1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/module.h> 30 #include <asm/cputable.h> 31 #include <asm/uaccess.h> 32 #include <asm/kvm_ppc.h> 33 #include <asm/tlbflush.h> 34 #include <asm/cputhreads.h> 35 #include <asm/irqflags.h> 36 #include "timing.h" 37 #include "irq.h" 38 #include "../mm/mmu_decl.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "trace.h" 42 43 struct kvmppc_ops *kvmppc_hv_ops; 44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 45 struct kvmppc_ops *kvmppc_pr_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 47 48 49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 50 { 51 return !!(v->arch.pending_exceptions) || 52 v->requests; 53 } 54 55 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 56 { 57 return 1; 58 } 59 60 /* 61 * Common checks before entering the guest world. Call with interrupts 62 * disabled. 63 * 64 * returns: 65 * 66 * == 1 if we're ready to go into guest state 67 * <= 0 if we need to go back to the host with return value 68 */ 69 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 70 { 71 int r; 72 73 WARN_ON(irqs_disabled()); 74 hard_irq_disable(); 75 76 while (true) { 77 if (need_resched()) { 78 local_irq_enable(); 79 cond_resched(); 80 hard_irq_disable(); 81 continue; 82 } 83 84 if (signal_pending(current)) { 85 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 86 vcpu->run->exit_reason = KVM_EXIT_INTR; 87 r = -EINTR; 88 break; 89 } 90 91 vcpu->mode = IN_GUEST_MODE; 92 93 /* 94 * Reading vcpu->requests must happen after setting vcpu->mode, 95 * so we don't miss a request because the requester sees 96 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 97 * before next entering the guest (and thus doesn't IPI). 98 */ 99 smp_mb(); 100 101 if (vcpu->requests) { 102 /* Make sure we process requests preemptable */ 103 local_irq_enable(); 104 trace_kvm_check_requests(vcpu); 105 r = kvmppc_core_check_requests(vcpu); 106 hard_irq_disable(); 107 if (r > 0) 108 continue; 109 break; 110 } 111 112 if (kvmppc_core_prepare_to_enter(vcpu)) { 113 /* interrupts got enabled in between, so we 114 are back at square 1 */ 115 continue; 116 } 117 118 kvm_guest_enter(); 119 return 1; 120 } 121 122 /* return to host */ 123 local_irq_enable(); 124 return r; 125 } 126 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 127 128 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 129 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 130 { 131 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 132 int i; 133 134 shared->sprg0 = swab64(shared->sprg0); 135 shared->sprg1 = swab64(shared->sprg1); 136 shared->sprg2 = swab64(shared->sprg2); 137 shared->sprg3 = swab64(shared->sprg3); 138 shared->srr0 = swab64(shared->srr0); 139 shared->srr1 = swab64(shared->srr1); 140 shared->dar = swab64(shared->dar); 141 shared->msr = swab64(shared->msr); 142 shared->dsisr = swab32(shared->dsisr); 143 shared->int_pending = swab32(shared->int_pending); 144 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 145 shared->sr[i] = swab32(shared->sr[i]); 146 } 147 #endif 148 149 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 150 { 151 int nr = kvmppc_get_gpr(vcpu, 11); 152 int r; 153 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 154 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 155 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 156 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 157 unsigned long r2 = 0; 158 159 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 160 /* 32 bit mode */ 161 param1 &= 0xffffffff; 162 param2 &= 0xffffffff; 163 param3 &= 0xffffffff; 164 param4 &= 0xffffffff; 165 } 166 167 