1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/sched/signal.h> 27 #include <linux/fs.h> 28 #include <linux/slab.h> 29 #include <linux/file.h> 30 #include <linux/module.h> 31 #include <linux/irqbypass.h> 32 #include <linux/kvm_irqfd.h> 33 #include <asm/cputable.h> 34 #include <linux/uaccess.h> 35 #include <asm/kvm_ppc.h> 36 #include <asm/tlbflush.h> 37 #include <asm/cputhreads.h> 38 #include <asm/irqflags.h> 39 #include <asm/iommu.h> 40 #include <asm/switch_to.h> 41 #include <asm/xive.h> 42 #ifdef CONFIG_PPC_PSERIES 43 #include <asm/hvcall.h> 44 #include <asm/plpar_wrappers.h> 45 #endif 46 47 #include "timing.h" 48 #include "irq.h" 49 #include "../mm/mmu_decl.h" 50 51 #define CREATE_TRACE_POINTS 52 #include "trace.h" 53 54 struct kvmppc_ops *kvmppc_hv_ops; 55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 56 struct kvmppc_ops *kvmppc_pr_ops; 57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 58 59 60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 61 { 62 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 63 } 64 65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 66 { 67 return false; 68 } 69 70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 71 { 72 return 1; 73 } 74 75 /* 76 * Common checks before entering the guest world. Call with interrupts 77 * disabled. 78 * 79 * returns: 80 * 81 * == 1 if we're ready to go into guest state 82 * <= 0 if we need to go back to the host with return value 83 */ 84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 85 { 86 int r; 87 88 WARN_ON(irqs_disabled()); 89 hard_irq_disable(); 90 91 while (true) { 92 if (need_resched()) { 93 local_irq_enable(); 94 cond_resched(); 95 hard_irq_disable(); 96 continue; 97 } 98 99 if (signal_pending(current)) { 100 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 101 vcpu->run->exit_reason = KVM_EXIT_INTR; 102 r = -EINTR; 103 break; 104 } 105 106 vcpu->mode = IN_GUEST_MODE; 107 108 /* 109 * Reading vcpu->requests must happen after setting vcpu->mode, 110 * so we don't miss a request because the requester sees 111 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 112 * before next entering the guest (and thus doesn't IPI). 113 * This also orders the write to mode from any reads 114 * to the page tables done while the VCPU is running. 115 * Please see the comment in kvm_flush_remote_tlbs. 116 */ 117 smp_mb(); 118 119 if (kvm_request_pending(vcpu)) { 120 /* Make sure we process requests preemptable */ 121 local_irq_enable(); 122 trace_kvm_check_requests(vcpu); 123 r = kvmppc_core_check_requests(vcpu); 124 hard_irq_disable(); 125 if (r > 0) 126 continue; 127 break; 128 } 129 130 if (kvmppc_core_prepare_to_enter(vcpu)) { 131 /* interrupts got enabled in between, so we 132 are back at square 1 */ 133 continue; 134 } 135 136 guest_enter_irqoff(); 137 return 1; 138 } 139 140 /* return to host */ 141 local_irq_enable(); 142 return r; 143 } 144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 145 146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 148 { 149 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 150 int i; 151 152 shared->sprg0 = swab64(shared->sprg0); 153 shared->sprg1 = swab64(shared->sprg1); 154 shared->sprg2 = swab64(shared->sprg2); 155 shared->sprg3 = swab64(shared->sprg3); 156 shared->srr0 = swab64(shared->srr0); 157 shared->srr1 = swab64(shared->srr1); 158 shared->dar = swab64(shared->dar); 159 shared->msr = swab64(shared->msr); 160 shared->dsisr = swab32(shared->dsisr); 161 shared->int_pending = swab32(shared->int_pending); 162 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 163 shared->sr[i] = swab32(shared->sr[i]); 164 } 165 #endif 166 167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 168 { 169 int nr = kvmppc_get_gpr(vcpu, 11); 170 int r; 171 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 172 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 173 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 174 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 175 unsigned long r2 = 0; 176 177 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 178 /* 32 bit mode */ 179 param1 &= 0xffffffff; 180 param2 &= 0xffffffff; 181 param3 &= 0xffffffff; 182 param4 &= 0xffffffff; 183 } 184 185 switch (nr) { 186 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 187 { 188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 189 /* Book3S can be little endian, find it out here */ 190 int shared_big_endian = true; 191 if (vcpu->arch.intr_msr & MSR_LE) 192 shared_big_endian = false; 193 if (shared_big_endian != vcpu->arch.shared_big_endian) 194 kvmppc_swab_shared(vcpu); 195 vcpu->arch.shared_big_endian = shared_big_endian; 196 #endif 197 198 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 199 /* 200 * Older versions of the Linux magic page code had 201 * a bug where they would map their trampoline code 202 * NX. If that's the case, remove !PR NX capability. 203 */ 204 vcpu->arch.disable_kernel_nx = true; 205 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 206 } 207 208 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 209 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 210 211 #ifdef CONFIG_PPC_64K_PAGES 212 /* 213 * Make sure our 4k magic page is in the same window of a 64k 214 * page within the guest and within the host's page. 215 */ 216 if ((vcpu->arch.magic_page_pa & 0xf000) != 217 ((ulong)vcpu->arch.shared & 0xf000)) { 218 void *old_shared = vcpu->arch.shared; 219 ulong shared = (ulong)vcpu->arch.shared; 220 void *new_shared; 221 222 shared &= PAGE_MASK; 223 shared |= vcpu->arch.magic_page_pa & 0xf000; 224 new_shared = (void*)shared; 225 memcpy(new_shared, old_shared, 0x1000); 226 vcpu->arch.shared = new_shared; 227 } 228 #endif 229 230 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 231 232 r = EV_SUCCESS; 233 break; 234 } 235 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 236 r = EV_SUCCESS; 237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 238 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 239 #endif 240 241 /* Second return value is in r4 */ 242 break; 243 case EV_HCALL_TOKEN(EV_IDLE): 244 r = EV_SUCCESS; 245 kvm_vcpu_block(vcpu); 246 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 247 break; 248 default: 249 r = EV_UNIMPLEMENTED; 250 break; 251 } 252 253 kvmppc_set_gpr(vcpu, 4, r2); 254 255 return r; 256 } 257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 258 259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 260 { 261 int r = false; 262 263 /* We have to know what CPU to virtualize */ 264 if (!vcpu->arch.pvr) 265 goto out; 266 267 /* PAPR only works with book3s_64 */ 268 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 269 goto out; 270 271 /* HV KVM can only do PAPR mode for now */ 272 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 273 goto out; 274 275 #ifdef CONFIG_KVM_BOOKE_HV 276 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 277 goto out; 278 #endif 279 280 r = true; 281 282 out: 283 vcpu->arch.sane = r; 284 return r ? 