xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 #ifdef CONFIG_PPC_PSERIES
43 #include <asm/hvcall.h>
44 #include <asm/plpar_wrappers.h>
45 #endif
46 
47 #include "timing.h"
48 #include "irq.h"
49 #include "../mm/mmu_decl.h"
50 
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 
54 struct kvmppc_ops *kvmppc_hv_ops;
55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56 struct kvmppc_ops *kvmppc_pr_ops;
57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
58 
59 
60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
61 {
62 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
63 }
64 
65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
66 {
67 	return false;
68 }
69 
70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
71 {
72 	return 1;
73 }
74 
75 /*
76  * Common checks before entering the guest world.  Call with interrupts
77  * disabled.
78  *
79  * returns:
80  *
81  * == 1 if we're ready to go into guest state
82  * <= 0 if we need to go back to the host with return value
83  */
84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
85 {
86 	int r;
87 
88 	WARN_ON(irqs_disabled());
89 	hard_irq_disable();
90 
91 	while (true) {
92 		if (need_resched()) {
93 			local_irq_enable();
94 			cond_resched();
95 			hard_irq_disable();
96 			continue;
97 		}
98 
99 		if (signal_pending(current)) {
100 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101 			vcpu->run->exit_reason = KVM_EXIT_INTR;
102 			r = -EINTR;
103 			break;
104 		}
105 
106 		vcpu->mode = IN_GUEST_MODE;
107 
108 		/*
109 		 * Reading vcpu->requests must happen after setting vcpu->mode,
110 		 * so we don't miss a request because the requester sees
111 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112 		 * before next entering the guest (and thus doesn't IPI).
113 		 * This also orders the write to mode from any reads
114 		 * to the page tables done while the VCPU is running.
115 		 * Please see the comment in kvm_flush_remote_tlbs.
116 		 */
117 		smp_mb();
118 
119 		if (kvm_request_pending(vcpu)) {
120 			/* Make sure we process requests preemptable */
121 			local_irq_enable();
122 			trace_kvm_check_requests(vcpu);
123 			r = kvmppc_core_check_requests(vcpu);
124 			hard_irq_disable();
125 			if (r > 0)
126 				continue;
127 			break;
128 		}
129 
130 		if (kvmppc_core_prepare_to_enter(vcpu)) {
131 			/* interrupts got enabled in between, so we
132 			   are back at square 1 */
133 			continue;
134 		}
135 
136 		guest_enter_irqoff();
137 		return 1;
138 	}
139 
140 	/* return to host */
141 	local_irq_enable();
142 	return r;
143 }
144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
145 
146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
148 {
149 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150 	int i;
151 
152 	shared->sprg0 = swab64(shared->sprg0);
153 	shared->sprg1 = swab64(shared->sprg1);
154 	shared->sprg2 = swab64(shared->sprg2);
155 	shared->sprg3 = swab64(shared->sprg3);
156 	shared->srr0 = swab64(shared->srr0);
157 	shared->srr1 = swab64(shared->srr1);
158 	shared->dar = swab64(shared->dar);
159 	shared->msr = swab64(shared->msr);
160 	shared->dsisr = swab32(shared->dsisr);
161 	shared->int_pending = swab32(shared->int_pending);
162 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163 		shared->sr[i] = swab32(shared->sr[i]);
164 }
165 #endif
166 
167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
168 {
169 	int nr = kvmppc_get_gpr(vcpu, 11);
170 	int r;
171 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175 	unsigned long r2 = 0;
176 
177 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178 		/* 32 bit mode */
179 		param1 &= 0xffffffff;
180 		param2 &= 0xffffffff;
181 		param3 &= 0xffffffff;
182 		param4 &= 0xffffffff;
183 	}
184 
185 	switch (nr) {
186 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
187 	{
188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189 		/* Book3S can be little endian, find it out here */
190 		int shared_big_endian = true;
191 		if (vcpu->arch.intr_msr & MSR_LE)
192 			shared_big_endian = false;
193 		if (shared_big_endian != vcpu->arch.shared_big_endian)
194 			kvmppc_swab_shared(vcpu);
195 		vcpu->arch.shared_big_endian = shared_big_endian;
196 #endif
197 
198 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
199 			/*
200 			 * Older versions of the Linux magic page code had
201 			 * a bug where they would map their trampoline code
202 			 * NX. If that's the case, remove !PR NX capability.
203 			 */
204 			vcpu->arch.disable_kernel_nx = true;
205 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
206 		}
207 
208 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
210 
211 #ifdef CONFIG_PPC_64K_PAGES
212 		/*
213 		 * Make sure our 4k magic page is in the same window of a 64k
214 		 * page within the guest and within the host's page.
215 		 */
216 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
217 		    ((ulong)vcpu->arch.shared & 0xf000)) {
218 			void *old_shared = vcpu->arch.shared;
219 			ulong shared = (ulong)vcpu->arch.shared;
220 			void *new_shared;
221 
222 			shared &= PAGE_MASK;
223 			shared |= vcpu->arch.magic_page_pa & 0xf000;
224 			new_shared = (void*)shared;
225 			memcpy(new_shared, old_shared, 0x1000);
226 			vcpu->arch.shared = new_shared;
227 		}
228 #endif
229 
230 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
231 
232 		r = EV_SUCCESS;
233 		break;
234 	}
235 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236 		r = EV_SUCCESS;
237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239 #endif
240 
241 		/* Second return value is in r4 */
242 		break;
243 	case EV_HCALL_TOKEN(EV_IDLE):
244 		r = EV_SUCCESS;
245 		kvm_vcpu_block(vcpu);
246 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247 		break;
248 	default:
249 		r = EV_UNIMPLEMENTED;
250 		break;
251 	}
252 
253 	kvmppc_set_gpr(vcpu, 4, r2);
254 
255 	return r;
256 }
257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
258 
259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
260 {
261 	int r = false;
262 
263 	/* We have to know what CPU to virtualize */
264 	if (!vcpu->arch.pvr)
265 		goto out;
266 
267 	/* PAPR only works with book3s_64 */
268 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269 		goto out;
270 
271 	/* HV KVM can only do PAPR mode for now */
272 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273 		goto out;
274 
275 #ifdef CONFIG_KVM_BOOKE_HV
276 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
277 		goto out;
278 #endif
279 
280 	r = true;
281 
282 out:
283 	vcpu->arch.sane = r;
284 	return r ? 0 : -EINVAL;
285 }
286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
287 
288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
289 {
290 	enum emulation_result er;
291 	int r;
292 
293 	er = kvmppc_emulate_loadstore(vcpu);
294 	switch (er) {
295 	case EMULATE_DONE:
296 		/* Future optimization: only reload non-volatiles if they were
297 		 * actually modified. */
298 		r = RESUME_GUEST_NV;
299 		break;
300 	case EMULATE_AGAIN:
301 		r = RESUME_GUEST;
302 		break;
303 	case EMULATE_DO_MMIO:
304 		run->exit_reason = KVM_EXIT_MMIO;
305 		/* We must reload nonvolatiles because "update" load/store
306 		 * instructions modify register state. */
307 		/* Future optimization: only reload non-volatiles if they were
308 		 * actually modified. */
309 		r = RESUME_HOST_NV;
310 		break;
311 	case EMULATE_FAIL:
312 	{
313 		u32 last_inst;
314 
