xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision f7d84fa7)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 
43 #include "timing.h"
44 #include "irq.h"
45 #include "../mm/mmu_decl.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include "trace.h"
49 
50 struct kvmppc_ops *kvmppc_hv_ops;
51 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
52 struct kvmppc_ops *kvmppc_pr_ops;
53 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
54 
55 
56 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
57 {
58 	return !!(v->arch.pending_exceptions) ||
59 	       v->requests;
60 }
61 
62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 {
64 	return 1;
65 }
66 
67 /*
68  * Common checks before entering the guest world.  Call with interrupts
69  * disabled.
70  *
71  * returns:
72  *
73  * == 1 if we're ready to go into guest state
74  * <= 0 if we need to go back to the host with return value
75  */
76 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
77 {
78 	int r;
79 
80 	WARN_ON(irqs_disabled());
81 	hard_irq_disable();
82 
83 	while (true) {
84 		if (need_resched()) {
85 			local_irq_enable();
86 			cond_resched();
87 			hard_irq_disable();
88 			continue;
89 		}
90 
91 		if (signal_pending(current)) {
92 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
93 			vcpu->run->exit_reason = KVM_EXIT_INTR;
94 			r = -EINTR;
95 			break;
96 		}
97 
98 		vcpu->mode = IN_GUEST_MODE;
99 
100 		/*
101 		 * Reading vcpu->requests must happen after setting vcpu->mode,
102 		 * so we don't miss a request because the requester sees
103 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
104 		 * before next entering the guest (and thus doesn't IPI).
105 		 * This also orders the write to mode from any reads
106 		 * to the page tables done while the VCPU is running.
107 		 * Please see the comment in kvm_flush_remote_tlbs.
108 		 */
109 		smp_mb();
110 
111 		if (vcpu->requests) {
112 			/* Make sure we process requests preemptable */
113 			local_irq_enable();
114 			trace_kvm_check_requests(vcpu);
115 			r = kvmppc_core_check_requests(vcpu);
116 			hard_irq_disable();
117 			if (r > 0)
118 				continue;
119 			break;
120 		}
121 
122 		if (kvmppc_core_prepare_to_enter(vcpu)) {
123 			/* interrupts got enabled in between, so we
124 			   are back at square 1 */
125 			continue;
126 		}
127 
128 		guest_enter_irqoff();
129 		return 1;
130 	}
131 
132 	/* return to host */
133 	local_irq_enable();
134 	return r;
135 }
136 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
137 
138 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
139 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
140 {
141 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
142 	int i;
143 
144 	shared->sprg0 = swab64(shared->sprg0);
145 	shared->sprg1 = swab64(shared->sprg1);
146 	shared->sprg2 = swab64(shared->sprg2);
147 	shared->sprg3 = swab64(shared->sprg3);
148 	shared->srr0 = swab64(shared->srr0);
149 	shared->srr1 = swab64(shared->srr1);
150 	shared->dar = swab64(shared->dar);
151 	shared->msr = swab64(shared->msr);
152 	shared->dsisr = swab32(shared->dsisr);
153 	shared->int_pending = swab32(shared->int_pending);
154 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
155 		shared->sr[i] = swab32(shared->sr[i]);
156 }
157 #endif
158 
159 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
160 {
161 	int nr = kvmppc_get_gpr(vcpu, 11);
162 	int r;
163 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
164 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
165 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
166 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
167 	unsigned long r2 = 0;
168 
169 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
170 		/* 32 bit mode */
171 		param1 &= 0xffffffff;
172 		param2 &= 0xffffffff;
173 		param3 &= 0xffffffff;
174 		param4 &= 0xffffffff;
175 	}
176 
177 	switch (nr) {
178 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
179 	{
180 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
181 		/* Book3S can be little endian, find it out here */
182 		int shared_big_endian = true;
183 		if (vcpu->arch.intr_msr & MSR_LE)
184 			shared_big_endian = false;
185 		if (shared_big_endian != vcpu->arch.shared_big_endian)
186 			kvmppc_swab_shared(vcpu);
187 		vcpu->arch.shared_big_endian = shared_big_endian;
188 #endif
189 
190 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
191 			/*
192 			 * Older versions of the Linux magic page code had
193 			 * a bug where they would map their trampoline code
194 			 * NX. If that's the case, remove !PR NX capability.
195 			 */
196 			vcpu->arch.disable_kernel_nx = true;
197 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
198 		}
199 
200 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
201 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
202 
203 #ifdef CONFIG_PPC_64K_PAGES
204 		/*
205 		 * Make sure our 4k magic page is in the same window of a 64k
206 		 * page within the guest and within the host's page.
