xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision e8bd417a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9 
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 
35 #include "timing.h"
36 #include "irq.h"
37 #include "../mm/mmu_decl.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include "trace.h"
41 
42 struct kvmppc_ops *kvmppc_hv_ops;
43 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
44 struct kvmppc_ops *kvmppc_pr_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
46 
47 
48 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
49 {
50 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
51 }
52 
53 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
54 {
55 	return kvm_arch_vcpu_runnable(vcpu);
56 }
57 
58 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
59 {
60 	return false;
61 }
62 
63 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
64 {
65 	return 1;
66 }
67 
68 /*
69  * Common checks before entering the guest world.  Call with interrupts
70  * disabled.
71  *
72  * returns:
73  *
74  * == 1 if we're ready to go into guest state
75  * <= 0 if we need to go back to the host with return value
76  */
77 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
78 {
79 	int r;
80 
81 	WARN_ON(irqs_disabled());
82 	hard_irq_disable();
83 
84 	while (true) {
85 		if (need_resched()) {
86 			local_irq_enable();
87 			cond_resched();
88 			hard_irq_disable();
89 			continue;
90 		}
91 
92 		if (signal_pending(current)) {
93 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
94 			vcpu->run->exit_reason = KVM_EXIT_INTR;
95 			r = -EINTR;
96 			break;
97 		}
98 
99 		vcpu->mode = IN_GUEST_MODE;
100 
101 		/*
102 		 * Reading vcpu->requests must happen after setting vcpu->mode,
103 		 * so we don't miss a request because the requester sees
104 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
105 		 * before next entering the guest (and thus doesn't IPI).
106 		 * This also orders the write to mode from any reads
107 		 * to the page tables done while the VCPU is running.
108 		 * Please see the comment in kvm_flush_remote_tlbs.
109 		 */
110 		smp_mb();
111 
112 		if (kvm_request_pending(vcpu)) {
113 			/* Make sure we process requests preemptable */
114 			local_irq_enable();
115 			trace_kvm_check_requests(vcpu);
116 			r = kvmppc_core_check_requests(vcpu);
117 			hard_irq_disable();
118 			if (r > 0)
119 				continue;
120 			break;
121 		}
122 
123 		if (kvmppc_core_prepare_to_enter(vcpu)) {
124 			/* interrupts got enabled in between, so we
125 			   are back at square 1 */
126 			continue;
127 		}
128 
129 		guest_enter_irqoff();
130 		return 1;
131 	}
132 
133 	/* return to host */
134 	local_irq_enable();
135 	return r;
136 }
137 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
138 
139 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
140 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
141 {
142 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
143 	int i;
144 
145 	shared->sprg0 = swab64(shared->sprg0);
146 	shared->sprg1 = swab64(shared->sprg1);
147 	shared->sprg2 = swab64(shared->sprg2);
148 	shared->sprg3 = swab64(shared->sprg3);
149 	shared->srr0 = swab64(shared->srr0);
150 	shared->srr1 = swab64(shared->srr1);
151 	shared->dar = swab64(shared->dar);
152 	shared->msr = swab64(shared->msr);
153 	shared->dsisr = swab32(shared->dsisr);
154 	shared->int_pending = swab32(shared->int_pending);
155 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
156 		shared->sr[i] = swab32(shared->sr[i]);
157 }
158 #endif
159 
160 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
161 {
162 	int nr = kvmppc_get_gpr(vcpu, 11);
163 	int r;
164 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
165 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
166 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
167 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
168 	unsigned long r2 = 0;
169 
170 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
171 		/* 32 bit mode */
172 		param1 &= 0xffffffff;
173 		param2 &= 0xffffffff;
174 		param3 &= 0xffffffff;
175 		param4 &= 0xffffffff;
176 	}
177 
178 	switch (nr) {
179 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
180 	{
181 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
182 		/* Book3S can be little endian, find it out here */
183 		int shared_big_endian = true;
184 		if (vcpu->arch.intr_msr & MSR_LE)
185 			shared_big_endian = false;
186 		if (shared_big_endian != vcpu->arch.shared_big_endian)
187 			kvmppc_swab_shared(vcpu);
188 		vcpu->arch.shared_big_endian = shared_big_endian;
189 #endif
190 
191 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
192 			/*
193 			 * Older versions of the Linux magic page code had
194 			 * a bug where they would map their trampoline code
195 			 * NX. If that's the case, remove !PR NX capability.
196 			 */
197 			vcpu->arch.disable_kernel_nx = true;
198 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
199 		}
200 
201 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
202 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
203 
204 #ifdef CONFIG_PPC_64K_PAGES
205 		/*
206 		 * Make sure our 4k magic page is in the same window of a 64k
207 		 * page within the guest and within the host's page.
208 		 */
209 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
210 		    ((ulong)vcpu->arch.shared & 0xf000)) {
211 			void *old_shared = vcpu->arch.shared;
212 			ulong shared = (ulong)vcpu->arch.shared;
213 			void *new_shared;
214 
215 			shared &= PAGE_MASK;
216 			shared |= vcpu->arch.magic_page_pa & 0xf000;
217 			new_shared = (void*)shared;
218 			memcpy(new_shared, old_shared, 0x1000);
219 			vcpu->arch.shared = new_shared;
220 		}
221 #endif
222 
223 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
224 
225 		r = EV_SUCCESS;
226 		break;
227 	}
228 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
229 		r = EV_SUCCESS;
230 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
231 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
232 #endif
233 
234 		/* Second return value is in r4 */
235 		break;
236 	case EV_HCALL_TOKEN(EV_IDLE):
237 		r = EV_SUCCESS;
238 		kvm_vcpu_block(vcpu);
239 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
240 		break;
241 	default:
242 		r = EV_UNIMPLEMENTED;
243 		break;
244 	}
245 
246 	kvmppc_set_gpr(vcpu, 4, r2);
247 
248 	return r;
249 }
250 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
251 
252 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
253 {
254 	int r = false;
255 
256 	/* We have to know what CPU to virtualize */
257 	if (!vcpu->arch.pvr)
258 		goto out;
259 
260 	/* PAPR only works with book3s_64 */
261 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
262 		goto out;
263 
264 	/* HV KVM can only do PAPR mode for now */
265 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
266 		goto out;
267 
268 #ifdef CONFIG_KVM_BOOKE_HV
269 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
270 		goto out;
271 #endif
272 
273 	r = true;
274 
275 out:
276 	vcpu->arch.sane = r;
277 	return r ? 0 : -EINVAL;
278 }
279 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
280 
281 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
282 {
283 	enum emulation_result er;
284 	int r;
285 
286 	er = kvmppc_emulate_loadstore(vcpu);
287 	switch (er) {
288 	case EMULATE_DONE:
289 		/* Future optimization: only reload non-volatiles if they were
290 		 * actually modified. */
291 		r = RESUME_GUEST_NV;
292 		break;
293 	case EMULATE_AGAIN:
294 		r = RESUME_GUEST;
295 		break;
296 	case EMULATE_DO_MMIO:
297 		run->exit_reason = KVM_EXIT_MMIO;
298 		/* We must reload nonvolatiles because "update" load/store
299 		 * instructions modify register state. */
300 		/* Future optimization: only reload non-volatiles if they were
301 		 * actually modified. */
302 		r = RESUME_HOST_NV;
303 		break;
304 	case EMULATE_FAIL:
305 	{
306 		u32 last_inst;
307 
308 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
309 		/* XXX Deliver Program interrupt to guest. */
310 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
311 		r = RESUME_HOST;
312 		break;
313 	}
314 	default:
315 		WARN_ON(1);
316 		r = RESUME_GUEST;
317 	}
