1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <asm/cputable.h> 23 #include <linux/uaccess.h> 24 #include <asm/kvm_ppc.h> 25 #include <asm/cputhreads.h> 26 #include <asm/irqflags.h> 27 #include <asm/iommu.h> 28 #include <asm/switch_to.h> 29 #include <asm/xive.h> 30 #ifdef CONFIG_PPC_PSERIES 31 #include <asm/hvcall.h> 32 #include <asm/plpar_wrappers.h> 33 #endif 34 #include <asm/ultravisor.h> 35 36 #include "timing.h" 37 #include "irq.h" 38 #include "../mm/mmu_decl.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "trace.h" 42 43 struct kvmppc_ops *kvmppc_hv_ops; 44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 45 struct kvmppc_ops *kvmppc_pr_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 47 48 49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 50 { 51 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 52 } 53 54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 55 { 56 return kvm_arch_vcpu_runnable(vcpu); 57 } 58 59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 60 { 61 return false; 62 } 63 64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 65 { 66 return 1; 67 } 68 69 /* 70 * Common checks before entering the guest world. Call with interrupts 71 * disabled. 72 * 73 * returns: 74 * 75 * == 1 if we're ready to go into guest state 76 * <= 0 if we need to go back to the host with return value 77 */ 78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 79 { 80 int r; 81 82 WARN_ON(irqs_disabled()); 83 hard_irq_disable(); 84 85 while (true) { 86 if (need_resched()) { 87 local_irq_enable(); 88 cond_resched(); 89 hard_irq_disable(); 90 continue; 91 } 92 93 if (signal_pending(current)) { 94 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 95 vcpu->run->exit_reason = KVM_EXIT_INTR; 96 r = -EINTR; 97 break; 98 } 99 100 vcpu->mode = IN_GUEST_MODE; 101 102 /* 103 * Reading vcpu->requests must happen after setting vcpu->mode, 104 * so we don't miss a request because the requester sees 105 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 106 * before next entering the guest (and thus doesn't IPI). 107 * This also orders the write to mode from any reads 108 * to the page tables done while the VCPU is running. 109 * Please see the comment in kvm_flush_remote_tlbs. 110 */ 111 smp_mb(); 112 113 if (kvm_request_pending(vcpu)) { 114 /* Make sure we process requests preemptable */ 115 local_irq_enable(); 116 trace_kvm_check_requests(vcpu); 117 r = kvmppc_core_check_requests(vcpu); 118 hard_irq_disable(); 119 if (r > 0) 120 continue; 121 break; 122 } 123 124 if (kvmppc_core_prepare_to_enter(vcpu)) { 125 /* interrupts got enabled in between, so we 126 are back at square 1 */ 127 continue; 128 } 129 130 guest_enter_irqoff(); 131 return 1; 132 } 133 134 /* return to host */ 135 local_irq_enable(); 136 return r; 137 } 138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 139 140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 142 { 143 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 144 int i; 145 146 shared->sprg0 = swab64(shared->sprg0); 147 shared->sprg1 = swab64(shared->sprg1); 148 shared->sprg2 = swab64(shared->sprg2); 149 shared->sprg3 = swab64(shared->sprg3); 150 shared->srr0 = swab64(shared->srr0); 151 shared->srr1 = swab64(shared->srr1); 152 shared->dar = swab64(shared->dar); 153 shared->msr = swab64(shared->msr); 154 shared->dsisr = swab32(shared->dsisr); 155 shared->int_pending = swab32(shared->int_pending); 156 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 157 shared->sr[i] = swab32(shared->sr[i]); 158 } 159 #endif 160 161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 162 { 163 int nr = kvmppc_get_gpr(vcpu, 11); 164 int r; 165 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 166 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 167 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 168 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 169 unsigned long r2 = 0; 170 171 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 172 /* 32 bit mode */ 173 param1 &= 0xffffffff; 174 param2 &= 0xffffffff; 175 param3 &= 0xffffffff; 176 param4 &= 0xffffffff; 177 } 178 179 switch (nr) { 180 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 181 { 182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 183 /* Book3S can be little endian, find it out here */ 184 int shared_big_endian = true; 185 if (vcpu->arch.intr_msr & MSR_LE) 186 shared_big_endian = false; 187 if (shared_big_endian != vcpu->arch.shared_big_endian) 188 kvmppc_swab_shared(vcpu); 189 vcpu->arch.shared_big_endian = shared_big_endian; 190 #endif 191 192 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 193 /* 194 * Older versions of the Linux magic page code had 195 * a bug where they would map their trampoline code 196 * NX. If that's the case, remove !PR NX capability. 197 */ 198 vcpu->arch.disable_kernel_nx = true; 199 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 200 } 201 202 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 203 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 204 205 #ifdef CONFIG_PPC_64K_PAGES 206 /* 207 * Make sure our 4k magic page is in the same window of a 64k 208 * page within the guest and within the host's page. 209 */ 210 if ((vcpu->arch.magic_page_pa & 0xf000) != 211 ((ulong)vcpu->arch.shared & 0xf000)) { 212 void *old_shared = vcpu->arch.shared; 213 ulong shared = (ulong)vcpu->arch.shared; 214 void *new_shared; 215 216 shared &= PAGE_MASK; 217 shared |= vcpu->arch.magic_page_pa & 0xf000; 218 new_shared = (void*)shared; 219 memcpy(new_shared, old_shared, 0x1000); 220 vcpu->arch.shared = new_shared; 221 } 222 #endif 223 224 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 225 226 r = EV_SUCCESS; 227 break; 228 } 229 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 230 r = EV_SUCCESS; 231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 232 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 233 #endif 234 235 /* Second return value is in r4 */ 236 break; 237 case EV_HCALL_TOKEN(EV_IDLE): 238 r = EV_SUCCESS; 239 kvm_vcpu_block(vcpu); 240 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 241 break; 242 default: 243 r = EV_UNIMPLEMENTED; 244 break; 245 } 246 247 kvmppc_set_gpr(vcpu, 4, r2); 248 249 return r; 250 } 251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 252 253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 254 { 255 int r = false; 256 257 /* We have to know what CPU to virtualize */ 258 if (!vcpu->arch.pvr) 259 goto out; 260 261 /* PAPR only works with book3s_64 */ 262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 263 goto out; 264 265 /* HV KVM can only do PAPR mode for now */ 266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 267 goto out; 268 269 #ifdef CONFIG_KVM_BOOKE_HV 270 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 271 goto out; 272 #endif 273 274 r = true; 275 276 out: 277 vcpu->arch.sane = r; 278 return r ? 0 : -EINVAL; 279 } 280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 281 282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 283 { 284 enum emulation_result er; 285 int r; 286 287 er = kvmppc_emulate_loadstore(vcpu); 288 switch (er) { 289 case EMULATE_DONE: 290 /* Future optimization: only reload non-volatiles if they were 291 * actually modified. */ 292 r = RESUME_GUEST_NV; 293 break; 294 case EMULATE_AGAIN: 295 r = RESUME_GUEST; 296 break; 297 case EMULATE_DO_MMIO: 298 vcpu->run->exit_reason = KVM_EXIT_MMIO; 299 /* We must reload nonvolatiles because "update" load/store 300 * instructions modify register state. */ 301 /* Future optimization: only reload non-volatiles if they were 302 * actually modified. */ 303 r = RESUME_HOST_NV; 304 break; 305 case EMULATE_FAIL: 306 { 307 u32 last_inst; 308 309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 310 /* XXX Deliver Program interrupt to guest. */ 311 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 312 r = RESUME_HOST; 313 break; 314 } 315 default: 316 WARN_ON(1); 317 r = RESUME_GUEST; 318 } 319 320 return r; 321 } 322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 323 324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 325 bool data) 