switch (nr) { 168 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 169 { 170 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 171 /* Book3S can be little endian, find it out here */ 172 int shared_big_endian = true; 173 if (vcpu->arch.intr_msr & MSR_LE) 174 shared_big_endian = false; 175 if (shared_big_endian != vcpu->arch.shared_big_endian) 176 kvmppc_swab_shared(vcpu); 177 vcpu->arch.shared_big_endian = shared_big_endian; 178 #endif 179 180 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 181 /* 182 * Older versions of the Linux magic page code had 183 * a bug where they would map their trampoline code 184 * NX. If that's the case, remove !PR NX capability. 185 */ 186 vcpu->arch.disable_kernel_nx = true; 187 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 188 } 189 190 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 191 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 192 193 #ifdef CONFIG_PPC_64K_PAGES 194 /* 195 * Make sure our 4k magic page is in the same window of a 64k 196 * page within the guest and within the host's page. 197 */ 198 if ((vcpu->arch.magic_page_pa & 0xf000) != 199 ((ulong)vcpu->arch.shared & 0xf000)) { 200 void *old_shared = vcpu->arch.shared; 201 ulong shared = (ulong)vcpu->arch.shared; 202 void *new_shared; 203 204 shared &= PAGE_MASK; 205 shared |= vcpu->arch.magic_page_pa & 0xf000; 206 new_shared = (void*)shared; 207 memcpy(new_shared, old_shared, 0x1000); 208 vcpu->arch.shared = new_shared; 209 } 210 #endif 211 212 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 213 214 r = EV_SUCCESS; 215 break; 216 } 217 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 218 r = EV_SUCCESS; 219 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 220 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 221 #endif 222 223 /* Second return value is in r4 */ 224 break; 225 case EV_HCALL_TOKEN(EV_IDLE): 226 r = EV_SUCCESS; 227 kvm_vcpu_block(vcpu); 228 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 229 break; 230 default: 231 r = EV_UNIMPLEMENTED; 232 break; 233 } 234 235 kvmppc_set_gpr(vcpu, 4, r2); 236 237 return r; 238 } 239 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 240 241 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 242 { 243 int r = false; 244 245 /* We have to know what CPU to virtualize */ 246 if (!vcpu->arch.pvr) 247 goto out; 248 249 /* PAPR only works with book3s_64 */ 250 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 251 goto out; 252 253 /* HV KVM can only do PAPR mode for now */ 254 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 255 goto out; 256 257 #ifdef CONFIG_KVM_BOOKE_HV 258 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 259 goto out; 260 #endif 261 262 r = true; 263 264 out: 265 vcpu->arch.sane = r; 266 return r ? 0 : -EINVAL; 267 } 268 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 269 270 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 271 { 272 enum emulation_result er; 273 int r; 274 275 er = kvmppc_emulate_loadstore(vcpu); 276 switch (er) { 277 case EMULATE_DONE: 278 /* Future optimization: only reload non-volatiles if they were 279 * actually modified. */ 280 r = RESUME_GUEST_NV; 281 break; 282 case EMULATE_AGAIN: 283 r = RESUME_GUEST; 284 break; 285 case EMULATE_DO_MMIO: 286 run->exit_reason = KVM_EXIT_MMIO; 287 /* We must reload nonvolatiles because "update" load/store 288 * instructions modify register state. */ 289 /* Future optimization: only reload non-volatiles if they were 290 * actually modified. */ 291 r = RESUME_HOST_NV; 292 break; 293 case EMULATE_FAIL: 294 { 295 u32 last_inst; 296 297 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 