318 
319 	return r;
320 }
321 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
322 
323 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
324 	      bool data)
325 {
326 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
327 	struct kvmppc_pte pte;
328 	int r = -EINVAL;
329 
330 	vcpu->stat.st++;
331 
332 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
333 		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
334 							    size);
335 
336 	if ((!r) || (r == -EAGAIN))
337 		return r;
338 
339 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340 			 XLATE_WRITE, &pte);
341 	if (r < 0)
342 		return r;
343 
344 	*eaddr = pte.raddr;
345 
346 	if (!pte.may_write)
347 		return -EPERM;
348 
349 	/* Magic page override */
350 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353 		void *magic = vcpu->arch.shared;
354 		magic += pte.eaddr & 0xfff;
355 		memcpy(magic, ptr, size);
356 		return EMULATE_DONE;
357 	}
358 
359 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360 		return EMULATE_DO_MMIO;
361 
362 	return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365 
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367 		      bool data)
368 {
369 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370 	struct kvmppc_pte pte;
371 	int rc = -EINVAL;
372 
373 	vcpu->stat.ld++;
374 
375 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
376 		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
377 							      size);
378 
379 	if ((!rc) || (rc == -EAGAIN))
380 		return rc;
381 
382 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
383 			  XLATE_READ, &pte);
384 	if (rc)
385 		return rc;
386 
387 	*eaddr = pte.raddr;
388 
389 	if (!pte.may_read)
390 		return -EPERM;
391 
392 	if (!data && !pte.may_execute)
393 		return -ENOEXEC;
394 
395 	/* Magic page override */
396 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
397 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
398 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
399 		void *magic = vcpu->arch.shared;
400 		magic += pte.eaddr & 0xfff;
401 		memcpy(ptr, magic, size);
402 		return EMULATE_DONE;
403 	}
404 
405 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
406 		return EMULATE_DO_MMIO;
407 
408 	return EMULATE_DONE;
409 }
410 EXPORT_SYMBOL_GPL(kvmppc_ld);
411 
412 int kvm_arch_hardware_enable(void)
413 {
414 	return 0;
415 }
416 
417 int kvm_arch_hardware_setup(void)
418 {
419 	return 0;
420 }
421 
422 int kvm_arch_check_processor_compat(void)
423 {
424 	return kvmppc_core_check_processor_compat();
425 }
426 
427 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
428 {
429 	struct kvmppc_ops *kvm_ops = NULL;
430 	/*
431 	 * if we have both HV and PR enabled, default is HV
432 	 */
433 	if (type == 0) {
434 		if (kvmppc_hv_ops)
435 			kvm_ops = kvmppc_hv_ops;
436 		else
437 			kvm_ops = kvmppc_pr_ops;
438 		if (!kvm_ops)
439 			goto err_out;
440 	} else	if (type == KVM_VM_PPC_HV) {
441 		if (!kvmppc_hv_ops)
442 			goto err_out;
443 		kvm_ops = kvmppc_hv_ops;
444 	} else if (type == KVM_VM_PPC_PR) {
445 		if (!kvmppc_pr_ops)
446 			goto err_out;
447 		kvm_ops = kvmppc_pr_ops;
448 	} else
449 		goto err_out;
450 
451 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
452 		return -ENOENT;
453 
454 	kvm->arch.kvm_ops = kvm_ops;
455 	return kvmppc_core_init_vm(kvm);
456 err_out:
457 	return -EINVAL;
458 }
459 
460 void kvm_arch_destroy_vm(struct kvm *kvm)
461 {
462 	unsigned int i;
463 	struct kvm_vcpu *vcpu;
464 
465 #ifdef CONFIG_KVM_XICS
466 	/*
467 	 * We call kick_all_cpus_sync() to ensure that all
468 	 * CPUs have executed any pending IPIs before we
469 	 * continue and free VCPUs structures below.
470 	 */
471 	if (is_kvmppc_hv_enabled(kvm))
472 		kick_all_cpus_sync();
473 #endif
474 
475 	kvm_for_each_vcpu(i, vcpu, kvm)
476 		kvm_arch_vcpu_free(vcpu);
477 
478 	mutex_lock(&kvm->lock);
479 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
480 		kvm->vcpus[i] = NULL;
481 
482 	atomic_set(&kvm->online_vcpus, 0);
483 
484 	kvmppc_core_destroy_vm(kvm);
485 
486 	mutex_unlock(&kvm->lock);
487 
488 	/* drop the module reference */
489 	module_put(kvm->arch.kvm_ops->owner);
490 }
491 
492 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
493 {
494 	int r;
495 	/* Assume we're using HV mode when the HV module is loaded */
496 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
497 
498 	if (kvm) {
499 		/*
500 		 * Hooray - we know which VM type we're running on. Depend on
501 		 * that rather than the guess above.
502 		 */
503 		hv_enabled = is_kvmppc_hv_enabled(kvm);
504 	}
505 
506 	switch (ext) {
507 #ifdef CONFIG_BOOKE
508 	case KVM_CAP_PPC_BOOKE_SREGS:
509 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
510 	case KVM_CAP_PPC_EPR:
511 #else
512 	case KVM_CAP_PPC_SEGSTATE:
513 	case KVM_CAP_PPC_HIOR:
514 	case KVM_CAP_PPC_PAPR:
515 #endif
516 	case KVM_CAP_PPC_UNSET_IRQ:
517 	case KVM_CAP_PPC_IRQ_LEVEL:
518 	case KVM_CAP_ENABLE_CAP:
519 	case KVM_CAP_ONE_REG:
520 	case KVM_CAP_IOEVENTFD:
521 	case KVM_CAP_DEVICE_CTRL:
522 	case KVM_CAP_IMMEDIATE_EXIT:
523 		r = 1;
524 		break;
525 	case KVM_CAP_PPC_PAIRED_SINGLES:
526 	case KVM_CAP_PPC_OSI:
527 	case KVM_CAP_PPC_GET_PVINFO:
528 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
529 	case KVM_CAP_SW_TLB:
530 #endif
531 		/* We support this only for PR */
532 		r = !hv_enabled;
533 		break;
534 #ifdef CONFIG_KVM_MPIC
535 	case KVM_CAP_IRQ_MPIC:
536 		r = 1;
537 		break;
538 #endif
539 
540 #ifdef CONFIG_PPC_BOOK3S_64
541 	case KVM_CAP_SPAPR_TCE:
542 	case KVM_CAP_SPAPR_TCE_64:
543 		r = 1;
544 		break;
545 	case KVM_CAP_SPAPR_TCE_VFIO:
546 		r = !!cpu_has_feature(CPU_FTR_HVMODE);
547 		break;
548 	case KVM_CAP_PPC_RTAS:
549 	case KVM_CAP_PPC_FIXUP_HCALL:
550 	case KVM_CAP_PPC_ENABLE_HCALL:
551 #ifdef CONFIG_KVM_XICS
552 	case KVM_CAP_IRQ_XICS:
553 #endif
554 	case KVM_CAP_PPC_GET_CPU_CHAR:
555 		r = 1;
556 		break;
557 #ifdef CONFIG_KVM_XIVE
558 	case KVM_CAP_PPC_IRQ_XIVE:
559 		/*
560 		 * We need XIVE to be enabled on the platform (implies
561 		 * a POWER9 processor) and the PowerNV platform, as
562 		 * nested is not yet supported.
563 		 */
564 		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE);
565 		break;
566 #endif
567 
568 	case KVM_CAP_PPC_ALLOC_HTAB:
569 		r = hv_enabled;
570 		break;
571 #endif /* CONFIG_PPC_BOOK3S_64 */
572 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
573 	case KVM_CAP_PPC_SMT:
574 		r = 0;
575 		if (kvm) {
576 			if (kvm->arch.emul_smt_mode > 1)
577 				r = kvm->arch.emul_smt_mode;
578 			else
579 				r = kvm->arch.smt_mode;
580 		} else if (hv_enabled) {
581 			if (cpu_has_feature(CPU_FTR_ARCH_300))
582 				r = 1;
583 			else
584 				r = threads_per_subcore;
585 		}
586 		break;
587 	case KVM_CAP_PPC_SMT_POSSIBLE:
588 		r = 1;
589 		if (hv_enabled) {
590 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
591 				r = ((threads_per_subcore << 1) - 1);
592 			else
593 				/* P9 can emulate dbells, so allow any mode */
594 				r = 8 | 4 | 2 | 1;
595 		}
596 		break;
597 	case KVM_CAP_PPC_RMA:
598 		r = 0;
599 		break;
600 	case KVM_CAP_PPC_HWRNG:
601 		r = kvmppc_hwrng_present();
602 		break;
603 	case KVM_CAP_PPC_MMU_RADIX:
604 		r = !!(hv_enabled && radix_enabled());
605 		break;
606 	case KVM_CAP_PPC_MMU_HASH_V3:
607 		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
608 		       cpu_has_feature(CPU_FTR_HVMODE));
609 		break;
610 	case KVM_CAP_PPC_NESTED_HV:
611 		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
612 		       !kvmppc_hv_ops->enable_nested(NULL));
613 		break;
614 #endif
615 	case KVM_CAP_SYNC_MMU:
616 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
617 		r = hv_enabled;
618 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
619 		r = 1;
620 #else
621 		r = 0;
622 #endif
623 		break;
624 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
625 	case KVM_CAP_PPC_HTAB_FD:
626 		r = hv_enabled;
627 		break;
628 #endif
629 	case KVM_CAP_NR_VCPUS:
630 		/*
631 		 * Recommending a number of CPUs is somewhat arbitrary; we
632 		 * return the number of present CPUs for -HV (since a host
633 		 * will have secondary threads "offline"), and for other KVM
634 		 * implementations just count online CPUs.
