xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision 68198dca)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 
43 #include "timing.h"
44 #include "irq.h"
45 #include "../mm/mmu_decl.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include "trace.h"
49 
50 struct kvmppc_ops *kvmppc_hv_ops;
51 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
52 struct kvmppc_ops *kvmppc_pr_ops;
53 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
54 
55 
56 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
57 {
58 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
59 }
60 
61 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
62 {
63 	return false;
64 }
65 
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68 	return 1;
69 }
70 
71 /*
72  * Common checks before entering the guest world.  Call with interrupts
73  * disabled.
74  *
75  * returns:
76  *
77  * == 1 if we're ready to go into guest state
78  * <= 0 if we need to go back to the host with return value
79  */
80 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
81 {
82 	int r;
83 
84 	WARN_ON(irqs_disabled());
85 	hard_irq_disable();
86 
87 	while (true) {
88 		if (need_resched()) {
89 			local_irq_enable();
90 			cond_resched();
91 			hard_irq_disable();
92 			continue;
93 		}
94 
95 		if (signal_pending(current)) {
96 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
97 			vcpu->run->exit_reason = KVM_EXIT_INTR;
98 			r = -EINTR;
99 			break;
100 		}
101 
102 		vcpu->mode = IN_GUEST_MODE;
103 
104 		/*
105 		 * Reading vcpu->requests must happen after setting vcpu->mode,
106 		 * so we don't miss a request because the requester sees
107 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
108 		 * before next entering the guest (and thus doesn't IPI).
109 		 * This also orders the write to mode from any reads
110 		 * to the page tables done while the VCPU is running.
111 		 * Please see the comment in kvm_flush_remote_tlbs.
112 		 */
113 		smp_mb();
114 
115 		if (kvm_request_pending(vcpu)) {
116 			/* Make sure we process requests preemptable */
117 			local_irq_enable();
118 			trace_kvm_check_requests(vcpu);
119 			r = kvmppc_core_check_requests(vcpu);
120 			hard_irq_disable();
121 			if (r > 0)
122 				continue;
123 			break;
124 		}
125 
126 		if (kvmppc_core_prepare_to_enter(vcpu)) {
127 			/* interrupts got enabled in between, so we
128 			   are back at square 1 */
129 			continue;
130 		}
131 
132 		guest_enter_irqoff();
133 		return 1;
134 	}
135 
136 	/* return to host */
137 	local_irq_enable();
138 	return r;
139 }
140 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
141 
142 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
143 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
144 {
145 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
146 	int i;
147 
148 	shared->sprg0 = swab64(shared->sprg0);
149 	shared->sprg1 = swab64(shared->sprg1);
150 	shared->sprg2 = swab64(shared->sprg2);
151 	shared->sprg3 = swab64(shared->sprg3);
152 	shared->srr0 = swab64(shared->srr0);
153 	shared->srr1 = swab64(shared->srr1);
154 	shared->dar = swab64(shared->dar);
155 	shared->msr = swab64(shared->msr);
156 	shared->dsisr = swab32(shared->dsisr);
157 	shared->int_pending = swab32(shared->int_pending);
158 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
159 		shared->sr[i] = swab32(shared->sr[i]);
160 }
161 #endif
162 
163 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
164 {
165 	int nr = kvmppc_get_gpr(vcpu, 11);
166 	int r;
167 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
168 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
169 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
170 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
171 	unsigned long r2 = 0;
172 
173 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
174 		/* 32 bit mode */
175 		param1 &= 0xffffffff;
176 		param2 &= 0xffffffff;
177 		param3 &= 0xffffffff;
178 		param4 &= 0xffffffff;
179 	}
180 
181 	switch (nr) {
182 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
183 	{
184 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
185 		/* Book3S can be little endian, find it out here */
186 		int shared_big_endian = true;
187 		if (vcpu->arch.intr_msr & MSR_LE)
188 			shared_big_endian = false;
189 		if (shared_big_endian != vcpu->arch.shared_big_endian)
190 			kvmppc_swab_shared(vcpu);
191 		vcpu->arch.shared_big_endian = shared_big_endian;
192 #endif
193 
194 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
195 			/*
196 			 * Older versions of the Linux magic page code had
197 			 * a bug where they would map their trampoline code
198 			 * NX. If that's the case, remove !PR NX capability.
199 			 */
200 			vcpu->arch.disable_kernel_nx = true;
201 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
202 		}
203 
204 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
205 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
206 
207 #ifdef CONFIG_PPC_64K_PAGES
208 		/*
209 		 * Make sure our 4k magic page is in the same window of a 64k
210 		 * page within the guest and within the host's page.
211 		 */
212 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
213 		    ((ulong)vcpu->arch.shared & 0xf000)) {
214 			void *old_shared = vcpu->arch.shared;
215 			ulong shared = (ulong)vcpu->arch.shared;
216 			void *new_shared;
217 
218 			shared &= PAGE_MASK;
219 			shared |= vcpu->arch.magic_page_pa & 0xf000;
220 			new_shared = (void*)shared;
221 			memcpy(new_shared, old_shared, 0x1000);
222 			vcpu->arch.shared = new_shared;
223 		}
224 #endif
225 
226 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
227 
228 		r = EV_SUCCESS;
229 		break;
230 	}
231 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
232 		r = EV_SUCCESS;
233 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
234 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
235 #endif
236 
237 		/* Second return value is in r4 */
238 		break;
239 	case EV_HCALL_TOKEN(EV_IDLE):
240 		r = EV_SUCCESS;
241 		kvm_vcpu_block(vcpu);
242 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
243 		break;
244 	default:
245 		r = EV_UNIMPLEMENTED;
246 		break;
247 	}
248 
249 	kvmppc_set_gpr(vcpu, 4, r2);
250 
251 	return r;
252 }
