1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/module.h> 30 #include <linux/irqbypass.h> 31 #include <linux/kvm_irqfd.h> 32 #include <asm/cputable.h> 33 #include <linux/uaccess.h> 34 #include <asm/kvm_ppc.h> 35 #include <asm/tlbflush.h> 36 #include <asm/cputhreads.h> 37 #include <asm/irqflags.h> 38 #include <asm/iommu.h> 39 #include "timing.h" 40 #include "irq.h" 41 #include "../mm/mmu_decl.h" 42 43 #define CREATE_TRACE_POINTS 44 #include "trace.h" 45 46 struct kvmppc_ops *kvmppc_hv_ops; 47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 48 struct kvmppc_ops *kvmppc_pr_ops; 49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 50 51 52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 53 { 54 return !!(v->arch.pending_exceptions) || 55 v->requests; 56 } 57 58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 59 { 60 return 1; 61 } 62 63 /* 64 * Common checks before entering the guest world. Call with interrupts 65 * disabled. 66 * 67 * returns: 68 * 69 * == 1 if we're ready to go into guest state 70 * <= 0 if we need to go back to the host with return value 71 */ 72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 73 { 74 int r; 75 76 WARN_ON(irqs_disabled()); 77 hard_irq_disable(); 78 79 while (true) { 80 if (need_resched()) { 81 local_irq_enable(); 82 cond_resched(); 83 hard_irq_disable(); 84 continue; 85 } 86 87 if (signal_pending(current)) { 88 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 89 vcpu->run->exit_reason = KVM_EXIT_INTR; 90 r = -EINTR; 91 break; 92 } 93 94 vcpu->mode = IN_GUEST_MODE; 95 96 /* 97 * Reading vcpu->requests must happen after setting vcpu->mode, 98 * so we don't miss a request because the requester sees 99 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 100 * before next entering the guest (and thus doesn't IPI). 101 * This also orders the write to mode from any reads 102 * to the page tables done while the VCPU is running. 103 * Please see the comment in kvm_flush_remote_tlbs. 104 */ 105 smp_mb(); 106 107 if (vcpu->requests) { 108 /* Make sure we process requests preemptable */ 109 local_irq_enable(); 110 trace_kvm_check_requests(vcpu); 111 r = kvmppc_core_check_requests(vcpu); 112 hard_irq_disable(); 113 if (r > 0) 114 continue; 115 break; 116 } 117 118 if (kvmppc_core_prepare_to_enter(vcpu)) { 119 /* interrupts got enabled in between, so we 120 are back at square 1 */ 121 continue; 122 } 123 124 guest_enter_irqoff(); 125 return 1; 126 } 127 128 /* return to host */ 129 local_irq_enable(); 130 return r; 131 } 132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 133 134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 136 { 137 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 138 int i; 139 140 shared->sprg0 = swab64(shared->sprg0); 141 shared->sprg1 = swab64(shared->sprg1); 142 shared->sprg2 = swab64(shared->sprg2); 143 shared->sprg3 = swab64(shared->sprg3); 144 shared->srr0 = swab64(shared->srr0); 145 shared->srr1 = swab64(shared->srr1); 146 shared->dar = swab64(shared->dar); 147 shared->msr = swab64(shared->msr); 148 shared->dsisr = swab32(shared->dsisr); 149 shared->int_pending = swab32(shared->int_pending); 150 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 151 shared->sr[i] = swab32(shared->sr[i]); 152 } 153 #endif 154 155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 156 { 157 int nr = kvmppc_get_gpr(vcpu, 11); 158 int r; 159 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 160 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 161 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 162 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 163 unsigned long r2 = 0; 164 165 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 166 /* 32 bit mode */ 167 param1 &= 0xffffffff; 168 param2 &= 0xffffffff; 169 param3 &= 0xffffffff; 170 param4 &= 0xffffffff; 171 } 172 173 switch (nr) { 174 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 175 { 176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 177 /* Book3S can be little endian, find it out here */ 178 int shared_big_endian = true; 179 if (vcpu->arch.intr_msr & MSR_LE) 180 shared_big_endian = false; 181 if (shared_big_endian != vcpu->arch.shared_big_endian) 182 kvmppc_swab_shared(vcpu); 183 vcpu->arch.shared_big_endian = shared_big_endian; 184 #endif 185 186 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 187 /* 188 * Older versions of the Linux magic page code had 189 * a bug where they would map their trampoline code 190 * NX. If that's the case, remove !PR NX capability. 