xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision 9b358af7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9 
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35 
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42 
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47 
48 
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
52 }
53 
54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
55 {
56 	return kvm_arch_vcpu_runnable(vcpu);
57 }
58 
59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
60 {
61 	return false;
62 }
63 
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66 	return 1;
67 }
68 
69 /*
70  * Common checks before entering the guest world.  Call with interrupts
71  * disabled.
72  *
73  * returns:
74  *
75  * == 1 if we're ready to go into guest state
76  * <= 0 if we need to go back to the host with return value
77  */
78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
79 {
80 	int r;
81 
82 	WARN_ON(irqs_disabled());
83 	hard_irq_disable();
84 
85 	while (true) {
86 		if (need_resched()) {
87 			local_irq_enable();
88 			cond_resched();
89 			hard_irq_disable();
90 			continue;
91 		}
92 
93 		if (signal_pending(current)) {
94 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
95 			vcpu->run->exit_reason = KVM_EXIT_INTR;
96 			r = -EINTR;
97 			break;
98 		}
99 
100 		vcpu->mode = IN_GUEST_MODE;
101 
102 		/*
103 		 * Reading vcpu->requests must happen after setting vcpu->mode,
104 		 * so we don't miss a request because the requester sees
105 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
106 		 * before next entering the guest (and thus doesn't IPI).
107 		 * This also orders the write to mode from any reads
108 		 * to the page tables done while the VCPU is running.
109 		 * Please see the comment in kvm_flush_remote_tlbs.
110 		 */
111 		smp_mb();
112 
113 		if (kvm_request_pending(vcpu)) {
114 			/* Make sure we process requests preemptable */
115 			local_irq_enable();
116 			trace_kvm_check_requests(vcpu);
117 			r = kvmppc_core_check_requests(vcpu);
118 			hard_irq_disable();
119 			if (r > 0)
120 				continue;
121 			break;
122 		}
123 
124 		if (kvmppc_core_prepare_to_enter(vcpu)) {
125 			/* interrupts got enabled in between, so we
126 			   are back at square 1 */
127 			continue;
128 		}
129 
130 		guest_enter_irqoff();
131 		return 1;
132 	}
133 
134 	/* return to host */
135 	local_irq_enable();
136 	return r;
137 }
138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
139 
140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
142 {
143 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
144 	int i;
145 
146 	shared->sprg0 = swab64(shared->sprg0);
147 	shared->sprg1 = swab64(shared->sprg1);
148 	shared->sprg2 = swab64(shared->sprg2);
149 	shared->sprg3 = swab64(shared->sprg3);
150 	shared->srr0 = swab64(shared->srr0);
151 	shared->srr1 = swab64(shared->srr1);
152 	shared->dar = swab64(shared->dar);
153 	shared->msr = swab64(shared->msr);
154 	shared->dsisr = swab32(shared->dsisr);
155 	shared->int_pending = swab32(shared->int_pending);
156 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
157 		shared->sr[i] = swab32(shared->sr[i]);
158 }
159 #endif
160 
161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
162 {
163 	int nr = kvmppc_get_gpr(vcpu, 11);
164 	int r;
165 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
166 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
167 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
168 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
169 	unsigned long r2 = 0;
170 
171 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
172 		/* 32 bit mode */
173 		param1 &= 0xffffffff;
174 		param2 &= 0xffffffff;
175 		param3 &= 0xffffffff;
176 		param4 &= 0xffffffff;
177 	}
178 
179 	switch (nr) {
180 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
181 	{
182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
183 		/* Book3S can be little endian, find it out here */
184 		int shared_big_endian = true;
185 		if (vcpu->arch.intr_msr & MSR_LE)
186 			shared_big_endian = false;
187 		if (shared_big_endian != vcpu->arch.shared_big_endian)
188 			kvmppc_swab_shared(vcpu);
189 		vcpu->arch.shared_big_endian = shared_big_endian;
190 #endif
191 
192 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
193 			/*
194 			 * Older versions of the Linux magic page code had
195 			 * a bug where they would map their trampoline code
196 			 * NX. If that's the case, remove !PR NX capability.
197 			 */
198 			vcpu->arch.disable_kernel_nx = true;
199 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
200 		}
201 
202 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
203 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
204 
205 #ifdef CONFIG_PPC_64K_PAGES
206 		/*
207 		 * Make sure our 4k magic page is in the same window of a 64k
208 		 * page within the guest and within the host's page.
209 		 */
210 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
211 		    ((ulong)vcpu->arch.shared & 0xf000)) {
212 			void *old_shared = vcpu->arch.shared;
213 			ulong shared = (ulong)vcpu->arch.shared;
214 			void *new_shared;
215 
216 			shared &= PAGE_MASK;
217 			shared |= vcpu->arch.magic_page_pa & 0xf000;
218 			new_shared = (void*)shared;
219 			memcpy(new_shared, old_shared, 0x1000);
220 			vcpu->arch.shared = new_shared;
221 		}
222 #endif
223 
224 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
225 
226 		r = EV_SUCCESS;
227 		break;
228 	}
229 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
230 		r = EV_SUCCESS;
231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
232 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
233 #endif
234 
235 		/* Second return value is in r4 */
236 		break;
237 	case EV_HCALL_TOKEN(EV_IDLE):
238 		r = EV_SUCCESS;
239 		kvm_vcpu_block(vcpu);
240 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
241 		break;
242 	default:
243 		r = EV_UNIMPLEMENTED;
244 		break;
245 	}
246 
247 	kvmppc_set_gpr(vcpu, 4, r2);
248 
249 	return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252 
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255 	int r = false;
256 
257 	/* We have to know what CPU to virtualize */
258 	if (!vcpu->arch.pvr)
259 		goto out;
260 
261 	/* PAPR only works with book3s_64 */
262 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 		goto out;
264 
265 	/* HV KVM can only do PAPR mode for now */
266 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 		goto out;
268 
269 #ifdef CONFIG_KVM_BOOKE_HV
270 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 		goto out;
272 #endif
273 
274 	r = true;
275 
276 out:
277 	vcpu->arch.sane = r;
278 	return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281 
282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284 	enum emulation_result er;
285 	int r;
286 
287 	er = kvmppc_emulate_loadstore(vcpu);
288 	switch (er) {
289 	case EMULATE_DONE:
290 		/* Future optimization: only reload non-volatiles if they were
291 		 * actually modified. */
292 		r = RESUME_GUEST_NV;
293 		break;
294 	case EMULATE_AGAIN:
295 		r = RESUME_GUEST;
296 		break;
297 	case EMULATE_DO_MMIO:
298 		vcpu->run->exit_reason = KVM_EXIT_MMIO;
299 		/* We must reload nonvolatiles because "update" load/store
300 		 * instructions modify register state. */
301 		/* Future optimization: only reload non-volatiles if they were
302 		 * actually modified. */
303 		r = RESUME_HOST_NV;
304 		break;
305 	case EMULATE_FAIL:
306 	{
307 		u32 last_inst;
308 
309 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 		/* XXX Deliver Program interrupt to guest. */
311 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
312 		r = RESUME_HOST;
313 		break;
314 	}
315 	default:
316 		WARN_ON(1);
317 		r = RESUME_GUEST;
318 	}
319 
320 	return r;
321 }
322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
323 
324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
325 	      bool data)
326 {
327 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
328 	struct kvmppc_pte pte;
329 	int r = -EINVAL;
330 
331 	vcpu->stat.st++;
332 
333 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
334 		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
335 							    size);
336 
337 	if ((!r) || (r == -EAGAIN))
338 		return r;
339 
340 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
341 			 XLATE_WRITE, &pte);
342 	if (r < 0)
343 		return r;
344 
345 	*eaddr = pte.raddr;
346 
347 	if (!pte.may_write)
348 		return -EPERM;
349 
350 	/* Magic page override */
351 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
352 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
353 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
354 		void *magic = vcpu->arch.shared;
355 		magic += pte.eaddr & 0xfff;
356 		memcpy(magic, ptr, size);
357 		return EMULATE_DONE;
358 	}
359 
360 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
361 		return EMULATE_DO_MMIO;
362 
363 	return EMULATE_DONE;
364 }
365 EXPORT_SYMBOL_GPL(kvmppc_st);
366 
367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
368 		      bool data)
369 {
370 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
371 	struct kvmppc_pte pte;
372 	int rc = -EINVAL;
373 
374 	vcpu->stat.ld++;
375 
376 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
377 		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
378 							      size);
379 
380 	if ((!rc) || (rc == -EAGAIN))
381 		return rc;
382 
383 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
384 			  XLATE_READ, &pte);
385 	if (rc)
386 		return rc;
387 
388 	*eaddr = pte.raddr;
389 
390 	if (!pte.may_read)
391 		return -EPERM;
392 
393 	if (!data && !pte.may_execute)
394 		return -ENOEXEC;
395 
396 	/* Magic page override */
397 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
398 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
399 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
400 		void *magic = vcpu->arch.shared;
401 		magic += pte.eaddr & 0xfff;
402 		memcpy(ptr, magic, size);
403 		return EMULATE_DONE;
404 	}
405 
406 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
407 	rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
408 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
409 	if (rc)
410 		return EMULATE_DO_MMIO;
411 
412 	return EMULATE_DONE;
413 }
414 EXPORT_SYMBOL_GPL(kvmppc_ld);
415 
416 int kvm_arch_hardware_enable(void)
417 {
418 	return 0;
419 }
420 
421 int kvm_arch_hardware_setup(void *opaque)
422 {
423 	return 0;
424 }
425 
426 int kvm_arch_check_processor_compat(void *opaque)
427 {
428 	return kvmppc_core_check_processor_compat();
429 }
430 
431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
432 {
433 	struct kvmppc_ops *kvm_ops = NULL;
434 	/*
435 	 * if we have both HV and PR enabled, default is HV
436 	 */
437 	if (type == 0) {
438 		if (kvmppc_hv_ops)
439 			kvm_ops = kvmppc_hv_ops;
440 		else
441 			kvm_ops = kvmppc_pr_ops;
442 		if (!kvm_ops)
443 			goto err_out;
444 	} else	if (type == KVM_VM_PPC_HV) {
445 		if (!kvmppc_hv_ops)
446 			goto err_out;
447 		kvm_ops = kvmppc_hv_ops;
448 	} else if (type == KVM_VM_PPC_PR) {
449 		if (!kvmppc_pr_ops)
450 			goto err_out;
451 		kvm_ops = kvmppc_pr_ops;
452 	} else
453 		goto err_out;
454 
455 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
456 		return -ENOENT;
457 
458 	kvm->arch.kvm_ops = kvm_ops;
459 	return kvmppc_core_init_vm(kvm);
460 err_out:
461 	return -EINVAL;
462 }
463 
464 void kvm_arch_destroy_vm(struct kvm *kvm)
465 {
466 	unsigned int i;
467 	struct kvm_vcpu *vcpu;
468 
469 #ifdef CONFIG_KVM_XICS
470 	/*
471 	 * We call kick_all_cpus_sync() to ensure that all
472 	 * CPUs have executed any pending IPIs before we
473 	 * continue and free VCPUs structures below.