253 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
254 
255 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
256 {
257 	int r = false;
258 
259 	/* We have to know what CPU to virtualize */
260 	if (!vcpu->arch.pvr)
261 		goto out;
262 
263 	/* PAPR only works with book3s_64 */
264 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
265 		goto out;
266 
267 	/* HV KVM can only do PAPR mode for now */
268 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
269 		goto out;
270 
271 #ifdef CONFIG_KVM_BOOKE_HV
272 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
273 		goto out;
274 #endif
275 
276 	r = true;
277 
278 out:
279 	vcpu->arch.sane = r;
280 	return r ? 0 : -EINVAL;
281 }
282 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
283 
284 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
285 {
286 	enum emulation_result er;
287 	int r;
288 
289 	er = kvmppc_emulate_loadstore(vcpu);
290 	switch (er) {
291 	case EMULATE_DONE:
292 		/* Future optimization: only reload non-volatiles if they were
293 		 * actually modified. */
294 		r = RESUME_GUEST_NV;
295 		break;
296 	case EMULATE_AGAIN:
297 		r = RESUME_GUEST;
298 		break;
299 	case EMULATE_DO_MMIO:
300 		run->exit_reason = KVM_EXIT_MMIO;
301 		/* We must reload nonvolatiles because "update" load/store
302 		 * instructions modify register state. */
303 		/* Future optimization: only reload non-volatiles if they were
304 		 * actually modified. */
305 		r = RESUME_HOST_NV;
306 		break;
307 	case EMULATE_FAIL:
308 	{
309 		u32 last_inst;
310 
311 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
312 		/* XXX Deliver Program interrupt to guest. */
313 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
314 		r = RESUME_HOST;
315 		break;
316 	}
317 	default:
318 		WARN_ON(1);
319 		r = RESUME_GUEST;
320 	}
321 
322 	return r;
323 }
324 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
325 
326 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
327 	      bool data)
328 {
329 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
330 	struct kvmppc_pte pte;
331 	int r;
332 
333 	vcpu->stat.st++;
334 
335 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
336 			 XLATE_WRITE, &pte);
337 	if (r < 0)
338 		return r;
339 
340 	*eaddr = pte.raddr;
341 
342 	if (!pte.may_write)
343 		return -EPERM;
344 
345 	/* Magic page override */
346 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
347 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
348 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
349 		void *magic = vcpu->arch.shared;
350 		magic += pte.eaddr & 0xfff;
351 		memcpy(magic, ptr, size);
352 		return EMULATE_DONE;
353 	}
354 
355 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
356 		return EMULATE_DO_MMIO;
357 
358 	return EMULATE_DONE;
359 }
360 EXPORT_SYMBOL_GPL(kvmppc_st);
361 
362 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
363 		      bool data)
364 {
365 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
366 	struct kvmppc_pte pte;
367 	int rc;
368 
369 	vcpu->stat.ld++;
370 
371 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
372 			  XLATE_READ, &pte);
373 	if (rc)
374 		return rc;
375 
376 	*eaddr = pte.raddr;
377 
378 	if (!pte.may_read)
379 		return -EPERM;
380 
381 	if (!data && !pte.may_execute)
382 		return -ENOEXEC;
383 
384 	/* Magic page override */
385 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
386 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
387 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
388 		void *magic = vcpu->arch.shared;
389 		magic += pte.eaddr & 0xfff;
390 		memcpy(ptr, magic, size);
391 		return EMULATE_DONE;
392 	}
393 
394 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
395 		return EMULATE_DO_MMIO;
396 
397 	return EMULATE_DONE;
398 }
399 EXPORT_SYMBOL_GPL(kvmppc_ld);
400 
401 int kvm_arch_hardware_enable(void)
402 {
403 	return 0;
404 }
405 
406 int kvm_arch_hardware_setup(void)
407 {
408 	return 0;
409 }
410 
411 void kvm_arch_check_processor_compat(void *rtn)
412 {
413 	*(int *)rtn = kvmppc_core_check_processor_compat();
414 }
415 
416 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
417 {
418 	struct kvmppc_ops *kvm_ops = NULL;
419 	/*
420 	 * if we have both HV and PR enabled, default is HV
421 	 */
422 	if (type == 0) {
423 		if (kvmppc_hv_ops)
424 			kvm_ops = kvmppc_hv_ops;
425 		else
426 			kvm_ops = kvmppc_pr_ops;
427 		if (!kvm_ops)
428 			goto err_out;
429 	} else	if (type == KVM_VM_PPC_HV) {
430 		if (!kvmppc_hv_ops)
431 			goto err_out;
432 		kvm_ops = kvmppc_hv_ops;
433 	} else if (type == KVM_VM_PPC_PR) {
434 		if (!kvmppc_pr_ops)
435 			goto err_out;
436 		kvm_ops = kvmppc_pr_ops;
437 	} else
438 		goto err_out;
439 
440 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
441 		return -ENOENT;
442 
443 	kvm->arch.kvm_ops = kvm_ops;
444 	return kvmppc_core_init_vm(kvm);
445 err_out:
446 	return -EINVAL;
447 }
448 
449 bool kvm_arch_has_vcpu_debugfs(void)
450 {
451 	return false;
452 }
453 
454 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
455 {
456 	return 0;
457 }
458 
459 void kvm_arch_destroy_vm(struct kvm *kvm)
460 {
461 	unsigned int i;
462 	struct kvm_vcpu *vcpu;
463 
464 #ifdef CONFIG_KVM_XICS
465 	/*
466 	 * We call kick_all_cpus_sync() to ensure that all
467 	 * CPUs have executed any pending IPIs before we
468 	 * continue and free VCPUs structures below.
469 	 */
470 	if (is_kvmppc_hv_enabled(kvm))
471 		kick_all_cpus_sync();
472 #endif
473 
474 	kvm_for_each_vcpu(i, vcpu, kvm)
475 		kvm_arch_vcpu_free(vcpu);
476 
477 	mutex_lock(&kvm->lock);
478 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
479 		kvm->vcpus[i] = NULL;
480 
481 	atomic_set(&kvm->online_vcpus, 0);
482 
483 	kvmppc_core_destroy_vm(kvm);
484 
485 	mutex_unlock(&kvm->lock);
486 
487 	/* drop the module reference */
488 	module_put(kvm->arch.kvm_ops->owner);
489 }
490 
491 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
492 {
493 	int r;
494 	/* Assume we're using HV mode when the HV module is loaded */
495 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
496 
497 	if (kvm) {
498 		/*
499 		 * Hooray - we know which VM type we're running on. Depend on
500 		 * that rather than the guess above.