207 		 */
208 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
209 		    ((ulong)vcpu->arch.shared & 0xf000)) {
210 			void *old_shared = vcpu->arch.shared;
211 			ulong shared = (ulong)vcpu->arch.shared;
212 			void *new_shared;
213 
214 			shared &= PAGE_MASK;
215 			shared |= vcpu->arch.magic_page_pa & 0xf000;
216 			new_shared = (void*)shared;
217 			memcpy(new_shared, old_shared, 0x1000);
218 			vcpu->arch.shared = new_shared;
219 		}
220 #endif
221 
222 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
223 
224 		r = EV_SUCCESS;
225 		break;
226 	}
227 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
228 		r = EV_SUCCESS;
229 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
230 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
231 #endif
232 
233 		/* Second return value is in r4 */
234 		break;
235 	case EV_HCALL_TOKEN(EV_IDLE):
236 		r = EV_SUCCESS;
237 		kvm_vcpu_block(vcpu);
238 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
239 		break;
240 	default:
241 		r = EV_UNIMPLEMENTED;
242 		break;
243 	}
244 
245 	kvmppc_set_gpr(vcpu, 4, r2);
246 
247 	return r;
248 }
249 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
250 
251 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
252 {
253 	int r = false;
254 
255 	/* We have to know what CPU to virtualize */
256 	if (!vcpu->arch.pvr)
257 		goto out;
258 
259 	/* PAPR only works with book3s_64 */
260 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
261 		goto out;
262 
263 	/* HV KVM can only do PAPR mode for now */
264 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
265 		goto out;
266 
267 #ifdef CONFIG_KVM_BOOKE_HV
268 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
269 		goto out;
270 #endif
271 
272 	r = true;
273 
274 out:
275 	vcpu->arch.sane = r;
276 	return r ? 0 : -EINVAL;
277 }
278 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
279 
280 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
281 {
282 	enum emulation_result er;
283 	int r;
284 
285 	er = kvmppc_emulate_loadstore(vcpu);
286 	switch (er) {
287 	case EMULATE_DONE:
288 		/* Future optimization: only reload non-volatiles if they were
289 		 * actually modified. */
290 		r = RESUME_GUEST_NV;
291 		break;
292 	case EMULATE_AGAIN:
293 		r = RESUME_GUEST;
294 		break;
295 	case EMULATE_DO_MMIO:
296 		run->exit_reason = KVM_EXIT_MMIO;
297 		/* We must reload nonvolatiles because "update" load/store
298 		 * instructions modify register state. */
299 		/* Future optimization: only reload non-volatiles if they were
300 		 * actually modified. */
301 		r = RESUME_HOST_NV;
302 		break;
303 	case EMULATE_FAIL:
304 	{
305 		u32 last_inst;
306 
307 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
308 		/* XXX Deliver Program interrupt to guest. */
309 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
310 		r = RESUME_HOST;
311 		break;
312 	}
313 	default:
314 		WARN_ON(1);
315 		r = RESUME_GUEST;
316 	}
317 
318 	return r;
319 }
320 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
321 
322 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
323 	      bool data)
324 {
325 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
326 	struct kvmppc_pte pte;
327 	int r;
328 
329 	vcpu->stat.st++;
330 
331 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
332 			 XLATE_WRITE, &pte);
333 	if (r < 0)
334 		return r;
335 
336 	*eaddr = pte.raddr;
337 
338 	if (!pte.may_write)
339 		return -EPERM;
340 
341 	/* Magic page override */
342 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
343 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
344 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
345 		void *magic = vcpu->arch.shared;
346 		magic += pte.eaddr & 0xfff;
347 		memcpy(magic, ptr, size);
348 		return EMULATE_DONE;
349 	}
350 
351 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
352 		return EMULATE_DO_MMIO;
353 
354 	return EMULATE_DONE;
355 }
356 EXPORT_SYMBOL_GPL(kvmppc_st);
357 
358 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
359 		      bool data)
360 {
361 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
362 	struct kvmppc_pte pte;
363 	int rc;
364 
365 	vcpu->stat.ld++;
366 
367 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
368 			  XLATE_READ, &pte);
369 	if (rc)
370 		return rc;
371 
372 	*eaddr = pte.raddr;
373 
374 	if (!pte.may_read)
375 		return -EPERM;
376 
377 	if (!data && !pte.may_execute)
378 		return -ENOEXEC;
379 
380 	/* Magic page override */
381 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
382 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
383 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
384 		void *magic = vcpu->arch.shared;
385 		magic += pte.eaddr & 0xfff;
386 		memcpy(ptr, magic, size);
387 		return EMULATE_DONE;
388 	}
389 
390 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
391 		return EMULATE_DO_MMIO;
392 
393 	return EMULATE_DONE;
394 }
395 EXPORT_SYMBOL_GPL(kvmppc_ld);
396 
397 int kvm_arch_hardware_enable(void)
398 {
399 	return 0;
400 }
401 
402 int kvm_arch_hardware_setup(void)
403 {
404 	return 0;
405 }
406 
407 void kvm_arch_check_processor_compat(void *rtn)
408 {
409 	*(int *)rtn = kvmppc_core_check_processor_compat();
410 }
411 
412 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
413 {
414 	struct kvmppc_ops *kvm_ops = NULL;
415 	/*
416 	 * if we have both HV and PR enabled, default is HV
417 	 */
418 	if (type == 0) {
419 		if (kvmppc_hv_ops)
420 			kvm_ops = kvmppc_hv_ops;
421 		else
422 			kvm_ops = kvmppc_pr_ops;
423 		if (!kvm_ops)
424 			goto err_out;
425 	} else	if (type == KVM_VM_PPC_HV) {
426 		if (!kvmppc_hv_ops)
427 			goto err_out;
428 		kvm_ops = kvmppc_hv_ops;
429 	} else if (type == KVM_VM_PPC_PR) {
430 		if (!kvmppc_pr_ops)
431 			goto err_out;
432 		kvm_ops = kvmppc_pr_ops;
433 	} else
434 		goto err_out;
435 
436 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
437 		return -ENOENT;
438 
439 	kvm->arch.kvm_ops = kvm_ops;
440 	return kvmppc_core_init_vm(kvm);
441 err_out:
442 	return -EINVAL;
443 }
444 
445 bool kvm_arch_has_vcpu_debugfs(void)
446 {
447 	return false;
448 }
449 
450 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
451 {
452 	return 0;
453 }
454 
455 void kvm_arch_destroy_vm(struct kvm *kvm)
456 {
457 	unsigned int i;
458 	struct kvm_vcpu *vcpu;
459 
460 #ifdef CONFIG_KVM_XICS
461 	/*
462 	 * We call kick_all_cpus_sync() to ensure that all
463 	 * CPUs have executed any pending IPIs before we
464 	 * continue and free VCPUs structures below.
465 	 */
466 	if (is_kvmppc_hv_enabled(kvm))
467 		kick_all_cpus_sync();
468 #endif
469 
470 	kvm_for_each_vcpu(i, vcpu, kvm)
471 		kvm_arch_vcpu_free(vcpu);
472 
473 	mutex_lock(&kvm->lock);
474 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
475 		kvm->vcpus[i] = NULL;
476 
477 	atomic_set(&kvm->online_vcpus, 0);
478 
479 	kvmppc_core_destroy_vm(kvm);
480 
481 	mutex_unlock(&kvm->lock);
482 
483 	/* drop the module reference */
484 	module_put(kvm->arch.kvm_ops->owner);
485 }
486 
487 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
488 {
489 	int r;
490 	/* Assume we're using HV mode when the HV module is loaded */
491 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
492 
493 	if (kvm) {
494 		/*
495 		 * Hooray - we know which VM type we're running on. Depend on
496 		 * that rather than the guess above.