298 /* XXX Deliver Program interrupt to guest. */ 299 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 300 r = RESUME_HOST; 301 break; 302 } 303 default: 304 WARN_ON(1); 305 r = RESUME_GUEST; 306 } 307 308 return r; 309 } 310 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 311 312 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 313 bool data) 314 { 315 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 316 struct kvmppc_pte pte; 317 int r; 318 319 vcpu->stat.st++; 320 321 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 322 XLATE_WRITE, &pte); 323 if (r < 0) 324 return r; 325 326 *eaddr = pte.raddr; 327 328 if (!pte.may_write) 329 return -EPERM; 330 331 /* Magic page override */ 332 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 333 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 334 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 335 void *magic = vcpu->arch.shared; 336 magic += pte.eaddr & 0xfff; 337 memcpy(magic, ptr, size); 338 return EMULATE_DONE; 339 } 340 341 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 342 return EMULATE_DO_MMIO; 343 344 return EMULATE_DONE; 345 } 346 EXPORT_SYMBOL_GPL(kvmppc_st); 347 348 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 349 bool data) 350 { 351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 352 struct kvmppc_pte pte; 353 int rc; 354 355 vcpu->stat.ld++; 356 357 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 358 XLATE_READ, &pte); 359 if (rc) 360 return rc; 361 362 *eaddr = pte.raddr; 363 364 if (!pte.may_read) 365 return -EPERM; 366 367 if (!data && !pte.may_execute) 368 return -ENOEXEC; 369 370 /* Magic page override */ 371 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 372 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 373 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 374 void *magic = vcpu->arch.shared; 375 magic += pte.eaddr & 0xfff; 376 memcpy(ptr, magic, size); 377 return EMULATE_DONE; 378 } 379 380 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 381 return EMULATE_DO_MMIO; 382 383 return EMULATE_DONE; 384 } 385 EXPORT_SYMBOL_GPL(kvmppc_ld); 386 387 int kvm_arch_hardware_enable(void) 388 { 389 return 0; 390 } 391 392 int kvm_arch_hardware_setup(void) 393 { 394 return 0; 395 } 396 397 void kvm_arch_check_processor_compat(void *rtn) 398 { 399 *(int *)rtn = kvmppc_core_check_processor_compat(); 400 } 401 402 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 403 { 404 struct kvmppc_ops *kvm_ops = NULL; 405 /* 406 * if we have both HV and PR enabled, default is HV 407 */ 408 if (type == 0) { 409 if (kvmppc_hv_ops) 410 kvm_ops = kvmppc_hv_ops; 411 else 412 kvm_ops = kvmppc_pr_ops; 413 if (!kvm_ops) 414 goto err_out; 415 } else if (type == KVM_VM_PPC_HV) { 416 if (!kvmppc_hv_ops) 417 goto err_out; 418 kvm_ops = kvmppc_hv_ops; 419 } else if (type == KVM_VM_PPC_PR) { 420 if (!kvmppc_pr_ops) 421 goto err_out; 422 kvm_ops = kvmppc_pr_ops; 423 } else 424 goto err_out; 425 426 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 427 return -ENOENT; 428 429 kvm->arch.kvm_ops = kvm_ops; 430 return kvmppc_core_init_vm(kvm); 431 err_out: 432 return -EINVAL; 433 } 434 435 void kvm_arch_destroy_vm(struct kvm *kvm) 436 { 437 unsigned int i; 438 struct kvm_vcpu *vcpu; 439 440 kvm_for_each_vcpu(i, vcpu, kvm) 441 kvm_arch_vcpu_free(vcpu); 442 443 mutex_lock(&kvm->lock); 444 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 445 kvm->vcpus[i] = NULL; 446 447 atomic_set(&kvm->online_vcpus, 0); 448 449 kvmppc_core_destroy_vm(kvm); 450 451 mutex_unlock(&kvm->lock); 452 453 /* drop the module reference */ 454 module_put(kvm->arch.kvm_ops->owner); 455 } 456 457 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 458 { 459 int r; 460 /* Assume we're using HV mode when the HV module is loaded */ 461 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 462 463 if (kvm) { 464 /* 465 * Hooray - we know which VM type we're running on. Depend on 466 * that rather than the guess above. 