0 : -EINVAL; 285 } 286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 287 288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 289 { 290 enum emulation_result er; 291 int r; 292 293 er = kvmppc_emulate_loadstore(vcpu); 294 switch (er) { 295 case EMULATE_DONE: 296 /* Future optimization: only reload non-volatiles if they were 297 * actually modified. */ 298 r = RESUME_GUEST_NV; 299 break; 300 case EMULATE_AGAIN: 301 r = RESUME_GUEST; 302 break; 303 case EMULATE_DO_MMIO: 304 run->exit_reason = KVM_EXIT_MMIO; 305 /* We must reload nonvolatiles because "update" load/store 306 * instructions modify register state. */ 307 /* Future optimization: only reload non-volatiles if they were 308 * actually modified. */ 309 r = RESUME_HOST_NV; 310 break; 311 case EMULATE_FAIL: 312 { 313 u32 last_inst; 314 315 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 316 /* XXX Deliver Program interrupt to guest. */ 317 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 318 r = RESUME_HOST; 319 break; 320 } 321 default: 322 WARN_ON(1); 323 r = RESUME_GUEST; 324 } 325 326 return r; 327 } 328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 329 330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 331 bool data) 332 { 333 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 334 struct kvmppc_pte pte; 335 int r; 336 337 vcpu->stat.st++; 338 339 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 340 XLATE_WRITE, &pte); 341 if (r < 0) 342 return r; 343 344 *eaddr = pte.raddr; 345 346 if (!pte.may_write) 347 return -EPERM; 348 349 /* Magic page override */ 350 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 351 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 352 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 353 void *magic = vcpu->arch.shared; 354 magic += pte.eaddr & 0xfff; 355 memcpy(magic, ptr, size); 356 return EMULATE_DONE; 357 } 358 359 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 360 return EMULATE_DO_MMIO; 361 362 return EMULATE_DONE; 363 } 364 EXPORT_SYMBOL_GPL(kvmppc_st); 365 366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 367 bool data) 368 { 369 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 370 struct kvmppc_pte pte; 371 int rc; 372 373 vcpu->stat.ld++; 374 375 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 376 XLATE_READ, &pte); 377 if (rc) 378 return rc; 379 380 *eaddr = pte.raddr; 381 382 if (!pte.may_read) 383 return -EPERM; 384 385 if (!data && !pte.may_execute) 386 return -ENOEXEC; 387 388 /* Magic page override */ 389 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 390 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 391 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 392 void *magic = vcpu->arch.shared; 393 magic += pte.eaddr & 0xfff; 394 memcpy(ptr, magic, size); 395 return EMULATE_DONE; 396 } 397 398 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 399 return EMULATE_DO_MMIO; 400 401 return EMULATE_DONE; 402 } 403 EXPORT_SYMBOL_GPL(kvmppc_ld); 404 405 int kvm_arch_hardware_enable(void) 406 { 407 return 0; 408 } 409 410 int kvm_arch_hardware_setup(void) 411 { 412 return 0; 413 } 414 415 void kvm_arch_check_processor_compat(void *rtn) 416 { 417 *(int *)rtn = kvmppc_core_check_processor_compat(); 418 } 419 420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 421 { 422 struct kvmppc_ops *kvm_ops = NULL; 423 /* 424 * if we have both HV and PR enabled, default is HV 425 */ 426 if (type == 0) { 427 if (kvmppc_hv_ops) 428 kvm_ops = kvmppc_hv_ops; 429 else 430 kvm_ops = kvmppc_pr_ops; 431 if (!kvm_ops) 432 goto err_out; 433 } else if (type == KVM_VM_PPC_HV) { 434 if (!kvmppc_hv_ops) 435 goto err_out; 436 kvm_ops = kvmppc_hv_ops; 437 } else if (type == KVM_VM_PPC_PR) { 438 if (!kvmppc_pr_ops) 439 goto err_out; 440 kvm_ops = kvmppc_pr_ops; 441 } else 442 goto err_out; 443 444 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 445 return -ENOENT; 446 447 kvm->arch.kvm_ops = kvm_ops; 448 return kvmppc_core_init_vm(kvm); 449 err_out: 450 return -EINVAL; 451 } 452 453 bool kvm_arch_has_vcpu_debugfs(void) 454 { 455 return false; 456 } 457 458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 459 { 460 return 0; 461 } 462 463 void kvm_arch_destroy_vm(struct kvm *kvm) 464 { 465 unsigned int i; 466 struct kvm_vcpu *vcpu; 467 468 #ifdef CONFIG_KVM_XICS 469 /* 470 * We call kick_all_cpus_sync() to ensure that all 471 * CPUs have executed any pending IPIs before we 472 * continue and free VCPUs structures below. 473 */ 474 if (is_kvmppc_hv_enabled(kvm)) 475 kick_all_cpus_sync(); 476 #endif 477 478 kvm_for_each_vcpu(i, vcpu, kvm) 479 kvm_arch_vcpu_free(vcpu); 480 481 mutex_lock(&kvm->lock); 482 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 483 kvm->vcpus[i] = NULL; 484 485 atomic_set(&kvm->online_vcpus, 0); 486 487 kvmppc_core_destroy_vm(kvm); 488 489 mutex_unlock(&kvm->lock); 490 491 /* drop the module reference */ 492 module_put(kvm->arch.kvm_ops->owner); 493 } 494 495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 496 { 497 int r; 498 /* Assume we're using HV mode when the HV module is loaded */ 499 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 500 501 if (kvm) { 502 /* 503 * Hooray - we know which VM type we're running on. Depend on 504 * that rather than the guess above. 505 */ 506 hv_enabled = is_kvmppc_hv_enabled(kvm); 507 } 508 509 switch (ext) { 510 #ifdef CONFIG_BOOKE 511 case KVM_CAP_PPC_BOOKE_SREGS: 512 case KVM_CAP_PPC_BOOKE_WATCHDOG: 513 case KVM_CAP_PPC_EPR: 514 #else 515 case KVM_CAP_PPC_SEGSTATE: 516 case KVM_CAP_PPC_HIOR: 517 case KVM_CAP_PPC_PAPR: 518 #endif 519 case KVM_CAP_PPC_UNSET_IRQ: 520 case KVM_CAP_PPC_IRQ_LEVEL: 521 case KVM_CAP_ENABLE_CAP: 522 case KVM_CAP_ENABLE_CAP_VM: 523 case KVM_CAP_ONE_REG: 524 case KVM_CAP_IOEVENTFD: 525 case KVM_CAP_DEVICE_CTRL: 526 case KVM_CAP_IMMEDIATE_EXIT: 527 r = 1; 528 break; 529 case KVM_CAP_PPC_PAIRED_SINGLES: 530 case KVM_CAP_PPC_OSI: 531 case KVM_CAP_PPC_GET_PVINFO: 532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 533 case KVM_CAP_SW_TLB: 534 #endif 535 /* We support this only for PR */ 536 r = !hv_enabled; 537 break; 538 #ifdef CONFIG_KVM_MPIC 539 case KVM_CAP_IRQ_MPIC: 540 r = 1; 541 break; 542 #endif 543 544 #ifdef CONFIG_PPC_BOOK3S_64 545 case KVM_CAP_SPAPR_TCE: 546 case KVM_CAP_SPAPR_TCE_64: 547 /* fallthrough */ 548 case KVM_CAP_SPAPR_TCE_VFIO: 549 case KVM_CAP_PPC_RTAS: 550 case KVM_CAP_PPC_FIXUP_HCALL: 551 case KVM_CAP_PPC_ENABLE_HCALL: 552 #ifdef CONFIG_KVM_XICS 553 case KVM_CAP_IRQ_XICS: 554 #endif 555 case KVM_CAP_PPC_GET_CPU_CHAR: 556 r = 1; 557 break; 558 559 case KVM_CAP_PPC_ALLOC_HTAB: 560 r = hv_enabled; 561 break; 562 #endif /* CONFIG_PPC_BOOK3S_64 */ 563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 564 case KVM_CAP_PPC_SMT: 565 r = 0; 566 if (kvm) { 567 if (kvm->arch.emul_smt_mode > 1) 568 r = kvm->arch.emul_smt_mode; 569 else 570 r = kvm->arch.smt_mode; 571 } else if (hv_enabled) { 572 if (cpu_has_feature(CPU_FTR_ARCH_300)) 573 r = 1; 574 else 575 r = threads_per_subcore; 576 } 577 break; 578 case KVM_CAP_PPC_SMT_POSSIBLE: 579 r = 1; 580 if (hv_enabled) { 581 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 582 r = ((threads_per_subcore << 1) - 1); 583 else 584 /* P9 can emulate dbells, so allow any mode */ 585 r = 8 | 4 | 2 | 1; 586 } 587 break; 588 case KVM_CAP_PPC_RMA: 589 r = 0; 590 break; 591 case KVM_CAP_PPC_HWRNG: 592 r = kvmppc_hwrng_present(); 593 break; 594 case KVM_CAP_PPC_MMU_RADIX: 595 r = !!