497 		 */
498 		hv_enabled = is_kvmppc_hv_enabled(kvm);
499 	}
500 
501 	switch (ext) {
502 #ifdef CONFIG_BOOKE
503 	case KVM_CAP_PPC_BOOKE_SREGS:
504 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
505 	case KVM_CAP_PPC_EPR:
506 #else
507 	case KVM_CAP_PPC_SEGSTATE:
508 	case KVM_CAP_PPC_HIOR:
509 	case KVM_CAP_PPC_PAPR:
510 #endif
511 	case KVM_CAP_PPC_UNSET_IRQ:
512 	case KVM_CAP_PPC_IRQ_LEVEL:
513 	case KVM_CAP_ENABLE_CAP:
514 	case KVM_CAP_ENABLE_CAP_VM:
515 	case KVM_CAP_ONE_REG:
516 	case KVM_CAP_IOEVENTFD:
517 	case KVM_CAP_DEVICE_CTRL:
518 	case KVM_CAP_IMMEDIATE_EXIT:
519 		r = 1;
520 		break;
521 	case KVM_CAP_PPC_PAIRED_SINGLES:
522 	case KVM_CAP_PPC_OSI:
523 	case KVM_CAP_PPC_GET_PVINFO:
524 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
525 	case KVM_CAP_SW_TLB:
526 #endif
527 		/* We support this only for PR */
528 		r = !hv_enabled;
529 		break;
530 #ifdef CONFIG_KVM_MPIC
531 	case KVM_CAP_IRQ_MPIC:
532 		r = 1;
533 		break;
534 #endif
535 
536 #ifdef CONFIG_PPC_BOOK3S_64
537 	case KVM_CAP_SPAPR_TCE:
538 	case KVM_CAP_SPAPR_TCE_64:
539 		/* fallthrough */
540 	case KVM_CAP_SPAPR_TCE_VFIO:
541 	case KVM_CAP_PPC_RTAS:
542 	case KVM_CAP_PPC_FIXUP_HCALL:
543 	case KVM_CAP_PPC_ENABLE_HCALL:
544 #ifdef CONFIG_KVM_XICS
545 	case KVM_CAP_IRQ_XICS:
546 #endif
547 		r = 1;
548 		break;
549 
550 	case KVM_CAP_PPC_ALLOC_HTAB:
551 		r = hv_enabled;
552 		break;
553 #endif /* CONFIG_PPC_BOOK3S_64 */
554 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
555 	case KVM_CAP_PPC_SMT:
556 		r = 0;
557 		if (hv_enabled) {
558 			if (cpu_has_feature(CPU_FTR_ARCH_300))
559 				r = 1;
560 			else
561 				r = threads_per_subcore;
562 		}
563 		break;
564 	case KVM_CAP_PPC_RMA:
565 		r = 0;
566 		break;
567 	case KVM_CAP_PPC_HWRNG:
568 		r = kvmppc_hwrng_present();
569 		break;
570 	case KVM_CAP_PPC_MMU_RADIX:
571 		r = !!(hv_enabled && radix_enabled());
572 		break;
573 	case KVM_CAP_PPC_MMU_HASH_V3:
574 		r = !!(hv_enabled && !radix_enabled() &&
575 		       cpu_has_feature(CPU_FTR_ARCH_300));
576 		break;
577 #endif
578 	case KVM_CAP_SYNC_MMU:
579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
580 		r = hv_enabled;
581 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
582 		r = 1;
583 #else
584 		r = 0;
585 #endif
586 		break;
587 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
588 	case KVM_CAP_PPC_HTAB_FD:
589 		r = hv_enabled;
590 		break;
591 #endif
592 	case KVM_CAP_NR_VCPUS:
593 		/*
594 		 * Recommending a number of CPUs is somewhat arbitrary; we
595 		 * return the number of present CPUs for -HV (since a host
596 		 * will have secondary threads "offline"), and for other KVM
597 		 * implementations just count online CPUs.
598 		 */
599 		if (hv_enabled)
600 			r = num_present_cpus();
601 		else
602 			r = num_online_cpus();
603 		break;
604 	case KVM_CAP_NR_MEMSLOTS:
605 		r = KVM_USER_MEM_SLOTS;
606 		break;
607 	case KVM_CAP_MAX_VCPUS:
608 		r = KVM_MAX_VCPUS;
609 		break;
610 #ifdef CONFIG_PPC_BOOK3S_64
611 	case KVM_CAP_PPC_GET_SMMU_INFO:
612 		r = 1;
613 		break;
614 	case KVM_CAP_SPAPR_MULTITCE:
615 		r = 1;
616 		break;
617 	case KVM_CAP_SPAPR_RESIZE_HPT:
618 		/* Disable this on POWER9 until code handles new HPTE format */
619 		r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
620 		break;
621 #endif
622 	case KVM_CAP_PPC_HTM:
623 		r = cpu_has_feature(CPU_FTR_TM_COMP) &&
624 		    is_kvmppc_hv_enabled(kvm);
625 		break;
626 	default:
627 		r = 0;
628 		break;
629 	}
630 	return r;
631 
632 }
633 
634 long kvm_arch_dev_ioctl(struct file *filp,
635                         unsigned int ioctl, unsigned long arg)
636 {
637 	return -EINVAL;
638 }
639 
640 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
641 			   struct kvm_memory_slot *dont)
642 {
643 	kvmppc_core_free_memslot(kvm, free, dont);
644 }
645 
646 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
647 			    unsigned long npages)
648 {
649 	return kvmppc_core_create_memslot(kvm, slot, npages);
650 }
651 
652 int kvm_arch_prepare_memory_region(struct kvm *kvm,
653 				   struct kvm_memory_slot *memslot,
654 				   const struct kvm_userspace_memory_region *mem,
655 				   enum kvm_mr_change change)
656 {
657 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
658 }
659 
660 void kvm_arch_commit_memory_region(struct kvm *kvm,
661 				   const struct kvm_userspace_memory_region *mem,
662 				   const struct kvm_memory_slot *old,
663 				   const struct kvm_memory_slot *new,
664 				   enum kvm_mr_change change)
665 {
666 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
667 }
668 
669 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
670 				   struct kvm_memory_slot *slot)
671 {
672 	kvmppc_core_flush_memslot(kvm, slot);
673 }
674 
675 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
676 {
677 	struct kvm_vcpu *vcpu;
678 	vcpu = kvmppc_core_vcpu_create(kvm, id);
679 	if (!IS_ERR(vcpu)) {
680 		vcpu->arch.wqp = &vcpu->wq;
681 		kvmppc_create_vcpu_debugfs(vcpu, id);
682 	}
683 	return vcpu;
684 }
685 
686 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
687 {
688 }
689 
690 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
691 {
692 	/* Make sure we're not using the vcpu anymore */
693 	hrtimer_cancel(&vcpu->arch.dec_timer);
694 
695 	kvmppc_remove_vcpu_debugfs(vcpu);
696 
697 	switch (vcpu->arch.irq_type) {
698 	case KVMPPC_IRQ_MPIC:
699 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
700 		break;
701 	case KVMPPC_IRQ_XICS:
702 		if (xive_enabled())
703 			kvmppc_xive_cleanup_vcpu(vcpu);
704 		else
705 			kvmppc_xics_free_icp(vcpu);
706 		break;
707 	}
708 
709 	kvmppc_core_vcpu_free(vcpu);
710 }
711 
712 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
713 {
714 	kvm_arch_vcpu_free(vcpu);
715 }
716 
717 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
718 {
719 	return kvmppc_core_pending_dec(vcpu);
720 }
721 
722 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
723 {
724 	struct kvm_vcpu *vcpu;
725 
726 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
727 	kvmppc_decrementer_func(vcpu);
728 
729 	return HRTIMER_NORESTART;
730 }
731 
732 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
733 {
734 	int ret;
735 
736 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
737 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
738 	vcpu->arch.dec_expires = ~(u64)0;
739 
740 #ifdef CONFIG_KVM_EXIT_TIMING
741 	mutex_init(&vcpu->arch.exit_timing_lock);
742 #endif
743 	ret = kvmppc_subarch_vcpu_init(vcpu);
744 	return ret;
745 }
746 
747 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
748 {
749 	kvmppc_mmu_destroy(vcpu);
750 	kvmppc_subarch_vcpu_uninit(vcpu);
751 }
752 
753 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
754 {
755 #ifdef CONFIG_BOOKE
756 	/*
757 	 * vrsave (formerly usprg0) isn't used by Linux, but may
758 	 * be used by the guest.