501 		 */
502 		hv_enabled = is_kvmppc_hv_enabled(kvm);
503 	}
504 
505 	switch (ext) {
506 #ifdef CONFIG_BOOKE
507 	case KVM_CAP_PPC_BOOKE_SREGS:
508 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
509 	case KVM_CAP_PPC_EPR:
510 #else
511 	case KVM_CAP_PPC_SEGSTATE:
512 	case KVM_CAP_PPC_HIOR:
513 	case KVM_CAP_PPC_PAPR:
514 #endif
515 	case KVM_CAP_PPC_UNSET_IRQ:
516 	case KVM_CAP_PPC_IRQ_LEVEL:
517 	case KVM_CAP_ENABLE_CAP:
518 	case KVM_CAP_ENABLE_CAP_VM:
519 	case KVM_CAP_ONE_REG:
520 	case KVM_CAP_IOEVENTFD:
521 	case KVM_CAP_DEVICE_CTRL:
522 	case KVM_CAP_IMMEDIATE_EXIT:
523 		r = 1;
524 		break;
525 	case KVM_CAP_PPC_PAIRED_SINGLES:
526 	case KVM_CAP_PPC_OSI:
527 	case KVM_CAP_PPC_GET_PVINFO:
528 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
529 	case KVM_CAP_SW_TLB:
530 #endif
531 		/* We support this only for PR */
532 		r = !hv_enabled;
533 		break;
534 #ifdef CONFIG_KVM_MPIC
535 	case KVM_CAP_IRQ_MPIC:
536 		r = 1;
537 		break;
538 #endif
539 
540 #ifdef CONFIG_PPC_BOOK3S_64
541 	case KVM_CAP_SPAPR_TCE:
542 	case KVM_CAP_SPAPR_TCE_64:
543 		/* fallthrough */
544 	case KVM_CAP_SPAPR_TCE_VFIO:
545 	case KVM_CAP_PPC_RTAS:
546 	case KVM_CAP_PPC_FIXUP_HCALL:
547 	case KVM_CAP_PPC_ENABLE_HCALL:
548 #ifdef CONFIG_KVM_XICS
549 	case KVM_CAP_IRQ_XICS:
550 #endif
551 		r = 1;
552 		break;
553 
554 	case KVM_CAP_PPC_ALLOC_HTAB:
555 		r = hv_enabled;
556 		break;
557 #endif /* CONFIG_PPC_BOOK3S_64 */
558 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
559 	case KVM_CAP_PPC_SMT:
560 		r = 0;
561 		if (kvm) {
562 			if (kvm->arch.emul_smt_mode > 1)
563 				r = kvm->arch.emul_smt_mode;
564 			else
565 				r = kvm->arch.smt_mode;
566 		} else if (hv_enabled) {
567 			if (cpu_has_feature(CPU_FTR_ARCH_300))
568 				r = 1;
569 			else
570 				r = threads_per_subcore;
571 		}
572 		break;
573 	case KVM_CAP_PPC_SMT_POSSIBLE:
574 		r = 1;
575 		if (hv_enabled) {
576 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
577 				r = ((threads_per_subcore << 1) - 1);
578 			else
579 				/* P9 can emulate dbells, so allow any mode */
580 				r = 8 | 4 | 2 | 1;
581 		}
582 		break;
583 	case KVM_CAP_PPC_RMA:
584 		r = 0;
585 		break;
586 	case KVM_CAP_PPC_HWRNG:
587 		r = kvmppc_hwrng_present();
588 		break;
589 	case KVM_CAP_PPC_MMU_RADIX:
590 		r = !!(hv_enabled && radix_enabled());
591 		break;
592 	case KVM_CAP_PPC_MMU_HASH_V3:
593 		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
594 		break;
595 #endif
596 	case KVM_CAP_SYNC_MMU:
597 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
598 		r = hv_enabled;
599 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
600 		r = 1;
601 #else
602 		r = 0;
603 #endif
604 		break;
605 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
606 	case KVM_CAP_PPC_HTAB_FD:
607 		r = hv_enabled;
608 		break;
609 #endif
610 	case KVM_CAP_NR_VCPUS:
611 		/*
612 		 * Recommending a number of CPUs is somewhat arbitrary; we
613 		 * return the number of present CPUs for -HV (since a host
614 		 * will have secondary threads "offline"), and for other KVM
615 		 * implementations just count online CPUs.
616 		 */
617 		if (hv_enabled)
618 			r = num_present_cpus();
619 		else
620 			r = num_online_cpus();
621 		break;
622 	case KVM_CAP_NR_MEMSLOTS:
623 		r = KVM_USER_MEM_SLOTS;
624 		break;
625 	case KVM_CAP_MAX_VCPUS:
626 		r = KVM_MAX_VCPUS;
627 		break;
628 #ifdef CONFIG_PPC_BOOK3S_64
629 	case KVM_CAP_PPC_GET_SMMU_INFO:
630 		r = 1;
631 		break;
632 	case KVM_CAP_SPAPR_MULTITCE:
633 		r = 1;
634 		break;
635 	case KVM_CAP_SPAPR_RESIZE_HPT:
636 		/* Disable this on POWER9 until code handles new HPTE format */
637 		r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
638 		break;
639 #endif
640 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
641 	case KVM_CAP_PPC_FWNMI:
642 		r = hv_enabled;
643 		break;
644 #endif
645 	case KVM_CAP_PPC_HTM:
646 		r = hv_enabled &&
647 		    (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM_COMP);
648 		break;
649 	default:
650 		r = 0;
651 		break;
652 	}
653 	return r;
654 
655 }
656 
657 long kvm_arch_dev_ioctl(struct file *filp,
658                         unsigned int ioctl, unsigned long arg)
659 {
660 	return -EINVAL;
661 }
662 
663 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
664 			   struct kvm_memory_slot *dont)
665 {
666 	kvmppc_core_free_memslot(kvm, free, dont);
667 }
668 
669 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
670 			    unsigned long npages)
671 {
672 	return kvmppc_core_create_memslot(kvm, slot, npages);
673 }
674 
675 int kvm_arch_prepare_memory_region(struct kvm *kvm,
676 				   struct kvm_memory_slot *memslot,
677 				   const struct kvm_userspace_memory_region *mem,
678 				   enum kvm_mr_change change)
679 {
680 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
681 }
682 
683 void kvm_arch_commit_memory_region(struct kvm *kvm,
684 				   const struct kvm_userspace_memory_region *mem,
685 				   const struct kvm_memory_slot *old,
686 				   const struct kvm_memory_slot *new,
687 				   enum kvm_mr_change change)
688 {
689 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
690 }
691 
692 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
693 				   struct kvm_memory_slot *slot)
694 {
695 	kvmppc_core_flush_memslot(kvm, slot);
696 }
697 
698 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
699 {
700 	struct kvm_vcpu *vcpu;
701 	vcpu = kvmppc_core_vcpu_create(kvm, id);
702 	if (!IS_ERR(vcpu)) {
703 		vcpu->arch.wqp = &vcpu->wq;
704 		kvmppc_create_vcpu_debugfs(vcpu, id);
705 	}
706 	return vcpu;
707 }
708 
709 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
710 {
711 }
712 
713 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
714 {
715 	/* Make sure we're not using the vcpu anymore */
716 	hrtimer_cancel(&vcpu->arch.dec_timer);
717 
718 	kvmppc_remove_vcpu_debugfs(vcpu);
719 
720 	switch (vcpu->arch.irq_type) {
721 	case KVMPPC_IRQ_MPIC:
722 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
723 		break;
724 	case KVMPPC_IRQ_XICS:
725 		if (xive_enabled())
726 			kvmppc_xive_cleanup_vcpu(vcpu);
727 		else
728 			kvmppc_xics_free_icp(vcpu);
729 		break;
730 	}
731 
732 	kvmppc_core_vcpu_free(vcpu);
733 }
734 
735 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
736 {
737 	kvm_arch_vcpu_free(vcpu);
738 }
739 
740 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
741 {
742 	return kvmppc_core_pending_dec(vcpu);
743 }
744 
745 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
746 {
747 	struct kvm_vcpu *vcpu;
748 
749 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
750 	kvmppc_decrementer_func(vcpu);
751 
752 	return HRTIMER_NORESTART;
753 }
754 
755 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
756 {
757 	int ret;
758 
759 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
760 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
761 	vcpu->arch.dec_expires = ~(u64)0;
762 
763 #ifdef CONFIG_KVM_EXIT_TIMING
764 	mutex_init(&vcpu->arch.exit_timing_lock);
765 #endif
766 	ret = kvmppc_subarch_vcpu_init(vcpu);
767 	return ret;
768 }
769 
770 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
771 {
772 	kvmppc_mmu_destroy(vcpu);
773 	kvmppc_subarch_vcpu_uninit(vcpu);
774 }
775 
776 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
777 {
778 #ifdef CONFIG_BOOKE
779 	/*
780 	 * vrsave (formerly usprg0) isn't used by Linux, but may
781 	 * be used by the guest.