467 */ 468 hv_enabled = is_kvmppc_hv_enabled(kvm); 469 } 470 471 switch (ext) { 472 #ifdef CONFIG_BOOKE 473 case KVM_CAP_PPC_BOOKE_SREGS: 474 case KVM_CAP_PPC_BOOKE_WATCHDOG: 475 case KVM_CAP_PPC_EPR: 476 #else 477 case KVM_CAP_PPC_SEGSTATE: 478 case KVM_CAP_PPC_HIOR: 479 case KVM_CAP_PPC_PAPR: 480 #endif 481 case KVM_CAP_PPC_UNSET_IRQ: 482 case KVM_CAP_PPC_IRQ_LEVEL: 483 case KVM_CAP_ENABLE_CAP: 484 case KVM_CAP_ENABLE_CAP_VM: 485 case KVM_CAP_ONE_REG: 486 case KVM_CAP_IOEVENTFD: 487 case KVM_CAP_DEVICE_CTRL: 488 r = 1; 489 break; 490 case KVM_CAP_PPC_PAIRED_SINGLES: 491 case KVM_CAP_PPC_OSI: 492 case KVM_CAP_PPC_GET_PVINFO: 493 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 494 case KVM_CAP_SW_TLB: 495 #endif 496 /* We support this only for PR */ 497 r = !hv_enabled; 498 break; 499 #ifdef CONFIG_KVM_MMIO 500 case KVM_CAP_COALESCED_MMIO: 501 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 502 break; 503 #endif 504 #ifdef CONFIG_KVM_MPIC 505 case KVM_CAP_IRQ_MPIC: 506 r = 1; 507 break; 508 #endif 509 510 #ifdef CONFIG_PPC_BOOK3S_64 511 case KVM_CAP_SPAPR_TCE: 512 case KVM_CAP_PPC_ALLOC_HTAB: 513 case KVM_CAP_PPC_RTAS: 514 case KVM_CAP_PPC_FIXUP_HCALL: 515 case KVM_CAP_PPC_ENABLE_HCALL: 516 #ifdef CONFIG_KVM_XICS 517 case KVM_CAP_IRQ_XICS: 518 #endif 519 r = 1; 520 break; 521 #endif /* CONFIG_PPC_BOOK3S_64 */ 522 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 523 case KVM_CAP_PPC_SMT: 524 if (hv_enabled) 525 r = threads_per_subcore; 526 else 527 r = 0; 528 break; 529 case KVM_CAP_PPC_RMA: 530 r = hv_enabled; 531 /* PPC970 requires an RMA */ 532 if (r && cpu_has_feature(CPU_FTR_ARCH_201)) 533 r = 2; 534 break; 535 #endif 536 case KVM_CAP_SYNC_MMU: 537 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 538 if (hv_enabled) 539 r = cpu_has_feature(CPU_FTR_ARCH_206) ? 1 : 0; 540 else 541 r = 0; 542 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 543 r = 1; 544 #else 545 r = 0; 546 #endif 547 break; 548 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 549 case KVM_CAP_PPC_HTAB_FD: 550 r = hv_enabled; 551 break; 552 #endif 553 case KVM_CAP_NR_VCPUS: 554 /* 555 * Recommending a number of CPUs is somewhat arbitrary; we 556 * return the number of present CPUs for -HV (since a host 557 * will have secondary threads "offline"), and for other KVM 558 * implementations just count online CPUs. 559 */ 560 if (hv_enabled) 561 r = num_present_cpus(); 562 else 563 r = num_online_cpus(); 564 break; 565 case KVM_CAP_MAX_VCPUS: 566 r = KVM_MAX_VCPUS; 567 break; 568 #ifdef CONFIG_PPC_BOOK3S_64 569 case KVM_CAP_PPC_GET_SMMU_INFO: 570 r = 1; 571 break; 572 #endif 573 default: 574 r = 0; 575 break; 576 } 577 return r; 578 579 } 580 581 long kvm_arch_dev_ioctl(struct file *filp, 582 unsigned int ioctl, unsigned long arg) 583 { 584 return -EINVAL; 585 } 586 587 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 588 struct kvm_memory_slot *dont) 589 { 590 kvmppc_core_free_memslot(kvm, free, dont); 591 } 592 593 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 594 unsigned long npages) 595 { 596 return kvmppc_core_create_memslot(kvm, slot, npages); 597 } 598 599 int kvm_arch_prepare_memory_region(struct kvm *kvm, 600 struct kvm_memory_slot *memslot, 601 struct kvm_userspace_memory_region *mem, 602 enum