759 	 *
760 	 * On non-booke this is associated with Altivec and
761 	 * is handled by code in book3s.c.
762 	 */
763 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
764 #endif
765 	kvmppc_core_vcpu_load(vcpu, cpu);
766 }
767 
768 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
769 {
770 	kvmppc_core_vcpu_put(vcpu);
771 #ifdef CONFIG_BOOKE
772 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
773 #endif
774 }
775 
776 /*
777  * irq_bypass_add_producer and irq_bypass_del_producer are only
778  * useful if the architecture supports PCI passthrough.
779  * irq_bypass_stop and irq_bypass_start are not needed and so
780  * kvm_ops are not defined for them.
781  */
782 bool kvm_arch_has_irq_bypass(void)
783 {
784 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
785 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
786 }
787 
788 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
789 				     struct irq_bypass_producer *prod)
790 {
791 	struct kvm_kernel_irqfd *irqfd =
792 		container_of(cons, struct kvm_kernel_irqfd, consumer);
793 	struct kvm *kvm = irqfd->kvm;
794 
795 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
796 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
797 
798 	return 0;
799 }
800 
801 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
802 				      struct irq_bypass_producer *prod)
803 {
804 	struct kvm_kernel_irqfd *irqfd =
805 		container_of(cons, struct kvm_kernel_irqfd, consumer);
806 	struct kvm *kvm = irqfd->kvm;
807 
808 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
809 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
810 }
811 
812 #ifdef CONFIG_VSX
813 static inline int kvmppc_get_vsr_dword_offset(int index)
814 {
815 	int offset;
816 
817 	if ((index != 0) && (index != 1))
818 		return -1;
819 
820 #ifdef __BIG_ENDIAN
821 	offset =  index;
822 #else
823 	offset = 1 - index;
824 #endif
825 
826 	return offset;
827 }
828 
829 static inline int kvmppc_get_vsr_word_offset(int index)
830 {
831 	int offset;
832 
833 	if ((index > 3) || (index < 0))
834 		return -1;
835 
836 #ifdef __BIG_ENDIAN
837 	offset = index;
838 #else
839 	offset = 3 - index;
840 #endif
841 	return offset;
842 }
843 
844 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
845 	u64 gpr)
846 {
847 	union kvmppc_one_reg val;
848 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
849 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
850 
851 	if (offset == -1)
852 		return;
853 
854 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
855 		val.vval = VCPU_VSX_VR(vcpu, index);
856 		val.vsxval[offset] = gpr;
857 		VCPU_VSX_VR(vcpu, index) = val.vval;
858 	} else {
859 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
860 	}
861 }
862 
863 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
864 	u64 gpr)
865 {
866 	union kvmppc_one_reg val;
867 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
868 
869 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
870 		val.vval = VCPU_VSX_VR(vcpu, index);
871 		val.vsxval[0] = gpr;
872 		val.vsxval[1] = gpr;
873 		VCPU_VSX_VR(vcpu, index) = val.vval;
874 	} else {
875 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
876 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
877 	}
878 }
879 
880 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
881 	u32 gpr32)
882 {
883 	union kvmppc_one_reg val;
884 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
885 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
886 	int dword_offset, word_offset;
887 
888 	if (offset == -1)
889 		return;
890 
891 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
892 		val.vval = VCPU_VSX_VR(vcpu, index);
893 		val.vsx32val[offset] = gpr32;
894 		VCPU_VSX_VR(vcpu, index) = val.vval;
895 	} else {
896 		dword_offset = offset / 2;
897 		word_offset = offset % 2;
898 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
899 		val.vsx32val[word_offset] = gpr32;
900 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
901 	}
902 }
903 #endif /* CONFIG_VSX */
904 
905 #ifdef CONFIG_PPC_FPU
906 static inline u64 sp_to_dp(u32 fprs)
907 {
908 	u64 fprd;
909 
910 	preempt_disable();
911 	enable_kernel_fp();
912 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
913 	     : "fr0");
914 	preempt_enable();
915 	return fprd;
916 }
917 
918 static inline u32 dp_to_sp(u64 fprd)
919 {
920 	u32 fprs;
921 
922 	preempt_disable();
923 	enable_kernel_fp();
924 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
925 	     : "fr0");
926 	preempt_enable();
927 	return fprs;
928 }
929 
930 #else
931 #define sp_to_dp(x)	(x)
932 #define dp_to_sp(x)	(x)
933 #endif /* CONFIG_PPC_FPU */
934 
935 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
936                                       struct kvm_run *run)
937 {
938 	u64 uninitialized_var(gpr);
939 
940 	if (run->mmio.len > sizeof(gpr)) {
941 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
942 		return;
943 	}
944 
945 	if (!vcpu->arch.mmio_host_swabbed) {
946 		switch (run->mmio.len) {
947 		case 8: gpr = *(u64 *)run->mmio.data; break;
948 		case 4: gpr = *(u32 *)run->mmio.data; break;
949 		case 2: gpr = *(u16 *)run->mmio.data; break;
950 		case 1: gpr = *(u8 *)run->mmio.data; break;
951 		}
952 	} else {
953 		switch (run->mmio.len) {
954 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
955 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
956 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
957 		case 1: gpr = *(u8 *)run->mmio.data; break;
958 		}
959 	}
960 
961 	/* conversion between single and double precision */
962 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
963 		gpr = sp_to_dp(gpr);
964 
965 	if (vcpu->arch.mmio_sign_extend) {
966 		switch (run->mmio.len) {
967 #ifdef CONFIG_PPC64
968 		case 4:
969 			gpr = (s64)(s32)gpr;
970 			break;
971 #endif
972 		case 2:
973 			gpr = (s64)(s16)gpr;
974 			break;
975 		case 1:
976 			gpr = (s64)(s8)gpr;
977 			break;
978 		}
979 	}
980 
981 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
982 	case KVM_MMIO_REG_GPR:
983 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
984 		break;
