1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <asm/cputable.h> 23 #include <linux/uaccess.h> 24 #include <asm/kvm_ppc.h> 25 #include <asm/cputhreads.h> 26 #include <asm/irqflags.h> 27 #include <asm/iommu.h> 28 #include <asm/switch_to.h> 29 #include <asm/xive.h> 30 #ifdef CONFIG_PPC_PSERIES 31 #include <asm/hvcall.h> 32 #include <asm/plpar_wrappers.h> 33 #endif 34 #include <asm/ultravisor.h> 35 36 #include "timing.h" 37 #include "irq.h" 38 #include "../mm/mmu_decl.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "trace.h" 42 43 struct kvmppc_ops *kvmppc_hv_ops; 44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 45 struct kvmppc_ops *kvmppc_pr_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 47 48 49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 50 { 51 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 52 } 53 54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 55 { 56 return kvm_arch_vcpu_runnable(vcpu); 57 } 58 59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 60 { 61 return false; 62 } 63 64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 65 { 66 return 1; 67 } 68 69 /* 70 * Common checks before entering the guest world. Call with interrupts 71 * disabled. 72 * 73 * returns: 74 * 75 * == 1 if we're ready to go into guest state 76 * <= 0 if we need to go back to the host with return value 77 */ 78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 79 { 80 int r; 81 82 WARN_ON(irqs_disabled()); 83 hard_irq_disable(); 84 85 while (true) { 86 if (need_resched()) { 87 local_irq_enable(); 88 cond_resched(); 89 hard_irq_disable(); 90 continue; 91 } 92 93 if (signal_pending(current)) { 94 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 95 vcpu->run->exit_reason = KVM_EXIT_INTR; 96 r = -EINTR; 97 break; 98 } 99 100 vcpu->mode = IN_GUEST_MODE; 101 102 /* 103 * Reading vcpu->requests must happen after setting vcpu->mode, 104 * so we don't miss a request because the requester sees 105 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 106 * before next entering the guest (and thus doesn't IPI). 107 * This also orders the write to mode from any reads 108 * to the page tables done while the VCPU is running. 109 * Please see the comment in kvm_flush_remote_tlbs. 110 */ 111 smp_mb(); 112 113 if (kvm_request_pending(vcpu)) { 114 /* Make sure we process requests preemptable */ 115 local_irq_enable(); 116 trace_kvm_check_requests(vcpu); 117 r = kvmppc_core_check_requests(vcpu); 118 hard_irq_disable(); 119 if (r > 0) 120 continue; 121 break; 122 } 123 124 if (kvmppc_core_prepare_to_enter(vcpu)) { 125 /* interrupts got enabled in between, so we 126 are back at square 1 */ 127 continue; 128 } 129 130 guest_enter_irqoff(); 131 return 1; 132 } 133 134 /* return to host */ 135 local_irq_enable(); 136 return r; 137 } 138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 139 140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 142 { 143 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 144 int i; 145 146 shared->sprg0 = swab64(shared->sprg0); 147 shared->sprg1 = swab64(shared->sprg1); 148 shared->sprg2 = swab64(shared->sprg2); 149 shared->sprg3 = swab64(shared->sprg3); 150 shared->srr0 = swab64(shared->srr0); 151 shared->srr1 = swab64(shared->srr1); 152 shared->dar = swab64(shared->dar); 153 shared->msr = swab64(shared->msr); 154 shared->dsisr = swab32(shared->dsisr); 155 shared->int_pending = swab32(shared->int_pending); 156 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 157 shared->sr[i] = swab32(shared->sr[i]); 158 } 159 #endif 160 161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 162 { 163 int nr = kvmppc_get_gpr(vcpu, 11); 164 int r; 165 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 166 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 167 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 168 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 169 unsigned long r2 = 0; 170 171 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 172 /* 32 bit mode */ 173 param1 &= 0xffffffff; 174 param2 &= 0xffffffff; 175 param3 &= 0xffffffff; 176 param4 &= 0xffffffff; 177 } 178 179 switch (nr) { 180 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 181 { 182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 183 /* Book3S can be little endian, find it out here */ 184 int shared_big_endian = true; 185 if (vcpu->arch.intr_msr & MSR_LE) 186 shared_big_endian = false; 187 if (shared_big_endian != vcpu->arch.shared_big_endian) 188 kvmppc_swab_shared(vcpu); 189 vcpu->arch.shared_big_endian = shared_big_endian; 190 #endif 191 192 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 193 /* 194 * Older versions of the Linux magic page code had 195 * a bug where they would map their trampoline code 196 * NX. If that's the case, remove !PR NX capability. 197 */ 198 vcpu->arch.disable_kernel_nx = true; 199 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 200 } 201 202 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 203 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 204 205 #ifdef CONFIG_PPC_64K_PAGES 206 /* 207 * Make sure our 4k magic page is in the same window of a 64k 208 * page within the guest and within the host's page. 209 */ 210 if ((vcpu->arch.magic_page_pa & 0xf000) != 211 ((ulong)vcpu->arch.shared & 0xf000)) { 212 void *old_shared = vcpu->arch.shared; 213 ulong shared = (ulong)vcpu->arch.shared; 214 void *new_shared; 215 216 shared &= PAGE_MASK; 217 shared |= vcpu->arch.magic_page_pa & 0xf000; 218 new_shared = (void*)shared; 219 memcpy(new_shared, old_shared, 0x1000); 220 vcpu->arch.shared = new_shared; 221 } 222 #endif 223 224 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 225 226 r = EV_SUCCESS; 227 break; 228 } 229 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 230 r = EV_SUCCESS; 231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 232 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 233 #endif 234 235 /* Second return value is in r4 */ 236 break; 237 case EV_HCALL_TOKEN(EV_IDLE): 238 r = EV_SUCCESS; 239 kvm_vcpu_halt(vcpu); 240 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 241 break; 242 default: 243 r = EV_UNIMPLEMENTED; 244 break; 245 } 246 247 kvmppc_set_gpr(vcpu, 4, r2); 248 249 return r; 250 } 251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 252 253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 254 { 255 int r = false; 256 257 /* We have to know what CPU to virtualize */ 258 if (!vcpu->arch.pvr) 259 goto out; 260 261 /* PAPR only works with book3s_64 */ 262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 263 goto out; 264 265 /* HV KVM can only do PAPR mode for now */ 266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 267 goto out; 268 269 #ifdef CONFIG_KVM_BOOKE_HV 270 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 271 goto out; 272 #endif 273 274 r = true; 275 276 out: 277 vcpu->arch.sane = r; 278 return r ? 0 : -EINVAL; 279 } 280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 281 282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 283 { 284 enum emulation_result er; 285 int r; 286 287 er = kvmppc_emulate_loadstore(vcpu); 288 switch (er) { 289 case EMULATE_DONE: 290 /* Future optimization: only reload non-volatiles if they were 291 * actually modified. */ 292 r = RESUME_GUEST_NV; 293 break; 294 case EMULATE_AGAIN: 295 r = RESUME_GUEST; 296 break; 297 case EMULATE_DO_MMIO: 298 vcpu->run->exit_reason = KVM_EXIT_MMIO; 299 /* We must reload nonvolatiles because "update" load/store 300 * instructions modify register state. */ 301 /* Future optimization: only reload non-volatiles if they were 302 * actually modified. */ 303 r = RESUME_HOST_NV; 304 break; 305 case EMULATE_FAIL: 306 { 307 u32 last_inst; 308 309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 310 /* XXX Deliver Program interrupt to guest. */ 311 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 312 r = RESUME_HOST; 313 break; 314 } 315 default: 316 WARN_ON(1); 317 r = RESUME_GUEST; 318 } 319 320 return r; 321 } 322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 323 324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 325 bool data) 326 { 327 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 