(hv_enabled && radix_enabled()); 596 break; 597 case KVM_CAP_PPC_MMU_HASH_V3: 598 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300)); 599 break; 600 #endif 601 case KVM_CAP_SYNC_MMU: 602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 603 r = hv_enabled; 604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 605 r = 1; 606 #else 607 r = 0; 608 #endif 609 break; 610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 611 case KVM_CAP_PPC_HTAB_FD: 612 r = hv_enabled; 613 break; 614 #endif 615 case KVM_CAP_NR_VCPUS: 616 /* 617 * Recommending a number of CPUs is somewhat arbitrary; we 618 * return the number of present CPUs for -HV (since a host 619 * will have secondary threads "offline"), and for other KVM 620 * implementations just count online CPUs. 621 */ 622 if (hv_enabled) 623 r = num_present_cpus(); 624 else 625 r = num_online_cpus(); 626 break; 627 case KVM_CAP_NR_MEMSLOTS: 628 r = KVM_USER_MEM_SLOTS; 629 break; 630 case KVM_CAP_MAX_VCPUS: 631 r = KVM_MAX_VCPUS; 632 break; 633 #ifdef CONFIG_PPC_BOOK3S_64 634 case KVM_CAP_PPC_GET_SMMU_INFO: 635 r = 1; 636 break; 637 case KVM_CAP_SPAPR_MULTITCE: 638 r = 1; 639 break; 640 case KVM_CAP_SPAPR_RESIZE_HPT: 641 r = !!hv_enabled; 642 break; 643 #endif 644 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 645 case KVM_CAP_PPC_FWNMI: 646 r = hv_enabled; 647 break; 648 #endif 649 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 650 case KVM_CAP_PPC_HTM: 651 r = hv_enabled && 652 (!!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 653 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 654 break; 655 #endif 656 default: 657 r = 0; 658 break; 659 } 660 return r; 661 662 } 663 664 long kvm_arch_dev_ioctl(struct file *filp, 665 unsigned int ioctl, unsigned long arg) 666 { 667 return -EINVAL; 668 } 669 670 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 671 struct kvm_memory_slot *dont) 672 { 673 kvmppc_core_free_memslot(kvm, free, dont); 674 } 675 676 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 677 unsigned long npages) 678 { 679 return kvmppc_core_create_memslot(kvm, slot, npages); 680 } 681 682 int kvm_arch_prepare_memory_region(struct kvm *kvm, 683 struct kvm_memory_slot *memslot, 684 const struct kvm_userspace_memory_region *mem, 685 enum kvm_mr_change change) 686 { 687 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 688 } 689 690 void kvm_arch_commit_memory_region(struct kvm *kvm, 691 const struct kvm_userspace_memory_region *mem, 692 const struct kvm_memory_slot *old, 693 const struct kvm_memory_slot *new, 694 enum kvm_mr_change change) 695 { 696 kvmppc_core_commit_memory_region(kvm, mem, old, new); 697 } 698 699 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 700 struct kvm_memory_slot *slot) 701 { 702 kvmppc_core_flush_memslot(kvm, slot); 703 } 704 705 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 706 { 707 struct kvm_vcpu *vcpu; 708 vcpu = kvmppc_core_vcpu_create(kvm, id); 709 if (!IS_ERR(vcpu)) { 710 vcpu->arch.wqp = &vcpu->wq; 711 kvmppc_create_vcpu_debugfs(vcpu, id); 712 } 713 return vcpu; 714 } 715 716 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 717 { 718 } 719 720 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 721 { 722 /* Make sure we're not using the vcpu anymore */ 723 hrtimer_cancel(&vcpu->arch.dec_timer); 724 725 kvmppc_remove_vcpu_debugfs(vcpu); 726 727 switch (vcpu->arch.irq_type) { 728 case KVMPPC_IRQ_MPIC: 729 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 730 break; 731 case KVMPPC_IRQ_XICS: 732 if (xive_enabled()) 733 kvmppc_xive_cleanup_vcpu(vcpu); 734 else 735 kvmppc_xics_free_icp(vcpu); 736 break; 737 } 738 739 kvmppc_core_vcpu_free(vcpu); 740 } 741 742 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 743 { 744 kvm_arch_vcpu_free(vcpu); 745 } 746 747 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 748 { 749 return kvmppc_core_pending_dec(vcpu); 750 } 751 752 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 753 { 754 struct kvm_vcpu *vcpu; 755 756 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 757 kvmppc_decrementer_func(vcpu); 758 759 return HRTIMER_NORESTART; 760 } 761 762 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 763 { 764 int ret; 765 766 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 767 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 768 vcpu->arch.dec_expires = get_tb(); 769 770 #ifdef CONFIG_KVM_EXIT_TIMING 771 mutex_init(&vcpu->arch.exit_timing_lock); 772 #endif 773 ret = kvmppc_subarch_vcpu_init(vcpu); 774 return ret; 775 } 776 777 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 778 { 779 kvmppc_mmu_destroy(vcpu); 780 kvmppc_subarch_vcpu_uninit(vcpu); 781 } 782 783 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 784 { 785 #ifdef CONFIG_BOOKE 786 /* 787 * vrsave (formerly usprg0) isn't used by Linux, but may 788 * be used by the guest. 789 * 790 * On non-booke this is associated with Altivec and 791 * is handled by code in book3s.c. 792 */ 793 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 794 #endif 795 kvmppc_core_vcpu_load(vcpu, cpu); 796 } 797 798 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 799 { 800 kvmppc_core_vcpu_put(vcpu); 801 #ifdef CONFIG_BOOKE 802 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 803 #endif 804 } 805 806 /* 807 * irq_bypass_add_producer and irq_bypass_del_producer are only 808 * useful if the architecture supports PCI passthrough. 809 * irq_bypass_stop and irq_bypass_start are not needed and so 810 * kvm_ops are not defined for them. 811 */ 812 bool kvm_arch_has_irq_bypass(void) 813 { 814 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 815 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 816 } 817 818 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 819 struct irq_bypass_producer *prod) 820 { 821 struct kvm_kernel_irqfd *irqfd = 822 container_of(cons, struct kvm_kernel_irqfd, consumer); 823 struct kvm *kvm = irqfd->kvm; 824 825 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 826 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 827 828 return 0; 829 } 830 831 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 832 struct irq_bypass_producer *prod) 833 { 834 struct kvm_kernel_irqfd *irqfd = 835 container_of(cons, struct kvm_kernel_irqfd, consumer); 836 struct kvm *kvm = irqfd->kvm; 837 838 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 839 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 840 } 841 842 #ifdef CONFIG_VSX 843 static inline int kvmppc_get_vsr_dword_offset(int index) 844 { 845 int offset; 846 847 if ((index != 0) && (index != 1)) 848 return -1; 849 850 #ifdef __BIG_ENDIAN 851 offset = index; 852 #else 853 offset = 1 - index; 854 #endif 855 856 return offset; 857 } 858 859 static inline int kvmppc_get_vsr_word_offset(int index) 860 { 861 int offset; 862 863 if ((index > 3) || (index < 0)) 864 return -1; 865 866 #ifdef __BIG_ENDIAN 867 offset = index; 868 #else 869 offset = 3 - index; 870 #endif 871 return offset; 872 } 873 