315 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316 		/* XXX Deliver Program interrupt to guest. */
317 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318 		r = RESUME_HOST;
319 		break;
320 	}
321 	default:
322 		WARN_ON(1);
323 		r = RESUME_GUEST;
324 	}
325 
326 	return r;
327 }
328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
329 
330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331 	      bool data)
332 {
333 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334 	struct kvmppc_pte pte;
335 	int r;
336 
337 	vcpu->stat.st++;
338 
339 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340 			 XLATE_WRITE, &pte);
341 	if (r < 0)
342 		return r;
343 
344 	*eaddr = pte.raddr;
345 
346 	if (!pte.may_write)
347 		return -EPERM;
348 
349 	/* Magic page override */
350 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353 		void *magic = vcpu->arch.shared;
354 		magic += pte.eaddr & 0xfff;
355 		memcpy(magic, ptr, size);
356 		return EMULATE_DONE;
357 	}
358 
359 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360 		return EMULATE_DO_MMIO;
361 
362 	return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365 
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367 		      bool data)
368 {
369 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370 	struct kvmppc_pte pte;
371 	int rc;
372 
373 	vcpu->stat.ld++;
374 
375 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376 			  XLATE_READ, &pte);
377 	if (rc)
378 		return rc;
379 
380 	*eaddr = pte.raddr;
381 
382 	if (!pte.may_read)
383 		return -EPERM;
384 
385 	if (!data && !pte.may_execute)
386 		return -ENOEXEC;
387 
388 	/* Magic page override */
389 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392 		void *magic = vcpu->arch.shared;
393 		magic += pte.eaddr & 0xfff;
394 		memcpy(ptr, magic, size);
395 		return EMULATE_DONE;
396 	}
397 
398 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399 		return EMULATE_DO_MMIO;
400 
401 	return EMULATE_DONE;
402 }
403 EXPORT_SYMBOL_GPL(kvmppc_ld);
404 
405 int kvm_arch_hardware_enable(void)
406 {
407 	return 0;
408 }
409 
410 int kvm_arch_hardware_setup(void)
411 {
412 	return 0;
413 }
414 
415 void kvm_arch_check_processor_compat(void *rtn)
416 {
417 	*(int *)rtn = kvmppc_core_check_processor_compat();
418 }
419 
420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
421 {
422 	struct kvmppc_ops *kvm_ops = NULL;
423 	/*
424 	 * if we have both HV and PR enabled, default is HV
425 	 */
426 	if (type == 0) {
427 		if (kvmppc_hv_ops)
428 			kvm_ops = kvmppc_hv_ops;
429 		else
430 			kvm_ops = kvmppc_pr_ops;
431 		if (!kvm_ops)
432 			goto err_out;
433 	} else	if (type == KVM_VM_PPC_HV) {
434 		if (!kvmppc_hv_ops)
435 			goto err_out;
436 		kvm_ops = kvmppc_hv_ops;
437 	} else if (type == KVM_VM_PPC_PR) {
438 		if (!kvmppc_pr_ops)
439 			goto err_out;
440 		kvm_ops = kvmppc_pr_ops;
441 	} else
442 		goto err_out;
443 
444 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445 		return -ENOENT;
446 
447 	kvm->arch.kvm_ops = kvm_ops;
448 	return kvmppc_core_init_vm(kvm);
449 err_out:
450 	return -EINVAL;
451 }
452 
453 bool kvm_arch_has_vcpu_debugfs(void)
454 {
455 	return false;
456 }
457 
458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
459 {
460 	return 0;
461 }
462 
463 void kvm_arch_destroy_vm(struct kvm *kvm)
464 {
465 	unsigned int i;
466 	struct kvm_vcpu *vcpu;
467 
468 #ifdef CONFIG_KVM_XICS
469 	/*
470 	 * We call kick_all_cpus_sync() to ensure that all
471 	 * CPUs have executed any pending IPIs before we
472 	 * continue and free VCPUs structures below.
473 	 */
474 	if (is_kvmppc_hv_enabled(kvm))
475 		kick_all_cpus_sync();
476 #endif
477 
478 	kvm_for_each_vcpu(i, vcpu, kvm)
479 		kvm_arch_vcpu_free(vcpu);
480 
481 	mutex_lock(&kvm->lock);
482 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483 		kvm->vcpus[i] = NULL;
484 
485 	atomic_set(&kvm->online_vcpus, 0);
486 
487 	kvmppc_core_destroy_vm(kvm);
488 
489 	mutex_unlock(&kvm->lock);
490 
491 	/* drop the module reference */
492 	module_put(kvm->arch.kvm_ops->owner);
493 }
494 
495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
496 {
497 	int r;
498 	/* Assume we're using HV mode when the HV module is loaded */
499 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
500 
501 	if (kvm) {
502 		/*
503 		 * Hooray - we know which VM type we're running on. Depend on
504 		 * that rather than the guess above.
505 		 */
506 		hv_enabled = is_kvmppc_hv_enabled(kvm);
507 	}
508 
509 	switch (ext) {
510 #ifdef CONFIG_BOOKE
511 	case KVM_CAP_PPC_BOOKE_SREGS:
512 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
513 	case KVM_CAP_PPC_EPR:
514 #else
515 	case KVM_CAP_PPC_SEGSTATE:
516 	case KVM_CAP_PPC_HIOR:
517 	case KVM_CAP_PPC_PAPR:
518 #endif
519 	case KVM_CAP_PPC_UNSET_IRQ:
520 	case KVM_CAP_PPC_IRQ_LEVEL:
521 	case KVM_CAP_ENABLE_CAP:
522 	case KVM_CAP_ENABLE_CAP_VM:
523 	case KVM_CAP_ONE_REG:
524 	case KVM_CAP_IOEVENTFD:
525 	case KVM_CAP_DEVICE_CTRL:
526 	case KVM_CAP_IMMEDIATE_EXIT:
527 		r = 1;
528 		break;
529 	case KVM_CAP_PPC_PAIRED_SINGLES:
530 	case KVM_CAP_PPC_OSI:
531 	case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533 	case KVM_CAP_SW_TLB:
534 #endif
535 		/* We support this only for PR */
536 		r = !hv_enabled;
537 		break;
538 #ifdef CONFIG_KVM_MPIC
539 	case KVM_CAP_IRQ_MPIC:
540 		r = 1;
541 		break;
542 #endif
543 
544 #ifdef CONFIG_PPC_BOOK3S_64
545 	case KVM_CAP_SPAPR_TCE:
546 	case KVM_CAP_SPAPR_TCE_64:
547 		/* fallthrough */
548 	case KVM_CAP_SPAPR_TCE_VFIO:
549 	case KVM_CAP_PPC_RTAS:
550 	case KVM_CAP_PPC_FIXUP_HCALL:
551 	case KVM_CAP_PPC_ENABLE_HCALL:
552 #ifdef CONFIG_KVM_XICS
553 	case KVM_CAP_IRQ_XICS:
554 #endif
555 	case KVM_CAP_PPC_GET_CPU_CHAR:
556 		r = 1;
557 		break;
558 
559 	case KVM_CAP_PPC_ALLOC_HTAB:
560 		r = hv_enabled;
561 		break;
562 #endif /* CONFIG_PPC_BOOK3S_64 */
563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564 	case KVM_CAP_PPC_SMT:
565 		r = 0;
566 		if (kvm) {
567 			if (kvm->arch.emul_smt_mode > 1)
568 				r = kvm->arch.emul_smt_mode;
569 			else
570 				r = kvm->arch.smt_mode;
571 		} else if (hv_enabled) {
572 			if (cpu_has_feature(CPU_FTR_ARCH_300))
573 				r = 1;
574 			else
575 				r = threads_per_subcore;
576 		}
577 		break;
578 	case KVM_CAP_PPC_SMT_POSSIBLE:
579 		r = 1;
580 		if (hv_enabled) {
581 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
582 				r = ((threads_per_subcore << 1) - 1);
583 			else
584 				/* P9 can emulate dbells, so allow any mode */
585 				r = 8 | 4 | 2 | 1;
586 		}
587 		break;
588 	case KVM_CAP_PPC_RMA:
589 		r = 0;
590 		break;
591 	case KVM_CAP_PPC_HWRNG:
592 		r = kvmppc_hwrng_present();
593 		break;
594 	case KVM_CAP_PPC_MMU_RADIX:
595 		r = !!(hv_enabled && radix_enabled());
596 		break;
597 	case KVM_CAP_PPC_MMU_HASH_V3:
598 		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599 		break;
600 #endif
601 	case KVM_CAP_SYNC_MMU:
602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603 		r = hv_enabled;
604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605 		r = 1;
606 #else
607 		r = 0;
608 #endif
609 		break;
610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611 	case KVM_CAP_PPC_HTAB_FD:
612 		r = hv_enabled;
613 		break;
614 #endif
615 	case KVM_CAP_NR_VCPUS:
616 		/*
617 		 * Recommending a number of CPUs is somewhat arbitrary; we
618 		 * return the number of present CPUs for -HV (since a host
619 		 * will have secondary threads "offline"), and for other KVM
620 		 * implementations just count online CPUs.