782 	 *
783 	 * On non-booke this is associated with Altivec and
784 	 * is handled by code in book3s.c.
785 	 */
786 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
787 #endif
788 	kvmppc_core_vcpu_load(vcpu, cpu);
789 }
790 
791 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
792 {
793 	kvmppc_core_vcpu_put(vcpu);
794 #ifdef CONFIG_BOOKE
795 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
796 #endif
797 }
798 
799 /*
800  * irq_bypass_add_producer and irq_bypass_del_producer are only
801  * useful if the architecture supports PCI passthrough.
802  * irq_bypass_stop and irq_bypass_start are not needed and so
803  * kvm_ops are not defined for them.
804  */
805 bool kvm_arch_has_irq_bypass(void)
806 {
807 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
808 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
809 }
810 
811 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
812 				     struct irq_bypass_producer *prod)
813 {
814 	struct kvm_kernel_irqfd *irqfd =
815 		container_of(cons, struct kvm_kernel_irqfd, consumer);
816 	struct kvm *kvm = irqfd->kvm;
817 
818 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
819 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
820 
821 	return 0;
822 }
823 
824 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
825 				      struct irq_bypass_producer *prod)
826 {
827 	struct kvm_kernel_irqfd *irqfd =
828 		container_of(cons, struct kvm_kernel_irqfd, consumer);
829 	struct kvm *kvm = irqfd->kvm;
830 
831 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
832 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
833 }
834 
835 #ifdef CONFIG_VSX
836 static inline int kvmppc_get_vsr_dword_offset(int index)
837 {
838 	int offset;
839 
840 	if ((index != 0) && (index != 1))
841 		return -1;
842 
843 #ifdef __BIG_ENDIAN
844 	offset =  index;
845 #else
846 	offset = 1 - index;
847 #endif
848 
849 	return offset;
850 }
851 
852 static inline int kvmppc_get_vsr_word_offset(int index)
853 {
854 	int offset;
855 
856 	if ((index > 3) || (index < 0))
857 		return -1;
858 
859 #ifdef __BIG_ENDIAN
860 	offset = index;
861 #else
862 	offset = 3 - index;
863 #endif
864 	return offset;
865 }
866 
867 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
868 	u64 gpr)
869 {
870 	union kvmppc_one_reg val;
871 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
872 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
873 
874 	if (offset == -1)
875 		return;
876 
877 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
878 		val.vval = VCPU_VSX_VR(vcpu, index);
879 		val.vsxval[offset] = gpr;
880 		VCPU_VSX_VR(vcpu, index) = val.vval;
881 	} else {
882 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
883 	}
884 }
885 
886 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
887 	u64 gpr)
888 {
889 	union kvmppc_one_reg val;
890 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
891 
892 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
893 		val.vval = VCPU_VSX_VR(vcpu, index);
894 		val.vsxval[0] = gpr;
895 		val.vsxval[1] = gpr;
896 		VCPU_VSX_VR(vcpu, index) = val.vval;
897 	} else {
898 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
899 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
900 	}
901 }
902 
903 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
904 	u32 gpr32)
905 {
906 	union kvmppc_one_reg val;
907 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
908 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
909 	int dword_offset, word_offset;
910 
911 	if (offset == -1)
912 		return;
913 
914 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
915 		val.vval = VCPU_VSX_VR(vcpu, index);
916 		val.vsx32val[offset] = gpr32;
917 		VCPU_VSX_VR(vcpu, index) = val.vval;
918 	} else {
919 		dword_offset = offset / 2;
920 		word_offset = offset % 2;
921 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
922 		val.vsx32val[word_offset] = gpr32;
923 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
924 	}
925 }
926 #endif /* CONFIG_VSX */
927 
928 #ifdef CONFIG_PPC_FPU
929 static inline u64 sp_to_dp(u32 fprs)
930 {
931 	u64 fprd;
932 
933 	preempt_disable();
934 	enable_kernel_fp();
935 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
936 	     : "fr0");
937 	preempt_enable();
938 	return fprd;
939 }
940 
941 static inline u32 dp_to_sp(u64 fprd)
942 {
943 	u32 fprs;
944 
945 	preempt_disable();
946 	enable_kernel_fp();
947 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
948 	     : "fr0");
949 	preempt_enable();
950 	return fprs;
951 }
952 
953 #else
954 #define sp_to_dp(x)	(x)
955 #define dp_to_sp(x)	(x)
956 #endif /* CONFIG_PPC_FPU */
957 
958 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
959                                       struct kvm_run *run)
960 {
961 	u64 uninitialized_var(gpr);
962 
963 	if (run->mmio.len > sizeof(gpr)) {
964 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
965 		return;
966 	}
967 
968 	if (!vcpu->arch.mmio_host_swabbed) {
969 		switch (run->mmio.len) {
970 		case 8: gpr = *(u64 *)run->mmio.data; break;
971 		case 4: gpr = *(u32 *)run->mmio.data; break;
972 		case 2: gpr = *(u16 *)run->mmio.data; break;
973 		case 1: gpr = *(u8 *)run->mmio.data; break;
974 		}
975 	} else {
976 		switch (run->mmio.len) {
977 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
978 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
979 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
980 		case 1: gpr = *(u8 *)run->mmio.data; break;
981 		}
982 	}
983 
984 	/* conversion between single and double precision */
985 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
986 		gpr = sp_to_dp(gpr);
987 
988 	if (vcpu->arch.mmio_sign_extend) {
989 		switch (run->mmio.len) {
990 #ifdef CONFIG_PPC64
991 		case 4:
992 			gpr = (s64)(s32)gpr;
993 			break;
994 #endif
995 		case 2:
996 			gpr = (s64)(s16)gpr;
997 			break;
998 		case 1:
999 			gpr = (s64)(s8)gpr;
1000 			break;
1001 		}
1002 	}
1003 
1004 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1005 	case KVM_MMIO_REG_GPR:
1006 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1007 		break;
1008 	case KVM_MMIO_REG_FPR:
1009 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1010 		break;