874 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 875 u64 gpr) 876 { 877 union kvmppc_one_reg val; 878 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 879 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 880 881 if (offset == -1) 882 return; 883 884 if (vcpu->arch.mmio_vsx_tx_sx_enabled) { 885 val.vval = VCPU_VSX_VR(vcpu, index); 886 val.vsxval[offset] = gpr; 887 VCPU_VSX_VR(vcpu, index) = val.vval; 888 } else { 889 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 890 } 891 } 892 893 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 894 u64 gpr) 895 { 896 union kvmppc_one_reg val; 897 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 898 899 if (vcpu->arch.mmio_vsx_tx_sx_enabled) { 900 val.vval = VCPU_VSX_VR(vcpu, index); 901 val.vsxval[0] = gpr; 902 val.vsxval[1] = gpr; 903 VCPU_VSX_VR(vcpu, index) = val.vval; 904 } else { 905 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 906 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 907 } 908 } 909 910 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 911 u32 gpr32) 912 { 913 union kvmppc_one_reg val; 914 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 915 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 916 int dword_offset, word_offset; 917 918 if (offset == -1) 919 return; 920 921 if (vcpu->arch.mmio_vsx_tx_sx_enabled) { 922 val.vval = VCPU_VSX_VR(vcpu, index); 923 val.vsx32val[offset] = gpr32; 924 VCPU_VSX_VR(vcpu, index) = val.vval; 925 } else { 926 dword_offset = offset / 2; 927 word_offset = offset % 2; 928 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 929 val.vsx32val[word_offset] = gpr32; 930 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 931 } 932 } 933 #endif /* CONFIG_VSX */ 934 935 #ifdef CONFIG_ALTIVEC 936 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 937 u64 gpr) 938 { 939 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 940 u32 hi, lo; 941 u32 di; 942 943 #ifdef __BIG_ENDIAN 944 hi = gpr >> 32; 945 lo = gpr & 0xffffffff; 946 #else 947 lo = gpr >> 32; 948 hi = gpr & 0xffffffff; 949 #endif 950 951 di = 2 - vcpu->arch.mmio_vmx_copy_nums; /* doubleword index */ 952 if (di > 1) 953 return; 954 955 if (vcpu->arch.mmio_host_swabbed) 956 di = 1 - di; 957 958 VCPU_VSX_VR(vcpu, index).u[di * 2] = hi; 959 VCPU_VSX_VR(vcpu, index).u[di * 2 + 1] = lo; 960 } 961 #endif /* CONFIG_ALTIVEC */ 962 963 #ifdef CONFIG_PPC_FPU 964 static inline u64 sp_to_dp(u32 fprs) 965 { 966 u64 fprd; 967 968 preempt_disable(); 969 enable_kernel_fp(); 970 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 971 : "fr0"); 972 preempt_enable(); 973 return fprd; 974 } 975 976 static inline u32 dp_to_sp(u64 fprd) 977 { 978 u32 fprs; 979 980 preempt_disable(); 981 enable_kernel_fp(); 982 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 983 : "fr0"); 984 preempt_enable(); 985 return fprs; 986 } 987 988 #else 989 #define sp_to_dp(x) (x) 990 #define dp_to_sp(x) (x) 991 #endif /* CONFIG_PPC_FPU */ 992 993 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 994 struct kvm_run *run) 995 { 996 u64 uninitialized_var(gpr); 997 998 if (run->mmio.len > sizeof(gpr)) { 999 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1000 return; 1001 } 1002 1003 if (!vcpu->arch.mmio_host_swabbed) { 1004 switch (run->mmio.len) { 1005 case 8: gpr = *(u64 *)run->mmio.data; break; 1006 case 4: gpr = *(u32 *)run->mmio.data; break; 1007 case 2: gpr = *(u16 *)run->mmio.data; break; 1008 case 1: gpr = *(u8 *)run->mmio.data; break; 1009 } 1010 } else { 1011 switch (run->mmio.len) { 1012 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1013 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1014 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1015 case 1: gpr = *(u8 *)run->mmio.data; break; 1016 } 1017 } 1018 1019 /* conversion between single and double precision */ 1020 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1021 gpr = sp_to_dp(gpr); 1022 1023 if (vcpu->arch.mmio_sign_extend) { 1024 switch (run->mmio.len) { 1025 #ifdef CONFIG_PPC64 1026 case 4: 1027 gpr = (s64)(s32)gpr; 1028 break; 1029 #endif 1030 case 2: 1031 gpr = (s64)(s16)gpr; 1032 break; 1033 case 1: 1034 gpr = (s64)(s8)gpr; 1035 break; 1036 } 1037 } 1038 1039 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1040 case KVM_MMIO_REG_GPR: 1041 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1042 break; 1043 case KVM_MMIO_REG_FPR: 1044 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1045 break; 1046 #ifdef CONFIG_PPC_BOOK3S 1047 case KVM_MMIO_REG_QPR: 1048 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1049 break; 1050 case KVM_MMIO_REG_FQPR: 1051 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1052 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1053 break; 1054 #endif 1055 #ifdef CONFIG_VSX 1056 case KVM_MMIO_REG_VSX: 1057 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD) 1058 kvmppc_set_vsr_dword(vcpu, gpr); 1059 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD) 1060 kvmppc_set_vsr_word(vcpu, gpr); 1061 else if (vcpu->arch.mmio_vsx_copy_type == 1062 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1063 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1064 break; 1065 #endif 1066 #ifdef CONFIG_ALTIVEC 1067 case KVM_MMIO_REG_VMX: 1068 kvmppc_set_vmx_dword(vcpu, gpr); 1069 break; 1070 #endif 1071 default: 1072 BUG(); 1073 } 1074 } 1075 1076 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1077 unsigned int rt, unsigned int bytes, 1078 int is_default_endian, int sign_extend) 1079 { 1080 int idx, ret; 1081 bool host_swabbed; 1082 1083 /* Pity C doesn't have a logical XOR operator */ 1084 if (kvmppc_need_byteswap(vcpu)) { 1085 host_swabbed = is_default_endian; 1086 } else { 1087 host_swabbed = !is_default_endian; 1088 } 1089 1090 if (bytes > sizeof(run->mmio.data)) { 1091 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1092 run->mmio.len); 1093 } 1094 1095 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1096 run->mmio.len = bytes; 1097 run->mmio.is_write = 0; 1098 1099 vcpu->arch.io_gpr = rt; 1100 vcpu->arch.mmio_host_swabbed = host_swabbed; 1101 vcpu->mmio_needed = 1; 1102 vcpu->mmio_is_write = 0; 1103 vcpu->arch.mmio_sign_extend = sign_extend; 1104 1105 idx = srcu_read_lock(&vcpu->kvm->srcu); 1106 1107 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1108 bytes, &run->mmio.data); 1109 1110 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1111 1112 if (!ret) { 1113 kvmppc_complete_mmio_load(vcpu, run); 1114 vcpu->mmio_needed = 0; 1115 return EMULATE_DONE; 1116 } 1117 1118 return EMULATE_DO_MMIO; 1119 } 1120 1121 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1122 unsigned int rt, unsigned int bytes, 1123 int is_default_endian) 1124 { 1125 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 1126 } 1127 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1128 1129 /* Same as above, but sign extends */ 1130 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 1131 unsigned int rt, unsigned int bytes, 1132 int is_default_endian) 1133 { 1134 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 1135 } 1136 1137 #ifdef CONFIG_VSX 1138 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1139 