328 struct kvmppc_pte pte; 329 int r = -EINVAL; 330 331 vcpu->stat.st++; 332 333 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 334 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 335 size); 336 337 if ((!r) || (r == -EAGAIN)) 338 return r; 339 340 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 341 XLATE_WRITE, &pte); 342 if (r < 0) 343 return r; 344 345 *eaddr = pte.raddr; 346 347 if (!pte.may_write) 348 return -EPERM; 349 350 /* Magic page override */ 351 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 352 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 353 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 354 void *magic = vcpu->arch.shared; 355 magic += pte.eaddr & 0xfff; 356 memcpy(magic, ptr, size); 357 return EMULATE_DONE; 358 } 359 360 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 361 return EMULATE_DO_MMIO; 362 363 return EMULATE_DONE; 364 } 365 EXPORT_SYMBOL_GPL(kvmppc_st); 366 367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 368 bool data) 369 { 370 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 371 struct kvmppc_pte pte; 372 int rc = -EINVAL; 373 374 vcpu->stat.ld++; 375 376 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 377 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 378 size); 379 380 if ((!rc) || (rc == -EAGAIN)) 381 return rc; 382 383 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 384 XLATE_READ, &pte); 385 if (rc) 386 return rc; 387 388 *eaddr = pte.raddr; 389 390 if (!pte.may_read) 391 return -EPERM; 392 393 if (!data && !pte.may_execute) 394 return -ENOEXEC; 395 396 /* Magic page override */ 397 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 398 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 399 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 400 void *magic = vcpu->arch.shared; 401 magic += pte.eaddr & 0xfff; 402 memcpy(ptr, magic, size); 403 return EMULATE_DONE; 404 } 405 406 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 407 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); 408 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 409 if (rc) 410 return EMULATE_DO_MMIO; 411 412 return EMULATE_DONE; 413 } 414 EXPORT_SYMBOL_GPL(kvmppc_ld); 415 416 int kvm_arch_hardware_enable(void) 417 { 418 return 0; 419 } 420 421 int kvm_arch_hardware_setup(void *opaque) 422 { 423 return 0; 424 } 425 426 int kvm_arch_check_processor_compat(void *opaque) 427 { 428 return kvmppc_core_check_processor_compat(); 429 } 430 431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 432 { 433 struct kvmppc_ops *kvm_ops = NULL; 434 /* 435 * if we have both HV and PR enabled, default is HV 436 */ 437 if (type == 0) { 438 if (kvmppc_hv_ops) 439 kvm_ops = kvmppc_hv_ops; 440 else 441 kvm_ops = kvmppc_pr_ops; 442 if (!kvm_ops) 443 goto err_out; 444 } else if (type == KVM_VM_PPC_HV) { 445 if (!kvmppc_hv_ops) 446 goto err_out; 447 kvm_ops = kvmppc_hv_ops; 448 } else if (type == KVM_VM_PPC_PR) { 449 if (!kvmppc_pr_ops) 450 goto err_out; 451 kvm_ops = kvmppc_pr_ops; 452 } else 453 goto err_out; 454 455 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 456 return -ENOENT; 457 458 kvm->arch.kvm_ops = kvm_ops; 459 return kvmppc_core_init_vm(kvm); 460 err_out: 461 return -EINVAL; 462 } 463 464 void kvm_arch_destroy_vm(struct kvm *kvm) 465 { 466 #ifdef CONFIG_KVM_XICS 467 /* 468 * We call kick_all_cpus_sync() to ensure that all 469 * CPUs have executed any pending IPIs before we 470 * continue and free VCPUs structures below. 471 */ 472 if (is_kvmppc_hv_enabled(kvm)) 473 kick_all_cpus_sync(); 474 #endif 475 476 kvm_destroy_vcpus(kvm); 477 478 mutex_lock(&kvm->lock); 479 480 kvmppc_core_destroy_vm(kvm); 481 482 mutex_unlock(&kvm->lock); 483 484 /* drop the module reference */ 485 module_put(kvm->arch.kvm_ops->owner); 486 } 487 488 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 489 { 490 int r; 491 /* Assume we're using HV mode when the HV module is loaded */ 492 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 493 494 if (kvm) { 495 /* 496 * Hooray - we know which VM type we're running on. Depend on 497 * that rather than the guess above. 498 */ 499 hv_enabled = is_kvmppc_hv_enabled(kvm); 500 } 501 502 switch (ext) { 503 #ifdef CONFIG_BOOKE 504 case KVM_CAP_PPC_BOOKE_SREGS: 505 case KVM_CAP_PPC_BOOKE_WATCHDOG: 506 case KVM_CAP_PPC_EPR: 507 #else 508 case KVM_CAP_PPC_SEGSTATE: 509 case KVM_CAP_PPC_HIOR: 510 case KVM_CAP_PPC_PAPR: 511 #endif 512 case KVM_CAP_PPC_UNSET_IRQ: 513 case KVM_CAP_PPC_IRQ_LEVEL: 514 case KVM_CAP_ENABLE_CAP: 515 case KVM_CAP_ONE_REG: 516 case KVM_CAP_IOEVENTFD: 517 case KVM_CAP_DEVICE_CTRL: 518 case KVM_CAP_IMMEDIATE_EXIT: 519 case KVM_CAP_SET_GUEST_DEBUG: 520 r = 1; 521 break; 522 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 523 case KVM_CAP_PPC_PAIRED_SINGLES: 524 case KVM_CAP_PPC_OSI: 525 case KVM_CAP_PPC_GET_PVINFO: 526 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 527 case KVM_CAP_SW_TLB: 528 #endif 529 /* We support this only for PR */ 530 r = !hv_enabled; 531 break; 532 #ifdef CONFIG_KVM_MPIC 533 case KVM_CAP_IRQ_MPIC: 534 r = 1; 535 break; 536 #endif 537 538 #ifdef CONFIG_PPC_BOOK3S_64 539 case KVM_CAP_SPAPR_TCE: 540 case KVM_CAP_SPAPR_TCE_64: 541 r = 1; 542 break; 543 case KVM_CAP_SPAPR_TCE_VFIO: 544 r = !!cpu_has_feature(CPU_FTR_HVMODE); 545 break; 546 case KVM_CAP_PPC_RTAS: 547 case KVM_CAP_PPC_FIXUP_HCALL: 548 case KVM_CAP_PPC_ENABLE_HCALL: 549 #ifdef CONFIG_KVM_XICS 550 case KVM_CAP_IRQ_XICS: 551 #endif 552 case KVM_CAP_PPC_GET_CPU_CHAR: 553 r = 1; 554 break; 555 #ifdef CONFIG_KVM_XIVE 556 case KVM_CAP_PPC_IRQ_XIVE: 557 /* 558 * We need XIVE to be enabled on the platform (implies 559 * a POWER9 processor) and the PowerNV platform, as 560 * nested is not yet supported. 561 */ 562 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 563 kvmppc_xive_native_supported(); 564 break; 565 #endif 566 567 case KVM_CAP_PPC_ALLOC_HTAB: 568 r = hv_enabled; 569 break; 570 #endif /* CONFIG_PPC_BOOK3S_64 */ 571 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 572 case KVM_CAP_PPC_SMT: 573 r = 0; 574 if (kvm) { 575 if (kvm->arch.emul_smt_mode > 1) 576 r = kvm->arch.emul_smt_mode; 577 else 578 r = kvm->arch.smt_mode; 579 } else if (hv_enabled) { 580 if (cpu_has_feature(CPU_FTR_ARCH_300)) 581 r = 1; 582 else 583 r = threads_per_subcore; 584 } 585 break; 586 case KVM_CAP_PPC_SMT_POSSIBLE: 587 r = 1; 588 if (hv_enabled) { 589 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 590 r = ((threads_per_subcore << 1) - 1); 591 else 592 /* P9 can emulate dbells, so allow any mode */ 593 r = 8 | 4 | 2 | 1; 594 } 595 break; 596 case KVM_CAP_PPC_RMA: 597 r = 0; 598 break; 599 case KVM_CAP_PPC_HWRNG: 600 r = kvmppc_hwrng_present(); 601 break; 602 case KVM_CAP_PPC_MMU_RADIX: 603 r = !!(hv_enabled && radix_enabled()); 604 break; 605 case KVM_CAP_PPC_MMU_HASH_V3: 606 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible && 607 kvmppc_hv_ops->hash_v3_possible()); 608 break; 609 case KVM_CAP_PPC_NESTED_HV: 610 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 611 !kvmppc_hv_ops->enable_nested(NULL)); 612 break; 613 #endif 614 case KVM_CAP_SYNC_MMU: 615 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 616 r = hv_enabled; 617 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 618 r = 1; 619 #else 620 r = 0; 621 #endif 622 break; 623 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 624 case KVM_CAP_PPC_HTAB_FD: 625 r = hv_enabled; 626 break; 627 #endif 628 case KVM_CAP_NR_VCPUS: 629 /* 630 * Recommending a number of CPUs is somewhat arbitrary; we 631 * return the number of present CPUs for -HV (since a host 632 * will have secondary threads "offline"), and for other KVM 633 * implementations just count online CPUs. 634 */ 635 if (hv_enabled) 636 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS); 637 else 638 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 639 break; 640 case KVM_CAP_MAX_VCPUS: 641 r = KVM_MAX_VCPUS; 642 break; 643 case KVM_CAP_MAX_VCPU_ID: 644 r = KVM_MAX_VCPU_IDS; 645 break; 646 #ifdef CONFIG_PPC_BOOK3S_64 647 case KVM_CAP_PPC_GET_SMMU_INFO: 648 r = 1; 649 break; 650 case KVM_CAP_SPAPR_MULTITCE: 651 r = 1; 652 break; 