSCR: 1048 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1049 r = -ENXIO; 1050 break; 1051 } 1052 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1053 break; 1054 case KVM_REG_PPC_VRSAVE: 1055 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1056 r = -ENXIO; 1057 break; 1058 } 1059 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1060 break; 1061 #endif /* CONFIG_ALTIVEC */ 1062 default: 1063 r = -EINVAL; 1064 break; 1065 } 1066 } 1067 1068 return r; 1069 } 1070 1071 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1072 { 1073 int r; 1074 sigset_t sigsaved; 1075 1076 if (vcpu->sigset_active) 1077 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 1078 1079 if (vcpu->mmio_needed) { 1080 if (!vcpu->mmio_is_write) 1081 kvmppc_complete_mmio_load(vcpu, run); 1082 vcpu->mmio_needed = 0; 1083 } else if (vcpu->arch.osi_needed) { 1084 u64 *gprs = run->osi.gprs; 1085 int i; 1086 1087 for (i = 0; i < 32; i++) 1088 kvmppc_set_gpr(vcpu, i, gprs[i]); 1089 vcpu->arch.osi_needed = 0; 1090 } else if (vcpu->arch.hcall_needed) { 1091 int i; 1092 1093 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1094 for (i = 0; i < 9; ++i) 1095 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1096 vcpu->arch.hcall_needed = 0; 1097 #ifdef CONFIG_BOOKE 1098 } else if (vcpu->arch.epr_needed) { 1099 kvmppc_set_epr(vcpu, run->epr.epr); 1100 vcpu->arch.epr_needed = 0; 1101 #endif 1102 } 1103 1104 r = kvmppc_vcpu_run(run, vcpu); 1105 1106 if (vcpu->sigset_active) 1107 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1108 1109 return r; 1110 } 1111 1112 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1113 { 1114 if (irq->irq == KVM_INTERRUPT_UNSET) { 1115 kvmppc_core_dequeue_external(vcpu); 1116 return 0; 1117 } 1118 1119 kvmppc_core_queue_external(vcpu, irq); 1120 1121 kvm_vcpu_kick(vcpu); 1122 1123 return 0; 1124 } 1125 1126 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1127 struct kvm_enable_cap *cap) 1128 { 1129 int r; 1130 1131 if (cap->flags) 1132 return -EINVAL; 1133 1134 switch (cap->cap) { 1135 case KVM_CAP_PPC_OSI: 1136 r = 0; 1137 vcpu->arch.osi_enabled = true; 1138 break; 1139 case KVM_CAP_PPC_PAPR: 1140 r = 0; 1141 vcpu->arch.papr_enabled = true; 1142 break; 1143 case KVM_CAP_PPC_EPR: 1144 r = 0; 1145 if (cap->args[0]) 1146 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1147 else 1148 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1149 break; 1150 #ifdef CONFIG_BOOKE 1151 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1152 r = 0; 1153 vcpu->arch.watchdog_enabled = true; 1154 break; 1155 #endif 1156 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1157 case KVM_CAP_SW_TLB: { 1158 struct kvm_config_tlb cfg; 1159 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1160 1161 r = -EFAULT; 1162 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1163 break; 1164 1165 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1166 break; 1167 } 1168 #endif 1169 #ifdef CONFIG_KVM_MPIC 1170 case KVM_CAP_IRQ_MPIC: { 1171 struct fd f; 1172 struct kvm_device *dev; 1173 1174 r = -EBADF; 1175 f = fdget(cap->args[0]); 1176 if (!f.file) 1177 break; 1178 1179 r = -EPERM; 1180 dev = kvm_device_from_filp(f.file); 1181 if (dev) 1182 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1183 1184 fdput(f); 1185 break; 1186 } 1187 #endif 1188 #ifdef CONFIG_KVM_XICS 1189 case KVM_CAP_IRQ_XICS: { 1190 struct fd f; 1191 struct kvm_device *dev; 1192 1193 r = -EBADF; 1194 f = fdget(cap->args[0]); 1195 if (!f.file) 1196 break; 1197 1198 r = -EPERM; 1199 dev = kvm_device_from_filp(f.file); 1200 if (dev) 1201 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1202 1203 fdput(f); 1204 break; 1205 } 1206 #endif /* CONFIG_KVM_XICS */ 1207 default: 1208 r = -EINVAL; 1209 break; 1210 } 1211 1212 if (!r) 1213 r = kvmppc_sanity_check(vcpu); 1214 1215 return r; 1216 } 1217 1218 bool kvm_arch_intc_initialized(struct