635 		 */
636 		if (hv_enabled)
637 			r = num_present_cpus();
638 		else
639 			r = num_online_cpus();
640 		break;
641 	case KVM_CAP_MAX_VCPUS:
642 		r = KVM_MAX_VCPUS;
643 		break;
644 	case KVM_CAP_MAX_VCPU_ID:
645 		r = KVM_MAX_VCPU_ID;
646 		break;
647 #ifdef CONFIG_PPC_BOOK3S_64
648 	case KVM_CAP_PPC_GET_SMMU_INFO:
649 		r = 1;
650 		break;
651 	case KVM_CAP_SPAPR_MULTITCE:
652 		r = 1;
653 		break;
654 	case KVM_CAP_SPAPR_RESIZE_HPT:
655 		r = !!hv_enabled;
656 		break;
657 #endif
658 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
659 	case KVM_CAP_PPC_FWNMI:
660 		r = hv_enabled;
661 		break;
662 #endif
663 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
664 	case KVM_CAP_PPC_HTM:
665 		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
666 		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
667 		break;
668 #endif
669 	default:
670 		r = 0;
671 		break;
672 	}
673 	return r;
674 
675 }
676 
677 long kvm_arch_dev_ioctl(struct file *filp,
678                         unsigned int ioctl, unsigned long arg)
679 {
680 	return -EINVAL;
681 }
682 
683 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
684 			   struct kvm_memory_slot *dont)
685 {
686 	kvmppc_core_free_memslot(kvm, free, dont);
687 }
688 
689 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
690 			    unsigned long npages)
691 {
692 	return kvmppc_core_create_memslot(kvm, slot, npages);
693 }
694 
695 int kvm_arch_prepare_memory_region(struct kvm *kvm,
696 				   struct kvm_memory_slot *memslot,
697 				   const struct kvm_userspace_memory_region *mem,
698 				   enum kvm_mr_change change)
699 {
700 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
701 }
702 
703 void kvm_arch_commit_memory_region(struct kvm *kvm,
704 				   const struct kvm_userspace_memory_region *mem,
705 				   const struct kvm_memory_slot *old,
706 				   const struct kvm_memory_slot *new,
707 				   enum kvm_mr_change change)
708 {
709 	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
710 }
711 
712 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
713 				   struct kvm_memory_slot *slot)
714 {
715 	kvmppc_core_flush_memslot(kvm, slot);
716 }
717 
718 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
719 {
720 	struct kvm_vcpu *vcpu;
721 	vcpu = kvmppc_core_vcpu_create(kvm, id);
722 	if (!IS_ERR(vcpu)) {
723 		vcpu->arch.wqp = &vcpu->wq;
724 		kvmppc_create_vcpu_debugfs(vcpu, id);
725 	}
726 	return vcpu;
727 }
728 
729 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
730 {
731 }
732 
733 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
734 {
735 	/* Make sure we're not using the vcpu anymore */
736 	hrtimer_cancel(&vcpu->arch.dec_timer);
737 
738 	kvmppc_remove_vcpu_debugfs(vcpu);
739 
740 	switch (vcpu->arch.irq_type) {
741 	case KVMPPC_IRQ_MPIC:
742 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
743 		break;
744 	case KVMPPC_IRQ_XICS:
745 		if (xics_on_xive())
746 			kvmppc_xive_cleanup_vcpu(vcpu);
747 		else
748 			kvmppc_xics_free_icp(vcpu);
749 		break;
750 	case KVMPPC_IRQ_XIVE:
751 		kvmppc_xive_native_cleanup_vcpu(vcpu);
752 		break;
753 	}
754 
755 	kvmppc_core_vcpu_free(vcpu);
756 }
757 
758 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
759 {
760 	kvm_arch_vcpu_free(vcpu);
761 }
762 
763 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
764 {
765 	return kvmppc_core_pending_dec(vcpu);
766 }
767 
768 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
769 {
770 	struct kvm_vcpu *vcpu;
771 
772 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
773 	kvmppc_decrementer_func(vcpu);
774 
775 	return HRTIMER_NORESTART;
776 }
777 
778 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
779 {
780 	int ret;
781 
782 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
783 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
784 	vcpu->arch.dec_expires = get_tb();
785 
786 #ifdef CONFIG_KVM_EXIT_TIMING
787 	mutex_init(&vcpu->arch.exit_timing_lock);
788 #endif
789 	ret = kvmppc_subarch_vcpu_init(vcpu);
790 	return ret;
791 }
792 
793 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
794 {
795 	kvmppc_mmu_destroy(vcpu);
796 	kvmppc_subarch_vcpu_uninit(vcpu);
797 }
798 
799 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
800 {
801 #ifdef CONFIG_BOOKE
802 	/*
803 	 * vrsave (formerly usprg0) isn't used by Linux, but may
804 	 * be used by the guest.
805 	 *
806 	 * On non-booke this is associated with Altivec and
807 	 * is handled by code in book3s.c.
808 	 */
809 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
810 #endif
811 	kvmppc_core_vcpu_load(vcpu, cpu);
812 }
813 
814 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
815 {
816 	kvmppc_core_vcpu_put(vcpu);
817 #ifdef CONFIG_BOOKE
818 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
819 #endif
820 }
821 
822 /*
823  * irq_bypass_add_producer and irq_bypass_del_producer are only
824  * useful if the architecture supports PCI passthrough.
825  * irq_bypass_stop and irq_bypass_start are not needed and so
826  * kvm_ops are not defined for them.
827  */
828 bool kvm_arch_has_irq_bypass(void)
829 {
830 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
831 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
832 }
833 
834 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
835 				     struct irq_bypass_producer *prod)
836 {
837 	struct kvm_kernel_irqfd *irqfd =
838 		container_of(cons, struct kvm_kernel_irqfd, consumer);
839 	struct kvm *kvm = irqfd->kvm;
840 
841 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
842 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
843 
844 	return 0;
845 }
846 
847 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
848 				      struct irq_bypass_producer *prod)
849 {
850 	struct kvm_kernel_irqfd *irqfd =
851 		container_of(cons, struct kvm_kernel_irqfd, consumer);
852 	struct kvm *kvm = irqfd->kvm;
853 
854 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
855 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
856 }
857 
858 #ifdef CONFIG_VSX
859 static inline int kvmppc_get_vsr_dword_offset(int index)
860 {
861 	int offset;
862 
863 	if ((index != 0) && (index != 1))
864 		return -1;
865 
866 #ifdef __BIG_ENDIAN
867 	offset =  index;
868 #else
869 	offset = 1 - index;
870 #endif
871 
872 	return offset;
873 }
874 
875 static inline int kvmppc_get_vsr_word_offset(int index)
876 {
877 	int offset;
878 
879 	if ((index > 3) || (index < 0))
880 		return -1;
881 
882 #ifdef __BIG_ENDIAN
883 	offset = index;
884 #else
885 	offset = 3 - index;
886 #endif
887 	return offset;
888 }
889 
890 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
891 	u64 gpr)
892 {
893 	union kvmppc_one_reg val;
894 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
895 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
896 
897 	if (offset == -1)
898 		return;
899 
900 	if (index >= 32) {
901 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
902 		val.vsxval[offset] = gpr;
903 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
904 	} else {
905 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
906 	}
907 }
908 
909 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
910 	u64 gpr)
911 {
912 	union kvmppc_one_reg val;
913 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
914 
915 	if (index >= 32) {
916 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
917 		val.vsxval[0] = gpr;
918 		val.vsxval[1] = gpr;
919 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
920 	} else {
921 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
922 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
923 	}
924 }
925 
926 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
927 	u32 gpr)
928 {
929 	union kvmppc_one_reg val;
930 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
931 
932 	if (index >= 32) {
933 		val.vsx32val[0] = gpr;
934 		val.vsx32val[1] = gpr;
935 		val.vsx32val[2] = gpr;
936 		val.vsx32val[3] = gpr;
937 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
938 	} else {
939 		val.vsx32val[0] = gpr;
940 		val.vsx32val[1] = gpr;
941 		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
942 		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
943 	}
944 }
945 
946 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
947 	u32 gpr32)
948 {
949 	union kvmppc_one_reg val;
950 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
951 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