326 { 327 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 328 struct kvmppc_pte pte; 329 int r = -EINVAL; 330 331 vcpu->stat.st++; 332 333 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 334 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 335 size); 336 337 if ((!r) || (r == -EAGAIN)) 338 return r; 339 340 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 341 XLATE_WRITE, &pte); 342 if (r < 0) 343 return r; 344 345 *eaddr = pte.raddr; 346 347 if (!pte.may_write) 348 return -EPERM; 349 350 /* Magic page override */ 351 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 352 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 353 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 354 void *magic = vcpu->arch.shared; 355 magic += pte.eaddr & 0xfff; 356 memcpy(magic, ptr, size); 357 return EMULATE_DONE; 358 } 359 360 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 361 return EMULATE_DO_MMIO; 362 363 return EMULATE_DONE; 364 } 365 EXPORT_SYMBOL_GPL(kvmppc_st); 366 367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 368 bool data) 369 { 370 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 371 struct kvmppc_pte pte; 372 int rc = -EINVAL; 373 374 vcpu->stat.ld++; 375 376 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 377 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 378 size); 379 380 if ((!rc) || (rc == -EAGAIN)) 381 return rc; 382 383 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 384 XLATE_READ, &pte); 385 if (rc) 386 return rc; 387 388 *eaddr = pte.raddr; 389 390 if (!pte.may_read) 391 return -EPERM; 392 393 if (!data && !pte.may_execute) 394 return -ENOEXEC; 395 396 /* Magic page override */ 397 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 398 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 399 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 400 void *magic = vcpu->arch.shared; 401 magic += pte.eaddr & 0xfff; 402 memcpy(ptr, magic, size); 403 return EMULATE_DONE; 404 } 405 406 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 407 return EMULATE_DO_MMIO; 408 409 return EMULATE_DONE; 410 } 411 EXPORT_SYMBOL_GPL(kvmppc_ld); 412 413 int kvm_arch_hardware_enable(void) 414 { 415 return 0; 416 } 417 418 int kvm_arch_hardware_setup(void *opaque) 419 { 420 return 0; 421 } 422 423 int kvm_arch_check_processor_compat(void *opaque) 424 { 425 return kvmppc_core_check_processor_compat(); 426 } 427 428 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 429 { 430 struct kvmppc_ops *kvm_ops = NULL; 431 /* 432 * if we have both HV and PR enabled, default is HV 433 */ 434 if (type == 0) { 435 if (kvmppc_hv_ops) 436 kvm_ops = kvmppc_hv_ops; 437 else 438 kvm_ops = kvmppc_pr_ops; 439 if (!kvm_ops) 440 goto err_out; 441 } else if (type == KVM_VM_PPC_HV) { 442 if (!kvmppc_hv_ops) 443 goto err_out; 444 kvm_ops = kvmppc_hv_ops; 445 } else if (type == KVM_VM_PPC_PR) { 446 if (!kvmppc_pr_ops) 447 goto err_out; 448 kvm_ops = kvmppc_pr_ops; 449 } else 450 goto err_out; 451 452 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 453 return -ENOENT; 454 455 kvm->arch.kvm_ops = kvm_ops; 456 return kvmppc_core_init_vm(kvm); 457 err_out: 458 return -EINVAL; 459 } 460 461 void kvm_arch_destroy_vm(struct kvm *kvm) 462 { 463 unsigned int i; 464 struct kvm_vcpu *vcpu; 465 466 #ifdef CONFIG_KVM_XICS 467 /* 468 * We call kick_all_cpus_sync() to ensure that all 469 * CPUs have executed any pending IPIs before we 470 * continue and free VCPUs structures below. 471 */ 472 if (is_kvmppc_hv_enabled(kvm)) 473 kick_all_cpus_sync(); 474 #endif 475 476 kvm_for_each_vcpu(i, vcpu, kvm) 477 kvm_vcpu_destroy(vcpu); 478 479 mutex_lock(&kvm->lock); 480 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 481 kvm->vcpus[i] = NULL; 482 483 atomic_set(&kvm->online_vcpus, 0); 484 485 kvmppc_core_destroy_vm(kvm); 486 487 mutex_unlock(&kvm->lock); 488 489 /* drop the module reference */ 490 module_put(kvm->arch.kvm_ops->owner); 491 } 492 493 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 494 { 495 int r; 496 /* Assume we're using HV mode when the HV module is loaded */ 497 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 498 499 if (kvm) { 500 /* 501 * Hooray - we know which VM type we're running on. Depend on 502 * that rather than the guess above. 503 */ 504 hv_enabled = is_kvmppc_hv_enabled(kvm); 505 } 506 507 switch (ext) { 508 #ifdef CONFIG_BOOKE 509 case KVM_CAP_PPC_BOOKE_SREGS: 510 case KVM_CAP_PPC_BOOKE_WATCHDOG: 511 case KVM_CAP_PPC_EPR: 512 #else 513 case KVM_CAP_PPC_SEGSTATE: 514 case KVM_CAP_PPC_HIOR: 515 case KVM_CAP_PPC_PAPR: 516 #endif 517 case KVM_CAP_PPC_UNSET_IRQ: 518 case KVM_CAP_PPC_IRQ_LEVEL: 519 case KVM_CAP_ENABLE_CAP: 520 case KVM_CAP_ONE_REG: 521 case KVM_CAP_IOEVENTFD: 522 case KVM_CAP_DEVICE_CTRL: 523 case KVM_CAP_IMMEDIATE_EXIT: 524 case KVM_CAP_SET_GUEST_DEBUG: 525 r = 1; 526 break; 527 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 528 case KVM_CAP_PPC_PAIRED_SINGLES: 529 case KVM_CAP_PPC_OSI: 530 case KVM_CAP_PPC_GET_PVINFO: 531 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 532 case KVM_CAP_SW_TLB: 533 #endif 534 /* We support this only for PR */ 535 r = !hv_enabled; 536 break; 537 #ifdef CONFIG_KVM_MPIC 538 case KVM_CAP_IRQ_MPIC: 539 r = 1; 540 break; 541 #endif 542 543 #ifdef CONFIG_PPC_BOOK3S_64 544 case KVM_CAP_SPAPR_TCE: 545 case KVM_CAP_SPAPR_TCE_64: 546 r = 1; 547 break; 548 case KVM_CAP_SPAPR_TCE_VFIO: 549 r = !!cpu_has_feature(CPU_FTR_HVMODE); 550 break; 551 case KVM_CAP_PPC_RTAS: 552 case KVM_CAP_PPC_FIXUP_HCALL: 553 case KVM_CAP_PPC_ENABLE_HCALL: 554 #ifdef CONFIG_KVM_XICS 555 case KVM_CAP_IRQ_XICS: 556 #endif 557 case KVM_CAP_PPC_GET_CPU_CHAR: 558 r = 1; 559 break; 560 #ifdef CONFIG_KVM_XIVE 561 case KVM_CAP_PPC_IRQ_XIVE: 562 /* 563 * We need XIVE to be enabled on the platform (implies 564 * a POWER9 processor) and the PowerNV platform, as 565 * nested is not yet supported. 566 */ 567 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 568 kvmppc_xive_native_supported(); 569 break; 570 #endif 571 572 case KVM_CAP_PPC_ALLOC_HTAB: 573 r = hv_enabled; 574 break; 575 #endif /* CONFIG_PPC_BOOK3S_64 */ 576 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 577 case KVM_CAP_PPC_SMT: 578 r = 0; 579 if (kvm) { 580 if (kvm->arch.emul_smt_mode > 1) 581 r = kvm->arch.emul_smt_mode; 582 else 583 r = kvm->arch.smt_mode; 584 } else if (hv_enabled) { 585 if (cpu_has_feature(CPU_FTR_ARCH_300)) 586 r = 1; 587 else 588 r = threads_per_subcore; 589 } 590 break; 591 case KVM_CAP_PPC_SMT_POSSIBLE: 592 r = 1; 593 if (hv_enabled) { 594 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 595 r = ((threads_per_subcore << 1) - 1); 596 else 597 /* P9 can emulate dbells, so allow any mode */ 598 r = 8 | 4 | 2 | 1; 599 } 600 break; 601 case KVM_CAP_PPC_RMA: 602 r = 0; 603 break; 604 case KVM_CAP_PPC_HWRNG: 605 r = kvmppc_hwrng_present(); 606 break; 607 case KVM_CAP_PPC_MMU_RADIX: 608 r = !!(hv_enabled && radix_enabled()); 609 break; 610 case KVM_CAP_PPC_MMU_HASH_V3: 611 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) && 612 cpu_has_feature(CPU_FTR_HVMODE)); 613 break; 614 case KVM_CAP_PPC_NESTED_HV: 615 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 616 !kvmppc_hv_ops->enable_nested(NULL)); 617 break; 618 #endif 619 case KVM_CAP_SYNC_MMU: 620 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 621 r = hv_enabled; 622 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 623 r = 1; 624 #else 625 r = 0; 626 #endif 627 break; 628 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 629 case KVM_CAP_PPC_HTAB_FD: 630 r = hv_enabled; 631 break; 632 #endif 633 case KVM_CAP_NR_VCPUS: 634 /* 635 * Recommending a number of CPUs is somewhat arbitrary; we 636 * return the number of present CPUs for -HV (since a host 637 * will have secondary threads "offline"), and for other KVM 638 * implementations just count online CPUs. 639 */ 640 if (hv_enabled) 641 r = num_present_cpus(); 642 else 643 r = num_online_cpus(); 644 break; 645 case KVM_CAP_MAX_VCPUS: 646 r = KVM_MAX_VCPUS; 647 break; 648 case KVM_CAP_MAX_VCPU_ID: 649 r = KVM_MAX_VCPU_ID; 650 break; 651 #ifdef CONFIG_PPC_BOOK3S_64 652 case