621 		 */
622 		if (hv_enabled)
623 			r = num_present_cpus();
624 		else
625 			r = num_online_cpus();
626 		break;
627 	case KVM_CAP_NR_MEMSLOTS:
628 		r = KVM_USER_MEM_SLOTS;
629 		break;
630 	case KVM_CAP_MAX_VCPUS:
631 		r = KVM_MAX_VCPUS;
632 		break;
633 #ifdef CONFIG_PPC_BOOK3S_64
634 	case KVM_CAP_PPC_GET_SMMU_INFO:
635 		r = 1;
636 		break;
637 	case KVM_CAP_SPAPR_MULTITCE:
638 		r = 1;
639 		break;
640 	case KVM_CAP_SPAPR_RESIZE_HPT:
641 		r = !!hv_enabled;
642 		break;
643 #endif
644 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
645 	case KVM_CAP_PPC_FWNMI:
646 		r = hv_enabled;
647 		break;
648 #endif
649 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
650 	case KVM_CAP_PPC_HTM:
651 		r = hv_enabled &&
652 		    (!!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
653 		     cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
654 		break;
655 #endif
656 	default:
657 		r = 0;
658 		break;
659 	}
660 	return r;
661 
662 }
663 
664 long kvm_arch_dev_ioctl(struct file *filp,
665                         unsigned int ioctl, unsigned long arg)
666 {
667 	return -EINVAL;
668 }
669 
670 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
671 			   struct kvm_memory_slot *dont)
672 {
673 	kvmppc_core_free_memslot(kvm, free, dont);
674 }
675 
676 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
677 			    unsigned long npages)
678 {
679 	return kvmppc_core_create_memslot(kvm, slot, npages);
680 }
681 
682 int kvm_arch_prepare_memory_region(struct kvm *kvm,
683 				   struct kvm_memory_slot *memslot,
684 				   const struct kvm_userspace_memory_region *mem,
685 				   enum kvm_mr_change change)
686 {
687 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
688 }
689 
690 void kvm_arch_commit_memory_region(struct kvm *kvm,
691 				   const struct kvm_userspace_memory_region *mem,
692 				   const struct kvm_memory_slot *old,
693 				   const struct kvm_memory_slot *new,
694 				   enum kvm_mr_change change)
695 {
696 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
697 }
698 
699 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
700 				   struct kvm_memory_slot *slot)
701 {
702 	kvmppc_core_flush_memslot(kvm, slot);
703 }
704 
705 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
706 {
707 	struct kvm_vcpu *vcpu;
708 	vcpu = kvmppc_core_vcpu_create(kvm, id);
709 	if (!IS_ERR(vcpu)) {
710 		vcpu->arch.wqp = &vcpu->wq;
711 		kvmppc_create_vcpu_debugfs(vcpu, id);
712 	}
713 	return vcpu;
714 }
715 
716 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
717 {
718 }
719 
720 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
721 {
722 	/* Make sure we're not using the vcpu anymore */
723 	hrtimer_cancel(&vcpu->arch.dec_timer);
724 
725 	kvmppc_remove_vcpu_debugfs(vcpu);
726 
727 	switch (vcpu->arch.irq_type) {
728 	case KVMPPC_IRQ_MPIC:
729 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
730 		break;
731 	case KVMPPC_IRQ_XICS:
732 		if (xive_enabled())
733 			kvmppc_xive_cleanup_vcpu(vcpu);
734 		else
735 			kvmppc_xics_free_icp(vcpu);
736 		break;
737 	}
738 
739 	kvmppc_core_vcpu_free(vcpu);
740 }
741 
742 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
743 {
744 	kvm_arch_vcpu_free(vcpu);
745 }
746 
747 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
748 {
749 	return kvmppc_core_pending_dec(vcpu);
750 }
751 
752 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
753 {
754 	struct kvm_vcpu *vcpu;
755 
756 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
757 	kvmppc_decrementer_func(vcpu);
758 
759 	return HRTIMER_NORESTART;
760 }
761 
762 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
763 {
764 	int ret;
765 
766 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
767 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
768 	vcpu->arch.dec_expires = get_tb();
769 
770 #ifdef CONFIG_KVM_EXIT_TIMING
771 	mutex_init(&vcpu->arch.exit_timing_lock);
772 #endif
773 	ret = kvmppc_subarch_vcpu_init(vcpu);
774 	return ret;
775 }
776 
777 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
778 {
779 	kvmppc_mmu_destroy(vcpu);
780 	kvmppc_subarch_vcpu_uninit(vcpu);
781 }
782 
783 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
784 {
785 #ifdef CONFIG_BOOKE
786 	/*
787 	 * vrsave (formerly usprg0) isn't used by Linux, but may
788 	 * be used by the guest.
789 	 *
790 	 * On non-booke this is associated with Altivec and
791 	 * is handled by code in book3s.c.
792 	 */
793 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
794 #endif
795 	kvmppc_core_vcpu_load(vcpu, cpu);
796 }
797 
798 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
799 {
800 	kvmppc_core_vcpu_put(vcpu);
801 #ifdef CONFIG_BOOKE
802 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
803 #endif
804 }
805 
806 /*
807  * irq_bypass_add_producer and irq_bypass_del_producer are only
808  * useful if the architecture supports PCI passthrough.
809  * irq_bypass_stop and irq_bypass_start are not needed and so
810  * kvm_ops are not defined for them.