unsigned int rt, unsigned int bytes, 1140 int is_default_endian, int mmio_sign_extend) 1141 { 1142 enum emulation_result emulated = EMULATE_DONE; 1143 1144 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1145 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1146 return EMULATE_FAIL; 1147 1148 while (vcpu->arch.mmio_vsx_copy_nums) { 1149 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1150 is_default_endian, mmio_sign_extend); 1151 1152 if (emulated != EMULATE_DONE) 1153 break; 1154 1155 vcpu->arch.paddr_accessed += run->mmio.len; 1156 1157 vcpu->arch.mmio_vsx_copy_nums--; 1158 vcpu->arch.mmio_vsx_offset++; 1159 } 1160 return emulated; 1161 } 1162 #endif /* CONFIG_VSX */ 1163 1164 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1165 u64 val, unsigned int bytes, int is_default_endian) 1166 { 1167 void *data = run->mmio.data; 1168 int idx, ret; 1169 bool host_swabbed; 1170 1171 /* Pity C doesn't have a logical XOR operator */ 1172 if (kvmppc_need_byteswap(vcpu)) { 1173 host_swabbed = is_default_endian; 1174 } else { 1175 host_swabbed = !is_default_endian; 1176 } 1177 1178 if (bytes > sizeof(run->mmio.data)) { 1179 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1180 run->mmio.len); 1181 } 1182 1183 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1184 run->mmio.len = bytes; 1185 run->mmio.is_write = 1; 1186 vcpu->mmio_needed = 1; 1187 vcpu->mmio_is_write = 1; 1188 1189 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1190 val = dp_to_sp(val); 1191 1192 /* Store the value at the lowest bytes in 'data'. */ 1193 if (!host_swabbed) { 1194 switch (bytes) { 1195 case 8: *(u64 *)data = val; break; 1196 case 4: *(u32 *)data = val; break; 1197 case 2: *(u16 *)data = val; break; 1198 case 1: *(u8 *)data = val; break; 1199 } 1200 } else { 1201 switch (bytes) { 1202 case 8: *(u64 *)data = swab64(val); break; 1203 case 4: *(u32 *)data = swab32(val); break; 1204 case 2: *(u16 *)data = swab16(val); break; 1205 case 1: *(u8 *)data = val; break; 1206 } 1207 } 1208 1209 idx = srcu_read_lock(&vcpu->kvm->srcu); 1210 1211 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1212 bytes, &run->mmio.data); 1213 1214 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1215 1216 if (!ret) { 1217 vcpu->mmio_needed = 0; 1218 return EMULATE_DONE; 1219 } 1220 1221 return EMULATE_DO_MMIO; 1222 } 1223 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1224 1225 #ifdef CONFIG_VSX 1226 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1227 { 1228 u32 dword_offset, word_offset; 1229 union kvmppc_one_reg reg; 1230 int vsx_offset = 0; 1231 int copy_type = vcpu->arch.mmio_vsx_copy_type; 1232 int result = 0; 1233 1234 switch (copy_type) { 1235 case KVMPPC_VSX_COPY_DWORD: 1236 vsx_offset = 1237 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1238 1239 if (vsx_offset == -1) { 1240 result = -1; 1241 break; 1242 } 1243 1244 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) { 1245 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1246 } else { 1247 reg.vval = VCPU_VSX_VR(vcpu, rs); 1248 *val = reg.vsxval[vsx_offset]; 1249 } 1250 break; 1251 1252 case KVMPPC_VSX_COPY_WORD: 1253 vsx_offset = 1254 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1255 1256 if (vsx_offset == -1) { 1257 result = -1; 1258 break; 1259 } 1260 1261 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) { 1262 dword_offset = vsx_offset / 2; 1263 word_offset = vsx_offset % 2; 1264 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1265 *val = reg.vsx32val[word_offset]; 1266 } else { 1267 reg.vval = VCPU_VSX_VR(vcpu, rs); 1268 *val = reg.vsx32val[vsx_offset]; 1269 } 1270 break; 1271 1272 default: 1273 result = -1; 1274 break; 1275 } 1276 1277 return result; 1278 } 1279 1280 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1281 int rs, unsigned int bytes, int is_default_endian) 1282 { 1283 u64 val; 1284 enum emulation_result emulated = EMULATE_DONE; 1285 1286 vcpu->arch.io_gpr = rs; 1287 1288 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1289 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1290 return EMULATE_FAIL; 1291 1292 while (vcpu->arch.mmio_vsx_copy_nums) { 1293 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1294 return EMULATE_FAIL; 1295 1296 emulated = kvmppc_handle_store(run, vcpu, 1297 val, bytes, is_default_endian); 1298 1299 if (emulated != EMULATE_DONE) 1300 break; 1301 1302 vcpu->arch.paddr_accessed += run->mmio.len; 1303 1304 vcpu->arch.mmio_vsx_copy_nums--; 1305 vcpu->arch.mmio_vsx_offset++; 1306 } 1307 1308 return emulated; 1309 } 1310 1311 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu, 1312 struct kvm_run *run) 1313 { 1314 enum emulation_result emulated = EMULATE_FAIL; 1315 int r; 1316 1317 vcpu->arch.paddr_accessed += run->mmio.len; 1318 1319 if (!vcpu->mmio_is_write) { 1320 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr, 1321 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1322 } else { 1323 emulated = kvmppc_handle_vsx_store(run, vcpu, 1324 vcpu->arch.io_gpr, run->mmio.len, 1); 1325 } 1326 1327 switch (emulated) { 1328 case EMULATE_DO_MMIO: 1329 run->exit_reason = KVM_EXIT_MMIO; 1330 r = RESUME_HOST; 1331 break; 1332 case EMULATE_FAIL: 1333 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1334 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1335 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1336 r = RESUME_HOST; 1337 break; 1338 default: 1339 r = RESUME_GUEST; 1340 break; 1341 } 1342 return r; 1343 } 1344 #endif /* CONFIG_VSX */ 1345 1346 #ifdef CONFIG_ALTIVEC 1347 /* handle quadword load access in two halves */ 1348 int kvmppc_handle_load128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu, 1349 unsigned int rt, int is_default_endian) 1350 { 1351 enum emulation_result emulated = EMULATE_DONE; 1352 1353 while (vcpu->arch.mmio_vmx_copy_nums) { 1354 emulated = __kvmppc_handle_load(run, vcpu, rt, 8, 1355 is_default_endian, 0); 1356 1357 if (emulated != EMULATE_DONE) 1358 break; 1359 1360 vcpu->arch.paddr_accessed += run->mmio.len; 1361 vcpu->arch.mmio_vmx_copy_nums--; 1362 } 1363 1364 return emulated; 1365 } 1366 1367 static inline int kvmppc_get_vmx_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1368 { 1369 vector128 vrs = VCPU_VSX_VR(vcpu, rs); 1370 u32 di; 1371 u64 w0, w1; 1372 1373 di = 2 - vcpu->arch.mmio_vmx_copy_nums; /* doubleword index */ 1374 if (di > 1) 1375 return -1; 1376 1377 if (vcpu->arch.mmio_host_swabbed) 1378 di = 1 - di; 1379 1380 w0 = vrs.u[di * 2]; 1381 w1 = vrs.u[di * 2 + 1]; 1382 1383 #ifdef __BIG_ENDIAN 1384 *val = (w0 << 32) | w1; 1385 #else 1386 *val = (w1 << 32) | w0; 1387 #endif 1388 return 0; 1389 } 1390 1391 /* handle quadword store in two halves */ 1392 int kvmppc_handle_store128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu, 1393 unsigned int rs, int is_default_endian) 1394 { 1395 u64 val = 0; 1396 enum emulation_result emulated = EMULATE_DONE; 1397 1398 vcpu->arch.io_gpr = rs; 1399 1400 while (vcpu->arch.mmio_vmx_copy_nums) { 1401 if (kvmppc_get_vmx_data(vcpu, rs, &val) == -1) 1402 return EMULATE_FAIL; 1403 1404 emulated = kvmppc_handle_store(run, vcpu, val, 8, 1405 is_default_endian); 