952 	int dword_offset, word_offset;
953 
954 	if (offset == -1)
955 		return;
956 
957 	if (index >= 32) {
958 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
959 		val.vsx32val[offset] = gpr32;
960 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
961 	} else {
962 		dword_offset = offset / 2;
963 		word_offset = offset % 2;
964 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
965 		val.vsx32val[word_offset] = gpr32;
966 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
967 	}
968 }
969 #endif /* CONFIG_VSX */
970 
971 #ifdef CONFIG_ALTIVEC
972 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
973 		int index, int element_size)
974 {
975 	int offset;
976 	int elts = sizeof(vector128)/element_size;
977 
978 	if ((index < 0) || (index >= elts))
979 		return -1;
980 
981 	if (kvmppc_need_byteswap(vcpu))
982 		offset = elts - index - 1;
983 	else
984 		offset = index;
985 
986 	return offset;
987 }
988 
989 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
990 		int index)
991 {
992 	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
993 }
994 
995 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
996 		int index)
997 {
998 	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
999 }
1000 
1001 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1002 		int index)
1003 {
1004 	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1005 }
1006 
1007 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1008 		int index)
1009 {
1010 	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1011 }
1012 
1013 
1014 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1015 	u64 gpr)
1016 {
1017 	union kvmppc_one_reg val;
1018 	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1019 			vcpu->arch.mmio_vmx_offset);
1020 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1021 
1022 	if (offset == -1)
1023 		return;
1024 
1025 	val.vval = VCPU_VSX_VR(vcpu, index);
1026 	val.vsxval[offset] = gpr;
1027 	VCPU_VSX_VR(vcpu, index) = val.vval;
1028 }
1029 
1030 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1031 	u32 gpr32)
1032 {
1033 	union kvmppc_one_reg val;
1034 	int offset = kvmppc_get_vmx_word_offset(vcpu,
1035 			vcpu->arch.mmio_vmx_offset);
1036 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1037 
1038 	if (offset == -1)
1039 		return;
1040 
1041 	val.vval = VCPU_VSX_VR(vcpu, index);
1042 	val.vsx32val[offset] = gpr32;
1043 	VCPU_VSX_VR(vcpu, index) = val.vval;
1044 }
1045 
1046 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1047 	u16 gpr16)
1048 {
1049 	union kvmppc_one_reg val;
1050 	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1051 			vcpu->arch.mmio_vmx_offset);
1052 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1053 
1054 	if (offset == -1)
1055 		return;
1056 
1057 	val.vval = VCPU_VSX_VR(vcpu, index);
1058 	val.vsx16val[offset] = gpr16;
1059 	VCPU_VSX_VR(vcpu, index) = val.vval;
1060 }
1061 
1062 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1063 	u8 gpr8)
1064 {
1065 	union kvmppc_one_reg val;
1066 	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1067 			vcpu->arch.mmio_vmx_offset);
1068 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1069 
1070 	if (offset == -1)
1071 		return;
1072 
1073 	val.vval = VCPU_VSX_VR(vcpu, index);
1074 	val.vsx8val[offset] = gpr8;
1075 	VCPU_VSX_VR(vcpu, index) = val.vval;
1076 }
1077 #endif /* CONFIG_ALTIVEC */
1078 
1079 #ifdef CONFIG_PPC_FPU
1080 static inline u64 sp_to_dp(u32 fprs)
1081 {
1082 	u64 fprd;
1083 
1084 	preempt_disable();
1085 	enable_kernel_fp();
1086 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1087 	     : "fr0");
1088 	preempt_enable();
1089 	return fprd;
1090 }
1091 
1092 static inline u32 dp_to_sp(u64 fprd)
1093 {
1094 	u32 fprs;
1095 
1096 	preempt_disable();
1097 	enable_kernel_fp();
1098 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1099 	     : "fr0");
1100 	preempt_enable();
1101 	return fprs;
1102 }
1103 
1104 #else
1105 #define sp_to_dp(x)	(x)
1106 #define dp_to_sp(x)	(x)
1107 #endif /* CONFIG_PPC_FPU */
1108 
1109 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1110                                       struct kvm_run *run)
1111 {
1112 	u64 uninitialized_var(gpr);
1113 
1114 	if (run->mmio.len > sizeof(gpr)) {
1115 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1116 		return;
1117 	}
1118 
1119 	if (!vcpu->arch.mmio_host_swabbed) {
1120 		switch (run->mmio.len) {
1121 		case 8: gpr = *(u64 *)run->mmio.data; break;
1122 		case 4: gpr = *(u32 *)run->mmio.data; break;
1123 		case 2: gpr = *(u16 *)run->mmio.data; break;
1124 		case 1: gpr = *(u8 *)run->mmio.data; break;
1125 		}
1126 	} else {
1127 		switch (run->mmio.len) {
1128 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1129 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1130 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1131 		case 1: gpr = *(u8 *)run->mmio.data; break;
1132 		}
1133 	}
1134 
1135 	/* conversion between single and double precision */
1136 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1137 		gpr = sp_to_dp(gpr);
1138 
1139 	if (vcpu->arch.mmio_sign_extend) {
1140 		switch (run->mmio.len) {
1141 #ifdef CONFIG_PPC64
1142 		case 4:
1143 			gpr = (s64)(s32)gpr;
1144 			break;
1145 #endif
1146 		case 2:
1147 			gpr = (s64)(s16)gpr;
1148 			break;
1149 		case 1:
1150 			gpr = (s64)(s8)gpr;
1151 			break;
1152 		}
1153 	}
1154 
1155 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1156 	case KVM_MMIO_REG_GPR:
1157 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1158 		break;
1159 	case KVM_MMIO_REG_FPR:
1160 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1161 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1162 
1163 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1164 		break;
1165 #ifdef CONFIG_PPC_BOOK3S
1166 	case KVM_MMIO_REG_QPR:
1167 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1168 		break;
1169 	case KVM_MMIO_REG_FQPR:
1170 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1171 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1172 		break;
1173 #endif
1174 #ifdef CONFIG_VSX
1175 	case KVM_MMIO_REG_VSX:
1176 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1177 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1178 
1179 		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1180 			kvmppc_set_vsr_dword(vcpu, gpr);
1181 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1182 			kvmppc_set_vsr_word(vcpu, gpr);
1183 		else if (vcpu->arch.mmio_copy_type ==
1184 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1185 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1186 		else if (vcpu->arch.mmio_copy_type ==
1187 				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1188 			kvmppc_set_vsr_word_dump(vcpu, gpr);
1189 		break;
1190 #endif
1191 #ifdef CONFIG_ALTIVEC
1192 	case KVM_MMIO_REG_VMX:
1193 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1194 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1195 
1196 		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1197 			kvmppc_set_vmx_dword(vcpu, gpr);
1198 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1199 			kvmppc_set_vmx_word(vcpu, gpr);
1200 		else if (vcpu->arch.mmio_copy_type ==
1201 				KVMPPC_VMX_COPY_HWORD)
1202 			kvmppc_set_vmx_hword(vcpu, gpr);
1203 		else if (vcpu->arch.mmio_copy_type ==
1204 				KVMPPC_VMX_COPY_BYTE)
1205 			kvmppc_set_vmx_byte(vcpu, gpr);
1206 		break;
1207 #endif
1208 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1209 	case KVM_MMIO_REG_NESTED_GPR:
1210 		if (kvmppc_need_byteswap(vcpu))
1211 			gpr = swab64(gpr);
1212 		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1213 				     sizeof(gpr));
1214 		break;
1215 #endif
1216 	default:
1217 		BUG();
1218 	}
1219 }
1220 
1221 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1222 				unsigned int rt, unsigned int bytes,
1223 				int is_default_endian, int sign_extend)
1224 {
1225 	int idx, ret;
1226 	bool host_swabbed;
1227 
1228 	/* Pity C doesn't have a logical XOR operator */
1229 	if (kvmppc_need_byteswap(vcpu)) {
1230 		host_swabbed = is_default_endian;
1231 	} else {
1232 		host_swabbed = !is_default_endian;
1233 	}
1234 
1235 	if (bytes > sizeof(run->mmio.data)) {
1236 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1237 		       run->mmio.len);
1238 	}
1239 
1240 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1241 	run->mmio.len = bytes;
1242 	run->mmio.is_write = 0;
1243 
1244 	vcpu->arch.io_gpr = rt;