653 case KVM_CAP_SPAPR_RESIZE_HPT: 654 r = !!hv_enabled; 655 break; 656 #endif 657 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 658 case KVM_CAP_PPC_FWNMI: 659 r = hv_enabled; 660 break; 661 #endif 662 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 663 case KVM_CAP_PPC_HTM: 664 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 665 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 666 break; 667 #endif 668 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 669 case KVM_CAP_PPC_SECURE_GUEST: 670 r = hv_enabled && kvmppc_hv_ops->enable_svm && 671 !kvmppc_hv_ops->enable_svm(NULL); 672 break; 673 case KVM_CAP_PPC_DAWR1: 674 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 && 675 !kvmppc_hv_ops->enable_dawr1(NULL)); 676 break; 677 case KVM_CAP_PPC_RPT_INVALIDATE: 678 r = 1; 679 break; 680 #endif 681 default: 682 r = 0; 683 break; 684 } 685 return r; 686 687 } 688 689 long kvm_arch_dev_ioctl(struct file *filp, 690 unsigned int ioctl, unsigned long arg) 691 { 692 return -EINVAL; 693 } 694 695 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 696 { 697 kvmppc_core_free_memslot(kvm, slot); 698 } 699 700 int kvm_arch_prepare_memory_region(struct kvm *kvm, 701 const struct kvm_memory_slot *old, 702 struct kvm_memory_slot *new, 703 enum kvm_mr_change change) 704 { 705 return kvmppc_core_prepare_memory_region(kvm, old, new, change); 706 } 707 708 void kvm_arch_commit_memory_region(struct kvm *kvm, 709 struct kvm_memory_slot *old, 710 const struct kvm_memory_slot *new, 711 enum kvm_mr_change change) 712 { 713 kvmppc_core_commit_memory_region(kvm, old, new, change); 714 } 715 716 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 717 struct kvm_memory_slot *slot) 718 { 719 kvmppc_core_flush_memslot(kvm, slot); 720 } 721 722 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 723 { 724 return 0; 725 } 726 727 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 728 { 729 struct kvm_vcpu *vcpu; 730 731 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 732 kvmppc_decrementer_func(vcpu); 733 734 return HRTIMER_NORESTART; 735 } 736 737 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 738 { 739 int err; 740 741 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 742 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 743 vcpu->arch.dec_expires = get_tb(); 744 745 #ifdef CONFIG_KVM_EXIT_TIMING 746 mutex_init(&vcpu->arch.exit_timing_lock); 747 #endif 748 err = kvmppc_subarch_vcpu_init(vcpu); 749 if (err) 750 return err; 751 752 err = kvmppc_core_vcpu_create(vcpu); 753 if (err) 754 goto out_vcpu_uninit; 755 756 rcuwait_init(&vcpu->arch.wait); 757 vcpu->arch.waitp = &vcpu->arch.wait; 758 kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id); 759 return 0; 760 761 out_vcpu_uninit: 762 kvmppc_subarch_vcpu_uninit(vcpu); 763 return err; 764 } 765 766 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 767 { 768 } 769 770 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 771 { 772 /* Make sure we're not using the vcpu anymore */ 773 hrtimer_cancel(&vcpu->arch.dec_timer); 774 775 kvmppc_remove_vcpu_debugfs(vcpu); 776 777 switch (vcpu->arch.irq_type) { 778 case KVMPPC_IRQ_MPIC: 779 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 780 break; 781 case KVMPPC_IRQ_XICS: 782 if (xics_on_xive()) 783 kvmppc_xive_cleanup_vcpu(vcpu); 784 else 785 kvmppc_xics_free_icp(vcpu); 786 break; 787 case KVMPPC_IRQ_XIVE: 788 kvmppc_xive_native_cleanup_vcpu(vcpu); 789 break; 790 } 791 792 kvmppc_core_vcpu_free(vcpu); 793 794 kvmppc_subarch_vcpu_uninit(vcpu); 795 } 796 797 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 798 { 799 return kvmppc_core_pending_dec(vcpu); 800 } 801 802 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 803 { 804 #ifdef CONFIG_BOOKE 805 /* 806 * vrsave (formerly usprg0) isn't used by Linux, but may 807 * be used by the guest. 808 * 809 * On non-booke this is associated with Altivec and 810 * is handled by code in book3s.c. 811 */ 812 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 813 #endif 814 kvmppc_core_vcpu_load(vcpu, cpu); 815 } 816 817 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 818 { 819 kvmppc_core_vcpu_put(vcpu); 820 #ifdef CONFIG_BOOKE 821 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 822 #endif 823 } 824 825 /* 826 * irq_bypass_add_producer and irq_bypass_del_producer are only 827 * useful if the architecture supports PCI passthrough. 828 * irq_bypass_stop and irq_bypass_start are not needed and so 829 * kvm_ops are not defined for them. 830 */ 831 bool kvm_arch_has_irq_bypass(void) 832 { 833 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 834 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 835 } 836 837 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 838 struct irq_bypass_producer *prod) 839 { 840 struct kvm_kernel_irqfd *irqfd = 841 container_of(cons, struct kvm_kernel_irqfd, consumer); 842 struct kvm *kvm = irqfd->kvm; 843 844 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 845 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 846 847 return 0; 848 } 849 850 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 851 struct irq_bypass_producer *prod) 852 { 853 struct kvm_kernel_irqfd *irqfd = 854 container_of(cons, struct kvm_kernel_irqfd, consumer); 855 struct kvm *kvm = irqfd->kvm; 856 857 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 858 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 859 } 860 861 #ifdef CONFIG_VSX 862 static inline int kvmppc_get_vsr_dword_offset(int index) 863 { 864 int offset; 865 866 if ((index != 0) && (index != 1)) 867 return -1; 868 869 #ifdef __BIG_ENDIAN 870 offset = index; 871 #else 872 offset = 1 - index; 873 #endif 874 875 return offset; 876 } 877 878 static inline int kvmppc_get_vsr_word_offset(int index) 879 { 880 int offset; 881 882 if ((index > 3) || (index < 0)) 883 return -1; 884 885 #ifdef __BIG_ENDIAN 886 offset = index; 887 #else 888 offset = 3 - index; 889 #endif 890 return offset; 891 } 892 893 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 894 u64 gpr) 895 { 896 union kvmppc_one_reg val; 897 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 898 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 899 900 if (offset == -1) 901 return; 902 903 if (index >= 32) { 904 val.vval = VCPU_VSX_VR(vcpu, index - 32); 905 val.vsxval[offset] = gpr; 906 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 907 } else { 908 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 909 } 910 } 911 912 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 913 u64 gpr) 914 { 915 union kvmppc_one_reg val; 916 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 917 918 if (index >= 32) { 919 val.vval = VCPU_VSX_VR(vcpu, index - 32); 920 val.vsxval[0] = gpr; 921 val.vsxval[1] = gpr; 922 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 923 } else { 924 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 925 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 926 } 927 } 928 929 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 930 u32 gpr) 931 { 932 union kvmppc_one_reg val; 933 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 934 935 if (index >= 32) { 936 val.vsx32val[0] = gpr; 937 val.vsx32val[1] = gpr; 938 val.vsx32val[2] = gpr; 939 val.vsx32val[3] = gpr; 940 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 941 } else { 942 val.vsx32val[0] = gpr; 943 val.vsx32val[1] = gpr; 944 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 945 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 946 } 947 } 948 949 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 950 u32 gpr32) 951 { 952 union kvmppc_one_reg val; 953 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 954 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 955 int dword_offset, word_offset; 956 957 if (offset == -1) 958 return; 959 960 if (index >= 32) { 961 val.vval = VCPU_VSX_VR(vcpu, index - 32); 962 val.vsx32val[offset] = gpr32; 963 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 964 } else { 965 dword_offset = offset / 2; 966 word_offset = offset % 2; 967 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 968 val.vsx32val[word_offset] = gpr32; 969 