191 */ 192 vcpu->arch.disable_kernel_nx = true; 193 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 194 } 195 196 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 197 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 198 199 #ifdef CONFIG_PPC_64K_PAGES 200 /* 201 * Make sure our 4k magic page is in the same window of a 64k 202 * page within the guest and within the host's page. 203 */ 204 if ((vcpu->arch.magic_page_pa & 0xf000) != 205 ((ulong)vcpu->arch.shared & 0xf000)) { 206 void *old_shared = vcpu->arch.shared; 207 ulong shared = (ulong)vcpu->arch.shared; 208 void *new_shared; 209 210 shared &= PAGE_MASK; 211 shared |= vcpu->arch.magic_page_pa & 0xf000; 212 new_shared = (void*)shared; 213 memcpy(new_shared, old_shared, 0x1000); 214 vcpu->arch.shared = new_shared; 215 } 216 #endif 217 218 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 219 220 r = EV_SUCCESS; 221 break; 222 } 223 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 224 r = EV_SUCCESS; 225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 226 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 227 #endif 228 229 /* Second return value is in r4 */ 230 break; 231 case EV_HCALL_TOKEN(EV_IDLE): 232 r = EV_SUCCESS; 233 kvm_vcpu_block(vcpu); 234 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 235 break; 236 default: 237 r = EV_UNIMPLEMENTED; 238 break; 239 } 240 241 kvmppc_set_gpr(vcpu, 4, r2); 242 243 return r; 244 } 245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 246 247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 248 { 249 int r = false; 250 251 /* We have to know what CPU to virtualize */ 252 if (!vcpu->arch.pvr) 253 goto out; 254 255 /* PAPR only works with book3s_64 */ 256 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 257 goto out; 258 259 /* HV KVM can only do PAPR mode for now */ 260 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 261 goto out; 262 263 #ifdef CONFIG_KVM_BOOKE_HV 264 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 265 goto out; 266 #endif 267 268 r = true; 269 270 out: 271 vcpu->arch.sane = r; 272 return r ? 0 : -EINVAL; 273 } 274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 275 276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 277 { 278 enum emulation_result er; 279 int r; 280 281 er = kvmppc_emulate_loadstore(vcpu); 282 switch (er) { 283 case EMULATE_DONE: 284 /* Future optimization: only reload non-volatiles if they were 285 * actually modified. */ 286 r = RESUME_GUEST_NV; 287 break; 288 case EMULATE_AGAIN: 289 r = RESUME_GUEST; 290 break; 291 case EMULATE_DO_MMIO: 292 run->exit_reason = KVM_EXIT_MMIO; 293 /* We must reload nonvolatiles because "update" load/store 294 * instructions modify register state. */ 295 /* Future optimization: only reload non-volatiles if they were 296 * actually modified. */ 297 r = RESUME_HOST_NV; 298 break; 299 case EMULATE_FAIL: 300 { 301 u32 last_inst; 302 303 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 304 /* XXX Deliver Program interrupt to guest. */ 305 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 306 r = RESUME_HOST; 307 break; 308 } 309 default: 310 WARN_ON(1); 311 r = RESUME_GUEST; 312 } 313 314 return r; 315 } 316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 317 318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 319 bool data) 320 { 321 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 322 struct kvmppc_pte pte; 323 int r; 324 325 vcpu->stat.st++; 326 327 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 328 XLATE_WRITE, &pte); 329 if (r < 0) 330 return r; 331 332 *eaddr = pte.raddr; 333 334 if (!pte.may_write) 335 return -EPERM; 336 337 /* Magic page override */ 338 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 339 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 340 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 341 void *magic = vcpu->arch.shared; 342 magic += pte.eaddr & 0xfff; 343 memcpy(magic, ptr, size); 344 return EMULATE_DONE; 345 } 346 347 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 348 return EMULATE_DO_MMIO; 349 350 return EMULATE_DONE; 351 } 352 EXPORT_SYMBOL_GPL(kvmppc_st); 353 354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 355 bool data) 356 { 357 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 358 struct kvmppc_pte pte; 359 int rc; 360 361 vcpu->stat.ld++; 362 363 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 364 XLATE_READ, &pte); 365 if (rc) 366 return rc; 367 368 *eaddr = pte.raddr; 369 370 if (!pte.may_read) 371 return -EPERM; 372 373 if (!data && !pte.may_execute) 374 return -ENOEXEC; 375 376 /* Magic page override */ 377 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 378 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 379 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 380 void *magic = vcpu->arch.shared; 381 magic += pte.eaddr & 0xfff; 382 memcpy(ptr, magic, size); 383 return EMULATE_DONE; 384 } 385 386 