1245 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1246 	vcpu->mmio_needed = 1;
1247 	vcpu->mmio_is_write = 0;
1248 	vcpu->arch.mmio_sign_extend = sign_extend;
1249 
1250 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1251 
1252 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1253 			      bytes, &run->mmio.data);
1254 
1255 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1256 
1257 	if (!ret) {
1258 		kvmppc_complete_mmio_load(vcpu, run);
1259 		vcpu->mmio_needed = 0;
1260 		return EMULATE_DONE;
1261 	}
1262 
1263 	return EMULATE_DO_MMIO;
1264 }
1265 
1266 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1267 		       unsigned int rt, unsigned int bytes,
1268 		       int is_default_endian)
1269 {
1270 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1271 }
1272 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1273 
1274 /* Same as above, but sign extends */
1275 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1276 			unsigned int rt, unsigned int bytes,
1277 			int is_default_endian)
1278 {
1279 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1280 }
1281 
1282 #ifdef CONFIG_VSX
1283 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1284 			unsigned int rt, unsigned int bytes,
1285 			int is_default_endian, int mmio_sign_extend)
1286 {
1287 	enum emulation_result emulated = EMULATE_DONE;
1288 
1289 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1290 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1291 		return EMULATE_FAIL;
1292 
1293 	while (vcpu->arch.mmio_vsx_copy_nums) {
1294 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1295 			is_default_endian, mmio_sign_extend);
1296 
1297 		if (emulated != EMULATE_DONE)
1298 			break;
1299 
1300 		vcpu->arch.paddr_accessed += run->mmio.len;
1301 
1302 		vcpu->arch.mmio_vsx_copy_nums--;
1303 		vcpu->arch.mmio_vsx_offset++;
1304 	}
1305 	return emulated;
1306 }
1307 #endif /* CONFIG_VSX */
1308 
1309 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1310 			u64 val, unsigned int bytes, int is_default_endian)
1311 {
1312 	void *data = run->mmio.data;
1313 	int idx, ret;
1314 	bool host_swabbed;
1315 
1316 	/* Pity C doesn't have a logical XOR operator */
1317 	if (kvmppc_need_byteswap(vcpu)) {
1318 		host_swabbed = is_default_endian;
1319 	} else {
1320 		host_swabbed = !is_default_endian;
1321 	}
1322 
1323 	if (bytes > sizeof(run->mmio.data)) {
1324 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1325 		       run->mmio.len);
1326 	}
1327 
1328 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1329 	run->mmio.len = bytes;
1330 	run->mmio.is_write = 1;
1331 	vcpu->mmio_needed = 1;
1332 	vcpu->mmio_is_write = 1;
1333 
1334 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1335 		val = dp_to_sp(val);
1336 
1337 	/* Store the value at the lowest bytes in 'data'. */
1338 	if (!host_swabbed) {
1339 		switch (bytes) {
1340 		case 8: *(u64 *)data = val; break;
1341 		case 4: *(u32 *)data = val; break;
1342 		case 2: *(u16 *)data = val; break;
1343 		case 1: *(u8  *)data = val; break;
1344 		}
1345 	} else {
1346 		switch (bytes) {
1347 		case 8: *(u64 *)data = swab64(val); break;
1348 		case 4: *(u32 *)data = swab32(val); break;
1349 		case 2: *(u16 *)data = swab16(val); break;
1350 		case 1: *(u8  *)data = val; break;
1351 		}
1352 	}
1353 
1354 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1355 
1356 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1357 			       bytes, &run->mmio.data);
1358 
1359 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1360 
1361 	if (!ret) {
1362 		vcpu->mmio_needed = 0;
1363 		return EMULATE_DONE;
1364 	}
1365 
1366 	return EMULATE_DO_MMIO;
1367 }
1368 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1369 
1370 #ifdef CONFIG_VSX
1371 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1372 {
1373 	u32 dword_offset, word_offset;
1374 	union kvmppc_one_reg reg;
1375 	int vsx_offset = 0;
1376 	int copy_type = vcpu->arch.mmio_copy_type;
1377 	int result = 0;
1378 
1379 	switch (copy_type) {
1380 	case KVMPPC_VSX_COPY_DWORD:
1381 		vsx_offset =
1382 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1383 
1384 		if (vsx_offset == -1) {
1385 			result = -1;
1386 			break;
1387 		}
1388 
1389 		if (rs < 32) {
1390 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1391 		} else {
1392 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1393 			*val = reg.vsxval[vsx_offset];
1394 		}
1395 		break;
1396 
1397 	case KVMPPC_VSX_COPY_WORD:
1398 		vsx_offset =
1399 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1400 
1401 		if (vsx_offset == -1) {
1402 			result = -1;
1403 			break;
1404 		}
1405 
1406 		if (rs < 32) {
1407 			dword_offset = vsx_offset / 2;
1408 			word_offset = vsx_offset % 2;
1409 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1410 			*val = reg.vsx32val[word_offset];
1411 		} else {
1412 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1413 			*val = reg.vsx32val[vsx_offset];
1414 		}
1415 		break;
1416 
1417 	default:
1418 		result = -1;
1419 		break;
1420 	}
1421 
1422 	return result;
1423 }
1424 
1425 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1426 			int rs, unsigned int bytes, int is_default_endian)
1427 {
1428 	u64 val;
1429 	enum emulation_result emulated = EMULATE_DONE;
1430 
1431 	vcpu->arch.io_gpr = rs;
1432 
1433 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1434 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1435 		return EMULATE_FAIL;
1436 
1437 	while (vcpu->arch.mmio_vsx_copy_nums) {
1438 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1439 			return EMULATE_FAIL;
1440 
1441 		emulated = kvmppc_handle_store(run, vcpu,
1442 			 val, bytes, is_default_endian);
1443 
1444 		if (emulated != EMULATE_DONE)
1445 			break;
1446 
1447 		vcpu->arch.paddr_accessed += run->mmio.len;
1448 
1449 		vcpu->arch.mmio_vsx_copy_nums--;
1450 		vcpu->arch.mmio_vsx_offset++;
1451 	}
1452 
1453 	return emulated;
1454 }
1455 
1456 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1457 			struct kvm_run *run)
1458 {
1459 	enum emulation_result emulated = EMULATE_FAIL;
1460 	int r;
1461 
1462 	vcpu->arch.paddr_accessed += run->mmio.len;
1463 
1464 	if (!vcpu->mmio_is_write) {
1465 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1466 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1467 	} else {
1468 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1469 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1470 	}
1471 
1472 	switch (emulated) {
1473 	case EMULATE_DO_MMIO:
1474 		run->exit_reason = KVM_EXIT_MMIO;
1475 		r = RESUME_HOST;
1476 		break;
1477 	case EMULATE_FAIL:
1478 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1479 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1480 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1481 		r = RESUME_HOST;
1482 		break;
1483 	default:
1484 		r = RESUME_GUEST;
1485 		break;
1486 	}
1487 	return r;
1488 }
1489 #endif /* CONFIG_VSX */
1490 
1491 #ifdef CONFIG_ALTIVEC
1492 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1493 		unsigned int rt, unsigned int bytes, int is_default_endian)
1494 {
1495 	enum emulation_result emulated = EMULATE_DONE;
1496 
1497 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1498 		return EMULATE_FAIL;
1499 
1500 	while (vcpu->arch.mmio_vmx_copy_nums) {
1501 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1502 				is_default_endian, 0);
1503 
1504 		if (emulated != EMULATE_DONE)
1505 			break;
1506 
1507 		vcpu->arch.paddr_accessed += run->mmio.len;
1508 		vcpu->arch.mmio_vmx_copy_nums--;
1509 		vcpu->arch.mmio_vmx_offset++;
1510 	}
1511 
1512 	return emulated;
1513 }
1514 
1515 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1516 {
1517 	union kvmppc_one_reg reg;
1518 	int vmx_offset = 0;
1519 	int result = 0;
1520 
1521 	vmx_offset =
1522 		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1523 
1524 	if (vmx_offset == -1)
1525 		return -1;
1526 
1527 	reg.vval = VCPU_VSX_VR(vcpu, index);
1528 	*val = reg.vsxval[vmx_offset];
1529 
1530 	return result;
1531 }
1532 
1533 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1534 {
1535 	union kvmppc_one_reg reg;
1536 	int vmx_offset = 0;
1537 	int result = 0;
1538 
1539 	vmx_offset =
1540 		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1541 
1542 	if (vmx_offset == -1)
1543 		return -1;
1544 
1545 	reg.vval = VCPU_VSX_VR(vcpu, index);
1546 	*val = reg.vsx32val[vmx_offset];