474 	 */
475 	if (is_kvmppc_hv_enabled(kvm))
476 		kick_all_cpus_sync();
477 #endif
478 
479 	kvm_for_each_vcpu(i, vcpu, kvm)
480 		kvm_vcpu_destroy(vcpu);
481 
482 	mutex_lock(&kvm->lock);
483 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
484 		kvm->vcpus[i] = NULL;
485 
486 	atomic_set(&kvm->online_vcpus, 0);
487 
488 	kvmppc_core_destroy_vm(kvm);
489 
490 	mutex_unlock(&kvm->lock);
491 
492 	/* drop the module reference */
493 	module_put(kvm->arch.kvm_ops->owner);
494 }
495 
496 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
497 {
498 	int r;
499 	/* Assume we're using HV mode when the HV module is loaded */
500 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
501 
502 	if (kvm) {
503 		/*
504 		 * Hooray - we know which VM type we're running on. Depend on
505 		 * that rather than the guess above.
506 		 */
507 		hv_enabled = is_kvmppc_hv_enabled(kvm);
508 	}
509 
510 	switch (ext) {
511 #ifdef CONFIG_BOOKE
512 	case KVM_CAP_PPC_BOOKE_SREGS:
513 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
514 	case KVM_CAP_PPC_EPR:
515 #else
516 	case KVM_CAP_PPC_SEGSTATE:
517 	case KVM_CAP_PPC_HIOR:
518 	case KVM_CAP_PPC_PAPR:
519 #endif
520 	case KVM_CAP_PPC_UNSET_IRQ:
521 	case KVM_CAP_PPC_IRQ_LEVEL:
522 	case KVM_CAP_ENABLE_CAP:
523 	case KVM_CAP_ONE_REG:
524 	case KVM_CAP_IOEVENTFD:
525 	case KVM_CAP_DEVICE_CTRL:
526 	case KVM_CAP_IMMEDIATE_EXIT:
527 	case KVM_CAP_SET_GUEST_DEBUG:
528 		r = 1;
529 		break;
530 	case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
531 	case KVM_CAP_PPC_PAIRED_SINGLES:
532 	case KVM_CAP_PPC_OSI:
533 	case KVM_CAP_PPC_GET_PVINFO:
534 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
535 	case KVM_CAP_SW_TLB:
536 #endif
537 		/* We support this only for PR */
538 		r = !hv_enabled;
539 		break;
540 #ifdef CONFIG_KVM_MPIC
541 	case KVM_CAP_IRQ_MPIC:
542 		r = 1;
543 		break;
544 #endif
545 
546 #ifdef CONFIG_PPC_BOOK3S_64
547 	case KVM_CAP_SPAPR_TCE:
548 	case KVM_CAP_SPAPR_TCE_64:
549 		r = 1;
550 		break;
551 	case KVM_CAP_SPAPR_TCE_VFIO:
552 		r = !!cpu_has_feature(CPU_FTR_HVMODE);
553 		break;
554 	case KVM_CAP_PPC_RTAS:
555 	case KVM_CAP_PPC_FIXUP_HCALL:
556 	case KVM_CAP_PPC_ENABLE_HCALL:
557 #ifdef CONFIG_KVM_XICS
558 	case KVM_CAP_IRQ_XICS:
559 #endif
560 	case KVM_CAP_PPC_GET_CPU_CHAR:
561 		r = 1;
562 		break;
563 #ifdef CONFIG_KVM_XIVE
564 	case KVM_CAP_PPC_IRQ_XIVE:
565 		/*
566 		 * We need XIVE to be enabled on the platform (implies
567 		 * a POWER9 processor) and the PowerNV platform, as
568 		 * nested is not yet supported.
569 		 */
570 		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
571 			kvmppc_xive_native_supported();
572 		break;
573 #endif
574 
575 	case KVM_CAP_PPC_ALLOC_HTAB:
576 		r = hv_enabled;
577 		break;
578 #endif /* CONFIG_PPC_BOOK3S_64 */
579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
580 	case KVM_CAP_PPC_SMT:
581 		r = 0;
582 		if (kvm) {
583 			if (kvm->arch.emul_smt_mode > 1)
584 				r = kvm->arch.emul_smt_mode;
585 			else
586 				r = kvm->arch.smt_mode;
587 		} else if (hv_enabled) {
588 			if (cpu_has_feature(CPU_FTR_ARCH_300))
589 				r = 1;
590 			else
591 				r = threads_per_subcore;
592 		}
593 		break;
594 	case KVM_CAP_PPC_SMT_POSSIBLE:
595 		r = 1;
596 		if (hv_enabled) {
597 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
598 				r = ((threads_per_subcore << 1) - 1);
599 			else
600 				/* P9 can emulate dbells, so allow any mode */
601 				r = 8 | 4 | 2 | 1;
602 		}
603 		break;
604 	case KVM_CAP_PPC_RMA:
605 		r = 0;
606 		break;
607 	case KVM_CAP_PPC_HWRNG:
608 		r = kvmppc_hwrng_present();
609 		break;
610 	case KVM_CAP_PPC_MMU_RADIX:
611 		r = !!(hv_enabled && radix_enabled());
612 		break;
613 	case KVM_CAP_PPC_MMU_HASH_V3:
614 		r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
615 		       kvmppc_hv_ops->hash_v3_possible());
616 		break;
617 	case KVM_CAP_PPC_NESTED_HV:
618 		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
619 		       !kvmppc_hv_ops->enable_nested(NULL));
620 		break;
621 #endif
622 	case KVM_CAP_SYNC_MMU:
623 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
624 		r = hv_enabled;
625 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
626 		r = 1;
627 #else
628 		r = 0;
629 #endif
630 		break;
631 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
632 	case KVM_CAP_PPC_HTAB_FD:
633 		r = hv_enabled;
634 		break;
635 #endif
636 	case KVM_CAP_NR_VCPUS:
637 		/*
638 		 * Recommending a number of CPUs is somewhat arbitrary; we
639 		 * return the number of present CPUs for -HV (since a host
640 		 * will have secondary threads "offline"), and for other KVM
641 		 * implementations just count online CPUs.
