xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision ba61bb17)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 #ifdef CONFIG_PPC_PSERIES
43 #include <asm/hvcall.h>
44 #include <asm/plpar_wrappers.h>
45 #endif
46 
47 #include "timing.h"
48 #include "irq.h"
49 #include "../mm/mmu_decl.h"
50 
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 
54 struct kvmppc_ops *kvmppc_hv_ops;
55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56 struct kvmppc_ops *kvmppc_pr_ops;
57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
58 
59 
60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
61 {
62 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
63 }
64 
65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
66 {
67 	return false;
68 }
69 
70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
71 {
72 	return 1;
73 }
74 
75 /*
76  * Common checks before entering the guest world.  Call with interrupts
77  * disabled.
78  *
79  * returns:
80  *
81  * == 1 if we're ready to go into guest state
82  * <= 0 if we need to go back to the host with return value
83  */
84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
85 {
86 	int r;
87 
88 	WARN_ON(irqs_disabled());
89 	hard_irq_disable();
90 
91 	while (true) {
92 		if (need_resched()) {
93 			local_irq_enable();
94 			cond_resched();
95 			hard_irq_disable();
96 			continue;
97 		}
98 
99 		if (signal_pending(current)) {
100 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101 			vcpu->run->exit_reason = KVM_EXIT_INTR;
102 			r = -EINTR;
103 			break;
104 		}
105 
106 		vcpu->mode = IN_GUEST_MODE;
107 
108 		/*
109 		 * Reading vcpu->requests must happen after setting vcpu->mode,
110 		 * so we don't miss a request because the requester sees
111 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112 		 * before next entering the guest (and thus doesn't IPI).
113 		 * This also orders the write to mode from any reads
114 		 * to the page tables done while the VCPU is running.
115 		 * Please see the comment in kvm_flush_remote_tlbs.
116 		 */
117 		smp_mb();
118 
119 		if (kvm_request_pending(vcpu)) {
120 			/* Make sure we process requests preemptable */
121 			local_irq_enable();
122 			trace_kvm_check_requests(vcpu);
123 			r = kvmppc_core_check_requests(vcpu);
124 			hard_irq_disable();
125 			if (r > 0)
126 				continue;
127 			break;
128 		}
129 
130 		if (kvmppc_core_prepare_to_enter(vcpu)) {
131 			/* interrupts got enabled in between, so we
132 			   are back at square 1 */
133 			continue;
134 		}
135 
136 		guest_enter_irqoff();
137 		return 1;
138 	}
139 
140 	/* return to host */
141 	local_irq_enable();
142 	return r;
143 }
144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
145 
146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
148 {
149 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150 	int i;
151 
152 	shared->sprg0 = swab64(shared->sprg0);
153 	shared->sprg1 = swab64(shared->sprg1);
154 	shared->sprg2 = swab64(shared->sprg2);
155 	shared->sprg3 = swab64(shared->sprg3);
156 	shared->srr0 = swab64(shared->srr0);
157 	shared->srr1 = swab64(shared->srr1);
158 	shared->dar = swab64(shared->dar);
159 	shared->msr = swab64(shared->msr);
160 	shared->dsisr = swab32(shared->dsisr);
161 	shared->int_pending = swab32(shared->int_pending);
162 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163 		shared->sr[i] = swab32(shared->sr[i]);
164 }
165 #endif
166 
167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
168 {
169 	int nr = kvmppc_get_gpr(vcpu, 11);
170 	int r;
171 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175 	unsigned long r2 = 0;
176 
177 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178 		/* 32 bit mode */
179 		param1 &= 0xffffffff;
180 		param2 &= 0xffffffff;
181 		param3 &= 0xffffffff;
182 		param4 &= 0xffffffff;
183 	}
184 
185 	switch (nr) {
186 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
187 	{
188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189 		/* Book3S can be little endian, find it out here */
190 		int shared_big_endian = true;
191 		if (vcpu->arch.intr_msr & MSR_LE)
192 			shared_big_endian = false;
193 		if (shared_big_endian != vcpu->arch.shared_big_endian)
194 			kvmppc_swab_shared(vcpu);
195 		vcpu->arch.shared_big_endian = shared_big_endian;
196 #endif
197 
198 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
199 			/*
200 			 * Older versions of the Linux magic page code had
201 			 * a bug where they would map their trampoline code
202 			 * NX. If that's the case, remove !PR NX capability.
203 			 */
204 			vcpu->arch.disable_kernel_nx = true;
205 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
206 		}
207 
208 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
210 
211 #ifdef CONFIG_PPC_64K_PAGES
212 		/*
213 		 * Make sure our 4k magic page is in the same window of a 64k
214 		 * page within the guest and within the host's page.
215 		 */
216 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
217 		    ((ulong)vcpu->arch.shared & 0xf000)) {
218 			void *old_shared = vcpu->arch.shared;
219 			ulong shared = (ulong)vcpu->arch.shared;
220 			void *new_shared;
221 
222 			shared &= PAGE_MASK;
223 			shared |= vcpu->arch.magic_page_pa & 0xf000;
224 			new_shared = (void*)shared;
225 			memcpy(new_shared, old_shared, 0x1000);
226 			vcpu->arch.shared = new_shared;
227 		}
228 #endif
229 
230 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
231 
232 		r = EV_SUCCESS;
233 		break;
234 	}
235 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236 		r = EV_SUCCESS;
237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239 #endif
240 
241 		/* Second return value is in r4 */
242 		break;
243 	case EV_HCALL_TOKEN(EV_IDLE):
244 		r = EV_SUCCESS;
245 		kvm_vcpu_block(vcpu);
246 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247 		break;
248 	default:
249 		r = EV_UNIMPLEMENTED;
250 		break;
251 	}
252 
253 	kvmppc_set_gpr(vcpu, 4, r2);
254 
255 	return r;
256 }
257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
258 
259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
260 {
261 	int r = false;
262 
263 	/* We have to know what CPU to virtualize */
264 	if (!vcpu->arch.pvr)
265 		goto out;
266 
267 	/* PAPR only works with book3s_64 */
268 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269 		goto out;
270 
271 	/* HV KVM can only do PAPR mode for now */
272 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273 		goto out;
274 
275 #ifdef CONFIG_KVM_BOOKE_HV
276 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
277 		goto out;
278 #endif
279 
280 	r = true;
281 
282 out:
283 	vcpu->arch.sane = r;
284 	return r ? 0 : -EINVAL;
285 }
286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
287 
288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
289 {
290 	enum emulation_result er;
291 	int r;
292 
293 	er = kvmppc_emulate_loadstore(vcpu);
294 	switch (er) {
295 	case EMULATE_DONE:
296 		/* Future optimization: only reload non-volatiles if they were
297 		 * actually modified. */
298 		r = RESUME_GUEST_NV;
299 		break;
300 	case EMULATE_AGAIN:
301 		r = RESUME_GUEST;
302 		break;
303 	case EMULATE_DO_MMIO:
304 		run->exit_reason = KVM_EXIT_MMIO;
305 		/* We must reload nonvolatiles because "update" load/store
306 		 * instructions modify register state. */
307 		/* Future optimization: only reload non-volatiles if they were
308 		 * actually modified. */
309 		r = RESUME_HOST_NV;
310 		break;
311 	case EMULATE_FAIL:
312 	{
313 		u32 last_inst;
314 