1547 
1548 	return result;
1549 }
1550 
1551 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1552 {
1553 	union kvmppc_one_reg reg;
1554 	int vmx_offset = 0;
1555 	int result = 0;
1556 
1557 	vmx_offset =
1558 		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1559 
1560 	if (vmx_offset == -1)
1561 		return -1;
1562 
1563 	reg.vval = VCPU_VSX_VR(vcpu, index);
1564 	*val = reg.vsx16val[vmx_offset];
1565 
1566 	return result;
1567 }
1568 
1569 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1570 {
1571 	union kvmppc_one_reg reg;
1572 	int vmx_offset = 0;
1573 	int result = 0;
1574 
1575 	vmx_offset =
1576 		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1577 
1578 	if (vmx_offset == -1)
1579 		return -1;
1580 
1581 	reg.vval = VCPU_VSX_VR(vcpu, index);
1582 	*val = reg.vsx8val[vmx_offset];
1583 
1584 	return result;
1585 }
1586 
1587 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1588 		unsigned int rs, unsigned int bytes, int is_default_endian)
1589 {
1590 	u64 val = 0;
1591 	unsigned int index = rs & KVM_MMIO_REG_MASK;
1592 	enum emulation_result emulated = EMULATE_DONE;
1593 
1594 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1595 		return EMULATE_FAIL;
1596 
1597 	vcpu->arch.io_gpr = rs;
1598 
1599 	while (vcpu->arch.mmio_vmx_copy_nums) {
1600 		switch (vcpu->arch.mmio_copy_type) {
1601 		case KVMPPC_VMX_COPY_DWORD:
1602 			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1603 				return EMULATE_FAIL;
1604 
1605 			break;
1606 		case KVMPPC_VMX_COPY_WORD:
1607 			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1608 				return EMULATE_FAIL;
1609 			break;
1610 		case KVMPPC_VMX_COPY_HWORD:
1611 			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1612 				return EMULATE_FAIL;
1613 			break;
1614 		case KVMPPC_VMX_COPY_BYTE:
1615 			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1616 				return EMULATE_FAIL;
1617 			break;
1618 		default:
1619 			return EMULATE_FAIL;
1620 		}
1621 
1622 		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1623 				is_default_endian);
1624 		if (emulated != EMULATE_DONE)
1625 			break;
1626 
1627 		vcpu->arch.paddr_accessed += run->mmio.len;
1628 		vcpu->arch.mmio_vmx_copy_nums--;
1629 		vcpu->arch.mmio_vmx_offset++;
1630 	}
1631 
1632 	return emulated;
1633 }
1634 
1635 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1636 		struct kvm_run *run)
1637 {
1638 	enum emulation_result emulated = EMULATE_FAIL;
1639 	int r;
1640 
1641 	vcpu->arch.paddr_accessed += run->mmio.len;
1642 
1643 	if (!vcpu->mmio_is_write) {
1644 		emulated = kvmppc_handle_vmx_load(run, vcpu,
1645 				vcpu->arch.io_gpr, run->mmio.len, 1);
1646 	} else {
1647 		emulated = kvmppc_handle_vmx_store(run, vcpu,
1648 				vcpu->arch.io_gpr, run->mmio.len, 1);
1649 	}
1650 
1651 	switch (emulated) {
1652 	case EMULATE_DO_MMIO:
1653 		run->exit_reason = KVM_EXIT_MMIO;
1654 		r = RESUME_HOST;
1655 		break;
1656 	case EMULATE_FAIL:
1657 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1658 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1659 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1660 		r = RESUME_HOST;
1661 		break;
1662 	default:
1663 		r = RESUME_GUEST;
1664 		break;
1665 	}
1666 	return r;
1667 }
1668 #endif /* CONFIG_ALTIVEC */
1669 
1670 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1671 {
1672 	int r = 0;
1673 	union kvmppc_one_reg val;
1674 	int size;
1675 
1676 	size = one_reg_size(reg->id);
1677 	if (size > sizeof(val))
1678 		return -EINVAL;
1679 
1680 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1681 	if (r == -EINVAL) {
1682 		r = 0;
1683 		switch (reg->id) {
1684 #ifdef CONFIG_ALTIVEC
1685 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1686 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1687 				r = -ENXIO;
1688 				break;
1689 			}
1690 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1691 			break;
1692 		case KVM_REG_PPC_VSCR:
1693 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1694 				r = -ENXIO;
1695 				break;
1696 			}
1697 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1698 			break;
1699 		case KVM_REG_PPC_VRSAVE:
1700 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1701 			break;
1702 #endif /* CONFIG_ALTIVEC */
1703 		default:
1704 			r = -EINVAL;
1705 			break;
1706 		}
1707 	}
1708 
1709 	if (r)
1710 		return r;
1711 
1712 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1713 		r = -EFAULT;
1714 
1715 	return r;
1716 }
1717 
1718 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1719 {
1720 	int r;
1721 	union kvmppc_one_reg val;
1722 	int size;
1723 
1724 	size = one_reg_size(reg->id);
1725 	if (size > sizeof(val))
1726 		return -EINVAL;
1727 
1728 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1729 		return -EFAULT;
1730 
1731 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1732 	if (r == -EINVAL) {
1733 		r = 0;
1734 		switch (reg->id) {
1735 #ifdef CONFIG_ALTIVEC
1736 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1737 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1738 				r = -ENXIO;
1739 				break;
1740 			}
1741 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1742 			break;
1743 		case KVM_REG_PPC_VSCR:
1744 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1745 				r = -ENXIO;
1746 				break;
1747 			}
1748 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1749 			break;
1750 		case KVM_REG_PPC_VRSAVE:
1751 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1752 				r = -ENXIO;
1753 				break;
1754 			}
1755 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1756 			break;
1757 #endif /* CONFIG_ALTIVEC */
1758 		default:
1759 			r = -EINVAL;
1760 			break;
1761 		}
1762 	}
1763 
1764 	return r;
1765 }
1766 
1767 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1768 {
1769 	int r;
1770 
1771 	vcpu_load(vcpu);
1772 
1773 	if (vcpu->mmio_needed) {
1774 		vcpu->mmio_needed = 0;
1775 		if (!vcpu->mmio_is_write)
1776 			kvmppc_complete_mmio_load(vcpu, run);
1777 #ifdef CONFIG_VSX
1778 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1779 			vcpu->arch.mmio_vsx_copy_nums--;
1780 			vcpu->arch.mmio_vsx_offset++;
1781 		}
1782 
1783 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1784 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1785 			if (r == RESUME_HOST) {
1786 				vcpu->mmio_needed = 1;
1787 				goto out;
1788 			}
1789 		}
1790 #endif
1791 #ifdef CONFIG_ALTIVEC
1792 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1793 			vcpu->arch.mmio_vmx_copy_nums--;
1794 			vcpu->arch.mmio_vmx_offset++;
1795 		}
1796 
1797 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1798 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1799 			if (r == RESUME_HOST) {
1800 				vcpu->mmio_needed = 1;
1801 				goto out;
1802 			}
1803 		}
1804 #endif
1805 	} else if (vcpu->arch.osi_needed) {
1806 		u64 *gprs = run->osi.gprs;
1807 		int i;
1808 
1809 		for (i = 0; i < 32; i++)
1810 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1811 		vcpu->arch.osi_needed = 0;
1812 	} else if (vcpu->arch.hcall_needed) {
1813 		int i;
1814 
1815 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1816 		for (i = 0; i < 9; ++i)
1817 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1818 		vcpu->arch.hcall_needed = 0;
1819 #ifdef CONFIG_BOOKE
1820 	} else if (vcpu->arch.epr_needed) {
1821 		kvmppc_set_epr(vcpu, run->epr.epr);
1822 		vcpu->arch.epr_needed = 0;
1823 #endif
1824 	}
1825 
1826 	kvm_sigset_activate(vcpu);
1827 
1828 	if (run->immediate_exit)
1829 		r = -EINTR;
1830 	else
1831 		r = kvmppc_vcpu_run(run, vcpu);
1832 
1833 	kvm_sigset_deactivate(vcpu);
1834 
1835 #ifdef CONFIG_ALTIVEC
1836 out:
1837 #endif
1838 	vcpu_put(vcpu);
1839 	return r;
1840 }
1841 
1842 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1843 {
1844 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1845 		kvmppc_core_dequeue_external(vcpu);
1846 		return 0;
1847 	}
1848 
1849 	kvmppc_core_queue_external(vcpu, irq);
1850 
1851 	kvm_vcpu_kick(vcpu);
1852 
1853 	return 0;
1854 }
1855 
1856 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1857 				     struct kvm_enable_cap *cap)
1858 {
1859 	int r;
1860 
1861 	if (cap->flags)
1862 		return -EINVAL;
1863 
1864 	switch (cap->cap) {
1865 	case KVM_CAP_PPC_OSI:
1866 		r = 0;
1867 		vcpu->arch.osi_enabled = true;
1868 		break;
1869 	case KVM_CAP_PPC_PAPR:
1870 		r = 0;
1871 		vcpu->arch.papr_enabled = true;
1872 		break;
1873 	case KVM_CAP_PPC_EPR:
1874 		r = 0;
1875 		if (cap->args[0])
1876 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1877 		else
1878 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1879 		break;
1880 #ifdef CONFIG_BOOKE
1881 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1882 		r = 0;
1883 		vcpu->arch.watchdog_enabled = true;
1884 		break;
1885 #endif
1886 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1887 	case KVM_CAP_SW_TLB: {
1888 		struct kvm_config_tlb cfg;
1889 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1890 
1891 		r = -EFAULT;
1892 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1893 			break;
1894 
1895 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1896 		break;
1897 	}
1898 #endif
1899 #ifdef CONFIG_KVM_MPIC
1900 	case KVM_CAP_IRQ_MPIC: {
1901 		struct fd f;
1902 		struct kvm_device *dev;
1903 
1904 		r = -EBADF;
1905 		f = fdget(cap->args[0]);
1906 		if (!f.file)
1907 			break;
1908 
1909 		r = -EPERM;
1910 		dev = kvm_device_from_filp(f.file);
1911 		if (dev)
1912 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1913 
1914 		fdput(f);
1915 		break;
1916 	}
1917 #endif
1918 #ifdef CONFIG_KVM_XICS
1919 	case KVM_CAP_IRQ_XICS: {
1920 		struct fd f;
1921 		struct kvm_device *dev;
1922 
1923 		r = -EBADF;
1924 		f = fdget(cap->args[0]);
1925 		if (!f.file)
1926 			break;
1927 
1928 		r = -EPERM;
1929 		dev = kvm_device_from_filp(f.file);
1930 		if (dev) {
1931 			if (xics_on_xive())
1932 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1933 			else
1934 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1935 		}
1936 
1937 		fdput(f);
1938 		break;
1939 	}
1940 #endif /* CONFIG_KVM_XICS */
1941 #ifdef CONFIG_KVM_XIVE
1942 	case KVM_CAP_PPC_IRQ_XIVE: {
1943 		struct fd f;
1944 		struct kvm_device *dev;
1945 
1946 		r = -EBADF;
1947 		f = fdget(cap->args[0]);
1948 		if (!f.file)
1949 			break;
1950 
1951 		r = -ENXIO;
1952 		if (!xive_enabled())
1953 			break;
1954 
1955 		r = -EPERM;
1956 		dev = kvm_device_from_filp(f.file);
1957 		if (dev)
1958 			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1959 							    cap->args[1]);
1960 
1961 		fdput(f);
1962 		break;
1963 	}
1964 #endif /* CONFIG_KVM_XIVE */
1965 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1966 	case KVM_CAP_PPC_FWNMI:
1967 		r = -EINVAL;
1968 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1969 			break;
1970 		r = 0;
1971 		vcpu->kvm->arch.fwnmi_enabled = true;
1972 		break;
1973 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1974 	default:
1975 		r = -EINVAL;
1976 		break;
1977 	}
1978 
1979 	if (!r)
1980 		r = kvmppc_sanity_check(vcpu);
1981 
1982 	return r;
1983 }
1984 
1985 bool kvm_arch_intc_initialized(struct kvm *kvm)
1986 {
1987 #ifdef CONFIG_KVM_MPIC
1988 	if (kvm->arch.mpic)
1989 		return true;
1990 #endif
1991 #ifdef CONFIG_KVM_XICS
1992 	if (kvm->arch.xics || kvm->arch.xive)
1993 		return true;
1994 #endif
1995 	return false;
1996 }
1997 
1998 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1999                                     struct kvm_mp_state *mp_state)
2000 {
2001 	return -EINVAL;
2002 }
2003 
2004 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2005                                     struct kvm_mp_state *mp_state)
2006 {
2007 	return -EINVAL;
2008 }
2009 
2010 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2011 			       unsigned int ioctl, unsigned long arg)
2012 {
2013 	struct kvm_vcpu *vcpu = filp->private_data;
2014 	void __user *argp = (void __user *)arg;
2015 
2016 	if (ioctl == KVM_INTERRUPT) {
2017 		struct kvm_interrupt irq;
2018 		if (copy_from_user(&irq, argp, sizeof(irq)))
2019 			return -EFAULT;
2020 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2021 	}
2022 	return -ENOIOCTLCMD;
2023 }
2024 
2025 long kvm_arch_vcpu_ioctl(struct file *filp,
2026                          unsigned int ioctl, unsigned long arg)
2027 {
2028 	struct kvm_vcpu *vcpu = filp->private_data;
2029 	void __user *argp = (void __user *)arg;
2030 	long r;
2031 
2032 	switch (ioctl) {
2033 	case KVM_ENABLE_CAP:
2034 	{
2035 		struct kvm_enable_cap cap;
2036 		r = -EFAULT;
2037 		vcpu_load(vcpu);
2038 		if (copy_from_user(&cap, argp, sizeof(cap)))
2039 			goto out;
2040 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2041 		vcpu_put(vcpu);
2042 		break;
2043 	}
2044 
2045 	case KVM_SET_ONE_REG:
2046 	case KVM_GET_ONE_REG:
2047 	{
2048 		struct kvm_one_reg reg;
2049 		r = -EFAULT;
2050 		if (copy_from_user(&reg, argp, sizeof(reg)))
2051 			goto out;
2052 		if (ioctl == KVM_SET_ONE_REG)
2053 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2054 		else
2055 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2056 		break;
2057 	}
2058 
2059 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2060 	case KVM_DIRTY_TLB: {
2061 		struct kvm_dirty_tlb dirty;
2062 		r = -EFAULT;
2063 		vcpu_load(vcpu);
2064 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2065 			goto out;
2066 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2067 		vcpu_put(vcpu);
2068 		break;
2069 	}
2070 #endif
2071 	default:
2072 		r = -EINVAL;
2073 	}
2074 
2075 out:
2076 	return r;
2077 }
2078 
2079 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2080 {
2081 	return VM_FAULT_SIGBUS;
2082 }
2083 
2084 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2085 {
2086 	u32 inst_nop = 0x60000000;
2087 #ifdef CONFIG_KVM_BOOKE_HV
2088 	u32 inst_sc1 = 0x44000022;
2089 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2090 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2091 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2092 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2093 #else
2094 	u32 inst_lis = 0x3c000000;
2095 	u32 inst_ori = 0x60000000;
2096 	u32 inst_sc = 0x44000002;
2097 	u32 inst_imm_mask = 0xffff;
2098 
2099 	/*
2100 	 * The hypercall to get into KVM from within guest context is as
2101 	 * follows:
2102 	 *
2103 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2104 	 *    ori r0, KVM_SC_MAGIC_R0@l
2105 	 *    sc
2106 	 *    nop
2107 	 */
2108 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2109 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2110 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2111 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2112 #endif
2113 
2114 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2115 
2116 	return 0;
2117 }
2118 
2119 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2120 			  bool line_status)
2121 {
2122 	if (!irqchip_in_kernel(kvm))
2123 		return -ENXIO;
2124 
2125 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2126 					irq_event->irq, irq_event->level,
2127 					line_status);
2128 	return 0;
2129 }
2130 
2131 
2132 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2133 			    struct kvm_enable_cap *cap)
2134 {
2135 	int r;
2136 
2137 	if (cap->flags)
2138 		return -EINVAL;
2139 
2140 	switch (cap->cap) {
2141 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2142 	case KVM_CAP_PPC_ENABLE_HCALL: {
2143 		unsigned long hcall = cap->args[0];
2144 
2145 		r = -EINVAL;
2146 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2147 		    cap->args[1] > 1)
2148 			break;
2149 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2150 			break;
2151 		if (cap->args[1])
2152 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2153 		else
2154 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2155 		r = 0;
2156 		break;
2157 	}
2158 	case KVM_CAP_PPC_SMT: {
2159 		unsigned long mode = cap->args[0];
2160 		unsigned long flags = cap->args[1];
2161 
2162 		r = -EINVAL;
2163 		if (kvm->arch.kvm_ops->set_smt_mode)
2164 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2165 		break;
2166 	}
2167 
2168 	case KVM_CAP_PPC_NESTED_HV:
2169 		r = -EINVAL;
2170 		if (!is_kvmppc_hv_enabled(kvm) ||
2171 		    !kvm->arch.kvm_ops->enable_nested)
2172 			break;
2173 		r = kvm->arch.kvm_ops->enable_nested(kvm);
2174 		break;
2175 #endif
2176 	default:
2177 		r = -EINVAL;
2178 		break;
2179 	}
2180 
2181 	return r;
2182 }
2183 
2184 #ifdef CONFIG_PPC_BOOK3S_64
2185 /*
2186  * These functions check whether the underlying hardware is safe
2187  * against attacks based on observing the effects of speculatively
2188  * executed instructions, and whether it supplies instructions for
2189  * use in workarounds.  The information comes from firmware, either
2190  * via the device tree on powernv platforms or from an hcall on
2191  * pseries platforms.