642 		 */
643 		if (hv_enabled)
644 			r = num_present_cpus();
645 		else
646 			r = num_online_cpus();
647 		break;
648 	case KVM_CAP_MAX_VCPUS:
649 		r = KVM_MAX_VCPUS;
650 		break;
651 	case KVM_CAP_MAX_VCPU_ID:
652 		r = KVM_MAX_VCPU_ID;
653 		break;
654 #ifdef CONFIG_PPC_BOOK3S_64
655 	case KVM_CAP_PPC_GET_SMMU_INFO:
656 		r = 1;
657 		break;
658 	case KVM_CAP_SPAPR_MULTITCE:
659 		r = 1;
660 		break;
661 	case KVM_CAP_SPAPR_RESIZE_HPT:
662 		r = !!hv_enabled;
663 		break;
664 #endif
665 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
666 	case KVM_CAP_PPC_FWNMI:
667 		r = hv_enabled;
668 		break;
669 #endif
670 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
671 	case KVM_CAP_PPC_HTM:
672 		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
673 		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
674 		break;
675 #endif
676 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
677 	case KVM_CAP_PPC_SECURE_GUEST:
678 		r = hv_enabled && kvmppc_hv_ops->enable_svm &&
679 			!kvmppc_hv_ops->enable_svm(NULL);
680 		break;
681 	case KVM_CAP_PPC_DAWR1:
682 		r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
683 		       !kvmppc_hv_ops->enable_dawr1(NULL));
684 		break;
685 #endif
686 	default:
687 		r = 0;
688 		break;
689 	}
690 	return r;
691 
692 }
693 
694 long kvm_arch_dev_ioctl(struct file *filp,
695                         unsigned int ioctl, unsigned long arg)
696 {
697 	return -EINVAL;
698 }
699 
700 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
701 {
702 	kvmppc_core_free_memslot(kvm, slot);
703 }
704 
705 int kvm_arch_prepare_memory_region(struct kvm *kvm,
706 				   struct kvm_memory_slot *memslot,
707 				   const struct kvm_userspace_memory_region *mem,
708 				   enum kvm_mr_change change)
709 {
710 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change);
711 }
712 
713 void kvm_arch_commit_memory_region(struct kvm *kvm,
714 				   const struct kvm_userspace_memory_region *mem,
715 				   struct kvm_memory_slot *old,
716 				   const struct kvm_memory_slot *new,
717 				   enum kvm_mr_change change)
718 {
719 	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
720 }
721 
722 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
723 				   struct kvm_memory_slot *slot)
724 {
725 	kvmppc_core_flush_memslot(kvm, slot);
726 }
727 
728 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
729 {
730 	return 0;
731 }
732 
733 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
734 {
735 	struct kvm_vcpu *vcpu;
736 
737 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
738 	kvmppc_decrementer_func(vcpu);
739 
740 	return HRTIMER_NORESTART;
741 }
742 
743 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
744 {
745 	int err;
746 
747 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
748 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
749 	vcpu->arch.dec_expires = get_tb();
750 
751 #ifdef CONFIG_KVM_EXIT_TIMING
752 	mutex_init(&vcpu->arch.exit_timing_lock);
753 #endif
754 	err = kvmppc_subarch_vcpu_init(vcpu);
755 	if (err)
756 		return err;
757 
758 	err = kvmppc_core_vcpu_create(vcpu);
759 	if (err)
760 		goto out_vcpu_uninit;
761 
762 	vcpu->arch.waitp = &vcpu->wait;
763 	kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
764 	return 0;
765 
766 out_vcpu_uninit:
767 	kvmppc_subarch_vcpu_uninit(vcpu);
768 	return err;
769 }
770 
771 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
772 {
773 }
774 
775 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
776 {
777 	/* Make sure we're not using the vcpu anymore */
778 	hrtimer_cancel(&vcpu->arch.dec_timer);
779 
780 	kvmppc_remove_vcpu_debugfs(vcpu);
781 
782 	switch (vcpu->arch.irq_type) {
783 	case KVMPPC_IRQ_MPIC:
784 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
785 		break;
786 	case KVMPPC_IRQ_XICS:
787 		if (xics_on_xive())
788 			kvmppc_xive_cleanup_vcpu(vcpu);
789 		else
790 			kvmppc_xics_free_icp(vcpu);
791 		break;
792 	case KVMPPC_IRQ_XIVE:
793 		kvmppc_xive_native_cleanup_vcpu(vcpu);
794 		break;
795 	}
796 
797 	kvmppc_core_vcpu_free(vcpu);
798 
799 	kvmppc_subarch_vcpu_uninit(vcpu);
800 }
801 
802 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
803 {
804 	return kvmppc_core_pending_dec(vcpu);
805 }
806 
807 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
808 {
809 #ifdef CONFIG_BOOKE
810 	/*
811 	 * vrsave (formerly usprg0) isn't used by Linux, but may
812 	 * be used by the guest.
813 	 *
814 	 * On non-booke this is associated with Altivec and
815 	 * is handled by code in book3s.c.
816 	 */
817 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
818 #endif
819 	kvmppc_core_vcpu_load(vcpu, cpu);
820 }
821 
822 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
823 {
824 	kvmppc_core_vcpu_put(vcpu);
825 #ifdef CONFIG_BOOKE
826 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
827 #endif
828 }
829 
830 /*
831  * irq_bypass_add_producer and irq_bypass_del_producer are only
832  * useful if the architecture supports PCI passthrough.
833  * irq_bypass_stop and irq_bypass_start are not needed and so
834  * kvm_ops are not defined for them.
835  */
836 bool kvm_arch_has_irq_bypass(void)
837 {
838 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
839 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
840 }
841 
842 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
843 				     struct irq_bypass_producer *prod)
844 {
845 	struct kvm_kernel_irqfd *irqfd =
846 		container_of(cons, struct kvm_kernel_irqfd, consumer);
847 	struct kvm *kvm = irqfd->kvm;
848 
849 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
850 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
851 
852 	return 0;
853 }
854 
855 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
856 				      struct irq_bypass_producer *prod)
857 {
858 	struct kvm_kernel_irqfd *irqfd =
859 		container_of(cons, struct kvm_kernel_irqfd, consumer);
860 	struct kvm *kvm = irqfd->kvm;
861 
862 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
863 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
864 }
865 
866 #ifdef CONFIG_VSX
867 static inline int kvmppc_get_vsr_dword_offset(int index)
868 {
869 	int offset;
870 
871 	if ((index != 0) && (index != 1))
872 		return -1;
873 
874 #ifdef __BIG_ENDIAN
875 	offset =  index;
876 #else
877 	offset = 1 - index;
878 #endif
879 
880 	return offset;
881 }
882 
883 static inline int kvmppc_get_vsr_word_offset(int index)
884 {
885 	int offset;
886 
887 	if ((index > 3) || (index < 0))
888 		return -1;
889 
890 #ifdef __BIG_ENDIAN
891 	offset = index;
892 #else
893 	offset = 3 - index;
894 #endif
895 	return offset;
896 }
897 
898 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
899 	u64 gpr)
900 {
901 	union kvmppc_one_reg val;
902 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
903 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
904 
905 	if (offset == -1)
906 		return;
907 
908 	if (index >= 32) {
909 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
910 		val.vsxval[offset] = gpr;
911 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
912 	} else {
913 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
914 	}
915 }
916 
917 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
918 	u64 gpr)
919 {
920 	union kvmppc_one_reg val;
921 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
922 
923 	if (index >= 32) {
924 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
925 		val.vsxval[0] = gpr;
926 		val.vsxval[1] = gpr;
927 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
928 	} else {
929 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
930 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
931 	}
932 }
933 
934 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
935 	u32 gpr)
936 {
937 	union kvmppc_one_reg val;
938 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
939 
940 	if (index >= 32) {
941 		val.vsx32val[0] = gpr;
942 		val.vsx32val[1] = gpr;
943 		val.vsx32val[2] = gpr;
944 		val.vsx32val[3] = gpr;
945 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
946 	} else {
947 		val.vsx32val[0] = gpr;
948 		val.vsx32val[1] = gpr;
949 		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
950 		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
951 	}
952 }
953 
954 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
955 	u32 gpr32)
956 {
957 	union kvmppc_one_reg val;
958 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
959 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
960 	int dword_offset, word_offset;
961 
962 	if (offset == -1)
963 		return;
964 
965 	if (index >= 32) {