1011 #ifdef CONFIG_PPC_BOOK3S
1012 	case KVM_MMIO_REG_QPR:
1013 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1014 		break;
1015 	case KVM_MMIO_REG_FQPR:
1016 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1017 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1018 		break;
1019 #endif
1020 #ifdef CONFIG_VSX
1021 	case KVM_MMIO_REG_VSX:
1022 		if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1023 			kvmppc_set_vsr_dword(vcpu, gpr);
1024 		else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1025 			kvmppc_set_vsr_word(vcpu, gpr);
1026 		else if (vcpu->arch.mmio_vsx_copy_type ==
1027 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1028 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1029 		break;
1030 #endif
1031 	default:
1032 		BUG();
1033 	}
1034 }
1035 
1036 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1037 				unsigned int rt, unsigned int bytes,
1038 				int is_default_endian, int sign_extend)
1039 {
1040 	int idx, ret;
1041 	bool host_swabbed;
1042 
1043 	/* Pity C doesn't have a logical XOR operator */
1044 	if (kvmppc_need_byteswap(vcpu)) {
1045 		host_swabbed = is_default_endian;
1046 	} else {
1047 		host_swabbed = !is_default_endian;
1048 	}
1049 
1050 	if (bytes > sizeof(run->mmio.data)) {
1051 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1052 		       run->mmio.len);
1053 	}
1054 
1055 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1056 	run->mmio.len = bytes;
1057 	run->mmio.is_write = 0;
1058 
1059 	vcpu->arch.io_gpr = rt;
1060 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1061 	vcpu->mmio_needed = 1;
1062 	vcpu->mmio_is_write = 0;
1063 	vcpu->arch.mmio_sign_extend = sign_extend;
1064 
1065 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1066 
1067 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1068 			      bytes, &run->mmio.data);
1069 
1070 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1071 
1072 	if (!ret) {
1073 		kvmppc_complete_mmio_load(vcpu, run);
1074 		vcpu->mmio_needed = 0;
1075 		return EMULATE_DONE;
1076 	}
1077 
1078 	return EMULATE_DO_MMIO;
1079 }
1080 
1081 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1082 		       unsigned int rt, unsigned int bytes,
1083 		       int is_default_endian)
1084 {
1085 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1086 }
1087 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1088 
1089 /* Same as above, but sign extends */
1090 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1091 			unsigned int rt, unsigned int bytes,
1092 			int is_default_endian)
1093 {
1094 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1095 }
1096 
1097 #ifdef CONFIG_VSX
1098 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1099 			unsigned int rt, unsigned int bytes,
1100 			int is_default_endian, int mmio_sign_extend)
1101 {
1102 	enum emulation_result emulated = EMULATE_DONE;
1103 
1104 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1105 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1106 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1107 		return EMULATE_FAIL;
1108 	}
1109 
1110 	while (vcpu->arch.mmio_vsx_copy_nums) {
1111 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1112 			is_default_endian, mmio_sign_extend);
1113 
1114 		if (emulated != EMULATE_DONE)
1115 			break;
1116 
1117 		vcpu->arch.paddr_accessed += run->mmio.len;
1118 
1119 		vcpu->arch.mmio_vsx_copy_nums--;
1120 		vcpu->arch.mmio_vsx_offset++;
1121 	}
1122 	return emulated;
1123 }
1124 #endif /* CONFIG_VSX */
1125 
1126 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1127 			u64 val, unsigned int bytes, int is_default_endian)
1128 {
1129 	void *data = run->mmio.data;
1130 	int idx, ret;
1131 	bool host_swabbed;
1132 
1133 	/* Pity C doesn't have a logical XOR operator */
1134 	if (kvmppc_need_byteswap(vcpu)) {
1135 		host_swabbed = is_default_endian;
1136 	} else {
1137 		host_swabbed = !is_default_endian;
1138 	}
1139 
1140 	if (bytes > sizeof(run->mmio.data)) {
1141 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1142 		       run->mmio.len);
1143 	}
1144 
1145 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1146 	run->mmio.len = bytes;
1147 	run->mmio.is_write = 1;
1148 	vcpu->mmio_needed = 1;
1149 	vcpu->mmio_is_write = 1;
1150 
1151 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1152 		val = dp_to_sp(val);
1153 
1154 	/* Store the value at the lowest bytes in 'data'. */
1155 	if (!host_swabbed) {
1156 		switch (bytes) {
1157 		case 8: *(u64 *)data = val; break;
1158 		case 4: *(u32 *)data = val; break;
1159 		case 2: *(u16 *)data = val; break;
1160 		case 1: *(u8  *)data = val; break;
1161 		}
1162 	} else {
1163 		switch (bytes) {
1164 		case 8: *(u64 *)data = swab64(val); break;
1165 		case 4: *(u32 *)data = swab32(val); break;
1166 		case 2: *(u16 *)data = swab16(val); break;
1167 		case 1: *(u8  *)data = val; break;
1168 		}
1169 	}
1170 
1171 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1172 
1173 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1174 			       bytes, &run->mmio.data);
1175 
1176 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1177 
1178 	if (!ret) {
1179 		vcpu->mmio_needed = 0;
1180 		return EMULATE_DONE;
1181 	}
1182 
1183 	return EMULATE_DO_MMIO;
1184 }
1185 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1186 
1187 #ifdef CONFIG_VSX
1188 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1189 {
1190 	u32 dword_offset, word_offset;
1191 	union kvmppc_one_reg reg;
1192 	int vsx_offset = 0;
1193 	int copy_type = vcpu->arch.mmio_vsx_copy_type;
1194 	int result = 0;
1195 
1196 	switch (copy_type) {
1197 	case KVMPPC_VSX_COPY_DWORD:
1198 		vsx_offset =
1199 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1200 
1201 		if (vsx_offset == -1) {
1202 			result = -1;
1203 			break;
1204 		}
1205 
1206 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1207 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1208 		} else {
1209 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1210 			*val = reg.vsxval[vsx_offset];
1211 		}
1212 		break;
1213 
1214 	case KVMPPC_VSX_COPY_WORD:
1215 		vsx_offset =
1216 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1217 