315 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316 		/* XXX Deliver Program interrupt to guest. */
317 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318 		r = RESUME_HOST;
319 		break;
320 	}
321 	default:
322 		WARN_ON(1);
323 		r = RESUME_GUEST;
324 	}
325 
326 	return r;
327 }
328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
329 
330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331 	      bool data)
332 {
333 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334 	struct kvmppc_pte pte;
335 	int r;
336 
337 	vcpu->stat.st++;
338 
339 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340 			 XLATE_WRITE, &pte);
341 	if (r < 0)
342 		return r;
343 
344 	*eaddr = pte.raddr;
345 
346 	if (!pte.may_write)
347 		return -EPERM;
348 
349 	/* Magic page override */
350 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353 		void *magic = vcpu->arch.shared;
354 		magic += pte.eaddr & 0xfff;
355 		memcpy(magic, ptr, size);
356 		return EMULATE_DONE;
357 	}
358 
359 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360 		return EMULATE_DO_MMIO;
361 
362 	return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365 
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367 		      bool data)
368 {
369 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370 	struct kvmppc_pte pte;
371 	int rc;
372 
373 	vcpu->stat.ld++;
374 
375 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376 			  XLATE_READ, &pte);
377 	if (rc)
378 		return rc;
379 
380 	*eaddr = pte.raddr;
381 
382 	if (!pte.may_read)
383 		return -EPERM;
384 
385 	if (!data && !pte.may_execute)
386 		return -ENOEXEC;
387 
388 	/* Magic page override */
389 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392 		void *magic = vcpu->arch.shared;
393 		magic += pte.eaddr & 0xfff;
394 		memcpy(ptr, magic, size);
395 		return EMULATE_DONE;
396 	}
397 
398 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399 		return EMULATE_DO_MMIO;
400 
401 	return EMULATE_DONE;
402 }
403 EXPORT_SYMBOL_GPL(kvmppc_ld);
404 
405 int kvm_arch_hardware_enable(void)
406 {
407 	return 0;
408 }
409 
410 int kvm_arch_hardware_setup(void)
411 {
412 	return 0;
413 }
414 
415 void kvm_arch_check_processor_compat(void *rtn)
416 {
417 	*(int *)rtn = kvmppc_core_check_processor_compat();
418 }
419 
420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
421 {
422 	struct kvmppc_ops *kvm_ops = NULL;
423 	/*
424 	 * if we have both HV and PR enabled, default is HV
425 	 */
426 	if (type == 0) {
427 		if (kvmppc_hv_ops)
428 			kvm_ops = kvmppc_hv_ops;
429 		else
430 			kvm_ops = kvmppc_pr_ops;
431 		if (!kvm_ops)
432 			goto err_out;
433 	} else	if (type == KVM_VM_PPC_HV) {
434 		if (!kvmppc_hv_ops)
435 			goto err_out;
436 		kvm_ops = kvmppc_hv_ops;
437 	} else if (type == KVM_VM_PPC_PR) {
438 		if (!kvmppc_pr_ops)
439 			goto err_out;
440 		kvm_ops = kvmppc_pr_ops;
441 	} else
442 		goto err_out;
443 
444 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445 		return -ENOENT;
446 
447 	kvm->arch.kvm_ops = kvm_ops;
448 	return kvmppc_core_init_vm(kvm);
449 err_out:
450 	return -EINVAL;
451 }
452 
453 bool kvm_arch_has_vcpu_debugfs(void)
454 {
455 	return false;
456 }
457 
458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
459 {
460 	return 0;
461 }
462 
463 void kvm_arch_destroy_vm(struct kvm *kvm)
464 {
465 	unsigned int i;
466 	struct kvm_vcpu *vcpu;
467 
468 #ifdef CONFIG_KVM_XICS
469 	/*
470 	 * We call kick_all_cpus_sync() to ensure that all
471 	 * CPUs have executed any pending IPIs before we
472 	 * continue and free VCPUs structures below.
473 	 */
474 	if (is_kvmppc_hv_enabled(kvm))
475 		kick_all_cpus_sync();
476 #endif
477 
478 	kvm_for_each_vcpu(i, vcpu, kvm)
479 		kvm_arch_vcpu_free(vcpu);
480 
481 	mutex_lock(&kvm->lock);
482 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483 		kvm->vcpus[i] = NULL;
484 
485 	atomic_set(&kvm->online_vcpus, 0);
486 
487 	kvmppc_core_destroy_vm(kvm);
488 
489 	mutex_unlock(&kvm->lock);
490 
491 	/* drop the module reference */
492 	module_put(kvm->arch.kvm_ops->owner);
493 }
494 
495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
496 {
497 	int r;
498 	/* Assume we're using HV mode when the HV module is loaded */
499 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
500 
501 	if (kvm) {
502 		/*
503 		 * Hooray - we know which VM type we're running on. Depend on
504 		 * that rather than the guess above.
505 		 */
506 		hv_enabled = is_kvmppc_hv_enabled(kvm);
507 	}
508 
509 	switch (ext) {
510 #ifdef CONFIG_BOOKE
511 	case KVM_CAP_PPC_BOOKE_SREGS:
512 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
513 	case KVM_CAP_PPC_EPR:
514 #else
515 	case KVM_CAP_PPC_SEGSTATE:
516 	case KVM_CAP_PPC_HIOR:
517 	case KVM_CAP_PPC_PAPR:
518 #endif
519 	case KVM_CAP_PPC_UNSET_IRQ:
520 	case KVM_CAP_PPC_IRQ_LEVEL:
521 	case KVM_CAP_ENABLE_CAP:
522 	case KVM_CAP_ENABLE_CAP_VM:
523 	case KVM_CAP_ONE_REG:
524 	case KVM_CAP_IOEVENTFD:
525 	case KVM_CAP_DEVICE_CTRL:
526 	case KVM_CAP_IMMEDIATE_EXIT:
527 		r = 1;
528 		break;
529 	case KVM_CAP_PPC_PAIRED_SINGLES:
530 	case KVM_CAP_PPC_OSI:
531 	case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533 	case KVM_CAP_SW_TLB:
534 #endif
535 		/* We support this only for PR */
536 		r = !hv_enabled;
537 		break;
538 #ifdef CONFIG_KVM_MPIC
539 	case KVM_CAP_IRQ_MPIC:
540 		r = 1;
541 		break;
542 #endif
543 
544 #ifdef CONFIG_PPC_BOOK3S_64
545 	case KVM_CAP_SPAPR_TCE:
546 	case KVM_CAP_SPAPR_TCE_64:
547 		/* fallthrough */
548 	case KVM_CAP_SPAPR_TCE_VFIO:
549 	case KVM_CAP_PPC_RTAS:
550 	case KVM_CAP_PPC_FIXUP_HCALL:
551 	case KVM_CAP_PPC_ENABLE_HCALL:
552 #ifdef CONFIG_KVM_XICS
553 	case KVM_CAP_IRQ_XICS:
554 #endif
555 	case KVM_CAP_PPC_GET_CPU_CHAR:
556 		r = 1;
557 		break;
558 
559 	case KVM_CAP_PPC_ALLOC_HTAB:
560 		r = hv_enabled;
561 		break;
562 #endif /* CONFIG_PPC_BOOK3S_64 */
563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564 	case KVM_CAP_PPC_SMT:
565 		r = 0;
566 		if (kvm) {
567 			if (kvm->arch.emul_smt_mode > 1)
568 				r = kvm->arch.emul_smt_mode;
569 			else
570 				r = kvm->arch.smt_mode;
571 		} else if (hv_enabled) {
572 			if (cpu_has_feature(CPU_FTR_ARCH_300))
573 				r = 1;
574 			else
575 				r = threads_per_subcore;
576 		}
577 		break;
578 	case KVM_CAP_PPC_SMT_POSSIBLE:
579 		r = 1;
580 		if (hv_enabled) {
581 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
582 				r = ((threads_per_subcore << 1) - 1);
583 			else
584 				/* P9 can emulate dbells, so allow any mode */
585 				r = 8 | 4 | 2 | 1;
586 		}
587 		break;
588 	case KVM_CAP_PPC_RMA:
589 		r = 0;
590 		break;
591 	case KVM_CAP_PPC_HWRNG:
592 		r = kvmppc_hwrng_present();
593 		break;
594 	case KVM_CAP_PPC_MMU_RADIX:
595 		r = !!(hv_enabled && radix_enabled());
596 		break;
597 	case KVM_CAP_PPC_MMU_HASH_V3:
598 		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599 		break;
600 #endif
601 	case KVM_CAP_SYNC_MMU:
602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603 		r = hv_enabled;
604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605 		r = 1;
606 #else
607 		r = 0;
608 #endif
609 		break;
610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611 	case KVM_CAP_PPC_HTAB_FD:
612 		r = hv_enabled;
613 		break;
614 #endif
615 	case KVM_CAP_NR_VCPUS:
616 		/*
617 		 * Recommending a number of CPUs is somewhat arbitrary; we
618 		 * return the number of present CPUs for -HV (since a host
619 		 * will have secondary threads "offline"), and for other KVM
620 		 * implementations just count online CPUs.