966 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
967 		val.vsx32val[offset] = gpr32;
968 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
969 	} else {
970 		dword_offset = offset / 2;
971 		word_offset = offset % 2;
972 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
973 		val.vsx32val[word_offset] = gpr32;
974 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
975 	}
976 }
977 #endif /* CONFIG_VSX */
978 
979 #ifdef CONFIG_ALTIVEC
980 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
981 		int index, int element_size)
982 {
983 	int offset;
984 	int elts = sizeof(vector128)/element_size;
985 
986 	if ((index < 0) || (index >= elts))
987 		return -1;
988 
989 	if (kvmppc_need_byteswap(vcpu))
990 		offset = elts - index - 1;
991 	else
992 		offset = index;
993 
994 	return offset;
995 }
996 
997 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
998 		int index)
999 {
1000 	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1001 }
1002 
1003 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1004 		int index)
1005 {
1006 	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1007 }
1008 
1009 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1010 		int index)
1011 {
1012 	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1013 }
1014 
1015 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1016 		int index)
1017 {
1018 	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1019 }
1020 
1021 
1022 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1023 	u64 gpr)
1024 {
1025 	union kvmppc_one_reg val;
1026 	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1027 			vcpu->arch.mmio_vmx_offset);
1028 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1029 
1030 	if (offset == -1)
1031 		return;
1032 
1033 	val.vval = VCPU_VSX_VR(vcpu, index);
1034 	val.vsxval[offset] = gpr;
1035 	VCPU_VSX_VR(vcpu, index) = val.vval;
1036 }
1037 
1038 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1039 	u32 gpr32)
1040 {
1041 	union kvmppc_one_reg val;
1042 	int offset = kvmppc_get_vmx_word_offset(vcpu,
1043 			vcpu->arch.mmio_vmx_offset);
1044 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1045 
1046 	if (offset == -1)
1047 		return;
1048 
1049 	val.vval = VCPU_VSX_VR(vcpu, index);
1050 	val.vsx32val[offset] = gpr32;
1051 	VCPU_VSX_VR(vcpu, index) = val.vval;
1052 }
1053 
1054 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1055 	u16 gpr16)
1056 {
1057 	union kvmppc_one_reg val;
1058 	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1059 			vcpu->arch.mmio_vmx_offset);
1060 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1061 
1062 	if (offset == -1)
1063 		return;
1064 
1065 	val.vval = VCPU_VSX_VR(vcpu, index);
1066 	val.vsx16val[offset] = gpr16;
1067 	VCPU_VSX_VR(vcpu, index) = val.vval;
1068 }
1069 
1070 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1071 	u8 gpr8)
1072 {
1073 	union kvmppc_one_reg val;
1074 	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1075 			vcpu->arch.mmio_vmx_offset);
1076 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1077 
1078 	if (offset == -1)
1079 		return;
1080 
1081 	val.vval = VCPU_VSX_VR(vcpu, index);
1082 	val.vsx8val[offset] = gpr8;
1083 	VCPU_VSX_VR(vcpu, index) = val.vval;
1084 }
1085 #endif /* CONFIG_ALTIVEC */
1086 
1087 #ifdef CONFIG_PPC_FPU
1088 static inline u64 sp_to_dp(u32 fprs)
1089 {
1090 	u64 fprd;
1091 
1092 	preempt_disable();
1093 	enable_kernel_fp();
1094 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m"UPD_CONSTR (fprd) : "m"UPD_CONSTR (fprs)
1095 	     : "fr0");
1096 	preempt_enable();
1097 	return fprd;
1098 }
1099 
1100 static inline u32 dp_to_sp(u64 fprd)
1101 {
1102 	u32 fprs;
1103 
1104 	preempt_disable();
1105 	enable_kernel_fp();
1106 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m"UPD_CONSTR (fprs) : "m"UPD_CONSTR (fprd)
1107 	     : "fr0");
1108 	preempt_enable();
1109 	return fprs;
1110 }
1111 
1112 #else
1113 #define sp_to_dp(x)	(x)
1114 #define dp_to_sp(x)	(x)
1115 #endif /* CONFIG_PPC_FPU */
1116 
1117 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1118 {
1119 	struct kvm_run *run = vcpu->run;
1120 	u64 gpr;
1121 
1122 	if (run->mmio.len > sizeof(gpr)) {
1123 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1124 		return;
1125 	}
1126 
1127 	if (!vcpu->arch.mmio_host_swabbed) {
1128 		switch (run->mmio.len) {
1129 		case 8: gpr = *(u64 *)run->mmio.data; break;
1130 		case 4: gpr = *(u32 *)run->mmio.data; break;
1131 		case 2: gpr = *(u16 *)run->mmio.data; break;
1132 		case 1: gpr = *(u8 *)run->mmio.data; break;
1133 		}
1134 	} else {
1135 		switch (run->mmio.len) {
1136 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1137 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1138 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1139 		case 1: gpr = *(u8 *)run->mmio.data; break;
1140 		}
1141 	}
1142 
1143 	/* conversion between single and double precision */
1144 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1145 		gpr = sp_to_dp(gpr);
1146 
1147 	if (vcpu->arch.mmio_sign_extend) {
1148 		switch (run->mmio.len) {
1149 #ifdef CONFIG_PPC64
1150 		case 4:
1151 			gpr = (s64)(s32)gpr;
1152 			break;
1153 #endif
1154 		case 2:
1155 			gpr = (s64)(s16)gpr;
1156 			break;
1157 		case 1:
1158 			gpr = (s64)(s8)gpr;
1159 			break;
1160 		}
1161 	}
1162 
1163 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1164 	case KVM_MMIO_REG_GPR:
1165 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1166 		break;
1167 	case KVM_MMIO_REG_FPR:
1168 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1169 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1170 
1171 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1172 		break;
1173 #ifdef CONFIG_PPC_BOOK3S
1174 	case KVM_MMIO_REG_QPR:
1175 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1176 		break;
1177 	case KVM_MMIO_REG_FQPR:
1178 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1179 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1180 		break;
1181 #endif
1182 #ifdef CONFIG_VSX
1183 	case KVM_MMIO_REG_VSX:
1184 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1185 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1186 
1187 		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1188 			kvmppc_set_vsr_dword(vcpu, gpr);
1189 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1190 			kvmppc_set_vsr_word(vcpu, gpr);
1191 		else if (vcpu->arch.mmio_copy_type ==
1192 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1193 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1194 		else if (vcpu->arch.mmio_copy_type ==
1195 				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1196 			kvmppc_set_vsr_word_dump(vcpu, gpr);
1197 		break;
1198 #endif
1199 #ifdef CONFIG_ALTIVEC
1200 	case KVM_MMIO_REG_VMX:
1201 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1202 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1203 
1204 		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1205 			kvmppc_set_vmx_dword(vcpu, gpr);
1206 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1207 			kvmppc_set_vmx_word(vcpu, gpr);
1208 		else if (vcpu->arch.mmio_copy_type ==
1209 				KVMPPC_VMX_COPY_HWORD)
1210 			kvmppc_set_vmx_hword(vcpu, gpr);
1211 		else if (vcpu->arch.mmio_copy_type ==
1212 				KVMPPC_VMX_COPY_BYTE)
1213 			kvmppc_set_vmx_byte(vcpu, gpr);
1214 		break;
1215 #endif
1216 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1217 	case KVM_MMIO_REG_NESTED_GPR:
1218 		if (kvmppc_need_byteswap(vcpu))
1219 			gpr = swab64(gpr);
1220 		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1221 				     sizeof(gpr));
1222 		break;
1223 #endif
1224 	default:
1225 		BUG();
1226 	}
1227 }
1228 
1229 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1230 				unsigned int rt, unsigned int bytes,
1231 				int is_default_endian, int sign_extend)
1232 {
1233 	struct kvm_run *run = vcpu->run;
1234 	int idx, ret;
1235 	bool host_swabbed;
1236 
1237 	/* Pity C doesn't have a logical XOR operator */
1238 	if (kvmppc_need_byteswap(vcpu)) {
1239 		host_swabbed = is_default_endian;
1240 	} else {
1241 		host_swabbed = !is_default_endian;
1242 	}
1243 
1244 	if (bytes > sizeof(run->mmio.data)) {
1245 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1246 		       run->mmio.len);
1247 	}
1248 
1249 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1250 	run->mmio.len = bytes;
1251 	run->mmio.is_write = 0;
1252 
1253 	vcpu->arch.io_gpr = rt;
1254 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1255 	vcpu->mmio_needed = 1;
1256 	vcpu->mmio_is_write = 0;