811  */
812 bool kvm_arch_has_irq_bypass(void)
813 {
814 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
815 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
816 }
817 
818 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
819 				     struct irq_bypass_producer *prod)
820 {
821 	struct kvm_kernel_irqfd *irqfd =
822 		container_of(cons, struct kvm_kernel_irqfd, consumer);
823 	struct kvm *kvm = irqfd->kvm;
824 
825 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
826 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
827 
828 	return 0;
829 }
830 
831 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
832 				      struct irq_bypass_producer *prod)
833 {
834 	struct kvm_kernel_irqfd *irqfd =
835 		container_of(cons, struct kvm_kernel_irqfd, consumer);
836 	struct kvm *kvm = irqfd->kvm;
837 
838 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
839 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
840 }
841 
842 #ifdef CONFIG_VSX
843 static inline int kvmppc_get_vsr_dword_offset(int index)
844 {
845 	int offset;
846 
847 	if ((index != 0) && (index != 1))
848 		return -1;
849 
850 #ifdef __BIG_ENDIAN
851 	offset =  index;
852 #else
853 	offset = 1 - index;
854 #endif
855 
856 	return offset;
857 }
858 
859 static inline int kvmppc_get_vsr_word_offset(int index)
860 {
861 	int offset;
862 
863 	if ((index > 3) || (index < 0))
864 		return -1;
865 
866 #ifdef __BIG_ENDIAN
867 	offset = index;
868 #else
869 	offset = 3 - index;
870 #endif
871 	return offset;
872 }
873 
874 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
875 	u64 gpr)
876 {
877 	union kvmppc_one_reg val;
878 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
879 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
880 
881 	if (offset == -1)
882 		return;
883 
884 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
885 		val.vval = VCPU_VSX_VR(vcpu, index);
886 		val.vsxval[offset] = gpr;
887 		VCPU_VSX_VR(vcpu, index) = val.vval;
888 	} else {
889 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
890 	}
891 }
892 
893 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
894 	u64 gpr)
895 {
896 	union kvmppc_one_reg val;
897 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
898 
899 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
900 		val.vval = VCPU_VSX_VR(vcpu, index);
901 		val.vsxval[0] = gpr;
902 		val.vsxval[1] = gpr;
903 		VCPU_VSX_VR(vcpu, index) = val.vval;
904 	} else {
905 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
906 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
907 	}
908 }
909 
910 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
911 	u32 gpr32)
912 {
913 	union kvmppc_one_reg val;
914 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
915 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
916 	int dword_offset, word_offset;
917 
918 	if (offset == -1)
919 		return;
920 
921 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
922 		val.vval = VCPU_VSX_VR(vcpu, index);
923 		val.vsx32val[offset] = gpr32;
924 		VCPU_VSX_VR(vcpu, index) = val.vval;
925 	} else {
926 		dword_offset = offset / 2;
927 		word_offset = offset % 2;
928 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
929 		val.vsx32val[word_offset] = gpr32;
930 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
931 	}
932 }
933 #endif /* CONFIG_VSX */
934 
935 #ifdef CONFIG_ALTIVEC
936 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
937 		u64 gpr)
938 {
939 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
940 	u32 hi, lo;
941 	u32 di;
942 
943 #ifdef __BIG_ENDIAN
944 	hi = gpr >> 32;
945 	lo = gpr & 0xffffffff;
946 #else
947 	lo = gpr >> 32;
948 	hi = gpr & 0xffffffff;
949 #endif
950 
951 	di = 2 - vcpu->arch.mmio_vmx_copy_nums;		/* doubleword index */
952 	if (di > 1)
953 		return;
954 
955 	if (vcpu->arch.mmio_host_swabbed)
956 		di = 1 - di;
957 
958 	VCPU_VSX_VR(vcpu, index).u[di * 2] = hi;
959 	VCPU_VSX_VR(vcpu, index).u[di * 2 + 1] = lo;
960 }
961 #endif /* CONFIG_ALTIVEC */
962 
963 #ifdef CONFIG_PPC_FPU
964 static inline u64 sp_to_dp(u32 fprs)
965 {
966 	u64 fprd;
967 
968 	preempt_disable();
969 	enable_kernel_fp();
970 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
971 	     : "fr0");
972 	preempt_enable();
973 	return fprd;
974 }
975 
976 static inline u32 dp_to_sp(u64 fprd)
977 {
978 	u32 fprs;
979 
980 	preempt_disable();
981 	enable_kernel_fp();
982 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
983 	     : "fr0");
984 	preempt_enable();
985 	return fprs;
986 }
987 
988 #else
989 #define sp_to_dp(x)	(x)
990 #define dp_to_sp(x)	(x)
991 #endif /* CONFIG_PPC_FPU */
992 
993 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
994                                       struct kvm_run *run)
995 {
996 	u64 uninitialized_var(gpr);
997 
998 	if (run->mmio.len > sizeof(gpr)) {
999 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1000 		return;
1001 	}
1002 
1003 	if (!vcpu->arch.mmio_host_swabbed) {
1004 		switch (run->mmio.len) {
1005 		case 8: gpr = *(u64 *)run->mmio.data; break;
1006 		case 4: gpr = *(u32 *)run->mmio.data; break;
1007 		case 2: gpr = *(u16 *)run->mmio.data; break;
1008 		case 1: gpr = *(u8 *)run->mmio.data; break;
1009 		}
1010 	} else {
1011 		switch (run->mmio.len) {
1012 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1013 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1014 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1015 		case 1: gpr = *(u8 *)run->mmio.data; break;
1016 		}
1017 	}
1018 
1019 	/* conversion between single and double precision */
1020 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1021 		gpr = sp_to_dp(gpr);
1022 
1023 	if (vcpu->arch.mmio_sign_extend) {
1024 		switch (run->mmio.len) {
1025 #ifdef CONFIG_PPC64
1026 		case 4:
1027 			gpr = (s64)(s32)gpr;
1028 			break;
1029 #endif
1030 		case 2:
1031 			gpr = (s64)(s16)gpr;
1032 			break;
1033 		case 1:
1034 			gpr = (s64)(s8)gpr;
1035 			break;
1036 		}
1037 	}
1038 
1039 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1040 	case KVM_MMIO_REG_GPR:
1041 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1042 		break;
1043 	case KVM_MMIO_REG_FPR:
1044 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1045 		break;
1046 #ifdef CONFIG_PPC_BOOK3S
1047 	case KVM_MMIO_REG_QPR:
1048 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1049 		break;
1050 	case KVM_MMIO_REG_FQPR:
1051 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1052 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1053 		break;
1054 #endif
1055 #ifdef CONFIG_VSX
1056 	case KVM_MMIO_REG_VSX:
1057 		if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1058 			kvmppc_set_vsr_dword(vcpu, gpr);
1059 		else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1060 			kvmppc_set_vsr_word(vcpu, gpr);
1061 		else if (vcpu->arch.mmio_vsx_copy_type ==
1062 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1063 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1064 		break;
1065 #endif
1066 #ifdef CONFIG_ALTIVEC
1067 	case KVM_MMIO_REG_VMX:
1068 		kvmppc_set_vmx_dword(vcpu, gpr);
1069 		break;
1070 #endif
1071 	default:
1072 		BUG();
1073 	}
1074 }
1075 
1076 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1077 				unsigned int rt, unsigned int bytes,
1078 				int is_default_endian, int sign_extend)
1079 {
1080 	int idx, ret;
1081 	bool host_swabbed;
1082 
1083 	/* Pity C doesn't have a logical XOR operator */
1084 	if (kvmppc_need_byteswap(vcpu)) {
1085 		host_swabbed = is_default_endian;
1086 	} else {
1087 		host_swabbed = !is_default_endian;
1088 	}
1089 
1090 	if (bytes > sizeof(run->mmio.data)) {