1218 		if (vsx_offset == -1) {
1219 			result = -1;
1220 			break;
1221 		}
1222 
1223 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1224 			dword_offset = vsx_offset / 2;
1225 			word_offset = vsx_offset % 2;
1226 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1227 			*val = reg.vsx32val[word_offset];
1228 		} else {
1229 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1230 			*val = reg.vsx32val[vsx_offset];
1231 		}
1232 		break;
1233 
1234 	default:
1235 		result = -1;
1236 		break;
1237 	}
1238 
1239 	return result;
1240 }
1241 
1242 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1243 			int rs, unsigned int bytes, int is_default_endian)
1244 {
1245 	u64 val;
1246 	enum emulation_result emulated = EMULATE_DONE;
1247 
1248 	vcpu->arch.io_gpr = rs;
1249 
1250 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1251 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1252 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1253 		return EMULATE_FAIL;
1254 	}
1255 
1256 	while (vcpu->arch.mmio_vsx_copy_nums) {
1257 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1258 			return EMULATE_FAIL;
1259 
1260 		emulated = kvmppc_handle_store(run, vcpu,
1261 			 val, bytes, is_default_endian);
1262 
1263 		if (emulated != EMULATE_DONE)
1264 			break;
1265 
1266 		vcpu->arch.paddr_accessed += run->mmio.len;
1267 
1268 		vcpu->arch.mmio_vsx_copy_nums--;
1269 		vcpu->arch.mmio_vsx_offset++;
1270 	}
1271 
1272 	return emulated;
1273 }
1274 
1275 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1276 			struct kvm_run *run)
1277 {
1278 	enum emulation_result emulated = EMULATE_FAIL;
1279 	int r;
1280 
1281 	vcpu->arch.paddr_accessed += run->mmio.len;
1282 
1283 	if (!vcpu->mmio_is_write) {
1284 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1285 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1286 	} else {
1287 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1288 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1289 	}
1290 
1291 	switch (emulated) {
1292 	case EMULATE_DO_MMIO:
1293 		run->exit_reason = KVM_EXIT_MMIO;
1294 		r = RESUME_HOST;
1295 		break;
1296 	case EMULATE_FAIL:
1297 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1298 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1299 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1300 		r = RESUME_HOST;
1301 		break;
1302 	default:
1303 		r = RESUME_GUEST;
1304 		break;
1305 	}
1306 	return r;
1307 }
1308 #endif /* CONFIG_VSX */
1309 
1310 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1311 {
1312 	int r = 0;
1313 	union kvmppc_one_reg val;
1314 	int size;
1315 
1316 	size = one_reg_size(reg->id);
1317 	if (size > sizeof(val))
1318 		return -EINVAL;
1319 
1320 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1321 	if (r == -EINVAL) {
1322 		r = 0;
1323 		switch (reg->id) {
1324 #ifdef CONFIG_ALTIVEC
1325 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1326 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1327 				r = -ENXIO;
1328 				break;
1329 			}
1330 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1331 			break;
1332 		case KVM_REG_PPC_VSCR:
1333 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1334 				r = -ENXIO;
1335 				break;
1336 			}
1337 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1338 			break;
1339 		case KVM_REG_PPC_VRSAVE:
1340 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1341 			break;
1342 #endif /* CONFIG_ALTIVEC */
1343 		default:
1344 			r = -EINVAL;
1345 			break;
1346 		}
1347 	}
1348 
1349 	if (r)
1350 		return r;
1351 
1352 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1353 		r = -EFAULT;
1354 
1355 	return r;
1356 }
1357 
1358 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1359 {
1360 	int r;
1361 	union kvmppc_one_reg val;
1362 	int size;
1363 
1364 	size = one_reg_size(reg->id);
1365 	if (size > sizeof(val))
1366 		return -EINVAL;
1367 
1368 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1369 		return -EFAULT;
1370 
1371 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1372 	if (r == -EINVAL) {
1373 		r = 0;
1374 		switch (reg->id) {
1375 #ifdef CONFIG_ALTIVEC
1376 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1377 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1378 				r = -ENXIO;
1379 				break;
1380 			}
1381 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1382 			break;
1383 		case KVM_REG_PPC_VSCR:
1384 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1385 				r = -ENXIO;
1386 				break;
1387 			}
1388 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1389 			break;
1390 		case KVM_REG_PPC_VRSAVE:
1391 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1392 				r = -ENXIO;
1393 				break;
1394 			}
1395 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1396 			break;
1397 #endif /* CONFIG_ALTIVEC */
1398 		default:
1399 			r = -EINVAL;
1400 			break;
1401 		}
1402 	}
1403 
1404 	return r;
1405 }
1406 
1407 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1408 {
1409 	int r;
1410 
1411 	if (vcpu->mmio_needed) {
1412 		vcpu->mmio_needed = 0;
1413 		if (!vcpu->mmio_is_write)
1414 			kvmppc_complete_mmio_load(vcpu, run);
1415 #ifdef CONFIG_VSX
1416 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1417 			vcpu->arch.mmio_vsx_copy_nums--;
1418 			vcpu->arch.mmio_vsx_offset++;
1419 		}
1420 
1421 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1422 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1423 			if (r == RESUME_HOST) {
1424 				vcpu->mmio_needed = 1;
1425 				return r;
1426 			}
1427 		}
1428 #endif
1429 	} else if (vcpu->arch.osi_needed) {
1430 		u64 *gprs = run->osi.gprs;
1431 		int i;
1432 
1433 		for (i = 0; i < 32; i++)
1434 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1435 		vcpu->arch.osi_needed = 0;
1436 	} else if (vcpu->arch.hcall_needed) {
1437 		int i;
1438 
1439 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1440 		for (i = 0; i < 9; ++i)
1441 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1442 		vcpu->arch.hcall_needed = 0;
1443 #ifdef CONFIG_BOOKE
1444 	} else if (vcpu->arch.epr_needed) {
1445 		kvmppc_set_epr(vcpu, run->epr.epr);
1446 		vcpu->arch.epr_needed = 0;
1447 #endif
1448 	}
1449 