kvm *kvm) 1219 { 1220 #ifdef CONFIG_KVM_MPIC 1221 if (kvm->arch.mpic) 1222 return true; 1223 #endif 1224 #ifdef CONFIG_KVM_XICS 1225 if (kvm->arch.xics) 1226 return true; 1227 #endif 1228 return false; 1229 } 1230 1231 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1232 struct kvm_mp_state *mp_state) 1233 { 1234 return -EINVAL; 1235 } 1236 1237 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1238 struct kvm_mp_state *mp_state) 1239 { 1240 return -EINVAL; 1241 } 1242 1243 long kvm_arch_vcpu_ioctl(struct file *filp, 1244 unsigned int ioctl, unsigned long arg) 1245 { 1246 struct kvm_vcpu *vcpu = filp->private_data; 1247 void __user *argp = (void __user *)arg; 1248 long r; 1249 1250 switch (ioctl) { 1251 case KVM_INTERRUPT: { 1252 struct kvm_interrupt irq; 1253 r = -EFAULT; 1254 if (copy_from_user(&irq, argp, sizeof(irq))) 1255 goto out; 1256 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 1257 goto out; 1258 } 1259 1260 case KVM_ENABLE_CAP: 1261 { 1262 struct kvm_enable_cap cap; 1263 r = -EFAULT; 1264 if (copy_from_user(&cap, argp, sizeof(cap))) 1265 goto out; 1266 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 1267 break; 1268 } 1269 1270 case KVM_SET_ONE_REG: 1271 case KVM_GET_ONE_REG: 1272 { 1273 struct kvm_one_reg reg; 1274 r = -EFAULT; 1275 if (copy_from_user(®, argp, sizeof(reg))) 1276 goto out; 1277 if (ioctl == KVM_SET_ONE_REG) 1278 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 1279 else 1280 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 1281 break; 1282 } 1283 1284 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1285 case KVM_DIRTY_TLB: { 1286 struct kvm_dirty_tlb dirty; 1287 r = -EFAULT; 1288 if (copy_from_user(&dirty, argp, sizeof(dirty))) 1289 goto out; 1290 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 1291 break; 1292 } 1293 #endif 1294 default: 1295 r = -EINVAL; 1296 } 1297 1298 out: 1299 return r; 1300 } 1301 1302 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1303 { 1304 return VM_FAULT_SIGBUS; 1305 } 1306 1307 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 1308 { 1309 u32 inst_nop = 0x60000000; 1310 #ifdef CONFIG_KVM_BOOKE_HV 1311 u32 inst_sc1 = 0x44000022; 1312 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 1313 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 1314 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 1315 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1316 #else 1317 u32 inst_lis = 0x3c000000; 1318 u32 inst_ori = 0x60000000; 1319 u32 inst_sc = 0x44000002; 1320 u32 inst_imm_mask = 0xffff; 1321 1322 /* 1323 * The hypercall to get into KVM from within guest context is as 1324 * follows: 1325 * 1326 * lis r0, r0, KVM_SC_MAGIC_R0@h 1327 * ori r0, KVM_SC_MAGIC_R0@l 1328 * sc 1329 * nop 1330 */ 1331 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 1332 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 1333 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 1334 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1335 #endif 1336 1337 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 1338 1339 return 0; 1340 } 1341 1342 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 1343 bool line_status) 1344 { 1345 if (!irqchip_in_kernel(kvm)) 1346 return -ENXIO; 1347 1348 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1349 irq_event->irq, irq_event->level, 1350 line_status); 1351 return 0; 1352 } 1353 1354 1355 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1356 struct kvm_enable_cap *cap) 1357 { 1358 int r; 1359 1360 if (cap->flags) 1361 return -EINVAL; 1362 1363 switch (cap->cap) { 1364 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 1365 case KVM_CAP_PPC_ENABLE_HCALL: { 1366 unsigned long hcall = cap->args[0]; 1367 1368 r = -EINVAL; 1369 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 1370 cap->args[1] > 1) 1371 break; 1372 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 