1091 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1092 		       run->mmio.len);
1093 	}
1094 
1095 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1096 	run->mmio.len = bytes;
1097 	run->mmio.is_write = 0;
1098 
1099 	vcpu->arch.io_gpr = rt;
1100 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1101 	vcpu->mmio_needed = 1;
1102 	vcpu->mmio_is_write = 0;
1103 	vcpu->arch.mmio_sign_extend = sign_extend;
1104 
1105 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1106 
1107 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1108 			      bytes, &run->mmio.data);
1109 
1110 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1111 
1112 	if (!ret) {
1113 		kvmppc_complete_mmio_load(vcpu, run);
1114 		vcpu->mmio_needed = 0;
1115 		return EMULATE_DONE;
1116 	}
1117 
1118 	return EMULATE_DO_MMIO;
1119 }
1120 
1121 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1122 		       unsigned int rt, unsigned int bytes,
1123 		       int is_default_endian)
1124 {
1125 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1126 }
1127 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1128 
1129 /* Same as above, but sign extends */
1130 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1131 			unsigned int rt, unsigned int bytes,
1132 			int is_default_endian)
1133 {
1134 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1135 }
1136 
1137 #ifdef CONFIG_VSX
1138 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1139 			unsigned int rt, unsigned int bytes,
1140 			int is_default_endian, int mmio_sign_extend)
1141 {
1142 	enum emulation_result emulated = EMULATE_DONE;
1143 
1144 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1145 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1146 		return EMULATE_FAIL;
1147 
1148 	while (vcpu->arch.mmio_vsx_copy_nums) {
1149 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1150 			is_default_endian, mmio_sign_extend);
1151 
1152 		if (emulated != EMULATE_DONE)
1153 			break;
1154 
1155 		vcpu->arch.paddr_accessed += run->mmio.len;
1156 
1157 		vcpu->arch.mmio_vsx_copy_nums--;
1158 		vcpu->arch.mmio_vsx_offset++;
1159 	}
1160 	return emulated;
1161 }
1162 #endif /* CONFIG_VSX */
1163 
1164 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1165 			u64 val, unsigned int bytes, int is_default_endian)
1166 {
1167 	void *data = run->mmio.data;
1168 	int idx, ret;
1169 	bool host_swabbed;
1170 
1171 	/* Pity C doesn't have a logical XOR operator */
1172 	if (kvmppc_need_byteswap(vcpu)) {
1173 		host_swabbed = is_default_endian;
1174 	} else {
1175 		host_swabbed = !is_default_endian;
1176 	}
1177 
1178 	if (bytes > sizeof(run->mmio.data)) {
1179 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1180 		       run->mmio.len);
1181 	}
1182 
1183 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1184 	run->mmio.len = bytes;
1185 	run->mmio.is_write = 1;
1186 	vcpu->mmio_needed = 1;
1187 	vcpu->mmio_is_write = 1;
1188 
1189 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1190 		val = dp_to_sp(val);
1191 
1192 	/* Store the value at the lowest bytes in 'data'. */
1193 	if (!host_swabbed) {
1194 		switch (bytes) {
1195 		case 8: *(u64 *)data = val; break;
1196 		case 4: *(u32 *)data = val; break;
1197 		case 2: *(u16 *)data = val; break;
1198 		case 1: *(u8  *)data = val; break;
1199 		}
1200 	} else {
1201 		switch (bytes) {
1202 		case 8: *(u64 *)data = swab64(val); break;
1203 		case 4: *(u32 *)data = swab32(val); break;
1204 		case 2: *(u16 *)data = swab16(val); break;
1205 		case 1: *(u8  *)data = val; break;
1206 		}
1207 	}
1208 
1209 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1210 
1211 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1212 			       bytes, &run->mmio.data);
1213 
1214 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1215 
1216 	if (!ret) {
1217 		vcpu->mmio_needed = 0;
1218 		return EMULATE_DONE;
1219 	}
1220 
1221 	return EMULATE_DO_MMIO;
1222 }
1223 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1224 
1225 #ifdef CONFIG_VSX
1226 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1227 {
1228 	u32 dword_offset, word_offset;
1229 	union kvmppc_one_reg reg;
1230 	int vsx_offset = 0;
1231 	int copy_type = vcpu->arch.mmio_vsx_copy_type;
1232 	int result = 0;
1233 
1234 	switch (copy_type) {
1235 	case KVMPPC_VSX_COPY_DWORD:
1236 		vsx_offset =
1237 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1238 
1239 		if (vsx_offset == -1) {
1240 			result = -1;
1241 			break;
1242 		}
1243 
1244 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1245 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1246 		} else {
1247 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1248 			*val = reg.vsxval[vsx_offset];
1249 		}
1250 		break;
1251 
1252 	case KVMPPC_VSX_COPY_WORD:
1253 		vsx_offset =
1254 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1255 
1256 		if (vsx_offset == -1) {
1257 			result = -1;
1258 			break;
1259 		}
1260 
1261 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1262 			dword_offset = vsx_offset / 2;
1263 			word_offset = vsx_offset % 2;
1264 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1265 			*val = reg.vsx32val[word_offset];
1266 		} else {
1267 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1268 			*val = reg.vsx32val[vsx_offset];
1269 		}
1270 		break;
1271 
1272 	default:
1273 		result = -1;
1274 		break;
1275 	}
1276 
1277 	return result;
1278 }
1279 
1280 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1281 			int rs, unsigned int bytes, int is_default_endian)
1282 {
1283 	u64 val;
1284 	enum emulation_result emulated = EMULATE_DONE;
1285 
1286 	vcpu->arch.io_gpr = rs;
1287 
1288 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1289 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1290 		return EMULATE_FAIL;
1291 
1292 	while (vcpu->arch.mmio_vsx_copy_nums) {
1293 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1294 			return EMULATE_FAIL;
1295 
1296 		emulated = kvmppc_handle_store(run, vcpu,
1297 			 val, bytes, is_default_endian);
1298 
1299 		if (emulated != EMULATE_DONE)
1300 			break;
1301 
1302 		vcpu->arch.paddr_accessed += run->mmio.len;
1303 
1304 		vcpu->arch.mmio_vsx_copy_nums--;
1305 		vcpu->arch.mmio_vsx_offset++;
1306 	}
1307 
1308 	return emulated;
1309 }
1310 
1311 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1312 			struct kvm_run *run)
1313 {
1314 	enum emulation_result emulated = EMULATE_FAIL;
1315 	int r;
1316 
1317 	vcpu->arch.paddr_accessed += run->mmio.len;
1318 
1319 	if (!vcpu->mmio_is_write) {
1320 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1321 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1322 	} else {
1323 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1324 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1325 	}
1326 
1327 	switch (emulated) {
1328 	case EMULATE_DO_MMIO:
1329 		run->exit_reason = KVM_EXIT_MMIO;
1330 		r = RESUME_HOST;
1331 		break;
1332 	case EMULATE_FAIL:
1333 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1334 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1335 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1336 		r = RESUME_HOST;
1337 		break;
1338 	default:
1339 		r = RESUME_GUEST;
1340 		break;
1341 	}
1342 	return r;
1343 }
1344 #endif /* CONFIG_VSX */
1345 
1346 #ifdef CONFIG_ALTIVEC
1347 /* handle quadword load access in two halves */
1348 int kvmppc_handle_load128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1349 		unsigned int rt, int is_default_endian)
1350 {
1351 	enum emulation_result emulated = EMULATE_DONE;
1352 
1353 	while (vcpu->arch.mmio_vmx_copy_nums) {