KVM_CAP_PPC_GET_SMMU_INFO: 653 r = 1; 654 break; 655 case KVM_CAP_SPAPR_MULTITCE: 656 r = 1; 657 break; 658 case KVM_CAP_SPAPR_RESIZE_HPT: 659 r = !!hv_enabled; 660 break; 661 #endif 662 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 663 case KVM_CAP_PPC_FWNMI: 664 r = hv_enabled; 665 break; 666 #endif 667 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 668 case KVM_CAP_PPC_HTM: 669 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 670 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 671 break; 672 #endif 673 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 674 case KVM_CAP_PPC_SECURE_GUEST: 675 r = hv_enabled && kvmppc_hv_ops->enable_svm && 676 !kvmppc_hv_ops->enable_svm(NULL); 677 break; 678 #endif 679 default: 680 r = 0; 681 break; 682 } 683 return r; 684 685 } 686 687 long kvm_arch_dev_ioctl(struct file *filp, 688 unsigned int ioctl, unsigned long arg) 689 { 690 return -EINVAL; 691 } 692 693 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 694 { 695 kvmppc_core_free_memslot(kvm, slot); 696 } 697 698 int kvm_arch_prepare_memory_region(struct kvm *kvm, 699 struct kvm_memory_slot *memslot, 700 const struct kvm_userspace_memory_region *mem, 701 enum kvm_mr_change change) 702 { 703 return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change); 704 } 705 706 void kvm_arch_commit_memory_region(struct kvm *kvm, 707 const struct kvm_userspace_memory_region *mem, 708 struct kvm_memory_slot *old, 709 const struct kvm_memory_slot *new, 710 enum kvm_mr_change change) 711 { 712 kvmppc_core_commit_memory_region(kvm, mem, old, new, change); 713 } 714 715 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 716 struct kvm_memory_slot *slot) 717 { 718 kvmppc_core_flush_memslot(kvm, slot); 719 } 720 721 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 722 { 723 return 0; 724 } 725 726 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 727 { 728 struct kvm_vcpu *vcpu; 729 730 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 731 kvmppc_decrementer_func(vcpu); 732 733 return HRTIMER_NORESTART; 734 } 735 736 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 737 { 738 int err; 739 740 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 741 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 742 vcpu->arch.dec_expires = get_tb(); 743 744 #ifdef CONFIG_KVM_EXIT_TIMING 745 mutex_init(&vcpu->arch.exit_timing_lock); 746 #endif 747 err = kvmppc_subarch_vcpu_init(vcpu); 748 if (err) 749 return err; 750 751 err = kvmppc_core_vcpu_create(vcpu); 752 if (err) 753 goto out_vcpu_uninit; 754 755 vcpu->arch.waitp = &vcpu->wait; 756 kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id); 757 return 0; 758 759 out_vcpu_uninit: 760 kvmppc_subarch_vcpu_uninit(vcpu); 761 return err; 762 } 763 764 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 765 { 766 } 767 768 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 769 { 770 /* Make sure we're not using the vcpu anymore */ 771 hrtimer_cancel(&vcpu->arch.dec_timer); 772 773 kvmppc_remove_vcpu_debugfs(vcpu); 774 775 switch (vcpu->arch.irq_type) { 776 case KVMPPC_IRQ_MPIC: 777 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 778 break; 779 case KVMPPC_IRQ_XICS: 780 if (xics_on_xive()) 781 kvmppc_xive_cleanup_vcpu(vcpu); 782 else 783 kvmppc_xics_free_icp(vcpu); 784 break; 785 case KVMPPC_IRQ_XIVE: 786 kvmppc_xive_native_cleanup_vcpu(vcpu); 787 break; 788 } 789 790 kvmppc_core_vcpu_free(vcpu); 791 792 kvmppc_subarch_vcpu_uninit(vcpu); 793 } 794 795 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 796 { 797 return kvmppc_core_pending_dec(vcpu); 798 } 799 800 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 801 { 802 #ifdef CONFIG_BOOKE 803 /* 804 * vrsave (formerly usprg0) isn't used by Linux, but may 805 * be used by the guest. 806 * 807 * On non-booke this is associated with Altivec and 808 * is handled by code in book3s.c. 809 */ 810 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 811 #endif 812 kvmppc_core_vcpu_load(vcpu, cpu); 813 } 814 815 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 816 { 817 kvmppc_core_vcpu_put(vcpu); 818 #ifdef CONFIG_BOOKE 819 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 820 #endif 821 } 822 823 /* 824 * irq_bypass_add_producer and irq_bypass_del_producer are only 825 * useful if the architecture supports PCI passthrough. 826 * irq_bypass_stop and irq_bypass_start are not needed and so 827 * kvm_ops are not defined for them. 828 */ 829 bool kvm_arch_has_irq_bypass(void) 830 { 831 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 832 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 833 } 834 835 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 836 struct irq_bypass_producer *prod) 837 { 838 struct kvm_kernel_irqfd *irqfd = 839 container_of(cons, struct kvm_kernel_irqfd, consumer); 840 struct kvm *kvm = irqfd->kvm; 841 842 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 843 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 844 845 return 0; 846 } 847 848 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 849 struct irq_bypass_producer *prod) 850 { 851 struct kvm_kernel_irqfd *irqfd = 852 container_of(cons, struct kvm_kernel_irqfd, consumer); 853 struct kvm *kvm = irqfd->kvm; 854 855 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 856 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 857 } 858 859 #ifdef CONFIG_VSX 860 static inline int kvmppc_get_vsr_dword_offset(int index) 861 { 862 int offset; 863 864 if ((index != 0) && (index != 1)) 865 return -1; 866 867 #ifdef __BIG_ENDIAN 868 offset = index; 869 #else 870 offset = 1 - index; 871 #endif 872 873 return offset; 874 } 875 876 static inline int kvmppc_get_vsr_word_offset(int index) 877 { 878 int offset; 879 880 if ((index > 3) || (index < 0)) 881 return -1; 882 883 #ifdef __BIG_ENDIAN 884 offset = index; 885 #else 886 offset = 3 - index; 887 #endif 888 return offset; 889 } 890 891 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 892 u64 gpr) 893 { 894 union kvmppc_one_reg val; 895 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 896 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 897 898 if (offset == -1) 899 return; 900 901 if (index >= 32) { 902 val.vval = VCPU_VSX_VR(vcpu, index - 32); 903 val.vsxval[offset] = gpr; 904 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 905 } else { 906 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 907 } 908 } 909 910 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 911 u64 gpr) 912 { 913 union kvmppc_one_reg val; 914 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 915 916 if (index >= 32) { 917 val.vval = VCPU_VSX_VR(vcpu, index - 32); 918 val.vsxval[0] = gpr; 919 val.vsxval[1] = gpr; 920 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 921 } else { 922 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 923 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 924 } 925 } 926 927 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 928 u32 gpr) 929 { 930 union kvmppc_one_reg val; 931 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 932 933 if (index >= 32) { 934 val.vsx32val[0] = gpr; 935 val.vsx32val[1] = gpr; 936 val.vsx32val[2] = gpr; 937 val.vsx32val[3] = gpr; 938 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 939 } else { 940 val.vsx32val[0] = gpr; 941 val.vsx32val[1] = gpr; 942 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 943 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 944 } 945 } 946 947 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 948 u32 gpr32) 949 { 950 union kvmppc_one_reg val; 951 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 952 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 953 int dword_offset, word_offset; 954 955 if (offset == -1) 956 return; 957 958 if (index >= 32) { 959 val.vval = VCPU_VSX_VR(vcpu, index - 32); 960 val.vsx32val[offset] = gpr32; 961 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 962 } else { 963 dword_offset = offset / 2; 964 word_offset = offset % 2; 965 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 966 val.vsx32val[word_offset] = gpr32; 967 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 