kvm_mr_change change) 603 { 604 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 605 } 606 607 void kvm_arch_commit_memory_region(struct kvm *kvm, 608 struct kvm_userspace_memory_region *mem, 609 const struct kvm_memory_slot *old, 610 enum kvm_mr_change change) 611 { 612 kvmppc_core_commit_memory_region(kvm, mem, old); 613 } 614 615 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 616 struct kvm_memory_slot *slot) 617 { 618 kvmppc_core_flush_memslot(kvm, slot); 619 } 620 621 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 622 { 623 struct kvm_vcpu *vcpu; 624 vcpu = kvmppc_core_vcpu_create(kvm, id); 625 if (!IS_ERR(vcpu)) { 626 vcpu->arch.wqp = &vcpu->wq; 627 kvmppc_create_vcpu_debugfs(vcpu, id); 628 } 629 return vcpu; 630 } 631 632 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 633 { 634 return 0; 635 } 636 637 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 638 { 639 /* Make sure we're not using the vcpu anymore */ 640 hrtimer_cancel(&vcpu->arch.dec_timer); 641 642 kvmppc_remove_vcpu_debugfs(vcpu); 643 644 switch (vcpu->arch.irq_type) { 645 case KVMPPC_IRQ_MPIC: 646 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 647 break; 648 case KVMPPC_IRQ_XICS: 649 kvmppc_xics_free_icp(vcpu); 650 break; 651 } 652 653 kvmppc_core_vcpu_free(vcpu); 654 } 655 656 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 657 { 658 kvm_arch_vcpu_free(vcpu); 659 } 660 661 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 662 { 663 return kvmppc_core_pending_dec(vcpu); 664 } 665 666 enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 667 { 668 struct kvm_vcpu *vcpu; 669 670 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 671 kvmppc_decrementer_func(vcpu); 672 673 return HRTIMER_NORESTART; 674 } 675 676 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 677 { 678 int ret; 679 680 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 681 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 682 vcpu->arch.dec_expires = ~(u64)0; 683 684 #ifdef CONFIG_KVM_EXIT_TIMING 685 mutex_init(&vcpu->arch.exit_timing_lock); 686 #endif 687 ret = kvmppc_subarch_vcpu_init(vcpu); 688 return ret; 689 } 690 691 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 692 { 693 kvmppc_mmu_destroy(vcpu); 694 kvmppc_subarch_vcpu_uninit(vcpu); 695 } 696 697 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 698 { 699 #ifdef CONFIG_BOOKE 700 /* 701 * vrsave (formerly usprg0) isn't used by Linux, but may 702 * be used by the guest. 703 * 704 * On non-booke this is associated with Altivec and 705 * is handled by code in book3s.c. 706 */ 707 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 708 #endif 709 kvmppc_core_vcpu_load(vcpu, cpu); 710 } 711 712 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 713 { 714 kvmppc_core_vcpu_put(vcpu); 715 #ifdef CONFIG_BOOKE 716 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 717 #endif 718 } 719 720 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 721 struct kvm_run *run) 722 { 723 u64 uninitialized_var(gpr); 724 725 if (run->mmio.len > sizeof(gpr)) { 726 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 727 return; 728 } 729 730 if (vcpu->arch.mmio_is_bigendian) { 731 switch (run->mmio.len) { 732 case 8: gpr = *(u64 *)run->mmio.data; break; 733 case 4: gpr = *(u32 *)run->mmio.data; break; 734 case 2: gpr = *(u16 *)run->mmio.data; break; 735 case 1: gpr = *(u8 *)run->mmio.data; break; 736 } 737 } else { 738 /* Convert BE data from userland back to LE. */ 739 switch (run->mmio.len) { 740 case 4: gpr = ld_le32((u32 *)run->mmio.data); break; 741 case 2: gpr = ld_le16((u16 *)run->mmio.data); break; 742 case 1: gpr = *(u8 *)run->mmio.data; break; 743 } 744 } 745 746 if (vcpu->arch.mmio_sign_extend) { 747 switch (run->mmio.len) { 748 #ifdef CONFIG_PPC64 749 case 4: 750 gpr = (s64)(s32)gpr; 751 break; 752 #endif 753 case 2: 754 gpr = (s64)(s16)gpr; 755 break; 756 case 1: 757 gpr = (s64)(s8)gpr; 758 break; 759 } 760 } 761 762 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 763 764 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 765 case KVM_MMIO_REG_GPR: 766 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 767 break; 768 case KVM_MMIO_REG_FPR: 769 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 770 break; 771 #ifdef CONFIG_PPC_BOOK3S 772 case KVM_MMIO_REG_QPR: 773 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 774 break; 775 case KVM_MMIO_REG_FQPR: 776 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 777 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 778 break; 779 #endif 780 default: 781 BUG(); 782 } 783 } 784 785 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 786 unsigned int rt, unsigned int bytes, 787 int is_default_endian) 788 { 789 int idx, ret; 790 int is_bigendian; 791 792 if (kvmppc_need_byteswap(vcpu)) { 793 /* Default endianness is "little endian". */ 794 is_bigendian = !is_default_endian; 795 } else { 796 /* Default endianness is "big endian". */ 797 is_bigendian = is_default_endian; 798 } 799 800 if (bytes > sizeof(run->mmio.data)) { 801 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 802 run->mmio.len); 803 } 804 805 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 806 run->mmio.len = bytes; 807 run->mmio.is_write = 0; 808 809 vcpu->arch.io_gpr = rt; 810 vcpu->arch.mmio_is_bigendian = is_bigendian; 811 vcpu->mmio_needed = 1; 812 vcpu->mmio_is_write = 0; 813 vcpu->arch.mmio_sign_extend = 0; 814 815 idx = srcu_read_lock(&vcpu->kvm->srcu); 816 817 ret = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, run->mmio.phys_addr, 818 bytes, &run->mmio.data); 819 820 srcu_read_unlock(&vcpu->kvm->srcu, idx); 821 822 if (!ret) { 823 kvmppc_complete_mmio_load(vcpu, run); 824 vcpu->mmio_needed = 0; 825 return EMULATE_DONE; 826 } 827 828 return EMULATE_DO_MMIO; 829 } 830 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 831 832 /* Same as above, but sign extends */ 833 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 834 unsigned int rt, unsigned int bytes, 835 int is_default_endian) 836 { 837 int r; 838 839 vcpu->arch.mmio_sign_extend = 1; 840 r = kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian); 841 842 return r; 843 } 844 845 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 846 u64 val, unsigned int bytes, int is_default_endian) 847 { 848 void *data = run->mmio.data; 849 int idx, ret; 850 int is_bigendian; 851 852 if (kvmppc_need_byteswap(vcpu)) { 853 /* Default endianness is "little endian". */ 854 is_bigendian = !is_default_endian; 855 } else { 856 /* Default endianness is "big endian". */ 857 is_bigendian = is_default_endian; 858 } 859 860 if (bytes > sizeof(run->mmio.data)) { 861 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 862 run->mmio.len); 863 } 864 865 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 866 run->mmio.len = bytes; 867 run->mmio.is_write = 1; 868 vcpu->mmio_needed = 1; 869 vcpu->mmio_is_write = 1; 870 871 /* Store the value at the lowest bytes in 'data'. */ 872 if (is_bigendian) { 873 switch (bytes) { 874 case 8: *(u64 *)data = val; break; 875 case 4: *(u32 *)data = val; break; 876 case 2: *(u16 *)data = val; break; 877 case 1: *(u8 *)data = val; break; 878 } 879 } else { 880 /* Store LE value into 'data'. */ 881 switch (bytes) { 882 case 4: st_le32(data, val); break; 