621 		 */
622 		if (hv_enabled)
623 			r = num_present_cpus();
624 		else
625 			r = num_online_cpus();
626 		break;
627 	case KVM_CAP_NR_MEMSLOTS:
628 		r = KVM_USER_MEM_SLOTS;
629 		break;
630 	case KVM_CAP_MAX_VCPUS:
631 		r = KVM_MAX_VCPUS;
632 		break;
633 #ifdef CONFIG_PPC_BOOK3S_64
634 	case KVM_CAP_PPC_GET_SMMU_INFO:
635 		r = 1;
636 		break;
637 	case KVM_CAP_SPAPR_MULTITCE:
638 		r = 1;
639 		break;
640 	case KVM_CAP_SPAPR_RESIZE_HPT:
641 		r = !!hv_enabled;
642 		break;
643 #endif
644 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
645 	case KVM_CAP_PPC_FWNMI:
646 		r = hv_enabled;
647 		break;
648 #endif
649 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
650 	case KVM_CAP_PPC_HTM:
651 		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
652 		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
653 		break;
654 #endif
655 	default:
656 		r = 0;
657 		break;
658 	}
659 	return r;
660 
661 }
662 
663 long kvm_arch_dev_ioctl(struct file *filp,
664                         unsigned int ioctl, unsigned long arg)
665 {
666 	return -EINVAL;
667 }
668 
669 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
670 			   struct kvm_memory_slot *dont)
671 {
672 	kvmppc_core_free_memslot(kvm, free, dont);
673 }
674 
675 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
676 			    unsigned long npages)
677 {
678 	return kvmppc_core_create_memslot(kvm, slot, npages);
679 }
680 
681 int kvm_arch_prepare_memory_region(struct kvm *kvm,
682 				   struct kvm_memory_slot *memslot,
683 				   const struct kvm_userspace_memory_region *mem,
684 				   enum kvm_mr_change change)
685 {
686 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
687 }
688 
689 void kvm_arch_commit_memory_region(struct kvm *kvm,
690 				   const struct kvm_userspace_memory_region *mem,
691 				   const struct kvm_memory_slot *old,
692 				   const struct kvm_memory_slot *new,
693 				   enum kvm_mr_change change)
694 {
695 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
696 }
697 
698 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
699 				   struct kvm_memory_slot *slot)
700 {
701 	kvmppc_core_flush_memslot(kvm, slot);
702 }
703 
704 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
705 {
706 	struct kvm_vcpu *vcpu;
707 	vcpu = kvmppc_core_vcpu_create(kvm, id);
708 	if (!IS_ERR(vcpu)) {
709 		vcpu->arch.wqp = &vcpu->wq;
710 		kvmppc_create_vcpu_debugfs(vcpu, id);
711 	}
712 	return vcpu;
713 }
714 
715 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
716 {
717 }
718 
719 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
720 {
721 	/* Make sure we're not using the vcpu anymore */
722 	hrtimer_cancel(&vcpu->arch.dec_timer);
723 
724 	kvmppc_remove_vcpu_debugfs(vcpu);
725 
726 	switch (vcpu->arch.irq_type) {
727 	case KVMPPC_IRQ_MPIC:
728 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
729 		break;
730 	case KVMPPC_IRQ_XICS:
731 		if (xive_enabled())
732 			kvmppc_xive_cleanup_vcpu(vcpu);
733 		else
734 			kvmppc_xics_free_icp(vcpu);
735 		break;
736 	}
737 
738 	kvmppc_core_vcpu_free(vcpu);
739 }
740 
741 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
742 {
743 	kvm_arch_vcpu_free(vcpu);
744 }
745 
746 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
747 {
748 	return kvmppc_core_pending_dec(vcpu);
749 }
750 
751 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
752 {
753 	struct kvm_vcpu *vcpu;
754 
755 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
756 	kvmppc_decrementer_func(vcpu);
757 
758 	return HRTIMER_NORESTART;
759 }
760 
761 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
762 {
763 	int ret;
764 
765 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
766 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
767 	vcpu->arch.dec_expires = get_tb();
768 
769 #ifdef CONFIG_KVM_EXIT_TIMING
770 	mutex_init(&vcpu->arch.exit_timing_lock);
771 #endif
772 	ret = kvmppc_subarch_vcpu_init(vcpu);
773 	return ret;
774 }
775 
776 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
777 {
778 	kvmppc_mmu_destroy(vcpu);
779 	kvmppc_subarch_vcpu_uninit(vcpu);
780 }
781 
782 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
783 {
784 #ifdef CONFIG_BOOKE
785 	/*
786 	 * vrsave (formerly usprg0) isn't used by Linux, but may
787 	 * be used by the guest.
788 	 *
789 	 * On non-booke this is associated with Altivec and
790 	 * is handled by code in book3s.c.
791 	 */
792 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
793 #endif
794 	kvmppc_core_vcpu_load(vcpu, cpu);
795 }
796 
797 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
798 {
799 	kvmppc_core_vcpu_put(vcpu);
800 #ifdef CONFIG_BOOKE
801 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
802 #endif
803 }
804 
805 /*
806  * irq_bypass_add_producer and irq_bypass_del_producer are only
807  * useful if the architecture supports PCI passthrough.
808  * irq_bypass_stop and irq_bypass_start are not needed and so
809  * kvm_ops are not defined for them.
810  */
811 bool kvm_arch_has_irq_bypass(void)
812 {
813 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
814 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
815 }
816 
817 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
818 				     struct irq_bypass_producer *prod)
819 {
820 	struct kvm_kernel_irqfd *irqfd =
821 		container_of(cons, struct kvm_kernel_irqfd, consumer);
822 	struct kvm *kvm = irqfd->kvm;
823 
824 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
825 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
826 
827 	return 0;
828 }
829 
830 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
831 				      struct irq_bypass_producer *prod)
832 {
833 	struct kvm_kernel_irqfd *irqfd =
834 		container_of(cons, struct kvm_kernel_irqfd, consumer);
835 	struct kvm *kvm = irqfd->kvm;
836 
837 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
838 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
839 }
840 
841 #ifdef CONFIG_VSX
842 static inline int kvmppc_get_vsr_dword_offset(int index)
843 {
844 	int offset;
845 
846 	if ((index != 0) && (index != 1))
847 		return -1;
848 
849 #ifdef __BIG_ENDIAN
850 	offset =  index;
851 #else
852 	offset = 1 - index;
853 #endif
854 
855 	return offset;
856 }
857 
858 static inline int kvmppc_get_vsr_word_offset(int index)
859 {
860 	int offset;
861 
862 	if ((index > 3) || (index < 0))
863 		return -1;
864 
865 #ifdef __BIG_ENDIAN
866 	offset = index;
867 #else
868 	offset = 3 - index;
869 #endif
870 	return offset;
871 }
872 
873 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
874 	u64 gpr)
875 {
876 	union kvmppc_one_reg val;
877 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
878 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
879 
880 	if (offset == -1)
881 		return;
882 
883 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
884 		val.vval = VCPU_VSX_VR(vcpu, index);
885 		val.vsxval[offset] = gpr;
886 		VCPU_VSX_VR(vcpu, index) = val.vval;
887 	} else {
888 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
889 	}
890 }
891 
892 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
893 	u64 gpr)
894 {
895 	union kvmppc_one_reg val;
896 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
897 
898 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
899 		val.vval = VCPU_VSX_VR(vcpu, index);
900 		val.vsxval[0] = gpr;
901 		val.vsxval[1] = gpr;
902 		VCPU_VSX_VR(vcpu, index) = val.vval;
903 	} else {
904 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
905 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
906 	}
907 }
908 
909 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
910 	u32 gpr)
911 {
912 	union kvmppc_one_reg val;
913 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
914 
915 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
916 		val.vsx32val[0] = gpr;
917 		val.vsx32val[1] = gpr;
918 		val.vsx32val[2] = gpr;
919 		val.vsx32val[3] = gpr;
920 		VCPU_VSX_VR(vcpu, index) = val.vval;
921 	} else {
922 		val.vsx32val[0] = gpr;
923 		val.vsx32val[1] = gpr;
924 		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
925 		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
926 	}
927 }
928 
929 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
930 	u32 gpr32)
931 {