1450 	kvm_sigset_activate(vcpu);
1451 
1452 	if (run->immediate_exit)
1453 		r = -EINTR;
1454 	else
1455 		r = kvmppc_vcpu_run(run, vcpu);
1456 
1457 	kvm_sigset_deactivate(vcpu);
1458 
1459 	return r;
1460 }
1461 
1462 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1463 {
1464 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1465 		kvmppc_core_dequeue_external(vcpu);
1466 		return 0;
1467 	}
1468 
1469 	kvmppc_core_queue_external(vcpu, irq);
1470 
1471 	kvm_vcpu_kick(vcpu);
1472 
1473 	return 0;
1474 }
1475 
1476 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1477 				     struct kvm_enable_cap *cap)
1478 {
1479 	int r;
1480 
1481 	if (cap->flags)
1482 		return -EINVAL;
1483 
1484 	switch (cap->cap) {
1485 	case KVM_CAP_PPC_OSI:
1486 		r = 0;
1487 		vcpu->arch.osi_enabled = true;
1488 		break;
1489 	case KVM_CAP_PPC_PAPR:
1490 		r = 0;
1491 		vcpu->arch.papr_enabled = true;
1492 		break;
1493 	case KVM_CAP_PPC_EPR:
1494 		r = 0;
1495 		if (cap->args[0])
1496 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1497 		else
1498 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1499 		break;
1500 #ifdef CONFIG_BOOKE
1501 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1502 		r = 0;
1503 		vcpu->arch.watchdog_enabled = true;
1504 		break;
1505 #endif
1506 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1507 	case KVM_CAP_SW_TLB: {
1508 		struct kvm_config_tlb cfg;
1509 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1510 
1511 		r = -EFAULT;
1512 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1513 			break;
1514 
1515 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1516 		break;
1517 	}
1518 #endif
1519 #ifdef CONFIG_KVM_MPIC
1520 	case KVM_CAP_IRQ_MPIC: {
1521 		struct fd f;
1522 		struct kvm_device *dev;
1523 
1524 		r = -EBADF;
1525 		f = fdget(cap->args[0]);
1526 		if (!f.file)
1527 			break;
1528 
1529 		r = -EPERM;
1530 		dev = kvm_device_from_filp(f.file);
1531 		if (dev)
1532 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1533 
1534 		fdput(f);
1535 		break;
1536 	}
1537 #endif
1538 #ifdef CONFIG_KVM_XICS
1539 	case KVM_CAP_IRQ_XICS: {
1540 		struct fd f;
1541 		struct kvm_device *dev;
1542 
1543 		r = -EBADF;
1544 		f = fdget(cap->args[0]);
1545 		if (!f.file)
1546 			break;
1547 
1548 		r = -EPERM;
1549 		dev = kvm_device_from_filp(f.file);
1550 		if (dev) {
1551 			if (xive_enabled())
1552 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1553 			else
1554 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1555 		}
1556 
1557 		fdput(f);
1558 		break;
1559 	}
1560 #endif /* CONFIG_KVM_XICS */
1561 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1562 	case KVM_CAP_PPC_FWNMI:
1563 		r = -EINVAL;
1564 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1565 			break;
1566 		r = 0;
1567 		vcpu->kvm->arch.fwnmi_enabled = true;
1568 		break;
1569 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1570 	default:
1571 		r = -EINVAL;
1572 		break;
1573 	}
1574 
1575 	if (!r)
1576 		r = kvmppc_sanity_check(vcpu);
1577 
1578 	return r;
1579 }
1580 
1581 bool kvm_arch_intc_initialized(struct kvm *kvm)
1582 {
1583 #ifdef CONFIG_KVM_MPIC
1584 	if (kvm->arch.mpic)
1585 		return true;
1586 #endif
1587 #ifdef CONFIG_KVM_XICS
1588 	if (kvm->arch.xics || kvm->arch.xive)
1589 		return true;
1590 #endif
1591 	return false;
1592 }
1593 
1594 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1595                                     struct kvm_mp_state *mp_state)
1596 {
1597 	return -EINVAL;
1598 }
1599 
1600 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1601                                     struct kvm_mp_state *mp_state)
1602 {
1603 	return -EINVAL;
1604 }
1605 
1606 long kvm_arch_vcpu_ioctl(struct file *filp,
1607                          unsigned int ioctl, unsigned long arg)
1608 {
1609 	struct kvm_vcpu *vcpu = filp->private_data;
1610 	void __user *argp = (void __user *)arg;
1611 	long r;
1612 
1613 	switch (ioctl) {
1614 	case KVM_INTERRUPT: {
1615 		struct kvm_interrupt irq;
1616 		r = -EFAULT;
1617 		if (copy_from_user(&irq, argp, sizeof(irq)))
1618 			goto out;
1619 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1620 		goto out;
1621 	}
1622 
1623 	case KVM_ENABLE_CAP:
1624 	{
1625 		struct kvm_enable_cap cap;
1626 		r = -EFAULT;
1627 		if (copy_from_user(&cap, argp, sizeof(cap)))
1628 			goto out;
1629 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1630 		break;
1631 	}
1632 
1633 	case KVM_SET_ONE_REG:
1634 	case KVM_GET_ONE_REG:
1635 	{
1636 		struct kvm_one_reg reg;
1637 		r = -EFAULT;
1638 		if (copy_from_user(&reg, argp, sizeof(reg)))
1639 			goto out;
1640 		if (ioctl == KVM_SET_ONE_REG)
1641 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1642 		else
1643 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1644 		break;
1645 	}
1646 
1647 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1648 	case KVM_DIRTY_TLB: {
1649 		struct kvm_dirty_tlb dirty;
1650 		r = -EFAULT;
1651 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
1652 			goto out;
1653 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1654 		break;
1655 	}
1656 #endif
1657 	default:
1658 		r = -EINVAL;
1659 	}
1660 
1661 out:
1662 	return r;
1663 }
1664 
1665 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1666 {
1667 	return VM_FAULT_SIGBUS;
1668 }
1669 
1670 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1671 {
1672 	u32 inst_nop = 0x60000000;
1673 #ifdef CONFIG_KVM_BOOKE_HV
1674 	u32 inst_sc1 = 0x44000022;
1675 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1676 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1677 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1678 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1679 #else
1680 	u32 inst_lis = 0x3c000000;
1681 	u32 inst_ori = 0x60000000;
1682 	u32 inst_sc = 0x44000002;
1683 	u32 inst_imm_mask = 0xffff;
1684 
1685 	/*
1686 	 * The hypercall to get into KVM from within guest context is as
1687 	 * follows:
1688 	 *
1689 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
1690 	 *    ori r0, KVM_SC_MAGIC_R0@l
1691 	 *    sc
1692 	 *    nop
1693 	 */