968 } 969 } 970 #endif /* CONFIG_VSX */ 971 972 #ifdef CONFIG_ALTIVEC 973 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 974 int index, int element_size) 975 { 976 int offset; 977 int elts = sizeof(vector128)/element_size; 978 979 if ((index < 0) || (index >= elts)) 980 return -1; 981 982 if (kvmppc_need_byteswap(vcpu)) 983 offset = elts - index - 1; 984 else 985 offset = index; 986 987 return offset; 988 } 989 990 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 991 int index) 992 { 993 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 994 } 995 996 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 997 int index) 998 { 999 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1000 } 1001 1002 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1003 int index) 1004 { 1005 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1006 } 1007 1008 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1009 int index) 1010 { 1011 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1012 } 1013 1014 1015 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1016 u64 gpr) 1017 { 1018 union kvmppc_one_reg val; 1019 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1020 vcpu->arch.mmio_vmx_offset); 1021 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1022 1023 if (offset == -1) 1024 return; 1025 1026 val.vval = VCPU_VSX_VR(vcpu, index); 1027 val.vsxval[offset] = gpr; 1028 VCPU_VSX_VR(vcpu, index) = val.vval; 1029 } 1030 1031 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1032 u32 gpr32) 1033 { 1034 union kvmppc_one_reg val; 1035 int offset = kvmppc_get_vmx_word_offset(vcpu, 1036 vcpu->arch.mmio_vmx_offset); 1037 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1038 1039 if (offset == -1) 1040 return; 1041 1042 val.vval = VCPU_VSX_VR(vcpu, index); 1043 val.vsx32val[offset] = gpr32; 1044 VCPU_VSX_VR(vcpu, index) = val.vval; 1045 } 1046 1047 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1048 u16 gpr16) 1049 { 1050 union kvmppc_one_reg val; 1051 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1052 vcpu->arch.mmio_vmx_offset); 1053 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1054 1055 if (offset == -1) 1056 return; 1057 1058 val.vval = VCPU_VSX_VR(vcpu, index); 1059 val.vsx16val[offset] = gpr16; 1060 VCPU_VSX_VR(vcpu, index) = val.vval; 1061 } 1062 1063 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1064 u8 gpr8) 1065 { 1066 union kvmppc_one_reg val; 1067 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1068 vcpu->arch.mmio_vmx_offset); 1069 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1070 1071 if (offset == -1) 1072 return; 1073 1074 val.vval = VCPU_VSX_VR(vcpu, index); 1075 val.vsx8val[offset] = gpr8; 1076 VCPU_VSX_VR(vcpu, index) = val.vval; 1077 } 1078 #endif /* CONFIG_ALTIVEC */ 1079 1080 #ifdef CONFIG_PPC_FPU 1081 static inline u64 sp_to_dp(u32 fprs) 1082 { 1083 u64 fprd; 1084 1085 preempt_disable(); 1086 enable_kernel_fp(); 1087 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 1088 : "fr0"); 1089 preempt_enable(); 1090 return fprd; 1091 } 1092 1093 static inline u32 dp_to_sp(u64 fprd) 1094 { 1095 u32 fprs; 1096 1097 preempt_disable(); 1098 enable_kernel_fp(); 1099 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 1100 : "fr0"); 1101 preempt_enable(); 1102 return fprs; 1103 } 1104 1105 #else 1106 #define sp_to_dp(x) (x) 1107 #define dp_to_sp(x) (x) 1108 #endif /* CONFIG_PPC_FPU */ 1109 1110 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1111 { 1112 struct kvm_run *run = vcpu->run; 1113 u64 uninitialized_var(gpr); 1114 1115 if (run->mmio.len > sizeof(gpr)) { 1116 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1117 return; 1118 } 1119 1120 if (!vcpu->arch.mmio_host_swabbed) { 1121 switch (run->mmio.len) { 1122 case 8: gpr = *(u64 *)run->mmio.data; break; 1123 case 4: gpr = *(u32 *)run->mmio.data; break; 1124 case 2: gpr = *(u16 *)run->mmio.data; break; 1125 case 1: gpr = *(u8 *)run->mmio.data; break; 1126 } 1127 } else { 1128 switch (run->mmio.len) { 1129 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1130 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1131 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1132 case 1: gpr = *(u8 *)run->mmio.data; break; 1133 } 1134 } 1135 1136 /* conversion between single and double precision */ 1137 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1138 gpr = sp_to_dp(gpr); 1139 1140 if (vcpu->arch.mmio_sign_extend) { 1141 switch (run->mmio.len) { 1142 #ifdef CONFIG_PPC64 1143 case 4: 1144 gpr = (s64)(s32)gpr; 1145 break; 1146 #endif 1147 case 2: 1148 gpr = (s64)(s16)gpr; 1149 break; 1150 case 1: 1151 gpr = (s64)(s8)gpr; 1152 break; 1153 } 1154 } 1155 1156 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1157 case KVM_MMIO_REG_GPR: 1158 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1159 break; 1160 case KVM_MMIO_REG_FPR: 1161 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1162 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1163 1164 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1165 break; 1166 #ifdef CONFIG_PPC_BOOK3S 1167 case KVM_MMIO_REG_QPR: 1168 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1169 break; 1170 case KVM_MMIO_REG_FQPR: 1171 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1172 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1173 break; 1174 #endif 1175 #ifdef CONFIG_VSX 1176 case KVM_MMIO_REG_VSX: 1177 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1178 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1179 1180 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1181 kvmppc_set_vsr_dword(vcpu, gpr); 1182 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1183 kvmppc_set_vsr_word(vcpu, gpr); 1184 else if (vcpu->arch.mmio_copy_type == 1185 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1186 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1187 else if (vcpu->arch.mmio_copy_type == 1188 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1189 kvmppc_set_vsr_word_dump(vcpu, gpr); 1190 break; 1191 #endif 1192 #ifdef CONFIG_ALTIVEC 1193 case KVM_MMIO_REG_VMX: 1194 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1195 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1196 1197 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1198 kvmppc_set_vmx_dword(vcpu, gpr); 1199 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1200 kvmppc_set_vmx_word(vcpu, gpr); 1201 else if (vcpu->arch.mmio_copy_type == 1202 KVMPPC_VMX_COPY_HWORD) 1203 kvmppc_set_vmx_hword(vcpu, gpr); 1204 else if (vcpu->arch.mmio_copy_type == 1205 KVMPPC_VMX_COPY_BYTE) 1206 kvmppc_set_vmx_byte(vcpu, gpr); 1207 break; 1208 #endif 1209 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1210 case KVM_MMIO_REG_NESTED_GPR: 1211 if (kvmppc_need_byteswap(vcpu)) 1212 gpr = swab64(gpr); 1213 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1214 sizeof(gpr)); 1215 break; 1216 #endif 1217 default: 1218 BUG(); 1219 } 1220 } 1221 1222 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1223 unsigned int rt, unsigned int bytes, 1224 int is_default_endian, int sign_extend) 1225 { 1226 struct kvm_run *run = vcpu->run; 1227 int idx, ret; 1228 bool host_swabbed; 1229 1230 /* Pity C doesn't have a logical XOR operator */ 1231 if (kvmppc_need_byteswap(vcpu)) { 1232 host_swabbed = is_default_endian; 1233 } else { 1234 host_swabbed = !is_default_endian; 1235 } 1236 1237 if (bytes > sizeof(run->mmio.data)) { 1238 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1239 run->mmio.len); 1240 } 1241 1242 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1243 run->mmio.len = bytes; 1244 run->mmio.is_write = 0; 1245 1246 vcpu->arch.io_gpr = rt; 1247 vcpu->arch.mmio_host_swabbed = host_swabbed; 1248 vcpu->mmio_needed = 1; 1249 vcpu->mmio_is_write = 0; 1250 vcpu->arch.mmio_sign_extend = sign_extend; 1251 1252 idx = srcu_read_lock(&vcpu->kvm->srcu); 1253 1254 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1255 bytes, &run->mmio.data); 1256 1257 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1258 1259 if (!ret) { 1260 kvmppc_complete_mmio_load(vcpu); 1261 vcpu->mmio_needed = 0; 1262 