1257 	vcpu->arch.mmio_sign_extend = sign_extend;
1258 
1259 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1260 
1261 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1262 			      bytes, &run->mmio.data);
1263 
1264 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1265 
1266 	if (!ret) {
1267 		kvmppc_complete_mmio_load(vcpu);
1268 		vcpu->mmio_needed = 0;
1269 		return EMULATE_DONE;
1270 	}
1271 
1272 	return EMULATE_DO_MMIO;
1273 }
1274 
1275 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1276 		       unsigned int rt, unsigned int bytes,
1277 		       int is_default_endian)
1278 {
1279 	return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1280 }
1281 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1282 
1283 /* Same as above, but sign extends */
1284 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1285 			unsigned int rt, unsigned int bytes,
1286 			int is_default_endian)
1287 {
1288 	return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1289 }
1290 
1291 #ifdef CONFIG_VSX
1292 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1293 			unsigned int rt, unsigned int bytes,
1294 			int is_default_endian, int mmio_sign_extend)
1295 {
1296 	enum emulation_result emulated = EMULATE_DONE;
1297 
1298 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1299 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1300 		return EMULATE_FAIL;
1301 
1302 	while (vcpu->arch.mmio_vsx_copy_nums) {
1303 		emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1304 			is_default_endian, mmio_sign_extend);
1305 
1306 		if (emulated != EMULATE_DONE)
1307 			break;
1308 
1309 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1310 
1311 		vcpu->arch.mmio_vsx_copy_nums--;
1312 		vcpu->arch.mmio_vsx_offset++;
1313 	}
1314 	return emulated;
1315 }
1316 #endif /* CONFIG_VSX */
1317 
1318 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1319 			u64 val, unsigned int bytes, int is_default_endian)
1320 {
1321 	struct kvm_run *run = vcpu->run;
1322 	void *data = run->mmio.data;
1323 	int idx, ret;
1324 	bool host_swabbed;
1325 
1326 	/* Pity C doesn't have a logical XOR operator */
1327 	if (kvmppc_need_byteswap(vcpu)) {
1328 		host_swabbed = is_default_endian;
1329 	} else {
1330 		host_swabbed = !is_default_endian;
1331 	}
1332 
1333 	if (bytes > sizeof(run->mmio.data)) {
1334 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1335 		       run->mmio.len);
1336 	}
1337 
1338 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1339 	run->mmio.len = bytes;
1340 	run->mmio.is_write = 1;
1341 	vcpu->mmio_needed = 1;
1342 	vcpu->mmio_is_write = 1;
1343 
1344 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1345 		val = dp_to_sp(val);
1346 
1347 	/* Store the value at the lowest bytes in 'data'. */
1348 	if (!host_swabbed) {
1349 		switch (bytes) {
1350 		case 8: *(u64 *)data = val; break;
1351 		case 4: *(u32 *)data = val; break;
1352 		case 2: *(u16 *)data = val; break;
1353 		case 1: *(u8  *)data = val; break;
1354 		}
1355 	} else {
1356 		switch (bytes) {
1357 		case 8: *(u64 *)data = swab64(val); break;
1358 		case 4: *(u32 *)data = swab32(val); break;
1359 		case 2: *(u16 *)data = swab16(val); break;
1360 		case 1: *(u8  *)data = val; break;
1361 		}
1362 	}
1363 
1364 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1365 
1366 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1367 			       bytes, &run->mmio.data);
1368 
1369 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1370 
1371 	if (!ret) {
1372 		vcpu->mmio_needed = 0;
1373 		return EMULATE_DONE;
1374 	}
1375 
1376 	return EMULATE_DO_MMIO;
1377 }
1378 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1379 
1380 #ifdef CONFIG_VSX
1381 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1382 {
1383 	u32 dword_offset, word_offset;
1384 	union kvmppc_one_reg reg;
1385 	int vsx_offset = 0;
1386 	int copy_type = vcpu->arch.mmio_copy_type;
1387 	int result = 0;
1388 
1389 	switch (copy_type) {
1390 	case KVMPPC_VSX_COPY_DWORD:
1391 		vsx_offset =
1392 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1393 
1394 		if (vsx_offset == -1) {
1395 			result = -1;
1396 			break;
1397 		}
1398 
1399 		if (rs < 32) {
1400 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1401 		} else {
1402 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1403 			*val = reg.vsxval[vsx_offset];
1404 		}
1405 		break;
1406 
1407 	case KVMPPC_VSX_COPY_WORD:
1408 		vsx_offset =
1409 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1410 
1411 		if (vsx_offset == -1) {
1412 			result = -1;
1413 			break;
1414 		}
1415 
1416 		if (rs < 32) {
1417 			dword_offset = vsx_offset / 2;
1418 			word_offset = vsx_offset % 2;
1419 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1420 			*val = reg.vsx32val[word_offset];
1421 		} else {
1422 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1423 			*val = reg.vsx32val[vsx_offset];
1424 		}
1425 		break;
1426 
1427 	default:
1428 		result = -1;
1429 		break;
1430 	}
1431 
1432 	return result;
1433 }
1434 
1435 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1436 			int rs, unsigned int bytes, int is_default_endian)
1437 {
1438 	u64 val;
1439 	enum emulation_result emulated = EMULATE_DONE;
1440 
1441 	vcpu->arch.io_gpr = rs;
1442 
1443 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1444 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1445 		return EMULATE_FAIL;
1446 
1447 	while (vcpu->arch.mmio_vsx_copy_nums) {
1448 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1449 			return EMULATE_FAIL;
1450 
1451 		emulated = kvmppc_handle_store(vcpu,
1452 			 val, bytes, is_default_endian);
1453 
1454 		if (emulated != EMULATE_DONE)
1455 			break;
1456 
1457 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1458 
1459 		vcpu->arch.mmio_vsx_copy_nums--;
1460 		vcpu->arch.mmio_vsx_offset++;
1461 	}
1462 
1463 	return emulated;
1464 }
1465 
1466 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1467 {
1468 	struct kvm_run *run = vcpu->run;
1469 	enum emulation_result emulated = EMULATE_FAIL;
1470 	int r;
1471 
1472 	vcpu->arch.paddr_accessed += run->mmio.len;
1473 
1474 	if (!vcpu->mmio_is_write) {
1475 		emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1476 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1477 	} else {
1478 		emulated = kvmppc_handle_vsx_store(vcpu,
1479 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1480 	}
1481 
1482 	switch (emulated) {
1483 	case EMULATE_DO_MMIO:
1484 		run->exit_reason = KVM_EXIT_MMIO;
1485 		r = RESUME_HOST;
1486 		break;
1487 	case EMULATE_FAIL:
1488 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1489 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1490 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1491 		r = RESUME_HOST;
1492 		break;
1493 	default:
1494 		r = RESUME_GUEST;
1495 		break;
1496 	}
1497 	return r;
1498 }
1499 #endif /* CONFIG_VSX */
1500 
1501 #ifdef CONFIG_ALTIVEC
1502 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1503 		unsigned int rt, unsigned int bytes, int is_default_endian)
1504 {
1505 	enum emulation_result emulated = EMULATE_DONE;
1506 
1507 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1508 		return EMULATE_FAIL;
1509 
1510 	while (vcpu->arch.mmio_vmx_copy_nums) {
1511 		emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1512 				is_default_endian, 0);
1513 
1514 		if (emulated != EMULATE_DONE)
1515 			break;
1516 
1517 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1518 		vcpu->arch.mmio_vmx_copy_nums--;
1519 		vcpu->arch.mmio_vmx_offset++;
1520 	}
1521 
1522 	return emulated;
1523 }
1524 
1525 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1526 {
1527 	union kvmppc_one_reg reg;
1528 	int vmx_offset = 0;
1529 	int result = 0;
1530 
1531 	vmx_offset =
1532 		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1533 
1534 	if (vmx_offset == -1)
1535 		return -1;
1536 
1537 	reg.vval = VCPU_VSX_VR(vcpu, index);
1538 	*val = reg.vsxval[vmx_offset];
1539 
1540 	return result;
1541 }
1542 
1543 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1544 {
1545 	union kvmppc_one_reg reg;
1546 	int vmx_offset = 0;
1547 	int result = 0;
1548 
1549 	vmx_offset =
1550 		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1551 
1552 	if (vmx_offset == -1)
1553 		return -1;
1554 
1555 	reg.vval = VCPU_VSX_VR(vcpu, index);
1556 	*val = reg.vsx32val[vmx_offset];
1557 
1558 	return result;
1559 }
1560 
1561 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1562 {
1563 	union kvmppc_one_reg reg;
1564 	int vmx_offset = 0;
1565 	int result = 0;
1566 
1567 	vmx_offset =