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 970 } 971 } 972 #endif /* CONFIG_VSX */ 973 974 #ifdef CONFIG_ALTIVEC 975 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 976 int index, int element_size) 977 { 978 int offset; 979 int elts = sizeof(vector128)/element_size; 980 981 if ((index < 0) || (index >= elts)) 982 return -1; 983 984 if (kvmppc_need_byteswap(vcpu)) 985 offset = elts - index - 1; 986 else 987 offset = index; 988 989 return offset; 990 } 991 992 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 993 int index) 994 { 995 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 996 } 997 998 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 999 int index) 1000 { 1001 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1002 } 1003 1004 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1005 int index) 1006 { 1007 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1008 } 1009 1010 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1011 int index) 1012 { 1013 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1014 } 1015 1016 1017 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1018 u64 gpr) 1019 { 1020 union kvmppc_one_reg val; 1021 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1022 vcpu->arch.mmio_vmx_offset); 1023 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1024 1025 if (offset == -1) 1026 return; 1027 1028 val.vval = VCPU_VSX_VR(vcpu, index); 1029 val.vsxval[offset] = gpr; 1030 VCPU_VSX_VR(vcpu, index) = val.vval; 1031 } 1032 1033 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1034 u32 gpr32) 1035 { 1036 union kvmppc_one_reg val; 1037 int offset = kvmppc_get_vmx_word_offset(vcpu, 1038 vcpu->arch.mmio_vmx_offset); 1039 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1040 1041 if (offset == -1) 1042 return; 1043 1044 val.vval = VCPU_VSX_VR(vcpu, index); 1045 val.vsx32val[offset] = gpr32; 1046 VCPU_VSX_VR(vcpu, index) = val.vval; 1047 } 1048 1049 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1050 u16 gpr16) 1051 { 1052 union kvmppc_one_reg val; 1053 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1054 vcpu->arch.mmio_vmx_offset); 1055 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1056 1057 if (offset == -1) 1058 return; 1059 1060 val.vval = VCPU_VSX_VR(vcpu, index); 1061 val.vsx16val[offset] = gpr16; 1062 VCPU_VSX_VR(vcpu, index) = val.vval; 1063 } 1064 1065 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1066 u8 gpr8) 1067 { 1068 union kvmppc_one_reg val; 1069 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1070 vcpu->arch.mmio_vmx_offset); 1071 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1072 1073 if (offset == -1) 1074 return; 1075 1076 val.vval = VCPU_VSX_VR(vcpu, index); 1077 val.vsx8val[offset] = gpr8; 1078 VCPU_VSX_VR(vcpu, index) = val.vval; 1079 } 1080 #endif /* CONFIG_ALTIVEC */ 1081 1082 #ifdef CONFIG_PPC_FPU 1083 static inline u64 sp_to_dp(u32 fprs) 1084 { 1085 u64 fprd; 1086 1087 preempt_disable(); 1088 enable_kernel_fp(); 1089 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs) 1090 : "fr0"); 1091 preempt_enable(); 1092 return fprd; 1093 } 1094 1095 static inline u32 dp_to_sp(u64 fprd) 1096 { 1097 u32 fprs; 1098 1099 preempt_disable(); 1100 enable_kernel_fp(); 1101 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd) 1102 : "fr0"); 1103 preempt_enable(); 1104 return fprs; 1105 } 1106 1107 #else 1108 #define sp_to_dp(x) (x) 1109 #define dp_to_sp(x) (x) 1110 #endif /* CONFIG_PPC_FPU */ 1111 1112 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1113 { 1114 struct kvm_run *run = vcpu->run; 1115 u64 gpr; 1116 1117 if (run->mmio.len > sizeof(gpr)) { 1118 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1119 return; 1120 } 1121 1122 if (!vcpu->arch.mmio_host_swabbed) { 1123 switch (run->mmio.len) { 1124 case 8: gpr = *(u64 *)run->mmio.data; break; 1125 case 4: gpr = *(u32 *)run->mmio.data; break; 1126 case 2: gpr = *(u16 *)run->mmio.data; break; 1127 case 1: gpr = *(u8 *)run->mmio.data; break; 1128 } 1129 } else { 1130 switch (run->mmio.len) { 1131 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1132 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1133 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1134 case 1: gpr = *(u8 *)run->mmio.data; break; 1135 } 1136 } 1137 1138 /* conversion between single and double precision */ 1139 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1140 gpr = sp_to_dp(gpr); 1141 1142 if (vcpu->arch.mmio_sign_extend) { 1143 switch (run->mmio.len) { 1144 #ifdef CONFIG_PPC64 1145 case 4: 1146 gpr = (s64)(s32)gpr; 1147 break; 1148 #endif 1149 case 2: 1150 gpr = (s64)(s16)gpr; 1151 break; 1152 case 1: 1153 gpr = (s64)(s8)gpr; 1154 break; 1155 } 1156 } 1157 1158 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1159 case KVM_MMIO_REG_GPR: 1160 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1161 break; 1162 case KVM_MMIO_REG_FPR: 1163 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1164 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1165 1166 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1167 break; 1168 #ifdef CONFIG_PPC_BOOK3S 1169 case KVM_MMIO_REG_QPR: 1170 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1171 break; 1172 case KVM_MMIO_REG_FQPR: 1173 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1174 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1175 break; 1176 #endif 1177 #ifdef CONFIG_VSX 1178 case KVM_MMIO_REG_VSX: 1179 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1180 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1181 1182 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1183 kvmppc_set_vsr_dword(vcpu, gpr); 1184 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1185 kvmppc_set_vsr_word(vcpu, gpr); 1186 else if (vcpu->arch.mmio_copy_type == 1187 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1188 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1189 else if (vcpu->arch.mmio_copy_type == 1190 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1191 kvmppc_set_vsr_word_dump(vcpu, gpr); 1192 break; 1193 #endif 1194 #ifdef CONFIG_ALTIVEC 1195 case KVM_MMIO_REG_VMX: 1196 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1197 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1198 1199 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1200 kvmppc_set_vmx_dword(vcpu, gpr); 1201 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1202 kvmppc_set_vmx_word(vcpu, gpr); 1203 else if (vcpu->arch.mmio_copy_type == 1204 KVMPPC_VMX_COPY_HWORD) 1205 kvmppc_set_vmx_hword(vcpu, gpr); 1206 else if (vcpu->arch.mmio_copy_type == 1207 KVMPPC_VMX_COPY_BYTE) 1208 kvmppc_set_vmx_byte(vcpu, gpr); 1209 break; 1210 #endif 1211 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1212 case KVM_MMIO_REG_NESTED_GPR: 1213 if (kvmppc_need_byteswap(vcpu)) 1214 gpr = swab64(gpr); 1215 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1216 sizeof(gpr)); 1217 break; 1218 #endif 1219 default: 1220 BUG(); 1221 } 1222 } 1223 1224 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1225 unsigned int rt, unsigned int bytes, 1226 int is_default_endian, int sign_extend) 1227 { 1228 struct kvm_run *run = vcpu->run; 1229 int idx, ret; 1230 bool host_swabbed; 1231 1232 /* Pity C doesn't have a logical XOR operator */ 1233 if (kvmppc_need_byteswap(vcpu)) { 1234 host_swabbed = is_default_endian; 1235 } else { 1236 host_swabbed = !is_default_endian; 1237 } 1238 1239 if (bytes > sizeof(run->mmio.data)) { 1240 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1241 run->mmio.len); 1242 } 1243 1244 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1245 run->mmio.len = bytes; 1246 run->mmio.is_write = 0; 1247 1248 vcpu->arch.io_gpr = rt; 1249 vcpu->arch.mmio_host_swabbed = host_swabbed; 1250 vcpu->mmio_needed = 1; 1251 vcpu->mmio_is_write = 0; 1252 vcpu->arch.mmio_sign_extend = sign_extend; 1253 1254 idx = srcu_read_lock(&vcpu->kvm->srcu); 1255 1256 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1257 bytes, &run->mmio.data); 1258 1259 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1260 1261 if (!ret) { 1262 kvmppc_complete_mmio_load(vcpu); 1263 vcpu->mmio_needed = 0; 1264 return EMULATE_DONE; 1265 } 1266 1267 return EMULATE_DO_MMIO; 1268 } 1269 1270 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1271 unsigned int rt, unsigned int bytes, 1272 int is_default_endian) 1273 { 1274 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1275 } 1276 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1277 1278 /* Same as above, but sign extends */ 1279 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1280 unsigned int rt, unsigned int bytes, 1281 int is_default_endian) 1282 { 1283 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1284 } 1285 1286 #ifdef CONFIG_VSX 1287 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1288 unsigned int rt, unsigned int bytes, 1289 int is_default_endian, int mmio_sign_extend) 1290 { 1291 enum emulation_result emulated = EMULATE_DONE; 1292 1293 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1294 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1295 return EMULATE_FAIL; 1296 1297 while (vcpu->arch.mmio_vsx_copy_nums) { 1298 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1299 is_default_endian, mmio_sign_extend); 1300 1301 if (emulated != EMULATE_DONE) 1302 break; 1303 1304 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1305 1306 vcpu->arch.mmio_vsx_copy_nums--; 1307 vcpu->arch.mmio_vsx_offset++; 1308 } 1309 return emulated; 1310 } 1311 #endif /* CONFIG_VSX */ 1312 1313 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1314 u64 val, unsigned int bytes, int is_default_endian) 1315 { 1316 struct kvm_run *run = vcpu->run; 1317 void *data = run->mmio.data; 1318 int idx, ret; 1319 bool host_swabbed; 1320 1321 /* Pity C doesn't have a logical XOR operator */ 1322 if (kvmppc_need_byteswap(vcpu)) { 1323 host_swabbed = is_default_endian; 1324 } else { 1325 host_swabbed = !is_default_endian; 1326 } 1327 1328 if (bytes > sizeof(run->mmio.data)) { 1329 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1330 run->mmio.len); 1331 } 1332 1333 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1334 run->mmio.len = bytes; 1335 run->mmio.is_write = 1; 1336 vcpu->mmio_needed = 1; 1337 vcpu->mmio_is_write = 1; 1338 1339 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1340 val = dp_to_sp(val); 1341 1342 /* Store the value at the lowest bytes in 'data'. */ 1343 if (!host_swabbed) { 1344 switch (bytes) { 1345 case 8: *(u64 *)data = val; break; 1346 case 4: *(u32 *)data = val; break; 1347 case 2: *(u16 *)data = val; break; 1348 case 1: *(u8 *)data = val; break; 1349 } 1350 } else { 1351 switch (bytes) { 1352 case 8: *(u64 *)data = swab64(val); break; 1353 case 4: *(u32 *)data = swab32(val); break; 1354 case 2: *(u16 *)data = swab16(val); break; 1355 case 1: *(u8 *)data = val; break; 1356 } 1357 } 1358 1359 idx = srcu_read_lock(&vcpu->kvm->srcu); 1360 1361 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1362 bytes, &run->mmio.data); 1363 1364 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1365 1366 if (!ret) { 1367 vcpu->mmio_needed = 0; 1368 return EMULATE_DONE; 1369 } 1370 1371 return EMULATE_DO_MMIO; 1372 } 1373 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1374 1375 #ifdef CONFIG_VSX 1376 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1377 { 1378 u32 dword_offset, word_offset; 1379 union kvmppc_one_reg reg; 1380 int vsx_offset = 0; 1381 int copy_type = vcpu->arch.mmio_copy_type; 1382 int result = 0; 1383 1384 switch (copy_type) { 1385 case KVMPPC_VSX_COPY_DWORD: 1386 vsx_offset = 1387 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1388 1389 if (vsx_offset == -1) { 1390 result = -1; 1391 break; 1392 } 1393 1394 if (rs < 32) { 1395 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1396 } else { 1397 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1398 *val = reg.vsxval[vsx_offset]; 1399 } 1400 break; 1401 1402 case KVMPPC_VSX_COPY_WORD: 1403 vsx_offset = 1404 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1405 1406 if (vsx_offset == -1) { 1407 result = -1; 1408 break; 1409 } 1410 1411 if (rs < 32) { 1412 dword_offset = vsx_offset / 2; 1413 word_offset = vsx_offset % 2; 1414 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1415 *val = reg.vsx32val[word_offset]; 1416 } else { 1417 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1418 *val = reg.vsx32val[vsx_offset]; 1419 } 1420 break; 1421 1422 default: 1423 result = -1; 1424 break; 1425 } 1426 1427 return result; 1428 } 1429 1430 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1431 int rs, unsigned int bytes, int is_default_endian) 1432 { 1433 u64 val; 1434 enum emulation_result emulated = EMULATE_DONE; 1435 1436 vcpu->arch.io_gpr = rs; 1437 1438 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1439 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1440 return EMULATE_FAIL; 1441 1442 while (vcpu->arch.mmio_vsx_copy_nums) { 1443 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1444 return EMULATE_FAIL; 1445 1446 emulated = kvmppc_handle_store(vcpu, 1447 val, bytes, is_default_endian); 1448 1449 if (emulated != EMULATE_DONE) 1450 break; 1451 1452 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1453 1454 vcpu->arch.mmio_vsx_copy_nums--; 1455 vcpu->arch.mmio_vsx_offset++; 1456 } 1457 1458 return emulated; 1459 } 1460 1461 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1462 { 1463 struct kvm_run *run = vcpu->run; 1464 enum emulation_result emulated = EMULATE_FAIL; 1465 int r; 1466 1467 vcpu->arch.paddr_accessed += run->mmio.len; 1468 1469 if (!vcpu->mmio_is_write) { 1470 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1471 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1472 } else { 1473 emulated = kvmppc_handle_vsx_store(vcpu, 1474 vcpu->arch.io_gpr, run->mmio.len, 1); 1475 } 1476 1477 switch (emulated) { 1478 case EMULATE_DO_MMIO: 1479 run->exit_reason = KVM_EXIT_MMIO; 1480 r = RESUME_HOST; 1481 break; 1482 case EMULATE_FAIL: 1483 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1484 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1485 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1486 r = RESUME_HOST; 1487 break; 1488 default: 1489 r = RESUME_GUEST; 1490 break; 1491 } 1492 return r; 1493 } 1494 #endif /* CONFIG_VSX */ 1495 1496 #ifdef CONFIG_ALTIVEC 1497 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1498 unsigned int rt, unsigned int bytes, int is_default_endian) 1499 { 1500 enum emulation_result emulated = EMULATE_DONE; 1501 1502 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1503 return EMULATE_FAIL; 1504 1505 while (vcpu->arch.mmio_vmx_copy_nums) { 1506 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1507 is_default_endian, 0); 1508 1509 if (emulated != EMULATE_DONE) 1510 break; 1511 1512 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1513 vcpu->arch.mmio_vmx_copy_nums--; 1514 vcpu->arch.mmio_vmx_offset++; 1515 } 1516 1517 return emulated; 1518 } 1519 1520 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1521 { 1522 union kvmppc_one_reg reg; 1523 int vmx_offset = 0; 1524 int result = 0; 1525 1526 vmx_offset = 1527 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1528 1529 if (vmx_offset == -1) 1530 return -1; 1531 1532 reg.vval = VCPU_VSX_VR(vcpu, index); 1533 *val = reg.vsxval[vmx_offset]; 1534 1535 return result; 1536 } 1537 1538 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1539 { 1540 union kvmppc_one_reg reg; 1541 int vmx_offset = 0; 1542 int result = 0; 1543 1544 vmx_offset = 1545 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1546 1547 if (vmx_offset == -1) 1548 return -1; 1549 1550 reg.vval = VCPU_VSX_VR(vcpu, index); 1551 *val = reg.vsx32val[vmx_offset]; 1552 1553 return result; 1554 } 1555 1556 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1557 { 1558 union kvmppc_one_reg reg; 1559 int vmx_offset = 0; 1560 int result = 0; 1561 1562 vmx_offset = 1563 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1564 1565 if (vmx_offset == -1) 1566 return -1; 1567 1568 reg.vval = VCPU_VSX_VR(vcpu, index); 1569 *val = reg.vsx16val[vmx_offset]; 1570 1571 return result; 1572 } 1573 1574 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1575 { 1576 union kvmppc_one_reg reg; 1577 int vmx_offset = 0; 1578 int result = 0; 1579 1580 vmx_offset = 1581 