return EMULATE_DONE; 1263 } 1264 1265 return EMULATE_DO_MMIO; 1266 } 1267 1268 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1269 unsigned int rt, unsigned int bytes, 1270 int is_default_endian) 1271 { 1272 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1273 } 1274 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1275 1276 /* Same as above, but sign extends */ 1277 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1278 unsigned int rt, unsigned int bytes, 1279 int is_default_endian) 1280 { 1281 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1282 } 1283 1284 #ifdef CONFIG_VSX 1285 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1286 unsigned int rt, unsigned int bytes, 1287 int is_default_endian, int mmio_sign_extend) 1288 { 1289 enum emulation_result emulated = EMULATE_DONE; 1290 1291 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1292 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1293 return EMULATE_FAIL; 1294 1295 while (vcpu->arch.mmio_vsx_copy_nums) { 1296 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1297 is_default_endian, mmio_sign_extend); 1298 1299 if (emulated != EMULATE_DONE) 1300 break; 1301 1302 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1303 1304 vcpu->arch.mmio_vsx_copy_nums--; 1305 vcpu->arch.mmio_vsx_offset++; 1306 } 1307 return emulated; 1308 } 1309 #endif /* CONFIG_VSX */ 1310 1311 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1312 u64 val, unsigned int bytes, int is_default_endian) 1313 { 1314 struct kvm_run *run = vcpu->run; 1315 void *data = run->mmio.data; 1316 int idx, ret; 1317 bool host_swabbed; 1318 1319 /* Pity C doesn't have a logical XOR operator */ 1320 if (kvmppc_need_byteswap(vcpu)) { 1321 host_swabbed = is_default_endian; 1322 } else { 1323 host_swabbed = !is_default_endian; 1324 } 1325 1326 if (bytes > sizeof(run->mmio.data)) { 1327 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1328 run->mmio.len); 1329 } 1330 1331 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1332 run->mmio.len = bytes; 1333 run->mmio.is_write = 1; 1334 vcpu->mmio_needed = 1; 1335 vcpu->mmio_is_write = 1; 1336 1337 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1338 val = dp_to_sp(val); 1339 1340 /* Store the value at the lowest bytes in 'data'. */ 1341 if (!host_swabbed) { 1342 switch (bytes) { 1343 case 8: *(u64 *)data = val; break; 1344 case 4: *(u32 *)data = val; break; 1345 case 2: *(u16 *)data = val; break; 1346 case 1: *(u8 *)data = val; break; 1347 } 1348 } else { 1349 switch (bytes) { 1350 case 8: *(u64 *)data = swab64(val); break; 1351 case 4: *(u32 *)data = swab32(val); break; 1352 case 2: *(u16 *)data = swab16(val); break; 1353 case 1: *(u8 *)data = val; break; 1354 } 1355 } 1356 1357 idx = srcu_read_lock(&vcpu->kvm->srcu); 1358 1359 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1360 bytes, &run->mmio.data); 1361 1362 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1363 1364 if (!ret) { 1365 vcpu->mmio_needed = 0; 1366 return EMULATE_DONE; 1367 } 1368 1369 return EMULATE_DO_MMIO; 1370 } 1371 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1372 1373 #ifdef CONFIG_VSX 1374 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1375 { 1376 u32 dword_offset, word_offset; 1377 union kvmppc_one_reg reg; 1378 int vsx_offset = 0; 1379 int copy_type = vcpu->arch.mmio_copy_type; 1380 int result = 0; 1381 1382 switch (copy_type) { 1383 case KVMPPC_VSX_COPY_DWORD: 1384 vsx_offset = 1385 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1386 1387 if (vsx_offset == -1) { 1388 result = -1; 1389 break; 1390 } 1391 1392 if (rs < 32) { 1393 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1394 } else { 1395 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1396 *val = reg.vsxval[vsx_offset]; 1397 } 1398 break; 1399 1400 case KVMPPC_VSX_COPY_WORD: 1401 vsx_offset = 1402 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1403 1404 if (vsx_offset == -1) { 1405 result = -1; 1406 break; 1407 } 1408 1409 if (rs < 32) { 1410 dword_offset = vsx_offset / 2; 1411 word_offset = vsx_offset % 2; 1412 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1413 *val = reg.vsx32val[word_offset]; 1414 } else { 1415 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1416 *val = reg.vsx32val[vsx_offset]; 1417 } 1418 break; 1419 1420 default: 1421 result = -1; 1422 break; 1423 } 1424 1425 return result; 1426 } 1427 1428 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1429 int rs, unsigned int bytes, int is_default_endian) 1430 { 1431 u64 val; 1432 enum emulation_result emulated = EMULATE_DONE; 1433 1434 vcpu->arch.io_gpr = rs; 1435 1436 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1437 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1438 return EMULATE_FAIL; 1439 1440 while (vcpu->arch.mmio_vsx_copy_nums) { 1441 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1442 return EMULATE_FAIL; 1443 1444 emulated = kvmppc_handle_store(vcpu, 1445 val, bytes, is_default_endian); 1446 1447 if (emulated != EMULATE_DONE) 1448 break; 1449 1450 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1451 1452 vcpu->arch.mmio_vsx_copy_nums--; 1453 vcpu->arch.mmio_vsx_offset++; 1454 } 1455 1456 return emulated; 1457 } 1458 1459 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1460 { 1461 struct kvm_run *run = vcpu->run; 1462 enum emulation_result emulated = EMULATE_FAIL; 1463 int r; 1464 1465 vcpu->arch.paddr_accessed += run->mmio.len; 1466 1467 if (!vcpu->mmio_is_write) { 1468 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1469 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1470 } else { 1471 emulated = kvmppc_handle_vsx_store(vcpu, 1472 vcpu->arch.io_gpr, run->mmio.len, 1); 1473 } 1474 1475 switch (emulated) { 1476 case EMULATE_DO_MMIO: 1477 run->exit_reason = KVM_EXIT_MMIO; 1478 r = RESUME_HOST; 1479 break; 1480 case EMULATE_FAIL: 1481 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1482 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1483 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1484 r = RESUME_HOST; 1485 break; 1486 default: 1487 r = RESUME_GUEST; 1488 break; 1489 } 1490 return r; 1491 } 1492 #endif /* CONFIG_VSX */ 1493 1494 #ifdef CONFIG_ALTIVEC 1495 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1496 unsigned int rt, unsigned int bytes, int is_default_endian) 1497 { 1498 enum emulation_result emulated = EMULATE_DONE; 1499 1500 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1501 return EMULATE_FAIL; 1502 1503 while (vcpu->arch.mmio_vmx_copy_nums) { 1504 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1505 is_default_endian, 0); 1506 1507 if (emulated != EMULATE_DONE) 1508 break; 1509 1510 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1511 vcpu->arch.mmio_vmx_copy_nums--; 1512 vcpu->arch.mmio_vmx_offset++; 1513 } 1514 1515 return emulated; 1516 } 1517 1518 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1519 { 1520 union kvmppc_one_reg reg; 1521 int vmx_offset = 0; 1522 int result = 0; 1523 1524 vmx_offset = 1525 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1526 1527 if (vmx_offset == -1) 1528 return -1; 1529 1530 reg.vval = VCPU_VSX_VR(vcpu, index); 1531 *val = reg.vsxval[vmx_offset]; 1532 1533 return result; 1534 } 1535 1536 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1537 { 1538 union kvmppc_one_reg reg; 1539 int vmx_offset = 0; 1540 int result = 0; 1541 1542 vmx_offset = 1543 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1544 1545 if (vmx_offset == -1) 1546 return -1; 1547 1548 reg.vval = VCPU_VSX_VR(vcpu, index); 1549 *val = reg.vsx32val[vmx_offset]; 1550 1551 return result; 1552 } 1553 1554 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1555 { 1556 union kvmppc_one_reg reg; 1557 int vmx_offset = 0; 1558 int result = 0; 1559 1560 vmx_offset = 1561 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1562 1563 if (vmx_offset == -1) 1564 return -1; 1565 1566 reg.vval = VCPU_VSX_VR(vcpu, index); 1567 *val = reg.vsx16val[vmx_offset]; 1568 1569 return result; 1570 } 1571 1572 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1573 { 1574 union kvmppc_one_reg reg; 1575 int vmx_offset = 0; 1576 