985 	case KVM_MMIO_REG_FPR:
986 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
987 		break;
988 #ifdef CONFIG_PPC_BOOK3S
989 	case KVM_MMIO_REG_QPR:
990 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
991 		break;
992 	case KVM_MMIO_REG_FQPR:
993 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
994 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
995 		break;
996 #endif
997 #ifdef CONFIG_VSX
998 	case KVM_MMIO_REG_VSX:
999 		if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1000 			kvmppc_set_vsr_dword(vcpu, gpr);
1001 		else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1002 			kvmppc_set_vsr_word(vcpu, gpr);
1003 		else if (vcpu->arch.mmio_vsx_copy_type ==
1004 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1005 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1006 		break;
1007 #endif
1008 	default:
1009 		BUG();
1010 	}
1011 }
1012 
1013 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1014 				unsigned int rt, unsigned int bytes,
1015 				int is_default_endian, int sign_extend)
1016 {
1017 	int idx, ret;
1018 	bool host_swabbed;
1019 
1020 	/* Pity C doesn't have a logical XOR operator */
1021 	if (kvmppc_need_byteswap(vcpu)) {
1022 		host_swabbed = is_default_endian;
1023 	} else {
1024 		host_swabbed = !is_default_endian;
1025 	}
1026 
1027 	if (bytes > sizeof(run->mmio.data)) {
1028 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1029 		       run->mmio.len);
1030 	}
1031 
1032 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1033 	run->mmio.len = bytes;
1034 	run->mmio.is_write = 0;
1035 
1036 	vcpu->arch.io_gpr = rt;
1037 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1038 	vcpu->mmio_needed = 1;
1039 	vcpu->mmio_is_write = 0;
1040 	vcpu->arch.mmio_sign_extend = sign_extend;
1041 
1042 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1043 
1044 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1045 			      bytes, &run->mmio.data);
1046 
1047 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1048 
1049 	if (!ret) {
1050 		kvmppc_complete_mmio_load(vcpu, run);
1051 		vcpu->mmio_needed = 0;
1052 		return EMULATE_DONE;
1053 	}
1054 
1055 	return EMULATE_DO_MMIO;
1056 }
1057 
1058 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1059 		       unsigned int rt, unsigned int bytes,
1060 		       int is_default_endian)
1061 {
1062 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1063 }
1064 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1065 
1066 /* Same as above, but sign extends */
1067 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1068 			unsigned int rt, unsigned int bytes,
1069 			int is_default_endian)
1070 {
1071 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1072 }
1073 
1074 #ifdef CONFIG_VSX
1075 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1076 			unsigned int rt, unsigned int bytes,
1077 			int is_default_endian, int mmio_sign_extend)
1078 {
1079 	enum emulation_result emulated = EMULATE_DONE;
1080 
1081 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1082 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1083 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1084 		return EMULATE_FAIL;
1085 	}
1086 
1087 	while (vcpu->arch.mmio_vsx_copy_nums) {
1088 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1089 			is_default_endian, mmio_sign_extend);
1090 
1091 		if (emulated != EMULATE_DONE)
1092 			break;
1093 
1094 		vcpu->arch.paddr_accessed += run->mmio.len;
1095 
1096 		vcpu->arch.mmio_vsx_copy_nums--;
1097 		vcpu->arch.mmio_vsx_offset++;
1098 	}
1099 	return emulated;
1100 }
1101 #endif /* CONFIG_VSX */
1102 
1103 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1104 			u64 val, unsigned int bytes, int is_default_endian)
1105 {
1106 	void *data = run->mmio.data;
1107 	int idx, ret;
1108 	bool host_swabbed;
1109 
1110 	/* Pity C doesn't have a logical XOR operator */
1111 	if (kvmppc_need_byteswap(vcpu)) {
1112 		host_swabbed = is_default_endian;
1113 	} else {
1114 		host_swabbed = !is_default_endian;
1115 	}
1116 
1117 	if (bytes > sizeof(run->mmio.data)) {
1118 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1119 		       run->mmio.len);
1120 	}
1121 
1122 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1123 	run->mmio.len = bytes;
1124 	run->mmio.is_write = 1;
1125 	vcpu->mmio_needed = 1;
1126 	vcpu->mmio_is_write = 1;
1127 
1128 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1129 		val = dp_to_sp(val);
1130 
1131 	/* Store the value at the lowest bytes in 'data'. */
1132 	if (!host_swabbed) {
1133 		switch (bytes) {
1134 		case 8: *(u64 *)data = val; break;
1135 		case 4: *(u32 *)data = val; break;
1136 		case 2: *(u16 *)data = val; break;
1137 		case 1: *(u8  *)data = val; break;
1138 		}
1139 	} else {
1140 		switch (bytes) {
1141 		case 8: *(u64 *)data = swab64(val); break;
1142 		case 4: *(u32 *)data = swab32(val); break;
1143 		case 2: *(u16 *)data = swab16(val); break;
1144 		case 1: *(u8  *)data = val; break;
1145 		}
1146 	}
1147 
1148 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1149 
1150 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1151 			       bytes, &run->mmio.data);
1152 
1153 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1154 
1155 	if (!ret) {
1156 		vcpu->mmio_needed = 0;
1157 		return EMULATE_DONE;
1158 	}
1159 
1160 	return EMULATE_DO_MMIO;
1161 }
1162 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1163 
1164 #ifdef CONFIG_VSX
1165 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1166 {
1167 	u32 dword_offset, word_offset;
1168 	union kvmppc_one_reg reg;
1169 	int vsx_offset = 0;
1170 	int copy_type = vcpu->arch.mmio_vsx_copy_type;
1171 	int result = 0;
1172 
1173 	switch (copy_type) {
1174 	case KVMPPC_VSX_COPY_DWORD:
1175 		vsx_offset =
1176 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1177 
1178 		if (vsx_offset == -1) {
1179 			result = -1;
1180 			break;
1181 		}
1182 
1183 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1184 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1185 		} else {
1186 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1187 			*val = reg.vsxval[vsx_offset];