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1582 1583 if (vmx_offset == -1) 1584 return -1; 1585 1586 reg.vval = VCPU_VSX_VR(vcpu, index); 1587 *val = reg.vsx8val[vmx_offset]; 1588 1589 return result; 1590 } 1591 1592 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1593 unsigned int rs, unsigned int bytes, int is_default_endian) 1594 { 1595 u64 val = 0; 1596 unsigned int index = rs & KVM_MMIO_REG_MASK; 1597 enum emulation_result emulated = EMULATE_DONE; 1598 1599 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1600 return EMULATE_FAIL; 1601 1602 vcpu->arch.io_gpr = rs; 1603 1604 while (vcpu->arch.mmio_vmx_copy_nums) { 1605 switch (vcpu->arch.mmio_copy_type) { 1606 case KVMPPC_VMX_COPY_DWORD: 1607 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1608 return EMULATE_FAIL; 1609 1610 break; 1611 case KVMPPC_VMX_COPY_WORD: 1612 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1613 return EMULATE_FAIL; 1614 break; 1615 case KVMPPC_VMX_COPY_HWORD: 1616 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1617 return EMULATE_FAIL; 1618 break; 1619 case KVMPPC_VMX_COPY_BYTE: 1620 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1621 return EMULATE_FAIL; 1622 break; 1623 default: 1624 return EMULATE_FAIL; 1625 } 1626 1627 emulated = kvmppc_handle_store(vcpu, val, bytes, 1628 is_default_endian); 1629 if (emulated != EMULATE_DONE) 1630 break; 1631 1632 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1633 vcpu->arch.mmio_vmx_copy_nums--; 1634 vcpu->arch.mmio_vmx_offset++; 1635 } 1636 1637 return emulated; 1638 } 1639 1640 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1641 { 1642 struct kvm_run *run = vcpu->run; 1643 enum emulation_result emulated = EMULATE_FAIL; 1644 int r; 1645 1646 vcpu->arch.paddr_accessed += run->mmio.len; 1647 1648 if (!vcpu->mmio_is_write) { 1649 emulated = kvmppc_handle_vmx_load(vcpu, 1650 vcpu->arch.io_gpr, run->mmio.len, 1); 1651 } else { 1652 emulated = kvmppc_handle_vmx_store(vcpu, 1653 vcpu->arch.io_gpr, run->mmio.len, 1); 1654 } 1655 1656 switch (emulated) { 1657 case EMULATE_DO_MMIO: 1658 run->exit_reason = KVM_EXIT_MMIO; 1659 r = RESUME_HOST; 1660 break; 1661 case EMULATE_FAIL: 1662 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1663 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1664 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1665 r = RESUME_HOST; 1666 break; 1667 default: 1668 r = RESUME_GUEST; 1669 break; 1670 } 1671 return r; 1672 } 1673 #endif /* CONFIG_ALTIVEC */ 1674 1675 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1676 { 1677 int r = 0; 1678 union kvmppc_one_reg val; 1679 int size; 1680 1681 size = one_reg_size(reg->id); 1682 if (size > sizeof(val)) 1683 return -EINVAL; 1684 1685 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1686 if (r == -EINVAL) { 1687 r = 0; 1688 switch (reg->id) { 1689 #ifdef CONFIG_ALTIVEC 1690 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1691 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1692 r = -ENXIO; 1693 break; 1694 } 1695 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1696 break; 1697 case KVM_REG_PPC_VSCR: 1698 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1699 r = -ENXIO; 1700 break; 1701 } 1702 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1703 break; 1704 case KVM_REG_PPC_VRSAVE: 1705 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1706 break; 1707 #endif /* CONFIG_ALTIVEC */ 1708 default: 1709 r = -EINVAL; 1710 break; 1711 } 1712 } 1713 1714 if (r) 1715 return r; 1716 1717 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1718 r = -EFAULT; 1719 1720 return r; 1721 } 1722 1723 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1724 { 1725 int r; 1726 union kvmppc_one_reg val; 1727 int size; 1728 1729 size = one_reg_size(reg->id); 1730 if (size > sizeof(val)) 1731 return -EINVAL; 1732 1733 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1734 return -EFAULT; 1735 1736 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1737 if (r == -EINVAL) { 1738 r = 0; 1739 switch (reg->id) { 1740 #ifdef CONFIG_ALTIVEC 1741 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1742 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1743 r = -ENXIO; 1744 break; 1745 } 1746 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1747 break; 1748 case KVM_REG_PPC_VSCR: 1749 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1750 r = -ENXIO; 1751 break; 1752 } 1753 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1754 break; 1755 case KVM_REG_PPC_VRSAVE: 1756 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1757 r = -ENXIO; 1758 break; 1759 } 1760 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1761 break; 1762 #endif /* CONFIG_ALTIVEC */ 1763 default: 1764 r = -EINVAL; 1765 break; 1766 } 1767 } 1768 1769 return r; 1770 } 1771 1772 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1773 { 1774 struct kvm_run *run = vcpu->run; 1775 int r; 1776 1777 vcpu_load(vcpu); 1778 1779 if (vcpu->mmio_needed) { 1780 vcpu->mmio_needed = 0; 1781 if (!vcpu->mmio_is_write) 1782 kvmppc_complete_mmio_load(vcpu); 1783 #ifdef CONFIG_VSX 1784 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1785 vcpu->arch.mmio_vsx_copy_nums--; 1786 vcpu->arch.mmio_vsx_offset++; 1787 } 1788 1789 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1790 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1791 if (r == RESUME_HOST) { 1792 vcpu->mmio_needed = 1; 1793 goto out; 1794 } 1795 } 1796 #endif 1797 #ifdef CONFIG_ALTIVEC 1798 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1799 vcpu->arch.mmio_vmx_copy_nums--; 1800 vcpu->arch.mmio_vmx_offset++; 1801 } 1802 1803 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1804 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1805 if (r == RESUME_HOST) { 1806 vcpu->mmio_needed = 1; 1807 goto out; 1808 } 1809 } 1810 #endif 1811 } else if (vcpu->arch.osi_needed) { 1812 u64 *gprs = run->osi.gprs; 1813 int i; 1814 1815 for (i = 0; i < 32; i++) 1816 kvmppc_set_gpr(vcpu, i, gprs[i]); 1817 vcpu->arch.osi_needed = 0; 1818 } else if (vcpu->arch.hcall_needed) { 1819 int i; 1820 1821 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1822 for (i = 0; i < 9; ++i) 1823 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1824 vcpu->arch.hcall_needed = 0; 1825 #ifdef CONFIG_BOOKE 1826 } else if (vcpu->arch.epr_needed) { 1827 kvmppc_set_epr(vcpu, run->epr.epr); 1828 vcpu->arch.epr_needed = 0; 1829 #endif 1830 } 1831 1832 kvm_sigset_activate(vcpu); 1833 1834 if (run->immediate_exit) 1835 r = -EINTR; 1836 else 1837 r = kvmppc_vcpu_run(vcpu); 1838 1839 kvm_sigset_deactivate(vcpu); 1840 1841 #ifdef CONFIG_ALTIVEC 1842 out: 1843 #endif 1844 vcpu_put(vcpu); 1845 return r; 1846 } 1847 1848 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1849 { 1850 if (irq->irq == KVM_INTERRUPT_UNSET) { 1851 kvmppc_core_dequeue_external(vcpu); 1852 return 0; 1853 } 1854 1855 kvmppc_core_queue_external(vcpu, irq); 1856 1857 kvm_vcpu_kick(vcpu); 1858 1859 return 0; 1860 } 1861 1862 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1863 struct kvm_enable_cap *cap) 1864 { 1865 int r; 1866 1867 if (cap->flags) 1868 return -EINVAL; 1869 1870 switch (cap->cap) { 1871 case KVM_CAP_PPC_OSI: 1872 r = 0; 1873 vcpu->arch.osi_enabled = true; 1874 break; 1875 case KVM_CAP_PPC_PAPR: 1876 r = 0; 1877 vcpu->arch.papr_enabled = true; 1878 break; 1879 case KVM_CAP_PPC_EPR: 1880 r = 0; 1881 if (cap->args[0]) 1882 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1883 else 1884 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1885 break; 1886 #ifdef CONFIG_BOOKE 1887 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1888 r = 0; 1889 vcpu->arch.watchdog_enabled = true; 1890 break; 1891 #endif 1892 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1893 case KVM_CAP_SW_TLB: { 1894 struct kvm_config_tlb cfg; 1895 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1896 1897 r = -EFAULT; 1898 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1899 break; 1900 1901 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1902 break; 1903 } 1904 #endif 1905 #ifdef CONFIG_KVM_MPIC 1906 case KVM_CAP_IRQ_MPIC: { 1907 struct fd f; 1908 struct kvm_device *dev; 1909 1910 r = -EBADF; 