1354 		emulated = __kvmppc_handle_load(run, vcpu, rt, 8,
1355 				is_default_endian, 0);
1356 
1357 		if (emulated != EMULATE_DONE)
1358 			break;
1359 
1360 		vcpu->arch.paddr_accessed += run->mmio.len;
1361 		vcpu->arch.mmio_vmx_copy_nums--;
1362 	}
1363 
1364 	return emulated;
1365 }
1366 
1367 static inline int kvmppc_get_vmx_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1368 {
1369 	vector128 vrs = VCPU_VSX_VR(vcpu, rs);
1370 	u32 di;
1371 	u64 w0, w1;
1372 
1373 	di = 2 - vcpu->arch.mmio_vmx_copy_nums;		/* doubleword index */
1374 	if (di > 1)
1375 		return -1;
1376 
1377 	if (vcpu->arch.mmio_host_swabbed)
1378 		di = 1 - di;
1379 
1380 	w0 = vrs.u[di * 2];
1381 	w1 = vrs.u[di * 2 + 1];
1382 
1383 #ifdef __BIG_ENDIAN
1384 	*val = (w0 << 32) | w1;
1385 #else
1386 	*val = (w1 << 32) | w0;
1387 #endif
1388 	return 0;
1389 }
1390 
1391 /* handle quadword store in two halves */
1392 int kvmppc_handle_store128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1393 		unsigned int rs, int is_default_endian)
1394 {
1395 	u64 val = 0;
1396 	enum emulation_result emulated = EMULATE_DONE;
1397 
1398 	vcpu->arch.io_gpr = rs;
1399 
1400 	while (vcpu->arch.mmio_vmx_copy_nums) {
1401 		if (kvmppc_get_vmx_data(vcpu, rs, &val) == -1)
1402 			return EMULATE_FAIL;
1403 
1404 		emulated = kvmppc_handle_store(run, vcpu, val, 8,
1405 				is_default_endian);
1406 		if (emulated != EMULATE_DONE)
1407 			break;
1408 
1409 		vcpu->arch.paddr_accessed += run->mmio.len;
1410 		vcpu->arch.mmio_vmx_copy_nums--;
1411 	}
1412 
1413 	return emulated;
1414 }
1415 
1416 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1417 		struct kvm_run *run)
1418 {
1419 	enum emulation_result emulated = EMULATE_FAIL;
1420 	int r;
1421 
1422 	vcpu->arch.paddr_accessed += run->mmio.len;
1423 
1424 	if (!vcpu->mmio_is_write) {
1425 		emulated = kvmppc_handle_load128_by2x64(run, vcpu,
1426 				vcpu->arch.io_gpr, 1);
1427 	} else {
1428 		emulated = kvmppc_handle_store128_by2x64(run, vcpu,
1429 				vcpu->arch.io_gpr, 1);
1430 	}
1431 
1432 	switch (emulated) {
1433 	case EMULATE_DO_MMIO:
1434 		run->exit_reason = KVM_EXIT_MMIO;
1435 		r = RESUME_HOST;
1436 		break;
1437 	case EMULATE_FAIL:
1438 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1439 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1440 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1441 		r = RESUME_HOST;
1442 		break;
1443 	default:
1444 		r = RESUME_GUEST;
1445 		break;
1446 	}
1447 	return r;
1448 }
1449 #endif /* CONFIG_ALTIVEC */
1450 
1451 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1452 {
1453 	int r = 0;
1454 	union kvmppc_one_reg val;
1455 	int size;
1456 
1457 	size = one_reg_size(reg->id);
1458 	if (size > sizeof(val))
1459 		return -EINVAL;
1460 
1461 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1462 	if (r == -EINVAL) {
1463 		r = 0;
1464 		switch (reg->id) {
1465 #ifdef CONFIG_ALTIVEC
1466 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1467 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1468 				r = -ENXIO;
1469 				break;
1470 			}
1471 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1472 			break;
1473 		case KVM_REG_PPC_VSCR:
1474 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1475 				r = -ENXIO;
1476 				break;
1477 			}
1478 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1479 			break;
1480 		case KVM_REG_PPC_VRSAVE:
1481 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1482 			break;
1483 #endif /* CONFIG_ALTIVEC */
1484 		default:
1485 			r = -EINVAL;
1486 			break;
1487 		}
1488 	}
1489 
1490 	if (r)
1491 		return r;
1492 
1493 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1494 		r = -EFAULT;
1495 
1496 	return r;
1497 }
1498 
1499 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1500 {
1501 	int r;
1502 	union kvmppc_one_reg val;
1503 	int size;
1504 
1505 	size = one_reg_size(reg->id);
1506 	if (size > sizeof(val))
1507 		return -EINVAL;
1508 
1509 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1510 		return -EFAULT;
1511 
1512 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1513 	if (r == -EINVAL) {
1514 		r = 0;
1515 		switch (reg->id) {
1516 #ifdef CONFIG_ALTIVEC
1517 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1518 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1519 				r = -ENXIO;
1520 				break;
1521 			}
1522 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1523 			break;
1524 		case KVM_REG_PPC_VSCR:
1525 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1526 				r = -ENXIO;
1527 				break;
1528 			}
1529 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1530 			break;
1531 		case KVM_REG_PPC_VRSAVE:
1532 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1533 				r = -ENXIO;
1534 				break;
1535 			}
1536 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1537 			break;
1538 #endif /* CONFIG_ALTIVEC */
1539 		default:
1540 			r = -EINVAL;
1541 			break;
1542 		}
1543 	}
1544 
1545 	return r;
1546 }
1547 
1548 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1549 {
1550 	int r;
1551 
1552 	vcpu_load(vcpu);
1553 
1554 	if (vcpu->mmio_needed) {
1555 		vcpu->mmio_needed = 0;
1556 		if (!vcpu->mmio_is_write)
1557 			kvmppc_complete_mmio_load(vcpu, run);
1558 #ifdef CONFIG_VSX
1559 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1560 			vcpu->arch.mmio_vsx_copy_nums--;
1561 			vcpu->arch.mmio_vsx_offset++;
1562 		}
1563 
1564 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1565 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1566 			if (r == RESUME_HOST) {
1567 				vcpu->mmio_needed = 1;
1568 				goto out;
1569 			}
1570 		}
1571 #endif
1572 #ifdef CONFIG_ALTIVEC
1573 		if (vcpu->arch.mmio_vmx_copy_nums > 0)
1574 			vcpu->arch.mmio_vmx_copy_nums--;
1575 
1576 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1577 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1578 			if (r == RESUME_HOST) {
1579 				vcpu->mmio_needed = 1;
1580 				goto out;
1581 			}
1582 		}
1583 #endif
1584 	} else if (vcpu->arch.osi_needed) {
1585 		u64 *gprs = run->osi.gprs;
1586 		int i;
1587 
1588 		for (i = 0; i < 32; i++)
1589 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1590 		vcpu->arch.osi_needed = 0;
1591 	} else if (vcpu->arch.hcall_needed) {
1592 		int i;
1593 
1594 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1595 		for (i = 0; i < 9; ++i)
1596 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1597 		vcpu->arch.hcall_needed = 0;
1598 #ifdef CONFIG_BOOKE
1599 	} else if (vcpu->arch.epr_needed) {
1600 		kvmppc_set_epr(vcpu, run->epr.epr);
1601 		vcpu->arch.epr_needed = 0;
1602 #endif
1603 	}
1604 
1605 	kvm_sigset_activate(vcpu);
1606 
1607 	if (run->immediate_exit)
1608 		r = -EINTR;
1609 	else
1610 		r = kvmppc_vcpu_run(run, vcpu);
1611 
1612 	kvm_sigset_deactivate(vcpu);
1613 
1614 #ifdef CONFIG_ALTIVEC
1615 out:
1616 #endif
1617 	vcpu_put(vcpu);
1618 	return r;
1619 }
1620 
1621 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1622 {
1623 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1624 		kvmppc_core_dequeue_external(vcpu);
1625 		return 0;
1626 	}
1627 
1628 	kvmppc_core_queue_external(vcpu, irq);
1629 
1630 	kvm_vcpu_kick(vcpu);
1631 
1632 	return 0;
1633 }
1634 
1635 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1636 				     struct kvm_enable_cap *cap)
1637 {
1638 	int r;
1639 
1640 	if (cap->flags)
1641 		return -EINVAL;
1642 
1643 	switch (cap->cap) {
1644 	case KVM_CAP_PPC_OSI:
1645 		r = 0;
1646 		vcpu->arch.osi_enabled = true;
1647 		break;
1648 	case KVM_CAP_PPC_PAPR:
1649 		r = 0;
1650 		vcpu->arch.papr_enabled = true;
1651 		break;
1652 	case KVM_CAP_PPC_EPR:
1653 		r = 0;