2192  */
2193 #ifdef CONFIG_PPC_PSERIES
2194 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2195 {
2196 	struct h_cpu_char_result c;
2197 	unsigned long rc;
2198 
2199 	if (!machine_is(pseries))
2200 		return -ENOTTY;
2201 
2202 	rc = plpar_get_cpu_characteristics(&c);
2203 	if (rc == H_SUCCESS) {
2204 		cp->character = c.character;
2205 		cp->behaviour = c.behaviour;
2206 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2207 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2208 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2209 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2210 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2211 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2212 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2213 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2214 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2215 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2216 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2217 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2218 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2219 	}
2220 	return 0;
2221 }
2222 #else
2223 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2224 {
2225 	return -ENOTTY;
2226 }
2227 #endif
2228 
2229 static inline bool have_fw_feat(struct device_node *fw_features,
2230 				const char *state, const char *name)
2231 {
2232 	struct device_node *np;
2233 	bool r = false;
2234 
2235 	np = of_get_child_by_name(fw_features, name);
2236 	if (np) {
2237 		r = of_property_read_bool(np, state);
2238 		of_node_put(np);
2239 	}
2240 	return r;
2241 }
2242 
2243 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2244 {
2245 	struct device_node *np, *fw_features;
2246 	int r;
2247 
2248 	memset(cp, 0, sizeof(*cp));
2249 	r = pseries_get_cpu_char(cp);
2250 	if (r != -ENOTTY)
2251 		return r;
2252 
2253 	np = of_find_node_by_name(NULL, "ibm,opal");
2254 	if (np) {
2255 		fw_features = of_get_child_by_name(np, "fw-features");
2256 		of_node_put(np);
2257 		if (!fw_features)
2258 			return 0;
2259 		if (have_fw_feat(fw_features, "enabled",
2260 				 "inst-spec-barrier-ori31,31,0"))
2261 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2262 		if (have_fw_feat(fw_features, "enabled",
2263 				 "fw-bcctrl-serialized"))
2264 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2265 		if (have_fw_feat(fw_features, "enabled",
2266 				 "inst-l1d-flush-ori30,30,0"))
2267 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2268 		if (have_fw_feat(fw_features, "enabled",
2269 				 "inst-l1d-flush-trig2"))
2270 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2271 		if (have_fw_feat(fw_features, "enabled",
2272 				 "fw-l1d-thread-split"))
2273 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2274 		if (have_fw_feat(fw_features, "enabled",
2275 				 "fw-count-cache-disabled"))
2276 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2277 		if (have_fw_feat(fw_features, "enabled",
2278 				 "fw-count-cache-flush-bcctr2,0,0"))
2279 			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2280 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2281 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2282 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2283 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2284 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2285 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2286 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2287 
2288 		if (have_fw_feat(fw_features, "enabled",
2289 				 "speculation-policy-favor-security"))
2290 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2291 		if (!have_fw_feat(fw_features, "disabled",
2292 				  "needs-l1d-flush-msr-pr-0-to-1"))
2293 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2294 		if (!have_fw_feat(fw_features, "disabled",
2295 				  "needs-spec-barrier-for-bound-checks"))
2296 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2297 		if (have_fw_feat(fw_features, "enabled",
2298 				 "needs-count-cache-flush-on-context-switch"))
2299 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2300 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2301 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2302 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2303 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2304 
2305 		of_node_put(fw_features);
2306 	}
2307 
2308 	return 0;
2309 }
2310 #endif
2311 
2312 long kvm_arch_vm_ioctl(struct file *filp,
2313                        unsigned int ioctl, unsigned long arg)
2314 {
2315 	struct kvm *kvm __maybe_unused = filp->private_data;
2316 	void __user *argp = (void __user *)arg;
2317 	long r;
2318 
2319 	switch (ioctl) {
2320 	case KVM_PPC_GET_PVINFO: {
2321 		struct kvm_ppc_pvinfo pvinfo;
2322 		memset(&pvinfo, 0, sizeof(pvinfo));
2323 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2324 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2325 			r = -EFAULT;
2326 			goto out;
2327 		}
2328 
2329 		break;
2330 	}
2331 #ifdef CONFIG_SPAPR_TCE_IOMMU
2332 	case KVM_CREATE_SPAPR_TCE_64: {
2333 		struct kvm_create_spapr_tce_64 create_tce_64;
2334 
2335 		r = -EFAULT;
2336 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2337 			goto out;
2338 		if (create_tce_64.flags) {
2339 			r = -EINVAL;
2340 			goto out;
2341 		}
2342 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2343 		goto out;
2344 	}
2345 	case KVM_CREATE_SPAPR_TCE: {
2346 		struct kvm_create_spapr_tce create_tce;
2347 		struct kvm_create_spapr_tce_64 create_tce_64;
2348 
2349 		r = -EFAULT;
2350 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2351 			goto out;
2352 
2353 		create_tce_64.liobn = create_tce.liobn;
2354 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2355 		create_tce_64.offset = 0;
2356 		create_tce_64.size = create_tce.window_size >>
2357 				IOMMU_PAGE_SHIFT_4K;
2358 		create_tce_64.flags = 0;
2359 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2360 		goto out;
2361 	}
2362 #endif
2363 #ifdef CONFIG_PPC_BOOK3S_64
2364 	case KVM_PPC_GET_SMMU_INFO: {
2365 		struct kvm_ppc_smmu_info info;
2366 		struct kvm *kvm = filp->private_data;
2367 
2368 		memset(&info, 0, sizeof(info));
2369 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2370 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2371 			r = -EFAULT;
2372 		break;
2373 	}
2374 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2375 		struct kvm *kvm = filp->private_data;
2376 
2377 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2378 		break;
2379 	}
2380 	case KVM_PPC_CONFIGURE_V3_MMU: {
2381 		struct kvm *kvm = filp->private_data;
2382 		struct kvm_ppc_mmuv3_cfg cfg;
2383 
2384 		r = -EINVAL;
2385 		if (!kvm->arch.kvm_ops->configure_mmu)
2386 			goto out;
2387 		r = -EFAULT;
2388 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2389 			goto out;
2390 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2391 		break;
2392 	}
2393 	case KVM_PPC_GET_RMMU_INFO: {
2394 		struct kvm *kvm = filp->private_data;
2395 		struct kvm_ppc_rmmu_info info;
2396 
2397 		r = -EINVAL;
2398 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2399 			goto out;
2400 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2401 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2402 			r = -EFAULT;
2403 		break;
2404 	}
2405 	case KVM_PPC_GET_CPU_CHAR: {
2406 		struct kvm_ppc_cpu_char cpuchar;
2407 
2408 		r = kvmppc_get_cpu_char(&cpuchar);
2409 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2410 			r = -EFAULT;
2411 		break;
2412 	}
2413 	default: {
2414 		struct kvm *kvm = filp->private_data;
2415 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2416 	}
2417 #else /* CONFIG_PPC_BOOK3S_64 */
2418 	default:
2419 		r = -ENOTTY;
2420 #endif
2421 	}
2422 out:
2423 	return r;
2424 }
2425 
2426 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2427 static unsigned long nr_lpids;
2428 
2429 long kvmppc_alloc_lpid(void)
2430 {
2431 	long lpid;
2432 
2433 	do {
2434 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2435 		if (lpid >= nr_lpids) {
2436 			pr_err("%s: No LPIDs free\n", __func__);
2437 			return -ENOMEM;
2438 		}
2439 	} while (test_and_set_bit(lpid, lpid_inuse));
2440 
2441 	return lpid;
2442 }
2443 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2444 
2445 void kvmppc_claim_lpid(long lpid)
2446 {
2447 	set_bit(lpid, lpid_inuse);
2448 }
2449 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2450 
2451 void kvmppc_free_lpid(long lpid)
2452 {
2453 	clear_bit(lpid, lpid_inuse);
2454 }
2455 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2456 
2457 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2458 {
2459 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2460 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2461 }
2462 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2463 
2464 int kvm_arch_init(void *opaque)
2465 {
2466 	return 0;
2467 }
2468 
2469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2470