1406 if (emulated != EMULATE_DONE) 1407 break; 1408 1409 vcpu->arch.paddr_accessed += run->mmio.len; 1410 vcpu->arch.mmio_vmx_copy_nums--; 1411 } 1412 1413 return emulated; 1414 } 1415 1416 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu, 1417 struct kvm_run *run) 1418 { 1419 enum emulation_result emulated = EMULATE_FAIL; 1420 int r; 1421 1422 vcpu->arch.paddr_accessed += run->mmio.len; 1423 1424 if (!vcpu->mmio_is_write) { 1425 emulated = kvmppc_handle_load128_by2x64(run, vcpu, 1426 vcpu->arch.io_gpr, 1); 1427 } else { 1428 emulated = kvmppc_handle_store128_by2x64(run, vcpu, 1429 vcpu->arch.io_gpr, 1); 1430 } 1431 1432 switch (emulated) { 1433 case EMULATE_DO_MMIO: 1434 run->exit_reason = KVM_EXIT_MMIO; 1435 r = RESUME_HOST; 1436 break; 1437 case EMULATE_FAIL: 1438 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1439 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1440 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1441 r = RESUME_HOST; 1442 break; 1443 default: 1444 r = RESUME_GUEST; 1445 break; 1446 } 1447 return r; 1448 } 1449 #endif /* CONFIG_ALTIVEC */ 1450 1451 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1452 { 1453 int r = 0; 1454 union kvmppc_one_reg val; 1455 int size; 1456 1457 size = one_reg_size(reg->id); 1458 if (size > sizeof(val)) 1459 return -EINVAL; 1460 1461 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1462 if (r == -EINVAL) { 1463 r = 0; 1464 switch (reg->id) { 1465 #ifdef CONFIG_ALTIVEC 1466 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1467 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1468 r = -ENXIO; 1469 break; 1470 } 1471 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1472 break; 1473 case KVM_REG_PPC_VSCR: 1474 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1475 r = -ENXIO; 1476 break; 1477 } 1478 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1479 break; 1480 case KVM_REG_PPC_VRSAVE: 1481 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1482 break; 1483 #endif /* CONFIG_ALTIVEC */ 1484 default: 1485 r = -EINVAL; 1486 break; 1487 } 1488 } 1489 1490 if (r) 1491 return r; 1492 1493 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1494 r = -EFAULT; 1495 1496 return r; 1497 } 1498 1499 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1500 { 1501 int r; 1502 union kvmppc_one_reg val; 1503 int size; 1504 1505 size = one_reg_size(reg->id); 1506 if (size > sizeof(val)) 1507 return -EINVAL; 1508 1509 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1510 return -EFAULT; 1511 1512 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1513 if (r == -EINVAL) { 1514 r = 0; 1515 switch (reg->id) { 1516 #ifdef CONFIG_ALTIVEC 1517 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1518 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1519 r = -ENXIO; 1520 break; 1521 } 1522 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1523 break; 1524 case KVM_REG_PPC_VSCR: 1525 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1526 r = -ENXIO; 1527 break; 1528 } 1529 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1530 break; 1531 case KVM_REG_PPC_VRSAVE: 1532 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1533 r = -ENXIO; 1534 break; 1535 } 1536 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1537 break; 1538 #endif /* CONFIG_ALTIVEC */ 1539 default: 1540 r = -EINVAL; 1541 break; 1542 } 1543 } 1544 1545 return r; 1546 } 1547 1548 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1549 { 1550 int r; 1551 1552 vcpu_load(vcpu); 1553 1554 if (vcpu->mmio_needed) { 1555 vcpu->mmio_needed = 0; 1556 if (!vcpu->mmio_is_write) 1557 kvmppc_complete_mmio_load(vcpu, run); 1558 #ifdef CONFIG_VSX 1559 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1560 vcpu->arch.mmio_vsx_copy_nums--; 1561 vcpu->arch.mmio_vsx_offset++; 1562 } 1563 1564 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1565 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run); 1566 if (r == RESUME_HOST) { 1567 vcpu->mmio_needed = 1; 1568 goto out; 1569 } 1570 } 1571 #endif 1572 #ifdef CONFIG_ALTIVEC 1573 if (vcpu->arch.mmio_vmx_copy_nums > 0) 1574 vcpu->arch.mmio_vmx_copy_nums--; 1575 1576 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1577 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run); 1578 if (r == RESUME_HOST) { 1579 vcpu->mmio_needed = 1; 1580 goto out; 1581 } 1582 } 1583 #endif 1584 } else if (vcpu->arch.osi_needed) { 1585 u64 *gprs = run->osi.gprs; 1586 int i; 1587 1588 for (i = 0; i < 32; i++) 1589 kvmppc_set_gpr(vcpu, i, gprs[i]); 1590 vcpu->arch.osi_needed = 0; 1591 } else if (vcpu->arch.hcall_needed) { 1592 int i; 1593 1594 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1595 for (i = 0; i < 9; ++i) 1596 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1597 vcpu->arch.hcall_needed = 0; 1598 #ifdef CONFIG_BOOKE 1599 } else if (vcpu->arch.epr_needed) { 1600 kvmppc_set_epr(vcpu, run->epr.epr); 1601 vcpu->arch.epr_needed = 0; 1602 #endif 1603 } 1604 1605 kvm_sigset_activate(vcpu); 1606 1607 if (run->immediate_exit) 1608 r = -EINTR; 1609 else 1610 r = kvmppc_vcpu_run(run, vcpu); 1611 1612 kvm_sigset_deactivate(vcpu); 1613 1614 #ifdef CONFIG_ALTIVEC 1615 out: 1616 #endif 1617 vcpu_put(vcpu); 1618 return r; 1619 } 1620 1621 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1622 { 1623 if (irq->irq == KVM_INTERRUPT_UNSET) { 1624 kvmppc_core_dequeue_external(vcpu); 1625 return 0; 1626 } 1627 1628 kvmppc_core_queue_external(vcpu, irq); 1629 1630 kvm_vcpu_kick(vcpu); 1631 1632 return 0; 1633 } 1634 1635 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1636 struct kvm_enable_cap *cap) 1637 { 1638 int r; 1639 1640 if (cap->flags) 1641 return -EINVAL; 1642 1643 switch (cap->cap) { 1644 case KVM_CAP_PPC_OSI: 1645 r = 0; 1646 vcpu->arch.osi_enabled = true; 1647 break; 1648 case KVM_CAP_PPC_PAPR: 1649 r = 0; 1650 vcpu->arch.papr_enabled = true; 1651 break; 1652 case KVM_CAP_PPC_EPR: 1653 r = 0; 1654 if (cap->args[0]) 1655 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1656 else 1657 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1658 break; 1659 #ifdef CONFIG_BOOKE 1660 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1661 r = 0; 1662 vcpu->arch.watchdog_enabled = true; 1663 break; 1664 #endif 1665 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1666 case KVM_CAP_SW_TLB: { 1667 struct kvm_config_tlb cfg; 1668 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1669 1670 r = -EFAULT; 1671 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1672 break; 1673 1674 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1675 break; 1676 } 1677 #endif 1678 #ifdef CONFIG_KVM_MPIC 1679 case KVM_CAP_IRQ_MPIC: { 1680 struct fd f; 1681 struct kvm_device *dev; 1682 1683 r = -EBADF; 1684 f = fdget(cap->args[0]); 1685 if (!f.file) 1686 break; 1687 1688 r = -EPERM; 1689 dev = kvm_device_from_filp(f.file); 1690 if (dev) 1691 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1692 1693 fdput(f); 1694 break; 1695 } 1696 #endif 1697 #ifdef CONFIG_KVM_XICS 1698 case KVM_CAP_IRQ_XICS: { 1699 struct fd f; 1700 struct kvm_device *dev; 1701 1702 r = -EBADF; 1703 f = fdget(cap->args[0]); 1704 if (!f.file) 1705 