1911 f = fdget(cap->args[0]); 1912 if (!f.file) 1913 break; 1914 1915 r = -EPERM; 1916 dev = kvm_device_from_filp(f.file); 1917 if (dev) 1918 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1919 1920 fdput(f); 1921 break; 1922 } 1923 #endif 1924 #ifdef CONFIG_KVM_XICS 1925 case KVM_CAP_IRQ_XICS: { 1926 struct fd f; 1927 struct kvm_device *dev; 1928 1929 r = -EBADF; 1930 f = fdget(cap->args[0]); 1931 if (!f.file) 1932 break; 1933 1934 r = -EPERM; 1935 dev = kvm_device_from_filp(f.file); 1936 if (dev) { 1937 if (xics_on_xive()) 1938 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1939 else 1940 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1941 } 1942 1943 fdput(f); 1944 break; 1945 } 1946 #endif /* CONFIG_KVM_XICS */ 1947 #ifdef CONFIG_KVM_XIVE 1948 case KVM_CAP_PPC_IRQ_XIVE: { 1949 struct fd f; 1950 struct kvm_device *dev; 1951 1952 r = -EBADF; 1953 f = fdget(cap->args[0]); 1954 if (!f.file) 1955 break; 1956 1957 r = -ENXIO; 1958 if (!xive_enabled()) 1959 break; 1960 1961 r = -EPERM; 1962 dev = kvm_device_from_filp(f.file); 1963 if (dev) 1964 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1965 cap->args[1]); 1966 1967 fdput(f); 1968 break; 1969 } 1970 #endif /* CONFIG_KVM_XIVE */ 1971 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1972 case KVM_CAP_PPC_FWNMI: 1973 r = -EINVAL; 1974 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1975 break; 1976 r = 0; 1977 vcpu->kvm->arch.fwnmi_enabled = true; 1978 break; 1979 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1980 default: 1981 r = -EINVAL; 1982 break; 1983 } 1984 1985 if (!r) 1986 r = kvmppc_sanity_check(vcpu); 1987 1988 return r; 1989 } 1990 1991 bool kvm_arch_intc_initialized(struct kvm *kvm) 1992 { 1993 #ifdef CONFIG_KVM_MPIC 1994 if (kvm->arch.mpic) 1995 return true; 1996 #endif 1997 #ifdef CONFIG_KVM_XICS 1998 if (kvm->arch.xics || kvm->arch.xive) 1999 return true; 2000 #endif 2001 return false; 2002 } 2003 2004 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2005 struct kvm_mp_state *mp_state) 2006 { 2007 return -EINVAL; 2008 } 2009 2010 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2011 struct kvm_mp_state *mp_state) 2012 { 2013 return -EINVAL; 2014 } 2015 2016 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2017 unsigned int ioctl, unsigned long arg) 2018 { 2019 struct kvm_vcpu *vcpu = filp->private_data; 2020 void __user *argp = (void __user *)arg; 2021 2022 if (ioctl == KVM_INTERRUPT) { 2023 struct kvm_interrupt irq; 2024 if (copy_from_user(&irq, argp, sizeof(irq))) 2025 return -EFAULT; 2026 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2027 } 2028 return -ENOIOCTLCMD; 2029 } 2030 2031 long kvm_arch_vcpu_ioctl(struct file *filp, 2032 unsigned int ioctl, unsigned long arg) 2033 { 2034 struct kvm_vcpu *vcpu = filp->private_data; 2035 void __user *argp = (void __user *)arg; 2036 long r; 2037 2038 switch (ioctl) { 2039 case KVM_ENABLE_CAP: 2040 { 2041 struct kvm_enable_cap cap; 2042 r = -EFAULT; 2043 if (copy_from_user(&cap, argp, sizeof(cap))) 2044 goto out; 2045 vcpu_load(vcpu); 2046 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2047 vcpu_put(vcpu); 2048 break; 2049 } 2050 2051 case KVM_SET_ONE_REG: 2052 case KVM_GET_ONE_REG: 2053 { 2054 struct kvm_one_reg reg; 2055 r = -EFAULT; 2056 if (copy_from_user(®, argp, sizeof(reg))) 2057 goto out; 2058 if (ioctl == KVM_SET_ONE_REG) 2059 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2060 else 2061 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2062 break; 2063 } 2064 2065 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2066 case KVM_DIRTY_TLB: { 2067 struct kvm_dirty_tlb dirty; 2068 r = -EFAULT; 2069 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2070 goto out; 2071 vcpu_load(vcpu); 2072 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2073 vcpu_put(vcpu); 2074 break; 2075 } 2076 #endif 2077 default: 2078 r = -EINVAL; 2079 } 2080 2081 out: 2082 return r; 2083 } 2084 2085 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2086 { 2087 return VM_FAULT_SIGBUS; 2088 } 2089 2090 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2091 { 2092 u32 inst_nop = 0x60000000; 2093 #ifdef CONFIG_KVM_BOOKE_HV 2094 u32 inst_sc1 = 0x44000022; 2095 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2096 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2097 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2098 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2099 #else 2100 u32 inst_lis = 0x3c000000; 2101 u32 inst_ori = 0x60000000; 2102 u32 inst_sc = 0x44000002; 2103 u32 inst_imm_mask = 0xffff; 2104 2105 /* 2106 * The hypercall to get into KVM from within guest context is as 2107 * follows: 2108 * 2109 * lis r0, r0, KVM_SC_MAGIC_R0@h 2110 * ori r0, KVM_SC_MAGIC_R0@l 2111 * sc 2112 * nop 2113 */ 2114 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2115 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2116 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2117 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2118 #endif 2119 2120 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2121 2122 return 0; 2123 } 2124 2125 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2126 bool line_status) 2127 { 2128 if (!irqchip_in_kernel(kvm)) 2129 return -ENXIO; 2130 2131 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2132 irq_event->irq, irq_event->level, 2133 line_status); 2134 return 0; 2135 } 2136 2137 2138 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2139 struct kvm_enable_cap *cap) 2140 { 2141 int r; 2142 2143 if (cap->flags) 2144 return -EINVAL; 2145 2146 switch (cap->cap) { 2147 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2148 case KVM_CAP_PPC_ENABLE_HCALL: { 2149 unsigned long hcall = cap->args[0]; 2150 2151 r = -EINVAL; 2152 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2153 cap->args[1] > 1) 2154 break; 2155 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2156 break; 2157 if (cap->args[1]) 2158 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2159 else 2160 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2161 r = 0; 2162 break; 2163 } 2164 case KVM_CAP_PPC_SMT: { 2165 unsigned long mode = cap->args[0]; 2166 unsigned long flags = cap->args[1]; 2167 2168 r = -EINVAL; 2169 if (kvm->arch.kvm_ops->set_smt_mode) 2170 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2171 break; 2172 } 2173 2174 case KVM_CAP_PPC_NESTED_HV: 2175 r = -EINVAL; 2176 if (!is_kvmppc_hv_enabled(kvm) || 2177 !kvm->arch.kvm_ops->enable_nested) 2178 break; 2179 r = kvm->arch.kvm_ops->enable_nested(kvm); 2180 break; 2181 #endif 2182 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2183 case KVM_CAP_PPC_SECURE_GUEST: 2184 r = -EINVAL; 2185 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2186 break; 2187 r = kvm->arch.kvm_ops->enable_svm(kvm); 2188 break; 2189 case KVM_CAP_PPC_DAWR1: 2190 r = -EINVAL; 2191 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1) 2192 break; 2193 r = kvm->arch.kvm_ops->enable_dawr1(kvm); 2194 break; 2195 #endif 2196 default: 2197 r = -EINVAL; 2198 break; 2199 } 2200 2201 return r; 2202 } 2203 2204 #ifdef CONFIG_PPC_BOOK3S_64 2205 /* 2206 * These functions check whether the underlying hardware is safe 2207 * against attacks based on observing the effects of speculatively 2208 * executed instructions, and whether it supplies instructions for 2209 * use in workarounds. The information comes from firmware, either 2210 * via the device tree on powernv platforms or from an hcall on 2211 * pseries platforms. 