int result = 0; 1577 1578 vmx_offset = 1579 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1580 1581 if (vmx_offset == -1) 1582 return -1; 1583 1584 reg.vval = VCPU_VSX_VR(vcpu, index); 1585 *val = reg.vsx8val[vmx_offset]; 1586 1587 return result; 1588 } 1589 1590 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1591 unsigned int rs, unsigned int bytes, int is_default_endian) 1592 { 1593 u64 val = 0; 1594 unsigned int index = rs & KVM_MMIO_REG_MASK; 1595 enum emulation_result emulated = EMULATE_DONE; 1596 1597 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1598 return EMULATE_FAIL; 1599 1600 vcpu->arch.io_gpr = rs; 1601 1602 while (vcpu->arch.mmio_vmx_copy_nums) { 1603 switch (vcpu->arch.mmio_copy_type) { 1604 case KVMPPC_VMX_COPY_DWORD: 1605 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1606 return EMULATE_FAIL; 1607 1608 break; 1609 case KVMPPC_VMX_COPY_WORD: 1610 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1611 return EMULATE_FAIL; 1612 break; 1613 case KVMPPC_VMX_COPY_HWORD: 1614 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1615 return EMULATE_FAIL; 1616 break; 1617 case KVMPPC_VMX_COPY_BYTE: 1618 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1619 return EMULATE_FAIL; 1620 break; 1621 default: 1622 return EMULATE_FAIL; 1623 } 1624 1625 emulated = kvmppc_handle_store(vcpu, val, bytes, 1626 is_default_endian); 1627 if (emulated != EMULATE_DONE) 1628 break; 1629 1630 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1631 vcpu->arch.mmio_vmx_copy_nums--; 1632 vcpu->arch.mmio_vmx_offset++; 1633 } 1634 1635 return emulated; 1636 } 1637 1638 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1639 { 1640 struct kvm_run *run = vcpu->run; 1641 enum emulation_result emulated = EMULATE_FAIL; 1642 int r; 1643 1644 vcpu->arch.paddr_accessed += run->mmio.len; 1645 1646 if (!vcpu->mmio_is_write) { 1647 emulated = kvmppc_handle_vmx_load(vcpu, 1648 vcpu->arch.io_gpr, run->mmio.len, 1); 1649 } else { 1650 emulated = kvmppc_handle_vmx_store(vcpu, 1651 vcpu->arch.io_gpr, run->mmio.len, 1); 1652 } 1653 1654 switch (emulated) { 1655 case EMULATE_DO_MMIO: 1656 run->exit_reason = KVM_EXIT_MMIO; 1657 r = RESUME_HOST; 1658 break; 1659 case EMULATE_FAIL: 1660 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1661 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1662 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1663 r = RESUME_HOST; 1664 break; 1665 default: 1666 r = RESUME_GUEST; 1667 break; 1668 } 1669 return r; 1670 } 1671 #endif /* CONFIG_ALTIVEC */ 1672 1673 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1674 { 1675 int r = 0; 1676 union kvmppc_one_reg val; 1677 int size; 1678 1679 size = one_reg_size(reg->id); 1680 if (size > sizeof(val)) 1681 return -EINVAL; 1682 1683 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1684 if (r == -EINVAL) { 1685 r = 0; 1686 switch (reg->id) { 1687 #ifdef CONFIG_ALTIVEC 1688 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1689 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1690 r = -ENXIO; 1691 break; 1692 } 1693 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1694 break; 1695 case KVM_REG_PPC_VSCR: 1696 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1697 r = -ENXIO; 1698 break; 1699 } 1700 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1701 break; 1702 case KVM_REG_PPC_VRSAVE: 1703 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1704 break; 1705 #endif /* CONFIG_ALTIVEC */ 1706 default: 1707 r = -EINVAL; 1708 break; 1709 } 1710 } 1711 1712 if (r) 1713 return r; 1714 1715 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1716 r = -EFAULT; 1717 1718 return r; 1719 } 1720 1721 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1722 { 1723 int r; 1724 union kvmppc_one_reg val; 1725 int size; 1726 1727 size = one_reg_size(reg->id); 1728 if (size > sizeof(val)) 1729 return -EINVAL; 1730 1731 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1732 return -EFAULT; 1733 1734 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1735 if (r == -EINVAL) { 1736 r = 0; 1737 switch (reg->id) { 1738 #ifdef CONFIG_ALTIVEC 1739 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1740 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1741 r = -ENXIO; 1742 break; 1743 } 1744 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1745 break; 1746 case KVM_REG_PPC_VSCR: 1747 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1748 r = -ENXIO; 1749 break; 1750 } 1751 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1752 break; 1753 case KVM_REG_PPC_VRSAVE: 1754 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1755 r = -ENXIO; 1756 break; 1757 } 1758 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1759 break; 1760 #endif /* CONFIG_ALTIVEC */ 1761 default: 1762 r = -EINVAL; 1763 break; 1764 } 1765 } 1766 1767 return r; 1768 } 1769 1770 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1771 { 1772 struct kvm_run *run = vcpu->run; 1773 int r; 1774 1775 vcpu_load(vcpu); 1776 1777 if (vcpu->mmio_needed) { 1778 vcpu->mmio_needed = 0; 1779 if (!vcpu->mmio_is_write) 1780 kvmppc_complete_mmio_load(vcpu); 1781 #ifdef CONFIG_VSX 1782 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1783 vcpu->arch.mmio_vsx_copy_nums--; 1784 vcpu->arch.mmio_vsx_offset++; 1785 } 1786 1787 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1788 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1789 if (r == RESUME_HOST) { 1790 vcpu->mmio_needed = 1; 1791 goto out; 1792 } 1793 } 1794 #endif 1795 #ifdef CONFIG_ALTIVEC 1796 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1797 vcpu->arch.mmio_vmx_copy_nums--; 1798 vcpu->arch.mmio_vmx_offset++; 1799 } 1800 1801 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1802 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1803 if (r == RESUME_HOST) { 1804 vcpu->mmio_needed = 1; 1805 goto out; 1806 } 1807 } 1808 #endif 1809 } else if (vcpu->arch.osi_needed) { 1810 u64 *gprs = run->osi.gprs; 1811 int i; 1812 1813 for (i = 0; i < 32; i++) 1814 kvmppc_set_gpr(vcpu, i, gprs[i]); 1815 vcpu->arch.osi_needed = 0; 1816 } else if (vcpu->arch.hcall_needed) { 1817 int i; 1818 1819 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1820 for (i = 0; i < 9; ++i) 1821 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1822 vcpu->arch.hcall_needed = 0; 1823 #ifdef CONFIG_BOOKE 1824 } else if (vcpu->arch.epr_needed) { 1825 kvmppc_set_epr(vcpu, run->epr.epr); 1826 vcpu->arch.epr_needed = 0; 1827 #endif 1828 } 1829 1830 kvm_sigset_activate(vcpu); 1831 1832 if (run->immediate_exit) 1833 r = -EINTR; 1834 else 1835 r = kvmppc_vcpu_run(vcpu); 1836 1837 kvm_sigset_deactivate(vcpu); 1838 1839 #ifdef CONFIG_ALTIVEC 1840 out: 1841 #endif 1842 vcpu_put(vcpu); 1843 return r; 1844 } 1845 1846 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1847 { 1848 if (irq->irq == KVM_INTERRUPT_UNSET) { 1849 kvmppc_core_dequeue_external(vcpu); 1850 return 0; 1851 } 1852 1853 kvmppc_core_queue_external(vcpu, irq); 1854 1855 kvm_vcpu_kick(vcpu); 1856 1857 return 0; 1858 } 1859 1860 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1861 struct kvm_enable_cap *cap) 1862 { 1863 int r; 1864 1865 if (cap->flags) 1866 return -EINVAL; 1867 1868 switch (cap->cap) { 1869 case KVM_CAP_PPC_OSI: 1870 r = 0; 1871 vcpu->arch.osi_enabled = true; 1872 break; 1873 case KVM_CAP_PPC_PAPR: 1874 r = 0; 1875 vcpu->arch.papr_enabled = true; 1876 break; 1877 case KVM_CAP_PPC_EPR: 1878 r = 0; 1879 if (cap->args[0]) 1880 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1881 else 1882 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1883 break; 1884 #ifdef CONFIG_BOOKE 1885 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1886 r = 0; 1887 vcpu->arch.watchdog_enabled = true; 1888 break; 1889 #endif 1890 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1891 case KVM_CAP_SW_TLB: { 1892 struct kvm_config_tlb cfg; 1893 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1894 1895 r = -EFAULT; 1896 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1897 break; 1898 1899 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1900 break; 1901 } 1902 #endif 1903 #ifdef CONFIG_KVM_MPIC 