932 	union kvmppc_one_reg val;
933 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
934 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
935 	int dword_offset, word_offset;
936 
937 	if (offset == -1)
938 		return;
939 
940 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
941 		val.vval = VCPU_VSX_VR(vcpu, index);
942 		val.vsx32val[offset] = gpr32;
943 		VCPU_VSX_VR(vcpu, index) = val.vval;
944 	} else {
945 		dword_offset = offset / 2;
946 		word_offset = offset % 2;
947 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
948 		val.vsx32val[word_offset] = gpr32;
949 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
950 	}
951 }
952 #endif /* CONFIG_VSX */
953 
954 #ifdef CONFIG_ALTIVEC
955 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
956 		int index, int element_size)
957 {
958 	int offset;
959 	int elts = sizeof(vector128)/element_size;
960 
961 	if ((index < 0) || (index >= elts))
962 		return -1;
963 
964 	if (kvmppc_need_byteswap(vcpu))
965 		offset = elts - index - 1;
966 	else
967 		offset = index;
968 
969 	return offset;
970 }
971 
972 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
973 		int index)
974 {
975 	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
976 }
977 
978 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
979 		int index)
980 {
981 	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
982 }
983 
984 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
985 		int index)
986 {
987 	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
988 }
989 
990 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
991 		int index)
992 {
993 	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
994 }
995 
996 
997 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
998 	u64 gpr)
999 {
1000 	union kvmppc_one_reg val;
1001 	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1002 			vcpu->arch.mmio_vmx_offset);
1003 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1004 
1005 	if (offset == -1)
1006 		return;
1007 
1008 	val.vval = VCPU_VSX_VR(vcpu, index);
1009 	val.vsxval[offset] = gpr;
1010 	VCPU_VSX_VR(vcpu, index) = val.vval;
1011 }
1012 
1013 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1014 	u32 gpr32)
1015 {
1016 	union kvmppc_one_reg val;
1017 	int offset = kvmppc_get_vmx_word_offset(vcpu,
1018 			vcpu->arch.mmio_vmx_offset);
1019 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1020 
1021 	if (offset == -1)
1022 		return;
1023 
1024 	val.vval = VCPU_VSX_VR(vcpu, index);
1025 	val.vsx32val[offset] = gpr32;
1026 	VCPU_VSX_VR(vcpu, index) = val.vval;
1027 }
1028 
1029 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1030 	u16 gpr16)
1031 {
1032 	union kvmppc_one_reg val;
1033 	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1034 			vcpu->arch.mmio_vmx_offset);
1035 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1036 
1037 	if (offset == -1)
1038 		return;
1039 
1040 	val.vval = VCPU_VSX_VR(vcpu, index);
1041 	val.vsx16val[offset] = gpr16;
1042 	VCPU_VSX_VR(vcpu, index) = val.vval;
1043 }
1044 
1045 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1046 	u8 gpr8)
1047 {
1048 	union kvmppc_one_reg val;
1049 	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1050 			vcpu->arch.mmio_vmx_offset);
1051 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1052 
1053 	if (offset == -1)
1054 		return;
1055 
1056 	val.vval = VCPU_VSX_VR(vcpu, index);
1057 	val.vsx8val[offset] = gpr8;
1058 	VCPU_VSX_VR(vcpu, index) = val.vval;
1059 }
1060 #endif /* CONFIG_ALTIVEC */
1061 
1062 #ifdef CONFIG_PPC_FPU
1063 static inline u64 sp_to_dp(u32 fprs)
1064 {
1065 	u64 fprd;
1066 
1067 	preempt_disable();
1068 	enable_kernel_fp();
1069 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1070 	     : "fr0");
1071 	preempt_enable();
1072 	return fprd;
1073 }
1074 
1075 static inline u32 dp_to_sp(u64 fprd)
1076 {
1077 	u32 fprs;
1078 
1079 	preempt_disable();
1080 	enable_kernel_fp();
1081 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1082 	     : "fr0");
1083 	preempt_enable();
1084 	return fprs;
1085 }
1086 
1087 #else
1088 #define sp_to_dp(x)	(x)
1089 #define dp_to_sp(x)	(x)
1090 #endif /* CONFIG_PPC_FPU */
1091 
1092 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1093                                       struct kvm_run *run)
1094 {
1095 	u64 uninitialized_var(gpr);
1096 
1097 	if (run->mmio.len > sizeof(gpr)) {
1098 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1099 		return;
1100 	}
1101 
1102 	if (!vcpu->arch.mmio_host_swabbed) {
1103 		switch (run->mmio.len) {
1104 		case 8: gpr = *(u64 *)run->mmio.data; break;
1105 		case 4: gpr = *(u32 *)run->mmio.data; break;
1106 		case 2: gpr = *(u16 *)run->mmio.data; break;
1107 		case 1: gpr = *(u8 *)run->mmio.data; break;
1108 		}
1109 	} else {
1110 		switch (run->mmio.len) {
1111 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1112 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1113 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1114 		case 1: gpr = *(u8 *)run->mmio.data; break;
1115 		}
1116 	}
1117 
1118 	/* conversion between single and double precision */
1119 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1120 		gpr = sp_to_dp(gpr);
1121 
1122 	if (vcpu->arch.mmio_sign_extend) {
1123 		switch (run->mmio.len) {
1124 #ifdef CONFIG_PPC64
1125 		case 4:
1126 			gpr = (s64)(s32)gpr;
1127 			break;
1128 #endif
1129 		case 2:
1130 			gpr = (s64)(s16)gpr;
1131 			break;
1132 		case 1:
1133 			gpr = (s64)(s8)gpr;
1134 			break;
1135 		}
1136 	}
1137 
1138 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1139 	case KVM_MMIO_REG_GPR:
1140 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1141 		break;
1142 	case KVM_MMIO_REG_FPR:
1143 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1144 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1145 
1146 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1147 		break;
1148 #ifdef CONFIG_PPC_BOOK3S
1149 	case KVM_MMIO_REG_QPR:
1150 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1151 		break;
1152 	case KVM_MMIO_REG_FQPR:
1153 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1154 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1155 		break;
1156 #endif
1157 #ifdef CONFIG_VSX
1158 	case KVM_MMIO_REG_VSX:
1159 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1160 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1161 
1162 		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1163 			kvmppc_set_vsr_dword(vcpu, gpr);
1164 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1165 			kvmppc_set_vsr_word(vcpu, gpr);
1166 		else if (vcpu->arch.mmio_copy_type ==
1167 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1168 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1169 		else if (vcpu->arch.mmio_copy_type ==
1170 				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1171 			kvmppc_set_vsr_word_dump(vcpu, gpr);
1172 		break;
1173 #endif
1174 #ifdef CONFIG_ALTIVEC
1175 	case KVM_MMIO_REG_VMX:
1176 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1177 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1178 
1179 		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1180 			kvmppc_set_vmx_dword(vcpu, gpr);
1181 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1182 			kvmppc_set_vmx_word(vcpu, gpr);
1183 		else if (vcpu->arch.mmio_copy_type ==
1184 				KVMPPC_VMX_COPY_HWORD)
1185 			kvmppc_set_vmx_hword(vcpu, gpr);
1186 		else if (vcpu->arch.mmio_copy_type ==
1187 				KVMPPC_VMX_COPY_BYTE)
1188 			kvmppc_set_vmx_byte(vcpu, gpr);
1189 		break;
1190 #endif
1191 	default:
1192 		BUG();
1193 	}
1194 }
1195 
1196 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1197 				unsigned int rt, unsigned int bytes,
1198 				int is_default_endian, int sign_extend)
1199 {
1200 	int idx, ret;
1201 	bool host_swabbed;
1202 
1203 	/* Pity C doesn't have a logical XOR operator */
1204 	if (kvmppc_need_byteswap(vcpu)) {
1205 		host_swabbed = is_default_endian;
1206 	} else {
1207 		host_swabbed = !is_default_endian;
1208 	}
1209 
1210 	if (bytes > sizeof(run->mmio.data)) {
1211 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1212 		       run->mmio.len);
1213 	}
1214 
1215 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1216 	run->mmio.len = bytes;