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 387 return EMULATE_DO_MMIO; 388 389 return EMULATE_DONE; 390 } 391 EXPORT_SYMBOL_GPL(kvmppc_ld); 392 393 int kvm_arch_hardware_enable(void) 394 { 395 return 0; 396 } 397 398 int kvm_arch_hardware_setup(void) 399 { 400 return 0; 401 } 402 403 void kvm_arch_check_processor_compat(void *rtn) 404 { 405 *(int *)rtn = kvmppc_core_check_processor_compat(); 406 } 407 408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 409 { 410 struct kvmppc_ops *kvm_ops = NULL; 411 /* 412 * if we have both HV and PR enabled, default is HV 413 */ 414 if (type == 0) { 415 if (kvmppc_hv_ops) 416 kvm_ops = kvmppc_hv_ops; 417 else 418 kvm_ops = kvmppc_pr_ops; 419 if (!kvm_ops) 420 goto err_out; 421 } else if (type == KVM_VM_PPC_HV) { 422 if (!kvmppc_hv_ops) 423 goto err_out; 424 kvm_ops = kvmppc_hv_ops; 425 } else if (type == KVM_VM_PPC_PR) { 426 if (!kvmppc_pr_ops) 427 goto err_out; 428 kvm_ops = kvmppc_pr_ops; 429 } else 430 goto err_out; 431 432 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 433 return -ENOENT; 434 435 kvm->arch.kvm_ops = kvm_ops; 436 return kvmppc_core_init_vm(kvm); 437 err_out: 438 return -EINVAL; 439 } 440 441 bool kvm_arch_has_vcpu_debugfs(void) 442 { 443 return false; 444 } 445 446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 447 { 448 return 0; 449 } 450 451 void kvm_arch_destroy_vm(struct kvm *kvm) 452 { 453 unsigned int i; 454 struct kvm_vcpu *vcpu; 455 456 #ifdef CONFIG_KVM_XICS 457 /* 458 * We call kick_all_cpus_sync() to ensure that all 459 * CPUs have executed any pending IPIs before we 460 * continue and free VCPUs structures below. 461 */ 462 if (is_kvmppc_hv_enabled(kvm)) 463 kick_all_cpus_sync(); 464 #endif 465 466 kvm_for_each_vcpu(i, vcpu, kvm) 467 kvm_arch_vcpu_free(vcpu); 468 469 mutex_lock(&kvm->lock); 470 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 471 kvm->vcpus[i] = NULL; 472 473 atomic_set(&kvm->online_vcpus, 0); 474 475 kvmppc_core_destroy_vm(kvm); 476 477 mutex_unlock(&kvm->lock); 478 479 /* drop the module reference */ 480 module_put(kvm->arch.kvm_ops->owner); 481 } 482 483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 484 { 485 int r; 486 /* Assume we're using HV mode when the HV module is loaded */ 487 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 488 489 if (kvm) { 490 /* 491 * Hooray - we know which VM type we're running on. Depend on 492 * that rather than the guess above. 493 */ 494 hv_enabled = is_kvmppc_hv_enabled(kvm); 495 } 496 497 switch (ext) { 498 #ifdef CONFIG_BOOKE 499 case KVM_CAP_PPC_BOOKE_SREGS: 500 case KVM_CAP_PPC_BOOKE_WATCHDOG: 501 case KVM_CAP_PPC_EPR: 502 #else 503 case KVM_CAP_PPC_SEGSTATE: 504 case KVM_CAP_PPC_HIOR: 505 case KVM_CAP_PPC_PAPR: 506 #endif 507 case KVM_CAP_PPC_UNSET_IRQ: 508 case KVM_CAP_PPC_IRQ_LEVEL: 509 case KVM_CAP_ENABLE_CAP: 510 case KVM_CAP_ENABLE_CAP_VM: 511 case KVM_CAP_ONE_REG: 512 case KVM_CAP_IOEVENTFD: 513 case KVM_CAP_DEVICE_CTRL: 514 r = 1; 515 break; 516 case KVM_CAP_PPC_PAIRED_SINGLES: 517 case KVM_CAP_PPC_OSI: 518 case KVM_CAP_PPC_GET_PVINFO: 519 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 520 case KVM_CAP_SW_TLB: 521 #endif 522 /* We support this only for PR */ 523 r = !hv_enabled; 524 break; 525 #ifdef CONFIG_KVM_MMIO 526 case KVM_CAP_COALESCED_MMIO: 527 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 528 break; 529 #endif 530 #ifdef CONFIG_KVM_MPIC 531 case KVM_CAP_IRQ_MPIC: 532 r = 1; 533 break; 534 #endif 535 536 #ifdef CONFIG_PPC_BOOK3S_64 537 case KVM_CAP_SPAPR_TCE: 538 case KVM_CAP_SPAPR_TCE_64: 539 case KVM_CAP_PPC_RTAS: 540 case KVM_CAP_PPC_FIXUP_HCALL: 541 case KVM_CAP_PPC_ENABLE_HCALL: 542 #ifdef CONFIG_KVM_XICS 543 case KVM_CAP_IRQ_XICS: 544 #endif 545 r = 1; 546 break; 547 548 case KVM_CAP_PPC_ALLOC_HTAB: 549 r = hv_enabled; 550 break; 551 #endif /* CONFIG_PPC_BOOK3S_64 */ 552 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 553 case KVM_CAP_PPC_SMT: 554 r = 0; 555 if (hv_enabled) { 556 if (cpu_has_feature(CPU_FTR_ARCH_300)) 557 r = 1; 558 else 559 r = threads_per_subcore; 560 } 561 break; 562 case KVM_CAP_PPC_RMA: 563 r = 0; 564 break; 565 case KVM_CAP_PPC_HWRNG: 566 r = kvmppc_hwrng_present(); 567 break; 568 #endif 569 case KVM_CAP_SYNC_MMU: 570 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 571 r = hv_enabled; 572 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 573 r = 1; 574 #else 575 r = 0; 576 #endif 577 break; 578 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 579 case KVM_CAP_PPC_HTAB_FD: 580 r = hv_enabled; 581 break; 582 #endif 583 case KVM_CAP_NR_VCPUS: 584 /* 585 * Recommending a number of CPUs is somewhat arbitrary; we 586 * return the number of present CPUs for -HV (since a host 587 * will have secondary threads "offline"), and for other KVM 588 * implementations just count online CPUs. 589 */ 590 if (hv_enabled) 591 r = num_present_cpus(); 592 else 593 r = num_online_cpus(); 594 break; 595 case KVM_CAP_NR_MEMSLOTS: 596 r = KVM_USER_MEM_SLOTS; 597 break; 598 case KVM_CAP_MAX_VCPUS: 599 r = KVM_MAX_VCPUS; 600 break; 601 #ifdef CONFIG_PPC_BOOK3S_64 602 case KVM_CAP_PPC_GET_SMMU_INFO: 603 r = 1; 604 break; 605 case KVM_CAP_SPAPR_MULTITCE: 606 r = 1; 607 break; 608 #endif 609 case KVM_CAP_PPC_HTM: 610 r = cpu_has_feature(CPU_FTR_TM_COMP) && 611 is_kvmppc_hv_enabled(kvm); 612 break; 613 default: 614 r = 0; 615 break; 616 } 617 return r; 618 619 } 620 621 long kvm_arch_dev_ioctl(struct file *filp, 622 unsigned int ioctl, unsigned long arg) 623 { 624 return -EINVAL; 625 } 626 627 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 628 struct kvm_memory_slot *dont) 629 { 630 kvmppc_core_free_memslot(kvm, free, dont); 631 } 632 633 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 634 unsigned long npages) 635 { 636 return kvmppc_core_create_memslot(kvm, slot, npages); 637 } 638 639 int kvm_arch_prepare_memory_region(struct kvm *kvm, 640 struct kvm_memory_slot *memslot, 641 const struct kvm_userspace_memory_region *mem, 642 enum kvm_mr_change change) 643 { 644 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 645 } 646 647 void kvm_arch_commit_memory_region(struct kvm *kvm, 648 const struct kvm_userspace_memory_region *mem, 649 const struct kvm_memory_slot *old, 650 const struct kvm_memory_slot *new, 651 enum kvm_mr_change change) 652 { 653 kvmppc_core_commit_memory_region(kvm, mem, old, new); 654 } 655 656 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 657 struct kvm_memory_slot *slot) 658 { 659 kvmppc_core_flush_memslot(kvm, slot); 660 } 661 662 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 663 { 664 struct kvm_vcpu *vcpu; 665 vcpu = kvmppc_core_vcpu_create(kvm, id); 666 if (!IS_ERR(vcpu)) { 667 vcpu->arch.wqp = &vcpu->wq; 668 kvmppc_create_vcpu_debugfs(vcpu, id); 669 } 670 return vcpu; 671 } 672 673 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 674 { 675 } 676 677 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 678 { 679 /* Make sure we're not using the vcpu anymore */ 680 hrtimer_cancel(&vcpu->arch.dec_timer); 681 682 kvmppc_remove_vcpu_debugfs(vcpu); 683 684 switch (vcpu->arch.irq_type) { 685 case KVMPPC_IRQ_MPIC: 686 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 687 break; 688 case KVMPPC_IRQ_XICS: 689 kvmppc_xics_free_icp(vcpu); 690 break; 691 } 692 693 kvmppc_core_vcpu_free(vcpu); 694 } 695 696 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 697 { 698 kvm_arch_vcpu_free(vcpu); 699 } 700 701 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 702 { 703 return kvmppc_core_pending_dec(vcpu); 704 } 705 706 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 707 { 708 struct kvm_vcpu *vcpu; 709 710 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 711 kvmppc_decrementer_func(vcpu); 712 713 return HRTIMER_NORESTART; 714 } 715 716 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 717 { 718 int ret; 719 720 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 721 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 722 vcpu->arch.dec_expires = ~(u64)0; 723 724 #ifdef CONFIG_KVM_EXIT_TIMING 725 mutex_init(&vcpu->arch.exit_timing_lock); 726 #endif 727 ret = kvmppc_subarch_vcpu_init(vcpu); 728 return ret; 729 } 730 731 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 732 { 733 kvmppc_mmu_destroy(vcpu); 734 kvmppc_subarch_vcpu_uninit(vcpu); 735 } 736 737 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 738 { 739 #ifdef CONFIG_BOOKE 740 /* 741 * vrsave (formerly usprg0) isn't used by Linux, but may 742 * be used by the guest. 743 * 744 * On non-booke this is associated with Altivec and 745 * is handled by code in book3s.c. 746 */ 747 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 748 #endif 749 kvmppc_core_vcpu_load(vcpu, cpu); 750 } 751 752 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 753 { 754 kvmppc_core_vcpu_put(vcpu); 755 #ifdef CONFIG_BOOKE 756 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 757 #endif 758 } 759 760 /* 761 * irq_bypass_add_producer and irq_bypass_del_producer are only 762 * useful if the architecture supports PCI passthrough. 