1654 		if (cap->args[0])
1655 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1656 		else
1657 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1658 		break;
1659 #ifdef CONFIG_BOOKE
1660 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1661 		r = 0;
1662 		vcpu->arch.watchdog_enabled = true;
1663 		break;
1664 #endif
1665 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1666 	case KVM_CAP_SW_TLB: {
1667 		struct kvm_config_tlb cfg;
1668 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1669 
1670 		r = -EFAULT;
1671 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1672 			break;
1673 
1674 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1675 		break;
1676 	}
1677 #endif
1678 #ifdef CONFIG_KVM_MPIC
1679 	case KVM_CAP_IRQ_MPIC: {
1680 		struct fd f;
1681 		struct kvm_device *dev;
1682 
1683 		r = -EBADF;
1684 		f = fdget(cap->args[0]);
1685 		if (!f.file)
1686 			break;
1687 
1688 		r = -EPERM;
1689 		dev = kvm_device_from_filp(f.file);
1690 		if (dev)
1691 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1692 
1693 		fdput(f);
1694 		break;
1695 	}
1696 #endif
1697 #ifdef CONFIG_KVM_XICS
1698 	case KVM_CAP_IRQ_XICS: {
1699 		struct fd f;
1700 		struct kvm_device *dev;
1701 
1702 		r = -EBADF;
1703 		f = fdget(cap->args[0]);
1704 		if (!f.file)
1705 			break;
1706 
1707 		r = -EPERM;
1708 		dev = kvm_device_from_filp(f.file);
1709 		if (dev) {
1710 			if (xive_enabled())
1711 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1712 			else
1713 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1714 		}
1715 
1716 		fdput(f);
1717 		break;
1718 	}
1719 #endif /* CONFIG_KVM_XICS */
1720 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1721 	case KVM_CAP_PPC_FWNMI:
1722 		r = -EINVAL;
1723 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1724 			break;
1725 		r = 0;
1726 		vcpu->kvm->arch.fwnmi_enabled = true;
1727 		break;
1728 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1729 	default:
1730 		r = -EINVAL;
1731 		break;
1732 	}
1733 
1734 	if (!r)
1735 		r = kvmppc_sanity_check(vcpu);
1736 
1737 	return r;
1738 }
1739 
1740 bool kvm_arch_intc_initialized(struct kvm *kvm)
1741 {
1742 #ifdef CONFIG_KVM_MPIC
1743 	if (kvm->arch.mpic)
1744 		return true;
1745 #endif
1746 #ifdef CONFIG_KVM_XICS
1747 	if (kvm->arch.xics || kvm->arch.xive)
1748 		return true;
1749 #endif
1750 	return false;
1751 }
1752 
1753 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1754                                     struct kvm_mp_state *mp_state)
1755 {
1756 	return -EINVAL;
1757 }
1758 
1759 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1760                                     struct kvm_mp_state *mp_state)
1761 {
1762 	return -EINVAL;
1763 }
1764 
1765 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1766 			       unsigned int ioctl, unsigned long arg)
1767 {
1768 	struct kvm_vcpu *vcpu = filp->private_data;
1769 	void __user *argp = (void __user *)arg;
1770 
1771 	if (ioctl == KVM_INTERRUPT) {
1772 		struct kvm_interrupt irq;
1773 		if (copy_from_user(&irq, argp, sizeof(irq)))
1774 			return -EFAULT;
1775 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1776 	}
1777 	return -ENOIOCTLCMD;
1778 }
1779 
1780 long kvm_arch_vcpu_ioctl(struct file *filp,
1781                          unsigned int ioctl, unsigned long arg)
1782 {
1783 	struct kvm_vcpu *vcpu = filp->private_data;
1784 	void __user *argp = (void __user *)arg;
1785 	long r;
1786 
1787 	vcpu_load(vcpu);
1788 
1789 	switch (ioctl) {
1790 	case KVM_ENABLE_CAP:
1791 	{
1792 		struct kvm_enable_cap cap;
1793 		r = -EFAULT;
1794 		if (copy_from_user(&cap, argp, sizeof(cap)))
1795 			goto out;
1796 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1797 		break;
1798 	}
1799 
1800 	case KVM_SET_ONE_REG:
1801 	case KVM_GET_ONE_REG:
1802 	{
1803 		struct kvm_one_reg reg;
1804 		r = -EFAULT;
1805 		if (copy_from_user(&reg, argp, sizeof(reg)))
1806 			goto out;
1807 		if (ioctl == KVM_SET_ONE_REG)
1808 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1809 		else
1810 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1811 		break;
1812 	}
1813 
1814 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1815 	case KVM_DIRTY_TLB: {
1816 		struct kvm_dirty_tlb dirty;
1817 		r = -EFAULT;
1818 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
1819 			goto out;
1820 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1821 		break;
1822 	}
1823 #endif
1824 	default:
1825 		r = -EINVAL;
1826 	}
1827 
1828 out:
1829 	vcpu_put(vcpu);
1830 	return r;
1831 }
1832 
1833 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1834 {
1835 	return VM_FAULT_SIGBUS;
1836 }
1837 
1838 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1839 {
1840 	u32 inst_nop = 0x60000000;
1841 #ifdef CONFIG_KVM_BOOKE_HV
1842 	u32 inst_sc1 = 0x44000022;
1843 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1844 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1845 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1846 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1847 #else
1848 	u32 inst_lis = 0x3c000000;
1849 	u32 inst_ori = 0x60000000;
1850 	u32 inst_sc = 0x44000002;
1851 	u32 inst_imm_mask = 0xffff;
1852 
1853 	/*
1854 	 * The hypercall to get into KVM from within guest context is as
1855 	 * follows:
1856 	 *
1857 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
1858 	 *    ori r0, KVM_SC_MAGIC_R0@l
1859 	 *    sc
1860 	 *    nop
1861 	 */
1862 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1863 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1864 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1865 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1866 #endif
1867 
1868 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1869 
1870 	return 0;
1871 }
1872 
1873 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1874 			  bool line_status)
1875 {
1876 	if (!irqchip_in_kernel(kvm))
1877 		return -ENXIO;
1878 
1879 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1880 					irq_event->irq, irq_event->level,
1881 					line_status);
1882 	return 0;
1883 }
1884 
1885 
1886 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1887 				   struct kvm_enable_cap *cap)
1888 {
1889 	int r;
1890 
1891 	if (cap->flags)
1892 		return -EINVAL;
1893 
1894 	switch (cap->cap) {
1895 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1896 	case KVM_CAP_PPC_ENABLE_HCALL: {
1897 		unsigned long hcall = cap->args[0];
1898 
1899 		r = -EINVAL;
1900 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1901 		    cap->args[1] > 1)
1902 			break;
1903 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1904 			break;
1905 		if (cap->args[1])
1906 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1907 		else
1908 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1909 		r = 0;
1910 		break;
1911 	}
1912 	case KVM_CAP_PPC_SMT: {
1913 		unsigned long mode = cap->args[0];
1914 		unsigned long flags = cap->args[1];
1915 
1916 		r = -EINVAL;
1917 		if (kvm->arch.kvm_ops->set_smt_mode)
1918 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1919 		break;
1920 	}
1921 #endif
1922 	default:
1923 		r = -EINVAL;
1924 		break;
1925 	}
1926 
1927 	return r;
1928 }
1929 
1930 #ifdef CONFIG_PPC_BOOK3S_64
1931 /*
1932  * These functions check whether the underlying hardware is safe
1933  * against attacks based on observing the effects of speculatively
1934  * executed instructions, and whether it supplies instructions for
1935  * use in workarounds.  The information comes from firmware, either
1936  * via the device tree on powernv platforms or from an hcall on
1937  * pseries platforms.