1217 	run->mmio.is_write = 0;
1218 
1219 	vcpu->arch.io_gpr = rt;
1220 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1221 	vcpu->mmio_needed = 1;
1222 	vcpu->mmio_is_write = 0;
1223 	vcpu->arch.mmio_sign_extend = sign_extend;
1224 
1225 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1226 
1227 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1228 			      bytes, &run->mmio.data);
1229 
1230 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1231 
1232 	if (!ret) {
1233 		kvmppc_complete_mmio_load(vcpu, run);
1234 		vcpu->mmio_needed = 0;
1235 		return EMULATE_DONE;
1236 	}
1237 
1238 	return EMULATE_DO_MMIO;
1239 }
1240 
1241 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1242 		       unsigned int rt, unsigned int bytes,
1243 		       int is_default_endian)
1244 {
1245 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1246 }
1247 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1248 
1249 /* Same as above, but sign extends */
1250 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1251 			unsigned int rt, unsigned int bytes,
1252 			int is_default_endian)
1253 {
1254 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1255 }
1256 
1257 #ifdef CONFIG_VSX
1258 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1259 			unsigned int rt, unsigned int bytes,
1260 			int is_default_endian, int mmio_sign_extend)
1261 {
1262 	enum emulation_result emulated = EMULATE_DONE;
1263 
1264 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1265 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1266 		return EMULATE_FAIL;
1267 
1268 	while (vcpu->arch.mmio_vsx_copy_nums) {
1269 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1270 			is_default_endian, mmio_sign_extend);
1271 
1272 		if (emulated != EMULATE_DONE)
1273 			break;
1274 
1275 		vcpu->arch.paddr_accessed += run->mmio.len;
1276 
1277 		vcpu->arch.mmio_vsx_copy_nums--;
1278 		vcpu->arch.mmio_vsx_offset++;
1279 	}
1280 	return emulated;
1281 }
1282 #endif /* CONFIG_VSX */
1283 
1284 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1285 			u64 val, unsigned int bytes, int is_default_endian)
1286 {
1287 	void *data = run->mmio.data;
1288 	int idx, ret;
1289 	bool host_swabbed;
1290 
1291 	/* Pity C doesn't have a logical XOR operator */
1292 	if (kvmppc_need_byteswap(vcpu)) {
1293 		host_swabbed = is_default_endian;
1294 	} else {
1295 		host_swabbed = !is_default_endian;
1296 	}
1297 
1298 	if (bytes > sizeof(run->mmio.data)) {
1299 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1300 		       run->mmio.len);
1301 	}
1302 
1303 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1304 	run->mmio.len = bytes;
1305 	run->mmio.is_write = 1;
1306 	vcpu->mmio_needed = 1;
1307 	vcpu->mmio_is_write = 1;
1308 
1309 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1310 		val = dp_to_sp(val);
1311 
1312 	/* Store the value at the lowest bytes in 'data'. */
1313 	if (!host_swabbed) {
1314 		switch (bytes) {
1315 		case 8: *(u64 *)data = val; break;
1316 		case 4: *(u32 *)data = val; break;
1317 		case 2: *(u16 *)data = val; break;
1318 		case 1: *(u8  *)data = val; break;
1319 		}
1320 	} else {
1321 		switch (bytes) {
1322 		case 8: *(u64 *)data = swab64(val); break;
1323 		case 4: *(u32 *)data = swab32(val); break;
1324 		case 2: *(u16 *)data = swab16(val); break;
1325 		case 1: *(u8  *)data = val; break;
1326 		}
1327 	}
1328 
1329 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1330 
1331 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1332 			       bytes, &run->mmio.data);
1333 
1334 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1335 
1336 	if (!ret) {
1337 		vcpu->mmio_needed = 0;
1338 		return EMULATE_DONE;
1339 	}
1340 
1341 	return EMULATE_DO_MMIO;
1342 }
1343 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1344 
1345 #ifdef CONFIG_VSX
1346 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1347 {
1348 	u32 dword_offset, word_offset;
1349 	union kvmppc_one_reg reg;
1350 	int vsx_offset = 0;
1351 	int copy_type = vcpu->arch.mmio_copy_type;
1352 	int result = 0;
1353 
1354 	switch (copy_type) {
1355 	case KVMPPC_VSX_COPY_DWORD:
1356 		vsx_offset =
1357 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1358 
1359 		if (vsx_offset == -1) {
1360 			result = -1;
1361 			break;
1362 		}
1363 
1364 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1365 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1366 		} else {
1367 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1368 			*val = reg.vsxval[vsx_offset];
1369 		}
1370 		break;
1371 
1372 	case KVMPPC_VSX_COPY_WORD:
1373 		vsx_offset =
1374 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1375 
1376 		if (vsx_offset == -1) {
1377 			result = -1;
1378 			break;
1379 		}
1380 
1381 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1382 			dword_offset = vsx_offset / 2;
1383 			word_offset = vsx_offset % 2;
1384 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1385 			*val = reg.vsx32val[word_offset];
1386 		} else {
1387 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1388 			*val = reg.vsx32val[vsx_offset];
1389 		}
1390 		break;
1391 
1392 	default:
1393 		result = -1;
1394 		break;
1395 	}
1396 
1397 	return result;
1398 }
1399 
1400 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1401 			int rs, unsigned int bytes, int is_default_endian)
1402 {
1403 	u64 val;
1404 	enum emulation_result emulated = EMULATE_DONE;
1405 
1406 	vcpu->arch.io_gpr = rs;
1407 
1408 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1409 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1410 		return EMULATE_FAIL;
1411 
1412 	while (vcpu->arch.mmio_vsx_copy_nums) {
1413 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1414 			return EMULATE_FAIL;
1415 
1416 		emulated = kvmppc_handle_store(run, vcpu,
1417 			 val, bytes, is_default_endian);
1418 
1419 		if (emulated != EMULATE_DONE)
1420 			break;
1421 
1422 		vcpu->arch.paddr_accessed += run->mmio.len;
1423 
1424 		vcpu->arch.mmio_vsx_copy_nums--;
1425 		vcpu->arch.mmio_vsx_offset++;
1426 	}
1427 
1428 	return emulated;
1429 }
1430 
1431 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1432 			struct kvm_run *run)
1433 {
1434 	enum emulation_result emulated = EMULATE_FAIL;
1435 	int r;
1436 
1437 	vcpu->arch.paddr_accessed += run->mmio.len;
1438 
1439 	if (!vcpu->mmio_is_write) {
1440 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1441 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1442 	} else {
1443 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1444 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1445 	}
1446 
1447 	switch (emulated) {
1448 	case EMULATE_DO_MMIO:
1449 		run->exit_reason = KVM_EXIT_MMIO;
1450 		r = RESUME_HOST;
1451 		break;
1452 	case EMULATE_FAIL:
1453 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1454 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1455 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1456 		r = RESUME_HOST;
1457 		break;
1458 	default:
1459 		r = RESUME_GUEST;
1460 		break;
1461 	}
1462 	return r;
1463 }
1464 #endif /* CONFIG_VSX */
1465 
1466 #ifdef CONFIG_ALTIVEC
1467 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1468 		unsigned int rt, unsigned int bytes, int is_default_endian)
1469 {
1470 	enum emulation_result emulated = EMULATE_DONE;
1471 
1472 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1473 		return EMULATE_FAIL;
1474 
1475 	while (vcpu->arch.mmio_vmx_copy_nums) {
1476 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1477 				is_default_endian, 0);
1478 
1479 		if (emulated != EMULATE_DONE)
1480 			break;
1481 
1482 		vcpu->arch.paddr_accessed += run->mmio.len;
1483 		vcpu->arch.mmio_vmx_copy_nums--;
1484 		vcpu->arch.mmio_vmx_offset++;
1485 	}
1486 
1487 	return emulated;
1488 }
1489 
1490 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1491 {
1492 	union kvmppc_one_reg reg;
1493 	int vmx_offset = 0;
1494 	int result = 0;
1495 
1496 	vmx_offset =
1497 		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1498 
1499 	if (vmx_offset == -1)
1500 		return -1;
1501 
1502 	reg.vval = VCPU_VSX_VR(vcpu, index);
1503 	*val = reg.vsxval[vmx_offset];
1504 
1505 	return result;
1506 }
1507 