1188 		}
1189 		break;
1190 
1191 	case KVMPPC_VSX_COPY_WORD:
1192 		vsx_offset =
1193 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1194 
1195 		if (vsx_offset == -1) {
1196 			result = -1;
1197 			break;
1198 		}
1199 
1200 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1201 			dword_offset = vsx_offset / 2;
1202 			word_offset = vsx_offset % 2;
1203 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1204 			*val = reg.vsx32val[word_offset];
1205 		} else {
1206 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1207 			*val = reg.vsx32val[vsx_offset];
1208 		}
1209 		break;
1210 
1211 	default:
1212 		result = -1;
1213 		break;
1214 	}
1215 
1216 	return result;
1217 }
1218 
1219 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1220 			int rs, unsigned int bytes, int is_default_endian)
1221 {
1222 	u64 val;
1223 	enum emulation_result emulated = EMULATE_DONE;
1224 
1225 	vcpu->arch.io_gpr = rs;
1226 
1227 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1228 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1229 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1230 		return EMULATE_FAIL;
1231 	}
1232 
1233 	while (vcpu->arch.mmio_vsx_copy_nums) {
1234 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1235 			return EMULATE_FAIL;
1236 
1237 		emulated = kvmppc_handle_store(run, vcpu,
1238 			 val, bytes, is_default_endian);
1239 
1240 		if (emulated != EMULATE_DONE)
1241 			break;
1242 
1243 		vcpu->arch.paddr_accessed += run->mmio.len;
1244 
1245 		vcpu->arch.mmio_vsx_copy_nums--;
1246 		vcpu->arch.mmio_vsx_offset++;
1247 	}
1248 
1249 	return emulated;
1250 }
1251 
1252 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1253 			struct kvm_run *run)
1254 {
1255 	enum emulation_result emulated = EMULATE_FAIL;
1256 	int r;
1257 
1258 	vcpu->arch.paddr_accessed += run->mmio.len;
1259 
1260 	if (!vcpu->mmio_is_write) {
1261 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1262 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1263 	} else {
1264 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1265 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1266 	}
1267 
1268 	switch (emulated) {
1269 	case EMULATE_DO_MMIO:
1270 		run->exit_reason = KVM_EXIT_MMIO;
1271 		r = RESUME_HOST;
1272 		break;
1273 	case EMULATE_FAIL:
1274 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1275 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1276 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1277 		r = RESUME_HOST;
1278 		break;
1279 	default:
1280 		r = RESUME_GUEST;
1281 		break;
1282 	}
1283 	return r;
1284 }
1285 #endif /* CONFIG_VSX */
1286 
1287 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1288 {
1289 	int r = 0;
1290 	union kvmppc_one_reg val;
1291 	int size;
1292 
1293 	size = one_reg_size(reg->id);
1294 	if (size > sizeof(val))
1295 		return -EINVAL;
1296 
1297 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1298 	if (r == -EINVAL) {
1299 		r = 0;
1300 		switch (reg->id) {
1301 #ifdef CONFIG_ALTIVEC
1302 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1303 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1304 				r = -ENXIO;
1305 				break;
1306 			}
1307 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1308 			break;
1309 		case KVM_REG_PPC_VSCR:
1310 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1311 				r = -ENXIO;
1312 				break;
1313 			}
1314 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1315 			break;
1316 		case KVM_REG_PPC_VRSAVE:
1317 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1318 			break;
1319 #endif /* CONFIG_ALTIVEC */
1320 		default:
1321 			r = -EINVAL;
1322 			break;
1323 		}
1324 	}
1325 
1326 	if (r)
1327 		return r;
1328 
1329 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1330 		r = -EFAULT;
1331 
1332 	return r;
1333 }
1334 
1335 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1336 {
1337 	int r;
1338 	union kvmppc_one_reg val;
1339 	int size;
1340 
1341 	size = one_reg_size(reg->id);
1342 	if (size > sizeof(val))
1343 		return -EINVAL;
1344 
1345 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1346 		return -EFAULT;
1347 
1348 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1349 	if (r == -EINVAL) {
1350 		r = 0;
1351 		switch (reg->id) {
1352 #ifdef CONFIG_ALTIVEC
1353 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1354 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1355 				r = -ENXIO;
1356 				break;
1357 			}
1358 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1359 			break;
1360 		case KVM_REG_PPC_VSCR:
1361 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1362 				r = -ENXIO;
1363 				break;
1364 			}
1365 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1366 			break;
1367 		case KVM_REG_PPC_VRSAVE:
1368 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1369 				r = -ENXIO;
1370 				break;
1371 			}
1372 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1373 			break;
1374 #endif /* CONFIG_ALTIVEC */
1375 		default:
1376 			r = -EINVAL;
1377 			break;
1378 		}
1379 	}
1380 
1381 	return r;
1382 }
1383 
1384 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1385 {
1386 	int r;
1387 	sigset_t sigsaved;
1388 
1389 	if (vcpu->mmio_needed) {
1390 		vcpu->mmio_needed = 0;
1391 		if (!vcpu->mmio_is_write)
1392 			kvmppc_complete_mmio_load(vcpu, run);
1393 #ifdef CONFIG_VSX
1394 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1395 			vcpu->arch.mmio_vsx_copy_nums--;
1396 			vcpu->arch.mmio_vsx_offset++;
1397 		}
1398 
1399 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1400 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1401 			if (r == RESUME_HOST) {
1402 				vcpu->mmio_needed = 1;
1403 				return r;
1404 			}
1405 		}
1406 #endif
1407 	} else if (vcpu->arch.osi_needed) {
1408 		u64 *gprs = run->osi.gprs;
1409 		int i;
1410 
1411 		for (i = 0; i < 32; i++)
1412 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1413 		vcpu->arch.osi_needed = 0;
1414 	} else if (vcpu->arch.hcall_needed) {
1415 		int i;
1416 
1417 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1418 		for (i = 0; i < 9; ++i)