break; 1706 1707 r = -EPERM; 1708 dev = kvm_device_from_filp(f.file); 1709 if (dev) { 1710 if (xive_enabled()) 1711 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1712 else 1713 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1714 } 1715 1716 fdput(f); 1717 break; 1718 } 1719 #endif /* CONFIG_KVM_XICS */ 1720 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1721 case KVM_CAP_PPC_FWNMI: 1722 r = -EINVAL; 1723 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1724 break; 1725 r = 0; 1726 vcpu->kvm->arch.fwnmi_enabled = true; 1727 break; 1728 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1729 default: 1730 r = -EINVAL; 1731 break; 1732 } 1733 1734 if (!r) 1735 r = kvmppc_sanity_check(vcpu); 1736 1737 return r; 1738 } 1739 1740 bool kvm_arch_intc_initialized(struct kvm *kvm) 1741 { 1742 #ifdef CONFIG_KVM_MPIC 1743 if (kvm->arch.mpic) 1744 return true; 1745 #endif 1746 #ifdef CONFIG_KVM_XICS 1747 if (kvm->arch.xics || kvm->arch.xive) 1748 return true; 1749 #endif 1750 return false; 1751 } 1752 1753 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1754 struct kvm_mp_state *mp_state) 1755 { 1756 return -EINVAL; 1757 } 1758 1759 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1760 struct kvm_mp_state *mp_state) 1761 { 1762 return -EINVAL; 1763 } 1764 1765 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1766 unsigned int ioctl, unsigned long arg) 1767 { 1768 struct kvm_vcpu *vcpu = filp->private_data; 1769 void __user *argp = (void __user *)arg; 1770 1771 if (ioctl == KVM_INTERRUPT) { 1772 struct kvm_interrupt irq; 1773 if (copy_from_user(&irq, argp, sizeof(irq))) 1774 return -EFAULT; 1775 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 1776 } 1777 return -ENOIOCTLCMD; 1778 } 1779 1780 long kvm_arch_vcpu_ioctl(struct file *filp, 1781 unsigned int ioctl, unsigned long arg) 1782 { 1783 struct kvm_vcpu *vcpu = filp->private_data; 1784 void __user *argp = (void __user *)arg; 1785 long r; 1786 1787 vcpu_load(vcpu); 1788 1789 switch (ioctl) { 1790 case KVM_ENABLE_CAP: 1791 { 1792 struct kvm_enable_cap cap; 1793 r = -EFAULT; 1794 if (copy_from_user(&cap, argp, sizeof(cap))) 1795 goto out; 1796 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 1797 break; 1798 } 1799 1800 case KVM_SET_ONE_REG: 1801 case KVM_GET_ONE_REG: 1802 { 1803 struct kvm_one_reg reg; 1804 r = -EFAULT; 1805 if (copy_from_user(®, argp, sizeof(reg))) 1806 goto out; 1807 if (ioctl == KVM_SET_ONE_REG) 1808 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 1809 else 1810 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 1811 break; 1812 } 1813 1814 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1815 case KVM_DIRTY_TLB: { 1816 struct kvm_dirty_tlb dirty; 1817 r = -EFAULT; 1818 if (copy_from_user(&dirty, argp, sizeof(dirty))) 1819 goto out; 1820 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 1821 break; 1822 } 1823 #endif 1824 default: 1825 r = -EINVAL; 1826 } 1827 1828 out: 1829 vcpu_put(vcpu); 1830 return r; 1831 } 1832 1833 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1834 { 1835 return VM_FAULT_SIGBUS; 1836 } 1837 1838 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 1839 { 1840 u32 inst_nop = 0x60000000; 1841 #ifdef CONFIG_KVM_BOOKE_HV 1842 u32 inst_sc1 = 0x44000022; 1843 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 1844 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 1845 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 1846 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1847 #else 1848 u32 inst_lis = 0x3c000000; 1849 u32 inst_ori = 0x60000000; 1850 u32 inst_sc = 0x44000002; 1851 u32 inst_imm_mask = 0xffff; 1852 1853 /* 1854 * The hypercall to get into KVM from within guest context is as 1855 * follows: 1856 * 1857 * lis r0, r0, KVM_SC_MAGIC_R0@h 1858 * ori r0, KVM_SC_MAGIC_R0@l 1859 * sc 1860 * nop 1861 */ 1862 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 1863 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 1864 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 1865 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1866 #endif 1867 1868 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 1869 1870 return 0; 1871 } 1872 1873 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 1874 bool line_status) 1875 { 1876 if (!irqchip_in_kernel(kvm)) 1877 return -ENXIO; 1878 1879 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1880 irq_event->irq, irq_event->level, 1881 line_status); 1882 return 0; 1883 } 1884 1885 1886 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1887 struct kvm_enable_cap *cap) 1888 { 1889 int r; 1890 1891 if (cap->flags) 1892 return -EINVAL; 1893 1894 switch (cap->cap) { 1895 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 1896 case KVM_CAP_PPC_ENABLE_HCALL: { 1897 unsigned long hcall = cap->args[0]; 1898 1899 r = -EINVAL; 1900 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 1901 cap->args[1] > 1) 1902 break; 1903 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 1904 break; 1905 if (cap->args[1]) 1906 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 1907 else 1908 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 1909 r = 0; 1910 break; 1911 } 1912 case KVM_CAP_PPC_SMT: { 1913 unsigned long mode = cap->args[0]; 1914 unsigned long flags = cap->args[1]; 1915 1916 r = -EINVAL; 1917 if (kvm->arch.kvm_ops->set_smt_mode) 1918 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 1919 break; 1920 } 1921 #endif 1922 default: 1923 r = -EINVAL; 1924 break; 1925 } 1926 1927 return r; 1928 } 1929 1930 #ifdef CONFIG_PPC_BOOK3S_64 1931 /* 1932 * These functions check whether the underlying hardware is safe 1933 * against attacks based on observing the effects of speculatively 1934 * executed instructions, and whether it supplies instructions for 1935 * use in workarounds. The information comes from firmware, either 1936 * via the device tree on powernv platforms or from an hcall on 1937 * pseries platforms. 1938 */ 1939 #ifdef CONFIG_PPC_PSERIES 1940 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 1941 { 1942 struct h_cpu_char_result c; 1943 unsigned long rc; 1944 1945 if (!machine_is(pseries)) 1946 return -ENOTTY; 1947 1948 rc = plpar_get_cpu_characteristics(&c); 1949 if (rc == H_SUCCESS) { 1950 cp->character = c.character; 1951 cp->behaviour = c.behaviour; 1952 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 1953 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 1954 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 1955 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 1956 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 1957 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 1958 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 1959 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 1960 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 1961 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 1962 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1963 } 1964 return 0; 1965 } 1966 #else 1967 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 1968 { 1969 return -ENOTTY; 1970 } 1971 #endif 1972 1973 static inline bool have_fw_feat(struct