1508 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1509 {
1510 	union kvmppc_one_reg reg;
1511 	int vmx_offset = 0;
1512 	int result = 0;
1513 
1514 	vmx_offset =
1515 		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1516 
1517 	if (vmx_offset == -1)
1518 		return -1;
1519 
1520 	reg.vval = VCPU_VSX_VR(vcpu, index);
1521 	*val = reg.vsx32val[vmx_offset];
1522 
1523 	return result;
1524 }
1525 
1526 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1527 {
1528 	union kvmppc_one_reg reg;
1529 	int vmx_offset = 0;
1530 	int result = 0;
1531 
1532 	vmx_offset =
1533 		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1534 
1535 	if (vmx_offset == -1)
1536 		return -1;
1537 
1538 	reg.vval = VCPU_VSX_VR(vcpu, index);
1539 	*val = reg.vsx16val[vmx_offset];
1540 
1541 	return result;
1542 }
1543 
1544 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1545 {
1546 	union kvmppc_one_reg reg;
1547 	int vmx_offset = 0;
1548 	int result = 0;
1549 
1550 	vmx_offset =
1551 		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1552 
1553 	if (vmx_offset == -1)
1554 		return -1;
1555 
1556 	reg.vval = VCPU_VSX_VR(vcpu, index);
1557 	*val = reg.vsx8val[vmx_offset];
1558 
1559 	return result;
1560 }
1561 
1562 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1563 		unsigned int rs, unsigned int bytes, int is_default_endian)
1564 {
1565 	u64 val = 0;
1566 	unsigned int index = rs & KVM_MMIO_REG_MASK;
1567 	enum emulation_result emulated = EMULATE_DONE;
1568 
1569 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1570 		return EMULATE_FAIL;
1571 
1572 	vcpu->arch.io_gpr = rs;
1573 
1574 	while (vcpu->arch.mmio_vmx_copy_nums) {
1575 		switch (vcpu->arch.mmio_copy_type) {
1576 		case KVMPPC_VMX_COPY_DWORD:
1577 			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1578 				return EMULATE_FAIL;
1579 
1580 			break;
1581 		case KVMPPC_VMX_COPY_WORD:
1582 			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1583 				return EMULATE_FAIL;
1584 			break;
1585 		case KVMPPC_VMX_COPY_HWORD:
1586 			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1587 				return EMULATE_FAIL;
1588 			break;
1589 		case KVMPPC_VMX_COPY_BYTE:
1590 			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1591 				return EMULATE_FAIL;
1592 			break;
1593 		default:
1594 			return EMULATE_FAIL;
1595 		}
1596 
1597 		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1598 				is_default_endian);
1599 		if (emulated != EMULATE_DONE)
1600 			break;
1601 
1602 		vcpu->arch.paddr_accessed += run->mmio.len;
1603 		vcpu->arch.mmio_vmx_copy_nums--;
1604 		vcpu->arch.mmio_vmx_offset++;
1605 	}
1606 
1607 	return emulated;
1608 }
1609 
1610 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1611 		struct kvm_run *run)
1612 {
1613 	enum emulation_result emulated = EMULATE_FAIL;
1614 	int r;
1615 
1616 	vcpu->arch.paddr_accessed += run->mmio.len;
1617 
1618 	if (!vcpu->mmio_is_write) {
1619 		emulated = kvmppc_handle_vmx_load(run, vcpu,
1620 				vcpu->arch.io_gpr, run->mmio.len, 1);
1621 	} else {
1622 		emulated = kvmppc_handle_vmx_store(run, vcpu,
1623 				vcpu->arch.io_gpr, run->mmio.len, 1);
1624 	}
1625 
1626 	switch (emulated) {
1627 	case EMULATE_DO_MMIO:
1628 		run->exit_reason = KVM_EXIT_MMIO;
1629 		r = RESUME_HOST;
1630 		break;
1631 	case EMULATE_FAIL:
1632 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1633 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1634 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1635 		r = RESUME_HOST;
1636 		break;
1637 	default:
1638 		r = RESUME_GUEST;
1639 		break;
1640 	}
1641 	return r;
1642 }
1643 #endif /* CONFIG_ALTIVEC */
1644 
1645 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1646 {
1647 	int r = 0;
1648 	union kvmppc_one_reg val;
1649 	int size;
1650 
1651 	size = one_reg_size(reg->id);
1652 	if (size > sizeof(val))
1653 		return -EINVAL;
1654 
1655 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1656 	if (r == -EINVAL) {
1657 		r = 0;
1658 		switch (reg->id) {
1659 #ifdef CONFIG_ALTIVEC
1660 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1661 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1662 				r = -ENXIO;
1663 				break;
1664 			}
1665 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1666 			break;
1667 		case KVM_REG_PPC_VSCR:
1668 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1669 				r = -ENXIO;
1670 				break;
1671 			}
1672 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1673 			break;
1674 		case KVM_REG_PPC_VRSAVE:
1675 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1676 			break;
1677 #endif /* CONFIG_ALTIVEC */
1678 		default:
1679 			r = -EINVAL;
1680 			break;
1681 		}
1682 	}
1683 
1684 	if (r)
1685 		return r;
1686 
1687 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1688 		r = -EFAULT;
1689 
1690 	return r;
1691 }
1692 
1693 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1694 {
1695 	int r;
1696 	union kvmppc_one_reg val;
1697 	int size;
1698 
1699 	size = one_reg_size(reg->id);
1700 	if (size > sizeof(val))
1701 		return -EINVAL;
1702 
1703 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1704 		return -EFAULT;
1705 
1706 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1707 	if (r == -EINVAL) {
1708 		r = 0;
1709 		switch (reg->id) {
1710 #ifdef CONFIG_ALTIVEC
1711 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1712 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1713 				r = -ENXIO;
1714 				break;
1715 			}
1716 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1717 			break;
1718 		case KVM_REG_PPC_VSCR:
1719 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1720 				r = -ENXIO;
1721 				break;
1722 			}
1723 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1724 			break;
1725 		case KVM_REG_PPC_VRSAVE:
1726 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1727 				r = -ENXIO;
1728 				break;
1729 			}
1730 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1731 			break;
1732 #endif /* CONFIG_ALTIVEC */
1733 		default:
1734 			r = -EINVAL;
1735 			break;
1736 		}
1737 	}
1738 
1739 	return r;
1740 }
1741 
1742 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1743 {
1744 	int r;
1745 
1746 	vcpu_load(vcpu);
1747 
1748 	if (vcpu->mmio_needed) {
1749 		vcpu->mmio_needed = 0;
1750 		if (!vcpu->mmio_is_write)
1751 			kvmppc_complete_mmio_load(vcpu, run);
1752 #ifdef CONFIG_VSX
1753 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1754 			vcpu->arch.mmio_vsx_copy_nums--;
1755 			vcpu->arch.mmio_vsx_offset++;
1756 		}
1757 
1758 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1759 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1760 			if (r == RESUME_HOST) {
1761 				vcpu->mmio_needed = 1;
1762 				goto out;
1763 			}
1764 		}
1765 #endif
1766 #ifdef CONFIG_ALTIVEC
1767 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1768 			vcpu->arch.mmio_vmx_copy_nums--;
1769 			vcpu->arch.mmio_vmx_offset++;
1770 		}
1771 
1772 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1773 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1774 			if (r == RESUME_HOST) {
1775 				vcpu->mmio_needed = 1;
1776 				goto out;
1777 			}
1778 		}
1779 #endif
1780 	} else if (vcpu->arch.osi_needed) {
1781 		u64 *gprs = run->osi.gprs;
1782 		int i;
1783 
1784 		for (i = 0; i < 32; i++)
1785 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1786 		vcpu->arch.osi_needed = 0;
1787 	} else if (vcpu->arch.hcall_needed) {
1788 		int i;
1789 
1790 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1791 		for (i = 0; i < 9; ++i)
1792 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1793 		vcpu->arch.hcall_needed = 0;
1794 #ifdef CONFIG_BOOKE
1795 	} else if (vcpu->arch.epr_needed) {
1796 		kvmppc_set_epr(vcpu, run->epr.epr);
1797 		vcpu->arch.epr_needed = 0;
1798 #endif
1799 	}
1800 
1801 	kvm_sigset_activate(vcpu);
1802 
1803 	if (run->immediate_exit)
1804 		r = -EINTR;
1805 	else
1806 		r = kvmppc_vcpu_run(run, vcpu);
1807 
1808 	kvm_sigset_deactivate(vcpu);
1809 
1810 #ifdef CONFIG_ALTIVEC
1811 out:
1812 #endif
1813 	vcpu_put(vcpu);
1814 	return r;
1815 }
1816 
1817 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1818 {
1819 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1820 		kvmppc_core_dequeue_external(vcpu);
1821 		return 0;