763 * irq_bypass_stop and irq_bypass_start are not needed and so 764 * kvm_ops are not defined for them. 765 */ 766 bool kvm_arch_has_irq_bypass(void) 767 { 768 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 769 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 770 } 771 772 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 773 struct irq_bypass_producer *prod) 774 { 775 struct kvm_kernel_irqfd *irqfd = 776 container_of(cons, struct kvm_kernel_irqfd, consumer); 777 struct kvm *kvm = irqfd->kvm; 778 779 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 780 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 781 782 return 0; 783 } 784 785 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 786 struct irq_bypass_producer *prod) 787 { 788 struct kvm_kernel_irqfd *irqfd = 789 container_of(cons, struct kvm_kernel_irqfd, consumer); 790 struct kvm *kvm = irqfd->kvm; 791 792 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 793 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 794 } 795 796 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 797 struct kvm_run *run) 798 { 799 u64 uninitialized_var(gpr); 800 801 if (run->mmio.len > sizeof(gpr)) { 802 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 803 return; 804 } 805 806 if (!vcpu->arch.mmio_host_swabbed) { 807 switch (run->mmio.len) { 808 case 8: gpr = *(u64 *)run->mmio.data; break; 809 case 4: gpr = *(u32 *)run->mmio.data; break; 810 case 2: gpr = *(u16 *)run->mmio.data; break; 811 case 1: gpr = *(u8 *)run->mmio.data; break; 812 } 813 } else { 814 switch (run->mmio.len) { 815 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 816 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 817 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 818 case 1: gpr = *(u8 *)run->mmio.data; break; 819 } 820 } 821 822 if (vcpu->arch.mmio_sign_extend) { 823 switch (run->mmio.len) { 824 #ifdef CONFIG_PPC64 825 case 4: 826 gpr = (s64)(s32)gpr; 827 break; 828 #endif 829 case 2: 830 gpr = (s64)(s16)gpr; 831 break; 832 case 1: 833 gpr = (s64)(s8)gpr; 834 break; 835 } 836 } 837 838 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 839 840 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 841 case KVM_MMIO_REG_GPR: 842 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 843 break; 844 case KVM_MMIO_REG_FPR: 845 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 846 break; 847 #ifdef CONFIG_PPC_BOOK3S 848 case KVM_MMIO_REG_QPR: 849 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 850 break; 851 case KVM_MMIO_REG_FQPR: 852 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 853 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 854 break; 855 #endif 856 default: 857 BUG(); 858 } 859 } 860 861 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 862 unsigned int rt, unsigned int bytes, 863 int is_default_endian, int sign_extend) 864 { 865 int idx, ret; 866 bool host_swabbed; 867 868 /* Pity C doesn't have a logical XOR operator */ 869 if (kvmppc_need_byteswap(vcpu)) { 870 host_swabbed = is_default_endian; 871 } else { 872 host_swabbed = !is_default_endian; 873 } 874 875 if (bytes > sizeof(run->mmio.data)) { 876 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 877 run->mmio.len); 878 } 879 880 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 881 run->mmio.len = bytes; 882 run->mmio.is_write = 0; 883 884 vcpu->arch.io_gpr = rt; 885 vcpu->arch.mmio_host_swabbed = host_swabbed; 886 vcpu->mmio_needed = 1; 887 vcpu->mmio_is_write = 0; 888 vcpu->arch.mmio_sign_extend = sign_extend; 889 890 idx = srcu_read_lock(&vcpu->kvm->srcu); 891 892 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 893 bytes, &run->mmio.data); 894 895 srcu_read_unlock(&vcpu->kvm->srcu, idx); 896 897 if (!ret) { 898 kvmppc_complete_mmio_load(vcpu, run); 899 vcpu->mmio_needed = 0; 900 return EMULATE_DONE; 901 } 902 903 return EMULATE_DO_MMIO; 904 } 905 906 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 907 unsigned int rt, unsigned int bytes, 908 int is_default_endian) 909 { 910 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 911 } 912 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 913 914 /* Same as above, but sign extends */ 915 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 916 unsigned int rt, unsigned int bytes, 917 int is_default_endian) 918 { 919 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 920 } 921 922 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 923 u64 val, unsigned int bytes, int is_default_endian) 924 { 925 void *data = run->mmio.data; 926 int idx, ret; 927 bool host_swabbed; 928 929 /* Pity C doesn't have a logical XOR operator */ 930 if (kvmppc_need_byteswap(vcpu)) { 931 host_swabbed = is_default_endian; 932 } else { 933 host_swabbed = !is_default_endian; 934 } 935 936 if (bytes > sizeof(run->mmio.data)) { 937 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 938 run->mmio.len); 939 } 940 941 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 942 run->mmio.len = bytes; 943 run->mmio.is_write = 1; 944 vcpu->mmio_needed = 1; 945 vcpu->mmio_is_write = 1; 946 947 /* Store the value at the lowest bytes in 'data'. */ 948 if (!host_swabbed) { 949 switch (bytes) { 950 case 8: *(u64 *)data = val; break; 951 case 4: *(u32 *)data = val; break; 952 case 2: *(u16 *)data = val; break; 953 case 1: *(u8 *)data = val; break; 954 } 955 } else { 956 switch (bytes) { 957 case 8: *(u64 *)data = swab64(val); break; 958 case 4: *(u32 *)data = swab32(val); break; 959 case 2: *(u16 *)data = swab16(val); break; 960 case 1: *(u8 *)data = val; break; 961 } 962 } 963 964 idx = srcu_read_lock(&vcpu->kvm->srcu); 965 966 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 967 bytes, &run->mmio.data); 968 969 srcu_read_unlock(&vcpu->kvm->srcu, idx); 970 971 if (!ret) { 972 vcpu->mmio_needed = 0; 973 return EMULATE_DONE; 974 } 975 976 return EMULATE_DO_MMIO; 977 } 978 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 979 980 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 981 { 982 int r = 0; 983 union kvmppc_one_reg val; 984 int size; 985 986 size = one_reg_size(reg->id); 987 if (size > sizeof(val)) 988 return -EINVAL; 989 990 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 991 if (r == -EINVAL) { 992 r = 0; 993 switch (reg->id) { 994 #ifdef CONFIG_ALTIVEC 995 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 996 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 997 r = -ENXIO; 998 break; 999 } 1000 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1001 break; 1002 case KVM_REG_PPC_VSCR: 1003 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1004 r = -ENXIO; 1005 break; 1006 } 1007 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1008 break; 1009 case KVM_REG_PPC_VRSAVE: 1010 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1011 break; 1012 #endif /* CONFIG_ALTIVEC */ 1013 default: 1014 r = -EINVAL; 1015 break; 1016 } 1017 } 1018 1019 if (r) 1020 return r; 1021 1022 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1023 r = -EFAULT; 1024 1025 return r; 1026 } 1027 1028 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1029 { 1030 int r; 1031 union kvmppc_one_reg val; 1032 int size; 1033 1034 size = one_reg_size(reg->id); 1035 if (size > sizeof(val)) 1036 return -EINVAL; 1037 1038 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1039 return -EFAULT; 1040 1041 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1042 if (r == -EINVAL) { 1043 r = 0; 1044 switch (reg->id) { 1045 #ifdef CONFIG_ALTIVEC 1046 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1047 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1048 r = -ENXIO; 1049 break; 1050 } 1051 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1052 break; 1053 case KVM_REG_PPC_VSCR: 1054 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1055 r = -ENXIO; 1056 break; 1057 } 1058 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1059 break; 1060 case KVM_REG_PPC_VRSAVE: 1061 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1062 r = -ENXIO; 1063 break; 1064 } 1065 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1066 break; 1067 #endif /* CONFIG_ALTIVEC */ 1068 default: 1069 r = -EINVAL; 1070 break; 1071 } 1072 } 1073 1074 return r; 1075 } 1076 1077 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1078 { 1079 int r; 1080 sigset_t sigsaved; 1081 1082 if (vcpu->sigset_active) 1083 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 1084 1085 if (vcpu->mmio_needed) { 1086 if (!vcpu->mmio_is_write) 1087 kvmppc_complete_mmio_load(vcpu, run); 1088 vcpu->mmio_needed = 0; 1089 } else if (vcpu->arch.osi_needed) { 1090 u64 *gprs = run->osi.gprs; 1091 int i; 1092 1093 for (i = 0; i < 32; i++) 1094 kvmppc_set_gpr(vcpu, i, gprs[i]); 1095 vcpu->arch.osi_needed = 0; 1096 } else if (vcpu->arch.hcall_needed) { 1097 int i; 1098 1099 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1100 for (i = 0; i < 9; ++i) 1101 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1102 vcpu->arch.hcall_needed = 0; 1103 #ifdef CONFIG_BOOKE 1104 } else if (vcpu->arch.epr_needed) { 1105 kvmppc_set_epr(vcpu, run->epr.epr); 1106 vcpu->arch.epr_needed = 0; 1107 #endif 1108 } 1109 1110 r = kvmppc_vcpu_run(run, vcpu); 1111 1112 if (vcpu->sigset_active) 1113 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1114 1115 return r; 1116 } 1117 1118 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1119 { 1120 if (irq->irq == KVM_INTERRUPT_UNSET) { 1121 kvmppc_core_dequeue_external(vcpu); 1122 return 0; 1123 } 1124 1125 kvmppc_core_queue_external(vcpu, irq); 1126 1127 kvm_vcpu_kick(vcpu); 1128 1129 return 0; 1130 } 1131 1132 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1133 struct kvm_enable_cap *cap) 1134 { 1135 int r; 1136 1137 if (cap->flags) 1138 return -EINVAL; 1139 1140 switch (cap->cap) { 1141 case KVM_CAP_PPC_OSI: 1142 r = 0; 1143 vcpu->arch.osi_enabled = true; 1144 break; 1145 case KVM_CAP_PPC_PAPR: 1146 r = 0; 1147 