1938  */
1939 #ifdef CONFIG_PPC_PSERIES
1940 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1941 {
1942 	struct h_cpu_char_result c;
1943 	unsigned long rc;
1944 
1945 	if (!machine_is(pseries))
1946 		return -ENOTTY;
1947 
1948 	rc = plpar_get_cpu_characteristics(&c);
1949 	if (rc == H_SUCCESS) {
1950 		cp->character = c.character;
1951 		cp->behaviour = c.behaviour;
1952 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1953 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1954 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1955 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1956 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1957 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
1958 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
1959 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1960 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1961 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1962 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1963 	}
1964 	return 0;
1965 }
1966 #else
1967 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1968 {
1969 	return -ENOTTY;
1970 }
1971 #endif
1972 
1973 static inline bool have_fw_feat(struct device_node *fw_features,
1974 				const char *state, const char *name)
1975 {
1976 	struct device_node *np;
1977 	bool r = false;
1978 
1979 	np = of_get_child_by_name(fw_features, name);
1980 	if (np) {
1981 		r = of_property_read_bool(np, state);
1982 		of_node_put(np);
1983 	}
1984 	return r;
1985 }
1986 
1987 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1988 {
1989 	struct device_node *np, *fw_features;
1990 	int r;
1991 
1992 	memset(cp, 0, sizeof(*cp));
1993 	r = pseries_get_cpu_char(cp);
1994 	if (r != -ENOTTY)
1995 		return r;
1996 
1997 	np = of_find_node_by_name(NULL, "ibm,opal");
1998 	if (np) {
1999 		fw_features = of_get_child_by_name(np, "fw-features");
2000 		of_node_put(np);
2001 		if (!fw_features)
2002 			return 0;
2003 		if (have_fw_feat(fw_features, "enabled",
2004 				 "inst-spec-barrier-ori31,31,0"))
2005 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2006 		if (have_fw_feat(fw_features, "enabled",
2007 				 "fw-bcctrl-serialized"))
2008 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2009 		if (have_fw_feat(fw_features, "enabled",
2010 				 "inst-l1d-flush-ori30,30,0"))
2011 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2012 		if (have_fw_feat(fw_features, "enabled",
2013 				 "inst-l1d-flush-trig2"))
2014 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2015 		if (have_fw_feat(fw_features, "enabled",
2016 				 "fw-l1d-thread-split"))
2017 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2018 		if (have_fw_feat(fw_features, "enabled",
2019 				 "fw-count-cache-disabled"))
2020 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2021 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2022 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2023 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2024 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2025 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2026 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2027 
2028 		if (have_fw_feat(fw_features, "enabled",
2029 				 "speculation-policy-favor-security"))
2030 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2031 		if (!have_fw_feat(fw_features, "disabled",
2032 				  "needs-l1d-flush-msr-pr-0-to-1"))
2033 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2034 		if (!have_fw_feat(fw_features, "disabled",
2035 				  "needs-spec-barrier-for-bound-checks"))
2036 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2037 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2038 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2039 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2040 
2041 		of_node_put(fw_features);
2042 	}
2043 
2044 	return 0;
2045 }
2046 #endif
2047 
2048 long kvm_arch_vm_ioctl(struct file *filp,
2049                        unsigned int ioctl, unsigned long arg)
2050 {
2051 	struct kvm *kvm __maybe_unused = filp->private_data;
2052 	void __user *argp = (void __user *)arg;
2053 	long r;
2054 
2055 	switch (ioctl) {
2056 	case KVM_PPC_GET_PVINFO: {
2057 		struct kvm_ppc_pvinfo pvinfo;
2058 		memset(&pvinfo, 0, sizeof(pvinfo));
2059 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2060 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2061 			r = -EFAULT;
2062 			goto out;
2063 		}
2064 
2065 		break;
2066 	}
2067 	case KVM_ENABLE_CAP:
2068 	{
2069 		struct kvm_enable_cap cap;
2070 		r = -EFAULT;
2071 		if (copy_from_user(&cap, argp, sizeof(cap)))
2072 			goto out;
2073 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2074 		break;
2075 	}
2076 #ifdef CONFIG_SPAPR_TCE_IOMMU
2077 	case KVM_CREATE_SPAPR_TCE_64: {
2078 		struct kvm_create_spapr_tce_64 create_tce_64;
2079 
2080 		r = -EFAULT;
2081 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2082 			goto out;
2083 		if (create_tce_64.flags) {
2084 			r = -EINVAL;
2085 			goto out;
2086 		}
2087 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2088 		goto out;
2089 	}
2090 	case KVM_CREATE_SPAPR_TCE: {
2091 		struct kvm_create_spapr_tce create_tce;
2092 		struct kvm_create_spapr_tce_64 create_tce_64;
2093 
2094 		r = -EFAULT;
2095 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2096 			goto out;
2097 
2098 		create_tce_64.liobn = create_tce.liobn;
2099 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2100 		create_tce_64.offset = 0;
2101 		create_tce_64.size = create_tce.window_size >>
2102 				IOMMU_PAGE_SHIFT_4K;
2103 		create_tce_64.flags = 0;
2104 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2105 		goto out;
2106 	}
2107 #endif
2108 #ifdef CONFIG_PPC_BOOK3S_64
2109 	case KVM_PPC_GET_SMMU_INFO: {
2110 		struct kvm_ppc_smmu_info info;
2111 		struct kvm *kvm = filp->private_data;
2112 
2113 		memset(&info, 0, sizeof(info));
2114 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2115 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2116 			r = -EFAULT;
2117 		break;
2118 	}
2119 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2120 		struct kvm *kvm = filp->private_data;
2121 
2122 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2123 		break;
2124 	}
2125 	case KVM_PPC_CONFIGURE_V3_MMU: {
2126 		struct kvm *kvm = filp->private_data;
2127 		struct kvm_ppc_mmuv3_cfg cfg;
2128 
2129 		r = -EINVAL;
2130 		if (!kvm->arch.kvm_ops->configure_mmu)
2131 			goto out;
2132 		r = -EFAULT;
2133 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2134 			goto out;
2135 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2136 		break;
2137 	}
2138 	case KVM_PPC_GET_RMMU_INFO: {
2139 		struct kvm *kvm = filp->private_data;
2140 		struct kvm_ppc_rmmu_info info;
2141 
2142 		r = -EINVAL;
2143 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2144 			goto out;
2145 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2146 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2147 			r = -EFAULT;
2148 		break;
2149 	}
2150 	case KVM_PPC_GET_CPU_CHAR: {
2151 		struct kvm_ppc_cpu_char cpuchar;
2152 
2153 		r = kvmppc_get_cpu_char(&cpuchar);
2154 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2155 			r = -EFAULT;
2156 		break;
2157 	}
2158 	default: {
2159 		struct kvm *kvm = filp->private_data;
2160 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2161 	}
2162 #else /* CONFIG_PPC_BOOK3S_64 */
2163 	default:
2164 		r = -ENOTTY;
2165 #endif
2166 	}
2167 out:
2168 	return r;
2169 }
2170 
2171 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2172 static unsigned long nr_lpids;
2173 
2174 long kvmppc_alloc_lpid(void)
2175 {
2176 	long lpid;
2177 
2178 	do {
2179 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2180 		if (lpid >= nr_lpids) {
2181 			pr_err("%s: No LPIDs free\n", __func__);
2182 			return -ENOMEM;
2183 		}
2184 	} while (test_and_set_bit(lpid, lpid_inuse));
2185 
2186 	return lpid;
2187 }
2188 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2189 
2190 void kvmppc_claim_lpid(long lpid)
2191 {
2192 	set_bit(lpid, lpid_inuse);
2193 }
2194 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2195 
2196 void kvmppc_free_lpid(long lpid)
2197 {
2198 	clear_bit(lpid, lpid_inuse);
2199 }
2200 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2201 
2202 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2203 {
2204 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2205 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2206 }
2207 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2208 
2209 int kvm_arch_init(void *opaque)
2210 {
2211 	return 0;
2212 }
2213 
2214 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2215