1822 	}
1823 
1824 	kvmppc_core_queue_external(vcpu, irq);
1825 
1826 	kvm_vcpu_kick(vcpu);
1827 
1828 	return 0;
1829 }
1830 
1831 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1832 				     struct kvm_enable_cap *cap)
1833 {
1834 	int r;
1835 
1836 	if (cap->flags)
1837 		return -EINVAL;
1838 
1839 	switch (cap->cap) {
1840 	case KVM_CAP_PPC_OSI:
1841 		r = 0;
1842 		vcpu->arch.osi_enabled = true;
1843 		break;
1844 	case KVM_CAP_PPC_PAPR:
1845 		r = 0;
1846 		vcpu->arch.papr_enabled = true;
1847 		break;
1848 	case KVM_CAP_PPC_EPR:
1849 		r = 0;
1850 		if (cap->args[0])
1851 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1852 		else
1853 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1854 		break;
1855 #ifdef CONFIG_BOOKE
1856 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1857 		r = 0;
1858 		vcpu->arch.watchdog_enabled = true;
1859 		break;
1860 #endif
1861 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1862 	case KVM_CAP_SW_TLB: {
1863 		struct kvm_config_tlb cfg;
1864 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1865 
1866 		r = -EFAULT;
1867 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1868 			break;
1869 
1870 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1871 		break;
1872 	}
1873 #endif
1874 #ifdef CONFIG_KVM_MPIC
1875 	case KVM_CAP_IRQ_MPIC: {
1876 		struct fd f;
1877 		struct kvm_device *dev;
1878 
1879 		r = -EBADF;
1880 		f = fdget(cap->args[0]);
1881 		if (!f.file)
1882 			break;
1883 
1884 		r = -EPERM;
1885 		dev = kvm_device_from_filp(f.file);
1886 		if (dev)
1887 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1888 
1889 		fdput(f);
1890 		break;
1891 	}
1892 #endif
1893 #ifdef CONFIG_KVM_XICS
1894 	case KVM_CAP_IRQ_XICS: {
1895 		struct fd f;
1896 		struct kvm_device *dev;
1897 
1898 		r = -EBADF;
1899 		f = fdget(cap->args[0]);
1900 		if (!f.file)
1901 			break;
1902 
1903 		r = -EPERM;
1904 		dev = kvm_device_from_filp(f.file);
1905 		if (dev) {
1906 			if (xive_enabled())
1907 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1908 			else
1909 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1910 		}
1911 
1912 		fdput(f);
1913 		break;
1914 	}
1915 #endif /* CONFIG_KVM_XICS */
1916 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1917 	case KVM_CAP_PPC_FWNMI:
1918 		r = -EINVAL;
1919 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1920 			break;
1921 		r = 0;
1922 		vcpu->kvm->arch.fwnmi_enabled = true;
1923 		break;
1924 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1925 	default:
1926 		r = -EINVAL;
1927 		break;
1928 	}
1929 
1930 	if (!r)
1931 		r = kvmppc_sanity_check(vcpu);
1932 
1933 	return r;
1934 }
1935 
1936 bool kvm_arch_intc_initialized(struct kvm *kvm)
1937 {
1938 #ifdef CONFIG_KVM_MPIC
1939 	if (kvm->arch.mpic)
1940 		return true;
1941 #endif
1942 #ifdef CONFIG_KVM_XICS
1943 	if (kvm->arch.xics || kvm->arch.xive)
1944 		return true;
1945 #endif
1946 	return false;
1947 }
1948 
1949 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1950                                     struct kvm_mp_state *mp_state)
1951 {
1952 	return -EINVAL;
1953 }
1954 
1955 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1956                                     struct kvm_mp_state *mp_state)
1957 {
1958 	return -EINVAL;
1959 }
1960 
1961 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1962 			       unsigned int ioctl, unsigned long arg)
1963 {
1964 	struct kvm_vcpu *vcpu = filp->private_data;
1965 	void __user *argp = (void __user *)arg;
1966 
1967 	if (ioctl == KVM_INTERRUPT) {
1968 		struct kvm_interrupt irq;
1969 		if (copy_from_user(&irq, argp, sizeof(irq)))
1970 			return -EFAULT;
1971 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1972 	}
1973 	return -ENOIOCTLCMD;
1974 }
1975 
1976 long kvm_arch_vcpu_ioctl(struct file *filp,
1977                          unsigned int ioctl, unsigned long arg)
1978 {
1979 	struct kvm_vcpu *vcpu = filp->private_data;
1980 	void __user *argp = (void __user *)arg;
1981 	long r;
1982 
1983 	switch (ioctl) {
1984 	case KVM_ENABLE_CAP:
1985 	{
1986 		struct kvm_enable_cap cap;
1987 		r = -EFAULT;
1988 		vcpu_load(vcpu);
1989 		if (copy_from_user(&cap, argp, sizeof(cap)))
1990 			goto out;
1991 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1992 		vcpu_put(vcpu);
1993 		break;
1994 	}
1995 
1996 	case KVM_SET_ONE_REG:
1997 	case KVM_GET_ONE_REG:
1998 	{
1999 		struct kvm_one_reg reg;
2000 		r = -EFAULT;
2001 		if (copy_from_user(&reg, argp, sizeof(reg)))
2002 			goto out;
2003 		if (ioctl == KVM_SET_ONE_REG)
2004 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2005 		else
2006 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2007 		break;
2008 	}
2009 
2010 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2011 	case KVM_DIRTY_TLB: {
2012 		struct kvm_dirty_tlb dirty;
2013 		r = -EFAULT;
2014 		vcpu_load(vcpu);
2015 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2016 			goto out;
2017 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2018 		vcpu_put(vcpu);
2019 		break;
2020 	}
2021 #endif
2022 	default:
2023 		r = -EINVAL;
2024 	}
2025 
2026 out:
2027 	return r;
2028 }
2029 
2030 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2031 {
2032 	return VM_FAULT_SIGBUS;
2033 }
2034 
2035 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2036 {
2037 	u32 inst_nop = 0x60000000;
2038 #ifdef CONFIG_KVM_BOOKE_HV
2039 	u32 inst_sc1 = 0x44000022;
2040 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2041 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2042 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2043 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2044 #else
2045 	u32 inst_lis = 0x3c000000;
2046 	u32 inst_ori = 0x60000000;
2047 	u32 inst_sc = 0x44000002;
2048 	u32 inst_imm_mask = 0xffff;
2049 
2050 	/*
2051 	 * The hypercall to get into KVM from within guest context is as
2052 	 * follows:
2053 	 *
2054 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2055 	 *    ori r0, KVM_SC_MAGIC_R0@l
2056 	 *    sc
2057 	 *    nop
2058 	 */
2059 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2060 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2061 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2062 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2063 #endif
2064 
2065 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2066 
2067 	return 0;
2068 }
2069 
2070 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2071 			  bool line_status)
2072 {
2073 	if (!irqchip_in_kernel(kvm))
2074 		return -ENXIO;
2075 
2076 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2077 					irq_event->irq, irq_event->level,
2078 					line_status);
2079 	return 0;
2080 }
2081 
2082 
2083 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2084 				   struct kvm_enable_cap *cap)
2085 {
2086 	int r;
2087 
2088 	if (cap->flags)
2089 		return -EINVAL;
2090 
2091 	switch (cap->cap) {
2092 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2093 	case KVM_CAP_PPC_ENABLE_HCALL: {
2094 		unsigned long hcall = cap->args[0];
2095 
2096 		r = -EINVAL;
2097 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2098 		    cap->args[1] > 1)
2099 			break;
2100 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2101 			break;
2102 		if (cap->args[1])
2103 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2104 		else
2105 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2106 		r = 0;
2107 		break;
2108 	}
2109 	case KVM_CAP_PPC_SMT: {
2110 		unsigned long mode = cap->args[0];
2111 		unsigned long flags = cap->args[1];
2112 
2113 		r = -EINVAL;
2114 		if (kvm->arch.kvm_ops->set_smt_mode)
2115 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2116 		break;
2117 	}
2118 #endif
2119 	default:
2120 		r = -EINVAL;
2121 		break;
2122 	}
2123 
2124 	return r;
2125 }
2126 
2127 #ifdef CONFIG_PPC_BOOK3S_64
2128 /*
2129  * These functions check whether the underlying hardware is safe
2130  * against attacks based on observing the effects of speculatively
2131  * executed instructions, and whether it supplies instructions for
2132  * use in workarounds.  The information comes from firmware, either
2133  * via the device tree on powernv platforms or from an hcall on
2134  * pseries platforms.