vcpu->arch.papr_enabled = true; 1148 break; 1149 case KVM_CAP_PPC_EPR: 1150 r = 0; 1151 if (cap->args[0]) 1152 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1153 else 1154 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1155 break; 1156 #ifdef CONFIG_BOOKE 1157 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1158 r = 0; 1159 vcpu->arch.watchdog_enabled = true; 1160 break; 1161 #endif 1162 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1163 case KVM_CAP_SW_TLB: { 1164 struct kvm_config_tlb cfg; 1165 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1166 1167 r = -EFAULT; 1168 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1169 break; 1170 1171 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1172 break; 1173 } 1174 #endif 1175 #ifdef CONFIG_KVM_MPIC 1176 case KVM_CAP_IRQ_MPIC: { 1177 struct fd f; 1178 struct kvm_device *dev; 1179 1180 r = -EBADF; 1181 f = fdget(cap->args[0]); 1182 if (!f.file) 1183 break; 1184 1185 r = -EPERM; 1186 dev = kvm_device_from_filp(f.file); 1187 if (dev) 1188 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1189 1190 fdput(f); 1191 break; 1192 } 1193 #endif 1194 #ifdef CONFIG_KVM_XICS 1195 case KVM_CAP_IRQ_XICS: { 1196 struct fd f; 1197 struct kvm_device *dev; 1198 1199 r = -EBADF; 1200 f = fdget(cap->args[0]); 1201 if (!f.file) 1202 break; 1203 1204 r = -EPERM; 1205 dev = kvm_device_from_filp(f.file); 1206 if (dev) 1207 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1208 1209 fdput(f); 1210 break; 1211 } 1212 #endif /* CONFIG_KVM_XICS */ 1213 default: 1214 r = -EINVAL; 1215 break; 1216 } 1217 1218 if (!r) 1219 r = kvmppc_sanity_check(vcpu); 1220 1221 return r; 1222 } 1223 1224 bool kvm_arch_intc_initialized(struct kvm *kvm) 1225 { 1226 #ifdef CONFIG_KVM_MPIC 1227 if (kvm->arch.mpic) 1228 return true; 1229 #endif 1230 #ifdef CONFIG_KVM_XICS 1231 if (kvm->arch.xics) 1232 return true; 1233 #endif 1234 return false; 1235 } 1236 1237 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1238 struct kvm_mp_state *mp_state) 1239 { 1240 return -EINVAL; 1241 } 1242 1243 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1244 struct kvm_mp_state *mp_state) 1245 { 1246 return -EINVAL; 1247 } 1248 1249 long kvm_arch_vcpu_ioctl(struct file *filp, 1250 unsigned int ioctl, unsigned long arg) 1251 { 1252 struct kvm_vcpu *vcpu = filp->private_data; 1253 void __user *argp = (void __user *)arg; 1254 long r; 1255 1256 switch (ioctl) { 1257 case KVM_INTERRUPT: { 1258 struct kvm_interrupt irq; 1259 r = -EFAULT; 1260 if (copy_from_user(&irq, argp, sizeof(irq))) 1261 goto out; 1262 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 1263 goto out; 1264 } 1265 1266 case KVM_ENABLE_CAP: 1267 { 1268 struct kvm_enable_cap cap; 1269 r = -EFAULT; 1270 if (copy_from_user(&cap, argp, sizeof(cap))) 1271 goto out; 1272 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 1273 break; 1274 } 1275 1276 case KVM_SET_ONE_REG: 1277 case KVM_GET_ONE_REG: 1278 { 1279 struct kvm_one_reg reg; 1280 r = -EFAULT; 1281 if (copy_from_user(®, argp, sizeof(reg))) 1282 goto out; 1283 if (ioctl == KVM_SET_ONE_REG) 1284 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 1285 else 1286 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 1287 break; 1288 } 1289 1290 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1291 case KVM_DIRTY_TLB: { 1292 struct kvm_dirty_tlb dirty; 1293 r = -EFAULT; 1294 if (copy_from_user(&dirty, argp, sizeof(dirty))) 1295 goto out; 1296 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 1297 break; 1298 } 1299 #endif 1300 default: 1301 r = -EINVAL; 1302 } 1303 1304 out: 1305 return r; 1306 } 1307 1308 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1309 { 1310 return VM_FAULT_SIGBUS; 1311 } 1312 1313 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 1314 { 1315 u32 inst_nop = 0x60000000; 1316 #ifdef CONFIG_KVM_BOOKE_HV 1317 u32 inst_sc1 = 0x44000022; 1318 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 1319 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 1320 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 1321 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1322 #else 1323 u32 inst_lis = 0x3c000000; 1324 u32 inst_ori = 0x60000000; 1325 u32 inst_sc = 0x44000002; 1326 u32 inst_imm_mask = 0xffff; 1327 1328 /* 1329 * The hypercall to get into KVM from within guest context is as 1330 * follows: 1331 * 1332 * lis r0, r0, KVM_SC_MAGIC_R0@h 1333 * ori r0, KVM_SC_MAGIC_R0@l 1334 * sc 1335 * nop 1336 */ 1337 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 1338 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 1339 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 1340 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1341 #endif 1342 1343 