1904 case KVM_CAP_IRQ_MPIC: { 1905 struct fd f; 1906 struct kvm_device *dev; 1907 1908 r = -EBADF; 1909 f = fdget(cap->args[0]); 1910 if (!f.file) 1911 break; 1912 1913 r = -EPERM; 1914 dev = kvm_device_from_filp(f.file); 1915 if (dev) 1916 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1917 1918 fdput(f); 1919 break; 1920 } 1921 #endif 1922 #ifdef CONFIG_KVM_XICS 1923 case KVM_CAP_IRQ_XICS: { 1924 struct fd f; 1925 struct kvm_device *dev; 1926 1927 r = -EBADF; 1928 f = fdget(cap->args[0]); 1929 if (!f.file) 1930 break; 1931 1932 r = -EPERM; 1933 dev = kvm_device_from_filp(f.file); 1934 if (dev) { 1935 if (xics_on_xive()) 1936 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1937 else 1938 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1939 } 1940 1941 fdput(f); 1942 break; 1943 } 1944 #endif /* CONFIG_KVM_XICS */ 1945 #ifdef CONFIG_KVM_XIVE 1946 case KVM_CAP_PPC_IRQ_XIVE: { 1947 struct fd f; 1948 struct kvm_device *dev; 1949 1950 r = -EBADF; 1951 f = fdget(cap->args[0]); 1952 if (!f.file) 1953 break; 1954 1955 r = -ENXIO; 1956 if (!xive_enabled()) 1957 break; 1958 1959 r = -EPERM; 1960 dev = kvm_device_from_filp(f.file); 1961 if (dev) 1962 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1963 cap->args[1]); 1964 1965 fdput(f); 1966 break; 1967 } 1968 #endif /* CONFIG_KVM_XIVE */ 1969 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1970 case KVM_CAP_PPC_FWNMI: 1971 r = -EINVAL; 1972 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1973 break; 1974 r = 0; 1975 vcpu->kvm->arch.fwnmi_enabled = true; 1976 break; 1977 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1978 default: 1979 r = -EINVAL; 1980 break; 1981 } 1982 1983 if (!r) 1984 r = kvmppc_sanity_check(vcpu); 1985 1986 return r; 1987 } 1988 1989 bool kvm_arch_intc_initialized(struct kvm *kvm) 1990 { 1991 #ifdef CONFIG_KVM_MPIC 1992 if (kvm->arch.mpic) 1993 return true; 1994 #endif 1995 #ifdef CONFIG_KVM_XICS 1996 if (kvm->arch.xics || kvm->arch.xive) 1997 return true; 1998 #endif 1999 return false; 2000 } 2001 2002 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2003 struct kvm_mp_state *mp_state) 2004 { 2005 return -EINVAL; 2006 } 2007 2008 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2009 struct kvm_mp_state *mp_state) 2010 { 2011 return -EINVAL; 2012 } 2013 2014 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2015 unsigned int ioctl, unsigned long arg) 2016 { 2017 struct kvm_vcpu *vcpu = filp->private_data; 2018 void __user *argp = (void __user *)arg; 2019 2020 if (ioctl == KVM_INTERRUPT) { 2021 struct kvm_interrupt irq; 2022 if (copy_from_user(&irq, argp, sizeof(irq))) 2023 return -EFAULT; 2024 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2025 } 2026 return -ENOIOCTLCMD; 2027 } 2028 2029 long kvm_arch_vcpu_ioctl(struct file *filp, 2030 unsigned int ioctl, unsigned long arg) 2031 { 2032 struct kvm_vcpu *vcpu = filp->private_data; 2033 void __user *argp = (void __user *)arg; 2034 long r; 2035 2036 switch (ioctl) { 2037 case KVM_ENABLE_CAP: 2038 { 2039 struct kvm_enable_cap cap; 2040 r = -EFAULT; 2041 vcpu_load(vcpu); 2042 if (copy_from_user(&cap, argp, sizeof(cap))) 2043 goto out; 2044 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2045 vcpu_put(vcpu); 2046 break; 2047 } 2048 2049 case KVM_SET_ONE_REG: 2050 case KVM_GET_ONE_REG: 2051 { 2052 struct kvm_one_reg reg; 2053 r = -EFAULT; 2054 if (copy_from_user(®, argp, sizeof(reg))) 2055 goto out; 2056 if (ioctl == KVM_SET_ONE_REG) 2057 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2058 else 2059 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2060 break; 2061 } 2062 2063 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2064 case KVM_DIRTY_TLB: { 2065 struct kvm_dirty_tlb dirty; 2066 r = -EFAULT; 2067 vcpu_load(vcpu); 2068 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2069 goto out; 2070 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2071 vcpu_put(vcpu); 2072 break; 2073 } 2074 #endif 2075 default: 2076 r = -EINVAL; 2077 } 2078 2079 out: 2080 return r; 2081 } 2082 2083 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2084 { 2085 return VM_FAULT_SIGBUS; 2086 } 2087 2088 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2089 { 2090 u32 inst_nop = 0x60000000; 2091 #ifdef CONFIG_KVM_BOOKE_HV 2092 u32 inst_sc1 = 0x44000022; 2093 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2094 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2095 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2096 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2097 #else 2098 u32 inst_lis = 0x3c000000; 2099 u32 inst_ori = 0x60000000; 2100 u32 inst_sc = 0x44000002; 2101 u32 inst_imm_mask = 0xffff; 2102 2103 /* 2104 * The hypercall to get into KVM from within guest context is as 2105 * follows: 2106 * 2107 * lis r0, r0, KVM_SC_MAGIC_R0@h 2108 * ori r0, KVM_SC_MAGIC_R0@l 2109 * sc 2110 * nop 2111 */ 2112 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2113 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2114 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2115 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2116 #endif 2117 2118 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2119 2120 return 0; 2121 } 2122 2123 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2124 bool line_status) 2125 { 2126 if (!irqchip_in_kernel(kvm)) 2127 return -ENXIO; 2128 2129 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2130 irq_event->irq, irq_event->level, 2131 line_status); 2132 return 0; 2133 } 2134 2135 2136 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2137 struct kvm_enable_cap *cap) 2138 { 2139 int r; 2140 2141 if (cap->flags) 2142 return -EINVAL; 2143 2144 switch (cap->cap) { 2145 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2146 case KVM_CAP_PPC_ENABLE_HCALL: { 2147 unsigned long hcall = cap->args[0]; 2148 2149 r = -EINVAL; 2150 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2151 cap->args[1] > 1) 2152 break; 2153 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2154 break; 2155 if (cap->args[1]) 2156 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2157 else 2158 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2159 r = 0; 2160 break; 2161 } 2162 case KVM_CAP_PPC_SMT: { 2163 unsigned long mode = cap->args[0]; 2164 unsigned long flags = cap->args[1]; 2165 2166 r = -EINVAL; 2167 if (kvm->arch.kvm_ops->set_smt_mode) 2168 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2169 break; 2170 } 2171 2172 case KVM_CAP_PPC_NESTED_HV: 2173 r = -EINVAL; 2174 if (!is_kvmppc_hv_enabled(kvm) || 2175 !kvm->arch.kvm_ops->enable_nested) 2176 break; 2177 r = kvm->arch.kvm_ops->enable_nested(kvm); 2178 break; 2179 #endif 2180 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2181 case KVM_CAP_PPC_SECURE_GUEST: 2182 r = -EINVAL; 2183 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2184 break; 2185 r = kvm->arch.kvm_ops->enable_svm(kvm); 2186 break; 2187 #endif 2188 default: 2189 r = -EINVAL; 2190 break; 2191 } 2192 2193 return r; 2194 } 2195 2196 #ifdef CONFIG_PPC_BOOK3S_64 2197 /* 2198 * These functions check whether the underlying hardware is safe 2199 * against attacks based on observing the effects of speculatively 2200 * executed instructions, and whether it supplies instructions for 2201 * use in workarounds. The information comes from firmware, either 2202 * via the device tree on powernv platforms or from an hcall on 2203 * pseries platforms. 