device_node *fw_features, 1974 const char *state, const char *name) 1975 { 1976 struct device_node *np; 1977 bool r = false; 1978 1979 np = of_get_child_by_name(fw_features, name); 1980 if (np) { 1981 r = of_property_read_bool(np, state); 1982 of_node_put(np); 1983 } 1984 return r; 1985 } 1986 1987 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 1988 { 1989 struct device_node *np, *fw_features; 1990 int r; 1991 1992 memset(cp, 0, sizeof(*cp)); 1993 r = pseries_get_cpu_char(cp); 1994 if (r != -ENOTTY) 1995 return r; 1996 1997 np = of_find_node_by_name(NULL, "ibm,opal"); 1998 if (np) { 1999 fw_features = of_get_child_by_name(np, "fw-features"); 2000 of_node_put(np); 2001 if (!fw_features) 2002 return 0; 2003 if (have_fw_feat(fw_features, "enabled", 2004 "inst-spec-barrier-ori31,31,0")) 2005 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2006 if (have_fw_feat(fw_features, "enabled", 2007 "fw-bcctrl-serialized")) 2008 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2009 if (have_fw_feat(fw_features, "enabled", 2010 "inst-l1d-flush-ori30,30,0")) 2011 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2012 if (have_fw_feat(fw_features, "enabled", 2013 "inst-l1d-flush-trig2")) 2014 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2015 if (have_fw_feat(fw_features, "enabled", 2016 "fw-l1d-thread-split")) 2017 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2018 if (have_fw_feat(fw_features, "enabled", 2019 "fw-count-cache-disabled")) 2020 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2021 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2022 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2023 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2024 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2025 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2026 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2027 2028 if (have_fw_feat(fw_features, "enabled", 2029 "speculation-policy-favor-security")) 2030 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2031 if (!have_fw_feat(fw_features, "disabled", 2032 "needs-l1d-flush-msr-pr-0-to-1")) 2033 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2034 if (!have_fw_feat(fw_features, "disabled", 2035 "needs-spec-barrier-for-bound-checks")) 2036 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2037 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2038 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2039 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2040 2041 of_node_put(fw_features); 2042 } 2043 2044 return 0; 2045 } 2046 #endif 2047 2048 long kvm_arch_vm_ioctl(struct file *filp, 2049 unsigned int ioctl, unsigned long arg) 2050 { 2051 struct kvm *kvm __maybe_unused = filp->private_data; 2052 void __user *argp = (void __user *)arg; 2053 long r; 2054 2055 switch (ioctl) { 2056 case KVM_PPC_GET_PVINFO: { 2057 struct kvm_ppc_pvinfo pvinfo; 2058 memset(&pvinfo, 0, sizeof(pvinfo)); 2059 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2060 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2061 r = -EFAULT; 2062 goto out; 2063 } 2064 2065 break; 2066 } 2067 case KVM_ENABLE_CAP: 2068 { 2069 struct kvm_enable_cap cap; 2070 r = -EFAULT; 2071 if (copy_from_user(&cap, argp, sizeof(cap))) 2072 goto out; 2073 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 2074 break; 2075 } 2076 #ifdef CONFIG_SPAPR_TCE_IOMMU 2077 case KVM_CREATE_SPAPR_TCE_64: { 2078 struct kvm_create_spapr_tce_64 create_tce_64; 2079 2080 r = -EFAULT; 2081 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2082 goto out; 2083 if (create_tce_64.flags) { 2084 r = -EINVAL; 2085 goto out; 2086 } 2087 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2088 goto out; 2089 } 2090 case KVM_CREATE_SPAPR_TCE: { 2091 struct kvm_create_spapr_tce create_tce; 2092 struct kvm_create_spapr_tce_64 create_tce_64; 2093 2094 r = -EFAULT; 2095 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2096 goto out; 2097 2098 create_tce_64.liobn = create_tce.liobn; 2099 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2100 create_tce_64.offset = 0; 2101 create_tce_64.size = create_tce.window_size >> 2102 IOMMU_PAGE_SHIFT_4K; 2103 create_tce_64.flags = 0; 2104 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2105 goto out; 2106 } 2107 #endif 2108 #ifdef CONFIG_PPC_BOOK3S_64 2109 case KVM_PPC_GET_SMMU_INFO: { 2110 struct kvm_ppc_smmu_info info; 2111 struct kvm *kvm = filp->private_data; 2112 2113 memset(&info, 0, sizeof(info)); 2114 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2115 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2116 r = -EFAULT; 2117 break; 2118 } 2119 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2120 struct kvm *kvm = filp->private_data; 2121 2122 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2123 break; 2124 } 2125 case KVM_PPC_CONFIGURE_V3_MMU: { 2126 struct kvm *kvm = filp->private_data; 2127 struct kvm_ppc_mmuv3_cfg cfg; 2128 2129 r = -EINVAL; 2130 if (!kvm->arch.kvm_ops->configure_mmu) 2131 goto out; 2132 r = -EFAULT; 2133 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2134 goto out; 2135 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2136 break; 2137 } 2138 case KVM_PPC_GET_RMMU_INFO: { 2139 struct kvm *kvm = filp->private_data; 2140 struct kvm_ppc_rmmu_info info; 2141 2142 r = -EINVAL; 2143 if (!kvm->arch.kvm_ops->get_rmmu_info) 2144 goto out; 2145 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2146 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2147 r = -EFAULT; 2148 break; 2149 } 2150 case KVM_PPC_GET_CPU_CHAR: { 2151 struct kvm_ppc_cpu_char cpuchar; 2152 2153 r = kvmppc_get_cpu_char(&cpuchar); 2154 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2155 r = -EFAULT; 2156 break; 2157 } 2158 default: { 2159 struct kvm *kvm = filp->private_data; 2160 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2161 } 2162 #else /* CONFIG_PPC_BOOK3S_64 */ 2163 default: 2164 r = -ENOTTY; 2165 #endif 2166 } 2167 out: 2168 return r; 2169 } 2170 2171 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2172 static unsigned long nr_lpids; 2173 2174 long kvmppc_alloc_lpid(void) 2175 { 2176 long lpid; 2177 2178 do { 2179 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2180 if (lpid >= nr_lpids) { 2181 pr_err("%s: No LPIDs free\n", __func__); 2182 return -ENOMEM; 2183 } 2184 } while (test_and_set_bit(lpid, lpid_inuse)); 2185 2186 return lpid; 2187 } 2188 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2189 2190 void kvmppc_claim_lpid(long lpid) 2191 { 2192 set_bit(lpid, lpid_inuse); 2193 } 2194 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2195 2196 void kvmppc_free_lpid(long lpid) 2197 { 2198 clear_bit(lpid, lpid_inuse); 2199 } 2200 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2201 2202 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2203 { 2204 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2205 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2206 } 2207 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2208 2209 int kvm_arch_init(void *opaque) 2210 { 2211 return 0; 2212 } 2213 2214 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2215