1419 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1420 		vcpu->arch.hcall_needed = 0;
1421 #ifdef CONFIG_BOOKE
1422 	} else if (vcpu->arch.epr_needed) {
1423 		kvmppc_set_epr(vcpu, run->epr.epr);
1424 		vcpu->arch.epr_needed = 0;
1425 #endif
1426 	}
1427 
1428 	if (vcpu->sigset_active)
1429 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1430 
1431 	if (run->immediate_exit)
1432 		r = -EINTR;
1433 	else
1434 		r = kvmppc_vcpu_run(run, vcpu);
1435 
1436 	if (vcpu->sigset_active)
1437 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1438 
1439 	return r;
1440 }
1441 
1442 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1443 {
1444 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1445 		kvmppc_core_dequeue_external(vcpu);
1446 		return 0;
1447 	}
1448 
1449 	kvmppc_core_queue_external(vcpu, irq);
1450 
1451 	kvm_vcpu_kick(vcpu);
1452 
1453 	return 0;
1454 }
1455 
1456 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1457 				     struct kvm_enable_cap *cap)
1458 {
1459 	int r;
1460 
1461 	if (cap->flags)
1462 		return -EINVAL;
1463 
1464 	switch (cap->cap) {
1465 	case KVM_CAP_PPC_OSI:
1466 		r = 0;
1467 		vcpu->arch.osi_enabled = true;
1468 		break;
1469 	case KVM_CAP_PPC_PAPR:
1470 		r = 0;
1471 		vcpu->arch.papr_enabled = true;
1472 		break;
1473 	case KVM_CAP_PPC_EPR:
1474 		r = 0;
1475 		if (cap->args[0])
1476 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1477 		else
1478 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1479 		break;
1480 #ifdef CONFIG_BOOKE
1481 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1482 		r = 0;
1483 		vcpu->arch.watchdog_enabled = true;
1484 		break;
1485 #endif
1486 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1487 	case KVM_CAP_SW_TLB: {
1488 		struct kvm_config_tlb cfg;
1489 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1490 
1491 		r = -EFAULT;
1492 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1493 			break;
1494 
1495 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1496 		break;
1497 	}
1498 #endif
1499 #ifdef CONFIG_KVM_MPIC
1500 	case KVM_CAP_IRQ_MPIC: {
1501 		struct fd f;
1502 		struct kvm_device *dev;
1503 
1504 		r = -EBADF;
1505 		f = fdget(cap->args[0]);
1506 		if (!f.file)
1507 			break;
1508 
1509 		r = -EPERM;
1510 		dev = kvm_device_from_filp(f.file);
1511 		if (dev)
1512 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1513 
1514 		fdput(f);
1515 		break;
1516 	}
1517 #endif
1518 #ifdef CONFIG_KVM_XICS
1519 	case KVM_CAP_IRQ_XICS: {
1520 		struct fd f;
1521 		struct kvm_device *dev;
1522 
1523 		r = -EBADF;
1524 		f = fdget(cap->args[0]);
1525 		if (!f.file)
1526 			break;
1527 
1528 		r = -EPERM;
1529 		dev = kvm_device_from_filp(f.file);
1530 		if (dev) {
1531 			if (xive_enabled())
1532 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1533 			else
1534 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1535 		}
1536 
1537 		fdput(f);
1538 		break;
1539 	}
1540 #endif /* CONFIG_KVM_XICS */
1541 	default:
1542 		r = -EINVAL;
1543 		break;
1544 	}
1545 
1546 	if (!r)
1547 		r = kvmppc_sanity_check(vcpu);
1548 
1549 	return r;
1550 }
1551 
1552 bool kvm_arch_intc_initialized(struct kvm *kvm)
1553 {
1554 #ifdef CONFIG_KVM_MPIC
1555 	if (kvm->arch.mpic)
1556 		return true;
1557 #endif
1558 #ifdef CONFIG_KVM_XICS
1559 	if (kvm->arch.xics || kvm->arch.xive)
1560 		return true;
1561 #endif
1562 	return false;
1563 }
1564 
1565 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1566                                     struct kvm_mp_state *mp_state)
1567 {
1568 	return -EINVAL;
1569 }
1570 
1571 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1572                                     struct kvm_mp_state *mp_state)
1573 {
1574 	return -EINVAL;
1575 }
1576 
1577 long kvm_arch_vcpu_ioctl(struct file *filp,
1578                          unsigned int ioctl, unsigned long arg)
1579 {
1580 	struct kvm_vcpu *vcpu = filp->private_data;
1581 	void __user *argp = (void __user *)arg;
1582 	long r;
1583 
1584 	switch (ioctl) {
1585 	case KVM_INTERRUPT: {
1586 		struct kvm_interrupt irq;
1587 		r = -EFAULT;
1588 		if (copy_from_user(&irq, argp, sizeof(irq)))
1589 			goto out;
1590 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1591 		goto out;
1592 	}
1593 
1594 	case KVM_ENABLE_CAP:
1595 	{
1596 		struct kvm_enable_cap cap;
1597 		r = -EFAULT;
1598 		if (copy_from_user(&cap, argp, sizeof(cap)))
1599 			goto out;
1600 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1601 		break;
1602 	}
1603 
1604 	case KVM_SET_ONE_REG:
1605 	case KVM_GET_ONE_REG:
1606 	{
1607 		struct kvm_one_reg reg;
1608 		r = -EFAULT;
1609 		if (copy_from_user(&reg, argp, sizeof(reg)))
1610 			goto out;
1611 		if (ioctl == KVM_SET_ONE_REG)
1612 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1613 		else
1614 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1615 		break;
1616 	}
1617 
1618 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1619 	case KVM_DIRTY_TLB: {
1620 		struct kvm_dirty_tlb dirty;
1621 		r = -EFAULT;
1622 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
1623 			goto out;
1624 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1625 		break;
1626 	}
1627 #endif
1628 	default:
1629 		r = -EINVAL;
1630 	}
1631 
1632 out:
1633 	return r;
1634 }
1635 
1636 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1637 {
1638 	return VM_FAULT_SIGBUS;
1639 }
1640 
1641 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1642 {
1643 	u32 inst_nop = 0x60000000;
1644 #ifdef CONFIG_KVM_BOOKE_HV
1645 	u32 inst_sc1 = 0x44000022;
1646 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1647 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1648 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1649 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1650 #else
1651 	u32 inst_lis = 0x3c000000;
1652 	u32 inst_ori = 0x60000000;
1653 	u32 inst_sc = 0x44000002;
1654 	u32 inst_imm_mask = 0xffff;
1655 
1656 	/*
1657 	 * The hypercall to get into KVM from within guest context is as
1658 	 * follows:
1659 	 *
1660 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