1373 break; 1374 if (cap->args[1]) 1375 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 1376 else 1377 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 1378 r = 0; 1379 break; 1380 } 1381 #endif 1382 default: 1383 r = -EINVAL; 1384 break; 1385 } 1386 1387 return r; 1388 } 1389 1390 long kvm_arch_vm_ioctl(struct file *filp, 1391 unsigned int ioctl, unsigned long arg) 1392 { 1393 struct kvm *kvm __maybe_unused = filp->private_data; 1394 void __user *argp = (void __user *)arg; 1395 long r; 1396 1397 switch (ioctl) { 1398 case KVM_PPC_GET_PVINFO: { 1399 struct kvm_ppc_pvinfo pvinfo; 1400 memset(&pvinfo, 0, sizeof(pvinfo)); 1401 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 1402 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 1403 r = -EFAULT; 1404 goto out; 1405 } 1406 1407 break; 1408 } 1409 case KVM_ENABLE_CAP: 1410 { 1411 struct kvm_enable_cap cap; 1412 r = -EFAULT; 1413 if (copy_from_user(&cap, argp, sizeof(cap))) 1414 goto out; 1415 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1416 break; 1417 } 1418 #ifdef CONFIG_PPC_BOOK3S_64 1419 case KVM_CREATE_SPAPR_TCE_64: { 1420 struct kvm_create_spapr_tce_64 create_tce_64; 1421 1422 r = -EFAULT; 1423 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 1424 goto out; 1425 if (create_tce_64.flags) { 1426 r = -EINVAL; 1427 goto out; 1428 } 1429 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 1430 goto out; 1431 } 1432 case KVM_CREATE_SPAPR_TCE: { 1433 struct kvm_create_spapr_tce create_tce; 1434 struct kvm_create_spapr_tce_64 create_tce_64; 1435 1436 r = -EFAULT; 1437 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 1438 goto out; 1439 1440 create_tce_64.liobn = create_tce.liobn; 1441 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 1442 create_tce_64.offset = 0; 1443 create_tce_64.size = create_tce.window_size >> 1444 IOMMU_PAGE_SHIFT_4K; 1445 create_tce_64.flags = 0; 1446 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 1447 goto out; 1448 } 1449 case KVM_PPC_GET_SMMU_INFO: { 1450 struct kvm_ppc_smmu_info info; 1451 struct kvm *kvm = filp->private_data; 1452 1453 memset(&info, 0, sizeof(info)); 1454 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 1455 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 1456 r = -EFAULT; 1457 break; 1458 } 1459 case KVM_PPC_RTAS_DEFINE_TOKEN: { 1460 struct kvm *kvm = filp->private_data; 1461 1462 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 1463 break; 1464 } 1465 default: { 1466 struct kvm *kvm = filp->private_data; 1467 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 1468 } 1469 #else /* CONFIG_PPC_BOOK3S_64 */ 1470 default: 1471 r = -ENOTTY; 1472 #endif 1473 } 1474 out: 1475 return r; 1476 } 1477 1478 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 1479 static unsigned long nr_lpids; 1480 1481 long kvmppc_alloc_lpid(void) 1482 { 1483 long lpid; 1484 1485 do { 1486 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 1487 if (lpid >= nr_lpids) { 1488 pr_err("%s: No LPIDs free\n", __func__); 1489 return -ENOMEM; 1490 } 1491 } while (test_and_set_bit(lpid, lpid_inuse)); 1492 1493 return lpid; 1494 } 1495 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 1496 1497 void kvmppc_claim_lpid(long lpid) 1498 { 1499 set_bit(lpid, lpid_inuse); 1500 } 1501 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 1502 1503 void kvmppc_free_lpid(long lpid) 1504 { 1505 clear_bit(lpid, lpid_inuse); 1506 } 1507 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 1508 1509 void kvmppc_init_lpid(unsigned long nr_lpids_param) 1510 { 1511 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 1512 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 1513 } 1514 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 1515 1516 int kvm_arch_init(void *opaque) 1517 { 1518 return 0; 1519 } 1520 1521 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 1522