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 1344 1345 return 0; 1346 } 1347 1348 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 1349 bool line_status) 1350 { 1351 if (!irqchip_in_kernel(kvm)) 1352 return -ENXIO; 1353 1354 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1355 irq_event->irq, irq_event->level, 1356 line_status); 1357 return 0; 1358 } 1359 1360 1361 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1362 struct kvm_enable_cap *cap) 1363 { 1364 int r; 1365 1366 if (cap->flags) 1367 return -EINVAL; 1368 1369 switch (cap->cap) { 1370 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 1371 case KVM_CAP_PPC_ENABLE_HCALL: { 1372 unsigned long hcall = cap->args[0]; 1373 1374 r = -EINVAL; 1375 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 1376 cap->args[1] > 1) 1377 break; 1378 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 1379 break; 1380 if (cap->args[1]) 1381 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 1382 else 1383 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 1384 r = 0; 1385 break; 1386 } 1387 #endif 1388 default: 1389 r = -EINVAL; 1390 break; 1391 } 1392 1393 return r; 1394 } 1395 1396 long kvm_arch_vm_ioctl(struct file *filp, 1397 unsigned int ioctl, unsigned long arg) 1398 { 1399 struct kvm *kvm __maybe_unused = filp->private_data; 1400 void __user *argp = (void __user *)arg; 1401 long r; 1402 1403 switch (ioctl) { 1404 case KVM_PPC_GET_PVINFO: { 1405 struct kvm_ppc_pvinfo pvinfo; 1406 memset(&pvinfo, 0, sizeof(pvinfo)); 1407 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 1408 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 1409 r = -EFAULT; 1410 goto out; 1411 } 1412 1413 break; 1414 } 1415 case KVM_ENABLE_CAP: 1416 { 1417 struct kvm_enable_cap cap; 1418 r = -EFAULT; 1419 if (copy_from_user(&cap, argp, sizeof(cap))) 1420 goto out; 1421 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1422 break; 1423 } 1424 #ifdef CONFIG_PPC_BOOK3S_64 1425 case KVM_CREATE_SPAPR_TCE_64: { 1426 struct kvm_create_spapr_tce_64 create_tce_64; 1427 1428 r = -EFAULT; 1429 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 1430 goto out; 1431 if (create_tce_64.flags) { 1432 r = -EINVAL; 1433 goto out; 1434 } 1435 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 1436 goto out; 1437 } 1438 case KVM_CREATE_SPAPR_TCE: { 1439 struct kvm_create_spapr_tce create_tce; 1440 struct kvm_create_spapr_tce_64 create_tce_64; 1441 1442 r = -EFAULT; 1443 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 1444 goto out; 1445 1446 create_tce_64.liobn = create_tce.liobn; 1447 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 1448 create_tce_64.offset = 0; 1449 create_tce_64.size = create_tce.window_size >> 1450 IOMMU_PAGE_SHIFT_4K; 1451 create_tce_64.flags = 0; 1452 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 1453 goto out; 1454 } 1455 case KVM_PPC_GET_SMMU_INFO: { 1456 struct kvm_ppc_smmu_info info; 1457 struct kvm *kvm = filp->private_data; 1458 1459 memset(&info, 0, sizeof(info)); 1460 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 1461 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 1462 r = -EFAULT; 1463 break; 1464 } 1465 case KVM_PPC_RTAS_DEFINE_TOKEN: { 1466 struct kvm *kvm = filp->private_data; 1467 1468 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 1469 break; 1470 } 1471 default: { 1472 struct kvm *kvm = filp->private_data; 1473 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 1474 } 1475 #else /* CONFIG_PPC_BOOK3S_64 */ 1476 default: 1477 r = -ENOTTY; 1478 #endif 1479 } 1480 out: 1481 return r; 1482 } 1483 1484 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 1485 static unsigned long nr_lpids; 1486 1487 long kvmppc_alloc_lpid(void) 1488 { 1489 long lpid; 1490 1491 do { 1492 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 1493 if (lpid >= nr_lpids) { 1494 pr_err("%s: No LPIDs free\n", __func__); 1495 return -ENOMEM; 1496 } 1497 } while (test_and_set_bit(lpid, lpid_inuse)); 1498 1499 return lpid; 1500 } 1501 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 1502 1503 void kvmppc_claim_lpid(long lpid) 1504 { 1505 set_bit(lpid, lpid_inuse); 1506 } 1507 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 1508 1509 void kvmppc_free_lpid(long lpid) 1510 { 1511 clear_bit(lpid, lpid_inuse); 1512 } 1513 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 1514 1515 void kvmppc_init_lpid(unsigned long nr_lpids_param) 1516 { 1517 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 1518 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 1519 } 1520 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 1521 1522 int kvm_arch_init(void *opaque) 1523 { 1524 return 0; 1525 } 1526 1527 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 1528