2135  */
2136 #ifdef CONFIG_PPC_PSERIES
2137 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2138 {
2139 	struct h_cpu_char_result c;
2140 	unsigned long rc;
2141 
2142 	if (!machine_is(pseries))
2143 		return -ENOTTY;
2144 
2145 	rc = plpar_get_cpu_characteristics(&c);
2146 	if (rc == H_SUCCESS) {
2147 		cp->character = c.character;
2148 		cp->behaviour = c.behaviour;
2149 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2150 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2151 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2152 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2153 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2154 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2155 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2156 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2157 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2158 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2159 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2160 	}
2161 	return 0;
2162 }
2163 #else
2164 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2165 {
2166 	return -ENOTTY;
2167 }
2168 #endif
2169 
2170 static inline bool have_fw_feat(struct device_node *fw_features,
2171 				const char *state, const char *name)
2172 {
2173 	struct device_node *np;
2174 	bool r = false;
2175 
2176 	np = of_get_child_by_name(fw_features, name);
2177 	if (np) {
2178 		r = of_property_read_bool(np, state);
2179 		of_node_put(np);
2180 	}
2181 	return r;
2182 }
2183 
2184 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2185 {
2186 	struct device_node *np, *fw_features;
2187 	int r;
2188 
2189 	memset(cp, 0, sizeof(*cp));
2190 	r = pseries_get_cpu_char(cp);
2191 	if (r != -ENOTTY)
2192 		return r;
2193 
2194 	np = of_find_node_by_name(NULL, "ibm,opal");
2195 	if (np) {
2196 		fw_features = of_get_child_by_name(np, "fw-features");
2197 		of_node_put(np);
2198 		if (!fw_features)
2199 			return 0;
2200 		if (have_fw_feat(fw_features, "enabled",
2201 				 "inst-spec-barrier-ori31,31,0"))
2202 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2203 		if (have_fw_feat(fw_features, "enabled",
2204 				 "fw-bcctrl-serialized"))
2205 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2206 		if (have_fw_feat(fw_features, "enabled",
2207 				 "inst-l1d-flush-ori30,30,0"))
2208 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2209 		if (have_fw_feat(fw_features, "enabled",
2210 				 "inst-l1d-flush-trig2"))
2211 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2212 		if (have_fw_feat(fw_features, "enabled",
2213 				 "fw-l1d-thread-split"))
2214 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2215 		if (have_fw_feat(fw_features, "enabled",
2216 				 "fw-count-cache-disabled"))
2217 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2218 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2219 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2220 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2221 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2222 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2223 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2224 
2225 		if (have_fw_feat(fw_features, "enabled",
2226 				 "speculation-policy-favor-security"))
2227 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2228 		if (!have_fw_feat(fw_features, "disabled",
2229 				  "needs-l1d-flush-msr-pr-0-to-1"))
2230 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2231 		if (!have_fw_feat(fw_features, "disabled",
2232 				  "needs-spec-barrier-for-bound-checks"))
2233 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2234 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2235 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2236 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2237 
2238 		of_node_put(fw_features);
2239 	}
2240 
2241 	return 0;
2242 }
2243 #endif
2244 
2245 long kvm_arch_vm_ioctl(struct file *filp,
2246                        unsigned int ioctl, unsigned long arg)
2247 {
2248 	struct kvm *kvm __maybe_unused = filp->private_data;
2249 	void __user *argp = (void __user *)arg;
2250 	long r;
2251 
2252 	switch (ioctl) {
2253 	case KVM_PPC_GET_PVINFO: {
2254 		struct kvm_ppc_pvinfo pvinfo;
2255 		memset(&pvinfo, 0, sizeof(pvinfo));
2256 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2257 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2258 			r = -EFAULT;
2259 			goto out;
2260 		}
2261 
2262 		break;
2263 	}
2264 	case KVM_ENABLE_CAP:
2265 	{
2266 		struct kvm_enable_cap cap;
2267 		r = -EFAULT;
2268 		if (copy_from_user(&cap, argp, sizeof(cap)))
2269 			goto out;
2270 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2271 		break;
2272 	}
2273 #ifdef CONFIG_SPAPR_TCE_IOMMU
2274 	case KVM_CREATE_SPAPR_TCE_64: {
2275 		struct kvm_create_spapr_tce_64 create_tce_64;
2276 
2277 		r = -EFAULT;
2278 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2279 			goto out;
2280 		if (create_tce_64.flags) {
2281 			r = -EINVAL;
2282 			goto out;
2283 		}
2284 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2285 		goto out;
2286 	}
2287 	case KVM_CREATE_SPAPR_TCE: {
2288 		struct kvm_create_spapr_tce create_tce;
2289 		struct kvm_create_spapr_tce_64 create_tce_64;
2290 
2291 		r = -EFAULT;
2292 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2293 			goto out;
2294 
2295 		create_tce_64.liobn = create_tce.liobn;
2296 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2297 		create_tce_64.offset = 0;
2298 		create_tce_64.size = create_tce.window_size >>
2299 				IOMMU_PAGE_SHIFT_4K;
2300 		create_tce_64.flags = 0;
2301 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2302 		goto out;
2303 	}
2304 #endif
2305 #ifdef CONFIG_PPC_BOOK3S_64
2306 	case KVM_PPC_GET_SMMU_INFO: {
2307 		struct kvm_ppc_smmu_info info;
2308 		struct kvm *kvm = filp->private_data;
2309 
2310 		memset(&info, 0, sizeof(info));
2311 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2312 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2313 			r = -EFAULT;
2314 		break;
2315 	}
2316 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2317 		struct kvm *kvm = filp->private_data;
2318 
2319 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2320 		break;
2321 	}
2322 	case KVM_PPC_CONFIGURE_V3_MMU: {
2323 		struct kvm *kvm = filp->private_data;
2324 		struct kvm_ppc_mmuv3_cfg cfg;
2325 
2326 		r = -EINVAL;
2327 		if (!kvm->arch.kvm_ops->configure_mmu)
2328 			goto out;
2329 		r = -EFAULT;
2330 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2331 			goto out;
2332 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2333 		break;
2334 	}
2335 	case KVM_PPC_GET_RMMU_INFO: {
2336 		struct kvm *kvm = filp->private_data;
2337 		struct kvm_ppc_rmmu_info info;
2338 
2339 		r = -EINVAL;
2340 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2341 			goto out;
2342 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2343 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2344 			r = -EFAULT;
2345 		break;
2346 	}
2347 	case KVM_PPC_GET_CPU_CHAR: {
2348 		struct kvm_ppc_cpu_char cpuchar;
2349 
2350 		r = kvmppc_get_cpu_char(&cpuchar);
2351 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2352 			r = -EFAULT;
2353 		break;
2354 	}
2355 	default: {
2356 		struct kvm *kvm = filp->private_data;
2357 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2358 	}
2359 #else /* CONFIG_PPC_BOOK3S_64 */
2360 	default:
2361 		r = -ENOTTY;
2362 #endif
2363 	}
2364 out:
2365 	return r;
2366 }
2367 
2368 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2369 static unsigned long nr_lpids;
2370 
2371 long kvmppc_alloc_lpid(void)
2372 {
2373 	long lpid;
2374 
2375 	do {
2376 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2377 		if (lpid >= nr_lpids) {
2378 			pr_err("%s: No LPIDs free\n", __func__);
2379 			return -ENOMEM;
2380 		}
2381 	} while (test_and_set_bit(lpid, lpid_inuse));
2382 
2383 	return lpid;
2384 }
2385 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2386 
2387 void kvmppc_claim_lpid(long lpid)
2388 {
2389 	set_bit(lpid, lpid_inuse);
2390 }
2391 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2392 
2393 void kvmppc_free_lpid(long lpid)
2394 {
2395 	clear_bit(lpid, lpid_inuse);
2396 }
2397 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2398 
2399 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2400 {
2401 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2402 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2403 }
2404 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2405 
2406 int kvm_arch_init(void *opaque)
2407 {
2408 	return 0;
2409 }
2410 
2411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2412