1568 		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1569 
1570 	if (vmx_offset == -1)
1571 		return -1;
1572 
1573 	reg.vval = VCPU_VSX_VR(vcpu, index);
1574 	*val = reg.vsx16val[vmx_offset];
1575 
1576 	return result;
1577 }
1578 
1579 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1580 {
1581 	union kvmppc_one_reg reg;
1582 	int vmx_offset = 0;
1583 	int result = 0;
1584 
1585 	vmx_offset =
1586 		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1587 
1588 	if (vmx_offset == -1)
1589 		return -1;
1590 
1591 	reg.vval = VCPU_VSX_VR(vcpu, index);
1592 	*val = reg.vsx8val[vmx_offset];
1593 
1594 	return result;
1595 }
1596 
1597 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1598 		unsigned int rs, unsigned int bytes, int is_default_endian)
1599 {
1600 	u64 val = 0;
1601 	unsigned int index = rs & KVM_MMIO_REG_MASK;
1602 	enum emulation_result emulated = EMULATE_DONE;
1603 
1604 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1605 		return EMULATE_FAIL;
1606 
1607 	vcpu->arch.io_gpr = rs;
1608 
1609 	while (vcpu->arch.mmio_vmx_copy_nums) {
1610 		switch (vcpu->arch.mmio_copy_type) {
1611 		case KVMPPC_VMX_COPY_DWORD:
1612 			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1613 				return EMULATE_FAIL;
1614 
1615 			break;
1616 		case KVMPPC_VMX_COPY_WORD:
1617 			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1618 				return EMULATE_FAIL;
1619 			break;
1620 		case KVMPPC_VMX_COPY_HWORD:
1621 			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1622 				return EMULATE_FAIL;
1623 			break;
1624 		case KVMPPC_VMX_COPY_BYTE:
1625 			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1626 				return EMULATE_FAIL;
1627 			break;
1628 		default:
1629 			return EMULATE_FAIL;
1630 		}
1631 
1632 		emulated = kvmppc_handle_store(vcpu, val, bytes,
1633 				is_default_endian);
1634 		if (emulated != EMULATE_DONE)
1635 			break;
1636 
1637 		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1638 		vcpu->arch.mmio_vmx_copy_nums--;
1639 		vcpu->arch.mmio_vmx_offset++;
1640 	}
1641 
1642 	return emulated;
1643 }
1644 
1645 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1646 {
1647 	struct kvm_run *run = vcpu->run;
1648 	enum emulation_result emulated = EMULATE_FAIL;
1649 	int r;
1650 
1651 	vcpu->arch.paddr_accessed += run->mmio.len;
1652 
1653 	if (!vcpu->mmio_is_write) {
1654 		emulated = kvmppc_handle_vmx_load(vcpu,
1655 				vcpu->arch.io_gpr, run->mmio.len, 1);
1656 	} else {
1657 		emulated = kvmppc_handle_vmx_store(vcpu,
1658 				vcpu->arch.io_gpr, run->mmio.len, 1);
1659 	}
1660 
1661 	switch (emulated) {
1662 	case EMULATE_DO_MMIO:
1663 		run->exit_reason = KVM_EXIT_MMIO;
1664 		r = RESUME_HOST;
1665 		break;
1666 	case EMULATE_FAIL:
1667 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1668 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1669 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1670 		r = RESUME_HOST;
1671 		break;
1672 	default:
1673 		r = RESUME_GUEST;
1674 		break;
1675 	}
1676 	return r;
1677 }
1678 #endif /* CONFIG_ALTIVEC */
1679 
1680 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1681 {
1682 	int r = 0;
1683 	union kvmppc_one_reg val;
1684 	int size;
1685 
1686 	size = one_reg_size(reg->id);
1687 	if (size > sizeof(val))
1688 		return -EINVAL;
1689 
1690 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1691 	if (r == -EINVAL) {
1692 		r = 0;
1693 		switch (reg->id) {
1694 #ifdef CONFIG_ALTIVEC
1695 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1696 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1697 				r = -ENXIO;
1698 				break;
1699 			}
1700 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1701 			break;
1702 		case KVM_REG_PPC_VSCR:
1703 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1704 				r = -ENXIO;
1705 				break;
1706 			}
1707 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1708 			break;
1709 		case KVM_REG_PPC_VRSAVE:
1710 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1711 			break;
1712 #endif /* CONFIG_ALTIVEC */
1713 		default:
1714 			r = -EINVAL;
1715 			break;
1716 		}
1717 	}
1718 
1719 	if (r)
1720 		return r;
1721 
1722 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1723 		r = -EFAULT;
1724 
1725 	return r;
1726 }
1727 
1728 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1729 {
1730 	int r;
1731 	union kvmppc_one_reg val;
1732 	int size;
1733 
1734 	size = one_reg_size(reg->id);
1735 	if (size > sizeof(val))
1736 		return -EINVAL;
1737 
1738 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1739 		return -EFAULT;
1740 
1741 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1742 	if (r == -EINVAL) {
1743 		r = 0;
1744 		switch (reg->id) {
1745 #ifdef CONFIG_ALTIVEC
1746 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1747 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1748 				r = -ENXIO;
1749 				break;
1750 			}
1751 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1752 			break;
1753 		case KVM_REG_PPC_VSCR:
1754 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1755 				r = -ENXIO;
1756 				break;
1757 			}
1758 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1759 			break;
1760 		case KVM_REG_PPC_VRSAVE:
1761 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1762 				r = -ENXIO;
1763 				break;
1764 			}
1765 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1766 			break;
1767 #endif /* CONFIG_ALTIVEC */
1768 		default:
1769 			r = -EINVAL;
1770 			break;
1771 		}
1772 	}
1773 
1774 	return r;
1775 }
1776 
1777 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1778 {
1779 	struct kvm_run *run = vcpu->run;
1780 	int r;
1781 
1782 	vcpu_load(vcpu);
1783 
1784 	if (vcpu->mmio_needed) {
1785 		vcpu->mmio_needed = 0;
1786 		if (!vcpu->mmio_is_write)
1787 			kvmppc_complete_mmio_load(vcpu);
1788 #ifdef CONFIG_VSX
1789 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1790 			vcpu->arch.mmio_vsx_copy_nums--;
1791 			vcpu->arch.mmio_vsx_offset++;
1792 		}
1793 
1794 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1795 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1796 			if (r == RESUME_HOST) {
1797 				vcpu->mmio_needed = 1;
1798 				goto out;
1799 			}
1800 		}
1801 #endif
1802 #ifdef CONFIG_ALTIVEC
1803 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1804 			vcpu->arch.mmio_vmx_copy_nums--;
1805 			vcpu->arch.mmio_vmx_offset++;
1806 		}
1807 
1808 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1809 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1810 			if (r == RESUME_HOST) {
1811 				vcpu->mmio_needed = 1;
1812 				goto out;
1813 			}
1814 		}
1815 #endif
1816 	} else if (vcpu->arch.osi_needed) {
1817 		u64 *gprs = run->osi.gprs;
1818 		int i;
1819 
1820 		for (i = 0; i < 32; i++)
1821 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1822 		vcpu->arch.osi_needed = 0;
1823 	} else if (vcpu->arch.hcall_needed) {
1824 		int i;
1825 
1826 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1827 		for (i = 0; i < 9; ++i)
1828 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1829 		vcpu->arch.hcall_needed = 0;
1830 #ifdef CONFIG_BOOKE
1831 	} else if (vcpu->arch.epr_needed) {
1832 		kvmppc_set_epr(vcpu, run->epr.epr);
1833 		vcpu->arch.epr_needed = 0;
1834 #endif
1835 	}
1836 
1837 	kvm_sigset_activate(vcpu);
1838 
1839 	if (run->immediate_exit)
1840 		r = -EINTR;
1841 	else
1842 		r = kvmppc_vcpu_run(vcpu);
1843 
1844 	kvm_sigset_deactivate(vcpu);
1845 
1846 #ifdef CONFIG_ALTIVEC
1847 out:
1848 #endif
1849 	vcpu_put(vcpu);
1850 	return r;
1851 }
1852 
1853 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1854 {
1855 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1856 		kvmppc_core_dequeue_external(vcpu);
1857 		return 0;
1858 	}
1859 
1860 	kvmppc_core_queue_external(vcpu, irq);
1861 
1862 	kvm_vcpu_kick(vcpu);
1863 
1864 	return 0;
1865 }
1866 
1867 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1868 				     struct kvm_enable_cap *cap)
1869 {
1870 	int r;
1871 
1872 	if (cap->flags)
1873 		return -EINVAL;
1874 
1875 	switch (cap->cap) {
1876 	case KVM_CAP_PPC_OSI:
1877 		r = 0;
1878 		vcpu->arch.osi_enabled = true;
1879 		break;
1880 	case KVM_CAP_PPC_PAPR:
1881 		r = 0;
1882 		vcpu->arch.papr_enabled = true;
1883 		break;
1884 	case KVM_CAP_PPC_EPR:
1885 		r = 0;
1886 		if (cap->args[0])
1887 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1888 		else
1889 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1890 		break;
1891 #ifdef CONFIG_BOOKE
1892 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1893 		r = 0;
1894 		vcpu->arch.watchdog_enabled = true;