1694 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1695 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1696 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1697 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1698 #endif
1699 
1700 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1701 
1702 	return 0;
1703 }
1704 
1705 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1706 			  bool line_status)
1707 {
1708 	if (!irqchip_in_kernel(kvm))
1709 		return -ENXIO;
1710 
1711 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1712 					irq_event->irq, irq_event->level,
1713 					line_status);
1714 	return 0;
1715 }
1716 
1717 
1718 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1719 				   struct kvm_enable_cap *cap)
1720 {
1721 	int r;
1722 
1723 	if (cap->flags)
1724 		return -EINVAL;
1725 
1726 	switch (cap->cap) {
1727 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1728 	case KVM_CAP_PPC_ENABLE_HCALL: {
1729 		unsigned long hcall = cap->args[0];
1730 
1731 		r = -EINVAL;
1732 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1733 		    cap->args[1] > 1)
1734 			break;
1735 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1736 			break;
1737 		if (cap->args[1])
1738 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1739 		else
1740 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1741 		r = 0;
1742 		break;
1743 	}
1744 	case KVM_CAP_PPC_SMT: {
1745 		unsigned long mode = cap->args[0];
1746 		unsigned long flags = cap->args[1];
1747 
1748 		r = -EINVAL;
1749 		if (kvm->arch.kvm_ops->set_smt_mode)
1750 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1751 		break;
1752 	}
1753 #endif
1754 	default:
1755 		r = -EINVAL;
1756 		break;
1757 	}
1758 
1759 	return r;
1760 }
1761 
1762 long kvm_arch_vm_ioctl(struct file *filp,
1763                        unsigned int ioctl, unsigned long arg)
1764 {
1765 	struct kvm *kvm __maybe_unused = filp->private_data;
1766 	void __user *argp = (void __user *)arg;
1767 	long r;
1768 
1769 	switch (ioctl) {
1770 	case KVM_PPC_GET_PVINFO: {
1771 		struct kvm_ppc_pvinfo pvinfo;
1772 		memset(&pvinfo, 0, sizeof(pvinfo));
1773 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1774 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1775 			r = -EFAULT;
1776 			goto out;
1777 		}
1778 
1779 		break;
1780 	}
1781 	case KVM_ENABLE_CAP:
1782 	{
1783 		struct kvm_enable_cap cap;
1784 		r = -EFAULT;
1785 		if (copy_from_user(&cap, argp, sizeof(cap)))
1786 			goto out;
1787 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1788 		break;
1789 	}
1790 #ifdef CONFIG_SPAPR_TCE_IOMMU
1791 	case KVM_CREATE_SPAPR_TCE_64: {
1792 		struct kvm_create_spapr_tce_64 create_tce_64;
1793 
1794 		r = -EFAULT;
1795 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1796 			goto out;
1797 		if (create_tce_64.flags) {
1798 			r = -EINVAL;
1799 			goto out;
1800 		}
1801 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1802 		goto out;
1803 	}
1804 	case KVM_CREATE_SPAPR_TCE: {
1805 		struct kvm_create_spapr_tce create_tce;
1806 		struct kvm_create_spapr_tce_64 create_tce_64;
1807 
1808 		r = -EFAULT;
1809 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1810 			goto out;
1811 
1812 		create_tce_64.liobn = create_tce.liobn;
1813 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1814 		create_tce_64.offset = 0;
1815 		create_tce_64.size = create_tce.window_size >>
1816 				IOMMU_PAGE_SHIFT_4K;
1817 		create_tce_64.flags = 0;
1818 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1819 		goto out;
1820 	}
1821 #endif
1822 #ifdef CONFIG_PPC_BOOK3S_64
1823 	case KVM_PPC_GET_SMMU_INFO: {
1824 		struct kvm_ppc_smmu_info info;
1825 		struct kvm *kvm = filp->private_data;
1826 
1827 		memset(&info, 0, sizeof(info));
1828 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1829 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1830 			r = -EFAULT;
1831 		break;
1832 	}
1833 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
1834 		struct kvm *kvm = filp->private_data;
1835 
1836 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1837 		break;
1838 	}
1839 	case KVM_PPC_CONFIGURE_V3_MMU: {
1840 		struct kvm *kvm = filp->private_data;
1841 		struct kvm_ppc_mmuv3_cfg cfg;
1842 
1843 		r = -EINVAL;
1844 		if (!kvm->arch.kvm_ops->configure_mmu)
1845 			goto out;
1846 		r = -EFAULT;
1847 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
1848 			goto out;
1849 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1850 		break;
1851 	}
1852 	case KVM_PPC_GET_RMMU_INFO: {
1853 		struct kvm *kvm = filp->private_data;
1854 		struct kvm_ppc_rmmu_info info;
1855 
1856 		r = -EINVAL;
1857 		if (!kvm->arch.kvm_ops->get_rmmu_info)
1858 			goto out;
1859 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1860 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1861 			r = -EFAULT;
1862 		break;
1863 	}
1864 	default: {
1865 		struct kvm *kvm = filp->private_data;
1866 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1867 	}
1868 #else /* CONFIG_PPC_BOOK3S_64 */
1869 	default:
1870 		r = -ENOTTY;
1871 #endif
1872 	}
1873 out:
1874 	return r;
1875 }
1876 
1877 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1878 static unsigned long nr_lpids;
1879 
1880 long kvmppc_alloc_lpid(void)
1881 {
1882 	long lpid;
1883 
1884 	do {
1885 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1886 		if (lpid >= nr_lpids) {
1887 			pr_err("%s: No LPIDs free\n", __func__);
1888 			return -ENOMEM;
1889 		}
1890 	} while (test_and_set_bit(lpid, lpid_inuse));
1891 
1892 	return lpid;
1893 }
1894 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1895 
1896 void kvmppc_claim_lpid(long lpid)
1897 {
1898 	set_bit(lpid, lpid_inuse);
1899 }
1900 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1901 
1902 void kvmppc_free_lpid(long lpid)
1903 {
1904 	clear_bit(lpid, lpid_inuse);
1905 }
1906 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1907 
1908 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1909 {
1910 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1911 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
1912 }
1913 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1914 
1915 int kvm_arch_init(void *opaque)
1916 {
1917 	return 0;
1918 }
1919 
1920 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
1921