2204 */ 2205 #ifdef CONFIG_PPC_PSERIES 2206 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2207 { 2208 struct h_cpu_char_result c; 2209 unsigned long rc; 2210 2211 if (!machine_is(pseries)) 2212 return -ENOTTY; 2213 2214 rc = plpar_get_cpu_characteristics(&c); 2215 if (rc == H_SUCCESS) { 2216 cp->character = c.character; 2217 cp->behaviour = c.behaviour; 2218 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2219 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2220 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2221 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2222 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2223 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2224 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2225 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2226 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2227 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2228 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2229 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2230 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2231 } 2232 return 0; 2233 } 2234 #else 2235 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2236 { 2237 return -ENOTTY; 2238 } 2239 #endif 2240 2241 static inline bool have_fw_feat(struct device_node *fw_features, 2242 const char *state, const char *name) 2243 { 2244 struct device_node *np; 2245 bool r = false; 2246 2247 np = of_get_child_by_name(fw_features, name); 2248 if (np) { 2249 r = of_property_read_bool(np, state); 2250 of_node_put(np); 2251 } 2252 return r; 2253 } 2254 2255 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2256 { 2257 struct device_node *np, *fw_features; 2258 int r; 2259 2260 memset(cp, 0, sizeof(*cp)); 2261 r = pseries_get_cpu_char(cp); 2262 if (r != -ENOTTY) 2263 return r; 2264 2265 np = of_find_node_by_name(NULL, "ibm,opal"); 2266 if (np) { 2267 fw_features = of_get_child_by_name(np, "fw-features"); 2268 of_node_put(np); 2269 if (!fw_features) 2270 return 0; 2271 if (have_fw_feat(fw_features, "enabled", 2272 "inst-spec-barrier-ori31,31,0")) 2273 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2274 if (have_fw_feat(fw_features, "enabled", 2275 "fw-bcctrl-serialized")) 2276 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2277 if (have_fw_feat(fw_features, "enabled", 2278 "inst-l1d-flush-ori30,30,0")) 2279 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2280 if (have_fw_feat(fw_features, "enabled", 2281 "inst-l1d-flush-trig2")) 2282 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2283 if (have_fw_feat(fw_features, "enabled", 2284 "fw-l1d-thread-split")) 2285 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2286 if (have_fw_feat(fw_features, "enabled", 2287 "fw-count-cache-disabled")) 2288 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2289 if (have_fw_feat(fw_features, "enabled", 2290 "fw-count-cache-flush-bcctr2,0,0")) 2291 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2292 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2293 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2294 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2295 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2296 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2297 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2298 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2299 2300 if (have_fw_feat(fw_features, "enabled", 2301 "speculation-policy-favor-security")) 2302 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2303 if (!have_fw_feat(fw_features, "disabled", 2304 "needs-l1d-flush-msr-pr-0-to-1")) 2305 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2306 if (!have_fw_feat(fw_features, "disabled", 2307 "needs-spec-barrier-for-bound-checks")) 2308 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2309 if (have_fw_feat(fw_features, "enabled", 2310 "needs-count-cache-flush-on-context-switch")) 2311 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2312 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2313 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2314 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2315 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2316 2317 of_node_put(fw_features); 2318 } 2319 2320 return 0; 2321 } 2322 #endif 2323 2324 long kvm_arch_vm_ioctl(struct file *filp, 2325 unsigned int ioctl, unsigned long arg) 2326 { 2327 struct kvm *kvm __maybe_unused = filp->private_data; 2328 void __user *argp = (void __user *)arg; 2329 long r; 2330 2331 switch (ioctl) { 2332 case KVM_PPC_GET_PVINFO: { 2333 struct kvm_ppc_pvinfo pvinfo; 2334 memset(&pvinfo, 0, sizeof(pvinfo)); 2335 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2336 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2337 r = -EFAULT; 2338 goto out; 2339 } 2340 2341 break; 2342 } 2343 #ifdef CONFIG_SPAPR_TCE_IOMMU 2344 case KVM_CREATE_SPAPR_TCE_64: { 2345 struct kvm_create_spapr_tce_64 create_tce_64; 2346 2347 r = -EFAULT; 2348 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2349 goto out; 2350 if (create_tce_64.flags) { 2351 r = -EINVAL; 2352 goto out; 2353 } 2354 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2355 goto out; 2356 } 2357 case KVM_CREATE_SPAPR_TCE: { 2358 struct kvm_create_spapr_tce create_tce; 2359 struct kvm_create_spapr_tce_64 create_tce_64; 2360 2361 r = -EFAULT; 2362 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2363 goto out; 2364 2365 create_tce_64.liobn = create_tce.liobn; 2366 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2367 create_tce_64.offset = 0; 2368 create_tce_64.size = create_tce.window_size >> 2369 IOMMU_PAGE_SHIFT_4K; 2370 create_tce_64.flags = 0; 2371 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2372 goto out; 2373 } 2374 #endif 2375 #ifdef CONFIG_PPC_BOOK3S_64 2376 case KVM_PPC_GET_SMMU_INFO: { 2377 struct kvm_ppc_smmu_info info; 2378 struct kvm *kvm = filp->private_data; 2379 2380 memset(&info, 0, sizeof(info)); 2381 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2382 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2383 r = -EFAULT; 2384 break; 2385 } 2386 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2387 struct kvm *kvm = filp->private_data; 2388 2389 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2390 break; 2391 } 2392 case KVM_PPC_CONFIGURE_V3_MMU: { 2393 struct kvm *kvm = filp->private_data; 2394 struct kvm_ppc_mmuv3_cfg cfg; 2395 2396 r = -EINVAL; 2397 if (!kvm->arch.kvm_ops->configure_mmu) 2398 goto out; 2399 r = -EFAULT; 2400 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2401 goto out; 2402 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2403 break; 2404 } 2405 case KVM_PPC_GET_RMMU_INFO: { 2406 struct kvm *kvm = filp->private_data; 2407 struct kvm_ppc_rmmu_info info; 2408 2409 r = -EINVAL; 2410 if (!kvm->arch.kvm_ops->get_rmmu_info) 2411 goto out; 2412 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2413 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2414 r = -EFAULT; 2415 break; 2416 } 2417 case KVM_PPC_GET_CPU_CHAR: { 2418 struct kvm_ppc_cpu_char cpuchar; 2419 2420 r = kvmppc_get_cpu_char(&cpuchar); 2421 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2422 r = -EFAULT; 2423 break; 2424 } 2425 case KVM_PPC_SVM_OFF: { 2426 struct kvm *kvm = filp->private_data; 2427 2428 r = 0; 2429 if (!kvm->arch.kvm_ops->svm_off) 2430 goto out; 2431 2432 r = kvm->arch.kvm_ops->svm_off(kvm); 2433 break; 2434 } 2435 default: { 2436 struct kvm *kvm = filp->private_data; 2437 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2438 } 2439 #else /* CONFIG_PPC_BOOK3S_64 */ 2440 default: 2441 r = -ENOTTY; 2442 #endif 2443 } 2444 out: 2445 return r; 2446 } 2447 2448 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2449 static unsigned long nr_lpids; 2450 2451 long kvmppc_alloc_lpid(void) 2452 { 2453 long lpid; 2454 2455 do { 2456 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2457 if (lpid >= nr_lpids) { 2458 pr_err("%s: No LPIDs free\n", __func__); 2459 return -ENOMEM; 2460 } 2461 } while (test_and_set_bit(lpid, lpid_inuse)); 2462 2463 return lpid; 2464 } 2465 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2466 2467 void kvmppc_claim_lpid(long lpid) 2468 { 2469 set_bit(lpid, lpid_inuse); 2470 } 2471 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2472 2473 void kvmppc_free_lpid(long lpid) 2474 { 2475 clear_bit(lpid, lpid_inuse); 2476 } 2477 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2478 2479 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2480 { 2481 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2482 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2483 } 2484 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2485 2486 int kvm_arch_init(void *opaque) 2487 { 2488 return 0; 2489 } 2490 2491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2492