1895 		break;
1896 #endif
1897 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1898 	case KVM_CAP_SW_TLB: {
1899 		struct kvm_config_tlb cfg;
1900 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1901 
1902 		r = -EFAULT;
1903 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1904 			break;
1905 
1906 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1907 		break;
1908 	}
1909 #endif
1910 #ifdef CONFIG_KVM_MPIC
1911 	case KVM_CAP_IRQ_MPIC: {
1912 		struct fd f;
1913 		struct kvm_device *dev;
1914 
1915 		r = -EBADF;
1916 		f = fdget(cap->args[0]);
1917 		if (!f.file)
1918 			break;
1919 
1920 		r = -EPERM;
1921 		dev = kvm_device_from_filp(f.file);
1922 		if (dev)
1923 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1924 
1925 		fdput(f);
1926 		break;
1927 	}
1928 #endif
1929 #ifdef CONFIG_KVM_XICS
1930 	case KVM_CAP_IRQ_XICS: {
1931 		struct fd f;
1932 		struct kvm_device *dev;
1933 
1934 		r = -EBADF;
1935 		f = fdget(cap->args[0]);
1936 		if (!f.file)
1937 			break;
1938 
1939 		r = -EPERM;
1940 		dev = kvm_device_from_filp(f.file);
1941 		if (dev) {
1942 			if (xics_on_xive())
1943 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1944 			else
1945 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1946 		}
1947 
1948 		fdput(f);
1949 		break;
1950 	}
1951 #endif /* CONFIG_KVM_XICS */
1952 #ifdef CONFIG_KVM_XIVE
1953 	case KVM_CAP_PPC_IRQ_XIVE: {
1954 		struct fd f;
1955 		struct kvm_device *dev;
1956 
1957 		r = -EBADF;
1958 		f = fdget(cap->args[0]);
1959 		if (!f.file)
1960 			break;
1961 
1962 		r = -ENXIO;
1963 		if (!xive_enabled())
1964 			break;
1965 
1966 		r = -EPERM;
1967 		dev = kvm_device_from_filp(f.file);
1968 		if (dev)
1969 			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1970 							    cap->args[1]);
1971 
1972 		fdput(f);
1973 		break;
1974 	}
1975 #endif /* CONFIG_KVM_XIVE */
1976 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1977 	case KVM_CAP_PPC_FWNMI:
1978 		r = -EINVAL;
1979 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1980 			break;
1981 		r = 0;
1982 		vcpu->kvm->arch.fwnmi_enabled = true;
1983 		break;
1984 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1985 	default:
1986 		r = -EINVAL;
1987 		break;
1988 	}
1989 
1990 	if (!r)
1991 		r = kvmppc_sanity_check(vcpu);
1992 
1993 	return r;
1994 }
1995 
1996 bool kvm_arch_intc_initialized(struct kvm *kvm)
1997 {
1998 #ifdef CONFIG_KVM_MPIC
1999 	if (kvm->arch.mpic)
2000 		return true;
2001 #endif
2002 #ifdef CONFIG_KVM_XICS
2003 	if (kvm->arch.xics || kvm->arch.xive)
2004 		return true;
2005 #endif
2006 	return false;
2007 }
2008 
2009 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2010                                     struct kvm_mp_state *mp_state)
2011 {
2012 	return -EINVAL;
2013 }
2014 
2015 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2016                                     struct kvm_mp_state *mp_state)
2017 {
2018 	return -EINVAL;
2019 }
2020 
2021 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2022 			       unsigned int ioctl, unsigned long arg)
2023 {
2024 	struct kvm_vcpu *vcpu = filp->private_data;
2025 	void __user *argp = (void __user *)arg;
2026 
2027 	if (ioctl == KVM_INTERRUPT) {
2028 		struct kvm_interrupt irq;
2029 		if (copy_from_user(&irq, argp, sizeof(irq)))
2030 			return -EFAULT;
2031 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2032 	}
2033 	return -ENOIOCTLCMD;
2034 }
2035 
2036 long kvm_arch_vcpu_ioctl(struct file *filp,
2037                          unsigned int ioctl, unsigned long arg)
2038 {
2039 	struct kvm_vcpu *vcpu = filp->private_data;
2040 	void __user *argp = (void __user *)arg;
2041 	long r;
2042 
2043 	switch (ioctl) {
2044 	case KVM_ENABLE_CAP:
2045 	{
2046 		struct kvm_enable_cap cap;
2047 		r = -EFAULT;
2048 		vcpu_load(vcpu);
2049 		if (copy_from_user(&cap, argp, sizeof(cap)))
2050 			goto out;
2051 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2052 		vcpu_put(vcpu);
2053 		break;
2054 	}
2055 
2056 	case KVM_SET_ONE_REG:
2057 	case KVM_GET_ONE_REG:
2058 	{
2059 		struct kvm_one_reg reg;
2060 		r = -EFAULT;
2061 		if (copy_from_user(&reg, argp, sizeof(reg)))
2062 			goto out;
2063 		if (ioctl == KVM_SET_ONE_REG)
2064 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2065 		else
2066 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2067 		break;
2068 	}
2069 
2070 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2071 	case KVM_DIRTY_TLB: {
2072 		struct kvm_dirty_tlb dirty;
2073 		r = -EFAULT;
2074 		vcpu_load(vcpu);
2075 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2076 			goto out;
2077 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2078 		vcpu_put(vcpu);
2079 		break;
2080 	}
2081 #endif
2082 	default:
2083 		r = -EINVAL;
2084 	}
2085 
2086 out:
2087 	return r;
2088 }
2089 
2090 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2091 {
2092 	return VM_FAULT_SIGBUS;
2093 }
2094 
2095 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2096 {
2097 	u32 inst_nop = 0x60000000;
2098 #ifdef CONFIG_KVM_BOOKE_HV
2099 	u32 inst_sc1 = 0x44000022;
2100 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2101 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2102 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2103 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2104 #else
2105 	u32 inst_lis = 0x3c000000;
2106 	u32 inst_ori = 0x60000000;
2107 	u32 inst_sc = 0x44000002;
2108 	u32 inst_imm_mask = 0xffff;
2109 
2110 	/*
2111 	 * The hypercall to get into KVM from within guest context is as
2112 	 * follows:
2113 	 *
2114 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2115 	 *    ori r0, KVM_SC_MAGIC_R0@l
2116 	 *    sc
2117 	 *    nop
2118 	 */
2119 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2120 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2121 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2122 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2123 #endif
2124 
2125 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2126 
2127 	return 0;
2128 }
2129 
2130 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2131 			  bool line_status)
2132 {
2133 	if (!irqchip_in_kernel(kvm))
2134 		return -ENXIO;
2135 
2136 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2137 					irq_event->irq, irq_event->level,
2138 					line_status);
2139 	return 0;
2140 }
2141 
2142 
2143 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2144 			    struct kvm_enable_cap *cap)
2145 {
2146 	int r;
2147 
2148 	if (cap->flags)
2149 		return -EINVAL;
2150 
2151 	switch (cap->cap) {
2152 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2153 	case KVM_CAP_PPC_ENABLE_HCALL: {
2154 		unsigned long hcall = cap->args[0];
2155 
2156 		r = -EINVAL;
2157 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2158 		    cap->args[1] > 1)
2159 			break;
2160 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2161 			break;
2162 		if (cap->args[1])
2163 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2164 		else
2165 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2166 		r = 0;
2167 		break;
2168 	}
2169 	case KVM_CAP_PPC_SMT: {
2170 		unsigned long mode = cap->args[0];
2171 		unsigned long flags = cap->args[1];
2172 
2173 		r = -EINVAL;
2174 		if (kvm->arch.kvm_ops->set_smt_mode)
2175 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2176 		break;
2177 	}
2178 
2179 	case KVM_CAP_PPC_NESTED_HV:
2180 		r = -EINVAL;
2181 		if (!is_kvmppc_hv_enabled(kvm) ||
2182 		    !kvm->arch.kvm_ops->enable_nested)
2183 			break;
2184 		r = kvm->arch.kvm_ops->enable_nested(kvm);
2185 		break;
2186 #endif
2187 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2188 	case KVM_CAP_PPC_SECURE_GUEST:
2189 		r = -EINVAL;
2190 		if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2191 			break;
2192 		r = kvm->arch.kvm_ops->enable_svm(kvm);
2193 		break;
2194 	case KVM_CAP_PPC_DAWR1:
2195 		r = -EINVAL;
2196 		if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2197 			break;
2198 		r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2199 		break;
2200 #endif
2201 	default:
2202 		r = -EINVAL;
2203 		break;
2204 	}
2205 
2206 	return r;
2207 }
2208 
2209 #ifdef CONFIG_PPC_BOOK3S_64
2210 /*
2211  * These functions check whether the underlying hardware is safe
2212  * against attacks based on observing the effects of speculatively
2213  * executed instructions, and whether it supplies instructions for
2214  * use in workarounds.  The information comes from firmware, either
2215  * via the device tree on powernv platforms or from an hcall on
2216  * pseries platforms.