1661 	 *    ori r0, KVM_SC_MAGIC_R0@l
1662 	 *    sc
1663 	 *    nop
1664 	 */
1665 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1666 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1667 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1668 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1669 #endif
1670 
1671 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1672 
1673 	return 0;
1674 }
1675 
1676 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1677 			  bool line_status)
1678 {
1679 	if (!irqchip_in_kernel(kvm))
1680 		return -ENXIO;
1681 
1682 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1683 					irq_event->irq, irq_event->level,
1684 					line_status);
1685 	return 0;
1686 }
1687 
1688 
1689 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1690 				   struct kvm_enable_cap *cap)
1691 {
1692 	int r;
1693 
1694 	if (cap->flags)
1695 		return -EINVAL;
1696 
1697 	switch (cap->cap) {
1698 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1699 	case KVM_CAP_PPC_ENABLE_HCALL: {
1700 		unsigned long hcall = cap->args[0];
1701 
1702 		r = -EINVAL;
1703 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1704 		    cap->args[1] > 1)
1705 			break;
1706 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1707 			break;
1708 		if (cap->args[1])
1709 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1710 		else
1711 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1712 		r = 0;
1713 		break;
1714 	}
1715 #endif
1716 	default:
1717 		r = -EINVAL;
1718 		break;
1719 	}
1720 
1721 	return r;
1722 }
1723 
1724 long kvm_arch_vm_ioctl(struct file *filp,
1725                        unsigned int ioctl, unsigned long arg)
1726 {
1727 	struct kvm *kvm __maybe_unused = filp->private_data;
1728 	void __user *argp = (void __user *)arg;
1729 	long r;
1730 
1731 	switch (ioctl) {
1732 	case KVM_PPC_GET_PVINFO: {
1733 		struct kvm_ppc_pvinfo pvinfo;
1734 		memset(&pvinfo, 0, sizeof(pvinfo));
1735 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1736 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1737 			r = -EFAULT;
1738 			goto out;
1739 		}
1740 
1741 		break;
1742 	}
1743 	case KVM_ENABLE_CAP:
1744 	{
1745 		struct kvm_enable_cap cap;
1746 		r = -EFAULT;
1747 		if (copy_from_user(&cap, argp, sizeof(cap)))
1748 			goto out;
1749 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1750 		break;
1751 	}
1752 #ifdef CONFIG_SPAPR_TCE_IOMMU
1753 	case KVM_CREATE_SPAPR_TCE_64: {
1754 		struct kvm_create_spapr_tce_64 create_tce_64;
1755 
1756 		r = -EFAULT;
1757 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1758 			goto out;
1759 		if (create_tce_64.flags) {
1760 			r = -EINVAL;
1761 			goto out;
1762 		}
1763 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1764 		goto out;
1765 	}
1766 	case KVM_CREATE_SPAPR_TCE: {
1767 		struct kvm_create_spapr_tce create_tce;
1768 		struct kvm_create_spapr_tce_64 create_tce_64;
1769 
1770 		r = -EFAULT;
1771 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1772 			goto out;
1773 
1774 		create_tce_64.liobn = create_tce.liobn;
1775 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1776 		create_tce_64.offset = 0;
1777 		create_tce_64.size = create_tce.window_size >>
1778 				IOMMU_PAGE_SHIFT_4K;
1779 		create_tce_64.flags = 0;
1780 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1781 		goto out;
1782 	}
1783 #endif
1784 #ifdef CONFIG_PPC_BOOK3S_64
1785 	case KVM_PPC_GET_SMMU_INFO: {
1786 		struct kvm_ppc_smmu_info info;
1787 		struct kvm *kvm = filp->private_data;
1788 
1789 		memset(&info, 0, sizeof(info));
1790 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1791 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1792 			r = -EFAULT;
1793 		break;
1794 	}
1795 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
1796 		struct kvm *kvm = filp->private_data;
1797 
1798 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1799 		break;
1800 	}
1801 	case KVM_PPC_CONFIGURE_V3_MMU: {
1802 		struct kvm *kvm = filp->private_data;
1803 		struct kvm_ppc_mmuv3_cfg cfg;
1804 
1805 		r = -EINVAL;
1806 		if (!kvm->arch.kvm_ops->configure_mmu)
1807 			goto out;
1808 		r = -EFAULT;
1809 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
1810 			goto out;
1811 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1812 		break;
1813 	}
1814 	case KVM_PPC_GET_RMMU_INFO: {
1815 		struct kvm *kvm = filp->private_data;
1816 		struct kvm_ppc_rmmu_info info;
1817 
1818 		r = -EINVAL;
1819 		if (!kvm->arch.kvm_ops->get_rmmu_info)
1820 			goto out;
1821 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1822 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1823 			r = -EFAULT;
1824 		break;
1825 	}
1826 	default: {
1827 		struct kvm *kvm = filp->private_data;
1828 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1829 	}
1830 #else /* CONFIG_PPC_BOOK3S_64 */
1831 	default:
1832 		r = -ENOTTY;
1833 #endif
1834 	}
1835 out:
1836 	return r;
1837 }
1838 
1839 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1840 static unsigned long nr_lpids;
1841 
1842 long kvmppc_alloc_lpid(void)
1843 {
1844 	long lpid;
1845 
1846 	do {
1847 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1848 		if (lpid >= nr_lpids) {
1849 			pr_err("%s: No LPIDs free\n", __func__);
1850 			return -ENOMEM;
1851 		}
1852 	} while (test_and_set_bit(lpid, lpid_inuse));
1853 
1854 	return lpid;
1855 }
1856 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1857 
1858 void kvmppc_claim_lpid(long lpid)
1859 {
1860 	set_bit(lpid, lpid_inuse);
1861 }
1862 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1863 
1864 void kvmppc_free_lpid(long lpid)
1865 {
1866 	clear_bit(lpid, lpid_inuse);
1867 }
1868 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1869 
1870 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1871 {
1872 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1873 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
1874 }
1875 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1876 
1877 int kvm_arch_init(void *opaque)
1878 {
1879 	return 0;
1880 }
1881 
1882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
1883