2212 */ 2213 #ifdef CONFIG_PPC_PSERIES 2214 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2215 { 2216 struct h_cpu_char_result c; 2217 unsigned long rc; 2218 2219 if (!machine_is(pseries)) 2220 return -ENOTTY; 2221 2222 rc = plpar_get_cpu_characteristics(&c); 2223 if (rc == H_SUCCESS) { 2224 cp->character = c.character; 2225 cp->behaviour = c.behaviour; 2226 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2227 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2228 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2229 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2230 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2231 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2232 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2233 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2234 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2235 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2236 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2237 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2238 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2239 } 2240 return 0; 2241 } 2242 #else 2243 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2244 { 2245 return -ENOTTY; 2246 } 2247 #endif 2248 2249 static inline bool have_fw_feat(struct device_node *fw_features, 2250 const char *state, const char *name) 2251 { 2252 struct device_node *np; 2253 bool r = false; 2254 2255 np = of_get_child_by_name(fw_features, name); 2256 if (np) { 2257 r = of_property_read_bool(np, state); 2258 of_node_put(np); 2259 } 2260 return r; 2261 } 2262 2263 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2264 { 2265 struct device_node *np, *fw_features; 2266 int r; 2267 2268 memset(cp, 0, sizeof(*cp)); 2269 r = pseries_get_cpu_char(cp); 2270 if (r != -ENOTTY) 2271 return r; 2272 2273 np = of_find_node_by_name(NULL, "ibm,opal"); 2274 if (np) { 2275 fw_features = of_get_child_by_name(np, "fw-features"); 2276 of_node_put(np); 2277 if (!fw_features) 2278 return 0; 2279 if (have_fw_feat(fw_features, "enabled", 2280 "inst-spec-barrier-ori31,31,0")) 2281 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2282 if (have_fw_feat(fw_features, "enabled", 2283 "fw-bcctrl-serialized")) 2284 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2285 if (have_fw_feat(fw_features, "enabled", 2286 "inst-l1d-flush-ori30,30,0")) 2287 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2288 if (have_fw_feat(fw_features, "enabled", 2289 "inst-l1d-flush-trig2")) 2290 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2291 if (have_fw_feat(fw_features, "enabled", 2292 "fw-l1d-thread-split")) 2293 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2294 if (have_fw_feat(fw_features, "enabled", 2295 "fw-count-cache-disabled")) 2296 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2297 if (have_fw_feat(fw_features, "enabled", 2298 "fw-count-cache-flush-bcctr2,0,0")) 2299 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2300 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2301 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2302 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2303 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2304 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2305 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2306 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2307 2308 if (have_fw_feat(fw_features, "enabled", 2309 "speculation-policy-favor-security")) 2310 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2311 if (!have_fw_feat(fw_features, "disabled", 2312 "needs-l1d-flush-msr-pr-0-to-1")) 2313 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2314 if (!have_fw_feat(fw_features, "disabled", 2315 "needs-spec-barrier-for-bound-checks")) 2316 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2317 if (have_fw_feat(fw_features, "enabled", 2318 "needs-count-cache-flush-on-context-switch")) 2319 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2320 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2321 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2322 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2323 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2324 2325 of_node_put(fw_features); 2326 } 2327 2328 return 0; 2329 } 2330 #endif 2331 2332 long kvm_arch_vm_ioctl(struct file *filp, 2333 unsigned int ioctl, unsigned long arg) 2334 { 2335 struct kvm *kvm __maybe_unused = filp->private_data; 2336 void __user *argp = (void __user *)arg; 2337 long r; 2338 2339 switch (ioctl) { 2340 case KVM_PPC_GET_PVINFO: { 2341 struct kvm_ppc_pvinfo pvinfo; 2342 memset(&pvinfo, 0, sizeof(pvinfo)); 2343 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2344 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2345 r = -EFAULT; 2346 goto out; 2347 } 2348 2349 break; 2350 } 2351 #ifdef CONFIG_SPAPR_TCE_IOMMU 2352 case KVM_CREATE_SPAPR_TCE_64: { 2353 struct kvm_create_spapr_tce_64 create_tce_64; 2354 2355 r = -EFAULT; 2356 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2357 goto out; 2358 if (create_tce_64.flags) { 2359 r = -EINVAL; 2360 goto out; 2361 } 2362 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2363 goto out; 2364 } 2365 case KVM_CREATE_SPAPR_TCE: { 2366 struct kvm_create_spapr_tce create_tce; 2367 struct kvm_create_spapr_tce_64 create_tce_64; 2368 2369 r = -EFAULT; 2370 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2371 goto out; 2372 2373 create_tce_64.liobn = create_tce.liobn; 2374 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2375 create_tce_64.offset = 0; 2376 create_tce_64.size = create_tce.window_size >> 2377 IOMMU_PAGE_SHIFT_4K; 2378 create_tce_64.flags = 0; 2379 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2380 goto out; 2381 } 2382 #endif 2383 #ifdef CONFIG_PPC_BOOK3S_64 2384 case KVM_PPC_GET_SMMU_INFO: { 2385 struct kvm_ppc_smmu_info info; 2386 struct kvm *kvm = filp->private_data; 2387 2388 memset(&info, 0, sizeof(info)); 2389 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2390 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2391 r = -EFAULT; 2392 break; 2393 } 2394 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2395 struct kvm *kvm = filp->private_data; 2396 2397 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2398 break; 2399 } 2400 case KVM_PPC_CONFIGURE_V3_MMU: { 2401 struct kvm *kvm = filp->private_data; 2402 struct kvm_ppc_mmuv3_cfg cfg; 2403 2404 r = -EINVAL; 2405 if (!kvm->arch.kvm_ops->configure_mmu) 2406 goto out; 2407 r = -EFAULT; 2408 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2409 goto out; 2410 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2411 break; 2412 } 2413 case KVM_PPC_GET_RMMU_INFO: { 2414 struct kvm *kvm = filp->private_data; 2415 struct kvm_ppc_rmmu_info info; 2416 2417 r = -EINVAL; 2418 if (!kvm->arch.kvm_ops->get_rmmu_info) 2419 goto out; 2420 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2421 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2422 r = -EFAULT; 2423 break; 2424 } 2425 case KVM_PPC_GET_CPU_CHAR: { 2426 struct kvm_ppc_cpu_char cpuchar; 2427 2428 r = kvmppc_get_cpu_char(&cpuchar); 2429 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2430 r = -EFAULT; 2431 break; 2432 } 2433 case KVM_PPC_SVM_OFF: { 2434 struct kvm *kvm = filp->private_data; 2435 2436 r = 0; 2437 if (!kvm->arch.kvm_ops->svm_off) 2438 goto out; 2439 2440 r = kvm->arch.kvm_ops->svm_off(kvm); 2441 break; 2442 } 2443 default: { 2444 struct kvm *kvm = filp->private_data; 2445 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2446 } 2447 #else /* CONFIG_PPC_BOOK3S_64 */ 2448 default: 2449 r = -ENOTTY; 2450 #endif 2451 } 2452 out: 2453 return r; 2454 } 2455 2456 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2457 static unsigned long nr_lpids; 2458 2459 long kvmppc_alloc_lpid(void) 2460 { 2461 long lpid; 2462 2463 do { 2464 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2465 if (lpid >= nr_lpids) { 2466 pr_err("%s: No LPIDs free\n", __func__); 2467 return -ENOMEM; 2468 } 2469 } while (test_and_set_bit(lpid, lpid_inuse)); 2470 2471 return lpid; 2472 } 2473 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2474 2475 void kvmppc_claim_lpid(long lpid) 2476 { 2477 set_bit(lpid, lpid_inuse); 2478 } 2479 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2480 2481 void kvmppc_free_lpid(long lpid) 2482 { 2483 clear_bit(lpid, lpid_inuse); 2484 } 2485 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2486 2487 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2488 { 2489 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2490 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2491 } 2492 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2493 2494 int kvm_arch_init(void *opaque) 2495 { 2496 return 0; 2497 } 2498 2499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2500