2217  */
2218 #ifdef CONFIG_PPC_PSERIES
2219 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2220 {
2221 	struct h_cpu_char_result c;
2222 	unsigned long rc;
2223 
2224 	if (!machine_is(pseries))
2225 		return -ENOTTY;
2226 
2227 	rc = plpar_get_cpu_characteristics(&c);
2228 	if (rc == H_SUCCESS) {
2229 		cp->character = c.character;
2230 		cp->behaviour = c.behaviour;
2231 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2232 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2233 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2234 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2235 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2236 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2237 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2238 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2239 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2240 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2241 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2242 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2243 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2244 	}
2245 	return 0;
2246 }
2247 #else
2248 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2249 {
2250 	return -ENOTTY;
2251 }
2252 #endif
2253 
2254 static inline bool have_fw_feat(struct device_node *fw_features,
2255 				const char *state, const char *name)
2256 {
2257 	struct device_node *np;
2258 	bool r = false;
2259 
2260 	np = of_get_child_by_name(fw_features, name);
2261 	if (np) {
2262 		r = of_property_read_bool(np, state);
2263 		of_node_put(np);
2264 	}
2265 	return r;
2266 }
2267 
2268 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2269 {
2270 	struct device_node *np, *fw_features;
2271 	int r;
2272 
2273 	memset(cp, 0, sizeof(*cp));
2274 	r = pseries_get_cpu_char(cp);
2275 	if (r != -ENOTTY)
2276 		return r;
2277 
2278 	np = of_find_node_by_name(NULL, "ibm,opal");
2279 	if (np) {
2280 		fw_features = of_get_child_by_name(np, "fw-features");
2281 		of_node_put(np);
2282 		if (!fw_features)
2283 			return 0;
2284 		if (have_fw_feat(fw_features, "enabled",
2285 				 "inst-spec-barrier-ori31,31,0"))
2286 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2287 		if (have_fw_feat(fw_features, "enabled",
2288 				 "fw-bcctrl-serialized"))
2289 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2290 		if (have_fw_feat(fw_features, "enabled",
2291 				 "inst-l1d-flush-ori30,30,0"))
2292 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2293 		if (have_fw_feat(fw_features, "enabled",
2294 				 "inst-l1d-flush-trig2"))
2295 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2296 		if (have_fw_feat(fw_features, "enabled",
2297 				 "fw-l1d-thread-split"))
2298 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2299 		if (have_fw_feat(fw_features, "enabled",
2300 				 "fw-count-cache-disabled"))
2301 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2302 		if (have_fw_feat(fw_features, "enabled",
2303 				 "fw-count-cache-flush-bcctr2,0,0"))
2304 			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2305 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2306 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2307 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2308 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2309 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2310 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2311 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2312 
2313 		if (have_fw_feat(fw_features, "enabled",
2314 				 "speculation-policy-favor-security"))
2315 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2316 		if (!have_fw_feat(fw_features, "disabled",
2317 				  "needs-l1d-flush-msr-pr-0-to-1"))
2318 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2319 		if (!have_fw_feat(fw_features, "disabled",
2320 				  "needs-spec-barrier-for-bound-checks"))
2321 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2322 		if (have_fw_feat(fw_features, "enabled",
2323 				 "needs-count-cache-flush-on-context-switch"))
2324 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2325 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2326 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2327 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2328 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2329 
2330 		of_node_put(fw_features);
2331 	}
2332 
2333 	return 0;
2334 }
2335 #endif
2336 
2337 long kvm_arch_vm_ioctl(struct file *filp,
2338                        unsigned int ioctl, unsigned long arg)
2339 {
2340 	struct kvm *kvm __maybe_unused = filp->private_data;
2341 	void __user *argp = (void __user *)arg;
2342 	long r;
2343 
2344 	switch (ioctl) {
2345 	case KVM_PPC_GET_PVINFO: {
2346 		struct kvm_ppc_pvinfo pvinfo;
2347 		memset(&pvinfo, 0, sizeof(pvinfo));
2348 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2349 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2350 			r = -EFAULT;
2351 			goto out;
2352 		}
2353 
2354 		break;
2355 	}
2356 #ifdef CONFIG_SPAPR_TCE_IOMMU
2357 	case KVM_CREATE_SPAPR_TCE_64: {
2358 		struct kvm_create_spapr_tce_64 create_tce_64;
2359 
2360 		r = -EFAULT;
2361 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2362 			goto out;
2363 		if (create_tce_64.flags) {
2364 			r = -EINVAL;
2365 			goto out;
2366 		}
2367 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2368 		goto out;
2369 	}
2370 	case KVM_CREATE_SPAPR_TCE: {
2371 		struct kvm_create_spapr_tce create_tce;
2372 		struct kvm_create_spapr_tce_64 create_tce_64;
2373 
2374 		r = -EFAULT;
2375 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2376 			goto out;
2377 
2378 		create_tce_64.liobn = create_tce.liobn;
2379 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2380 		create_tce_64.offset = 0;
2381 		create_tce_64.size = create_tce.window_size >>
2382 				IOMMU_PAGE_SHIFT_4K;
2383 		create_tce_64.flags = 0;
2384 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2385 		goto out;
2386 	}
2387 #endif
2388 #ifdef CONFIG_PPC_BOOK3S_64
2389 	case KVM_PPC_GET_SMMU_INFO: {
2390 		struct kvm_ppc_smmu_info info;
2391 		struct kvm *kvm = filp->private_data;
2392 
2393 		memset(&info, 0, sizeof(info));
2394 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2395 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2396 			r = -EFAULT;
2397 		break;
2398 	}
2399 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2400 		struct kvm *kvm = filp->private_data;
2401 
2402 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2403 		break;
2404 	}
2405 	case KVM_PPC_CONFIGURE_V3_MMU: {
2406 		struct kvm *kvm = filp->private_data;
2407 		struct kvm_ppc_mmuv3_cfg cfg;
2408 
2409 		r = -EINVAL;
2410 		if (!kvm->arch.kvm_ops->configure_mmu)
2411 			goto out;
2412 		r = -EFAULT;
2413 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2414 			goto out;
2415 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2416 		break;
2417 	}
2418 	case KVM_PPC_GET_RMMU_INFO: {
2419 		struct kvm *kvm = filp->private_data;
2420 		struct kvm_ppc_rmmu_info info;
2421 
2422 		r = -EINVAL;
2423 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2424 			goto out;
2425 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2426 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2427 			r = -EFAULT;
2428 		break;
2429 	}
2430 	case KVM_PPC_GET_CPU_CHAR: {
2431 		struct kvm_ppc_cpu_char cpuchar;
2432 
2433 		r = kvmppc_get_cpu_char(&cpuchar);
2434 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2435 			r = -EFAULT;
2436 		break;
2437 	}
2438 	case KVM_PPC_SVM_OFF: {
2439 		struct kvm *kvm = filp->private_data;
2440 
2441 		r = 0;
2442 		if (!kvm->arch.kvm_ops->svm_off)
2443 			goto out;
2444 
2445 		r = kvm->arch.kvm_ops->svm_off(kvm);
2446 		break;
2447 	}
2448 	default: {
2449 		struct kvm *kvm = filp->private_data;
2450 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2451 	}
2452 #else /* CONFIG_PPC_BOOK3S_64 */
2453 	default:
2454 		r = -ENOTTY;
2455 #endif
2456 	}
2457 out:
2458 	return r;
2459 }
2460 
2461 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2462 static unsigned long nr_lpids;
2463 
2464 long kvmppc_alloc_lpid(void)
2465 {
2466 	long lpid;
2467 
2468 	do {
2469 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2470 		if (lpid >= nr_lpids) {
2471 			pr_err("%s: No LPIDs free\n", __func__);
2472 			return -ENOMEM;
2473 		}
2474 	} while (test_and_set_bit(lpid, lpid_inuse));
2475 
2476 	return lpid;
2477 }
2478 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2479 
2480 void kvmppc_claim_lpid(long lpid)
2481 {
2482 	set_bit(lpid, lpid_inuse);
2483 }
2484 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2485 
2486 void kvmppc_free_lpid(long lpid)
2487 {
2488 	clear_bit(lpid, lpid_inuse);
2489 }
2490 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2491 
2492 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2493 {
2494 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2495 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2496 }
2497 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2498 
2499 int kvm_arch_init(void *opaque)
2500 {
2501 	return 0;
2502 }
2503 
2504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2505