883 case 2: st_le16(data, val); break; 884 case 1: *(u8 *)data = val; break; 885 } 886 } 887 888 idx = srcu_read_lock(&vcpu->kvm->srcu); 889 890 ret = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, run->mmio.phys_addr, 891 bytes, &run->mmio.data); 892 893 srcu_read_unlock(&vcpu->kvm->srcu, idx); 894 895 if (!ret) { 896 vcpu->mmio_needed = 0; 897 return EMULATE_DONE; 898 } 899 900 return EMULATE_DO_MMIO; 901 } 902 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 903 904 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 905 { 906 int r = 0; 907 union kvmppc_one_reg val; 908 int size; 909 910 size = one_reg_size(reg->id); 911 if (size > sizeof(val)) 912 return -EINVAL; 913 914 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 915 if (r == -EINVAL) { 916 r = 0; 917 switch (reg->id) { 918 #ifdef CONFIG_ALTIVEC 919 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 920 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 921 r = -ENXIO; 922 break; 923 } 924 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 925 break; 926 case KVM_REG_PPC_VSCR: 927 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 928 r = -ENXIO; 929 break; 930 } 931 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 932 break; 933 case KVM_REG_PPC_VRSAVE: 934 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 935 r = -ENXIO; 936 break; 937 } 938 vcpu->arch.vrsave = set_reg_val(reg->id, val); 939 break; 940 #endif /* CONFIG_ALTIVEC */ 941 default: 942 r = -EINVAL; 943 break; 944 } 945 } 946 947 if (r) 948 return r; 949 950 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 951 r = -EFAULT; 952 953 return r; 954 } 955 956 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 957 { 958 int r; 959 union kvmppc_one_reg val; 960 int size; 961 962 size = one_reg_size(reg->id); 963 if (size > sizeof(val)) 964 return -EINVAL; 965 966 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 967 return -EFAULT; 968 969 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 970 if (r == -EINVAL) { 971 r = 0; 972 switch (reg->id) { 973 #ifdef CONFIG_ALTIVEC 974 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 975 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 976 r = -ENXIO; 977 break; 978 } 979 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 980 break; 981 case KVM_REG_PPC_VSCR: 982 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 983 r = -ENXIO; 984 break; 985 } 986 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 987 break; 988 case KVM_REG_PPC_VRSAVE: 989 val = get_reg_val(reg->id, vcpu->arch.vrsave); 990 break; 991 #endif /* CONFIG_ALTIVEC */ 992 default: 993 r = -EINVAL; 994 break; 995 } 996 } 997 998 return r; 999 } 1000 1001 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1002 { 1003 int r; 1004 sigset_t sigsaved; 1005 1006 if (vcpu->sigset_active) 1007 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 1008 1009 if (vcpu->mmio_needed) { 1010 if (!vcpu->mmio_is_write) 1011 kvmppc_complete_mmio_load(vcpu, run); 1012 vcpu->mmio_needed = 0; 1013 } else if (vcpu->arch.osi_needed) { 1014 u64 *gprs = run->osi.gprs; 1015 int i; 1016 1017 for (i = 0; i < 32; i++) 1018 kvmppc_set_gpr(vcpu, i, gprs[i]); 1019 vcpu->arch.osi_needed = 0; 1020 } else if (vcpu->arch.hcall_needed) { 1021 int i; 1022 1023 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1024 for (i = 0; i < 9; ++i) 1025 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1026 vcpu->arch.hcall_needed = 0; 1027 #ifdef CONFIG_BOOKE 1028 } else if (vcpu->arch.epr_needed) { 1029 kvmppc_set_epr(vcpu, run->epr.epr); 1030 vcpu->arch.epr_needed = 0; 1031 #endif 1032 } 1033 1034 r = kvmppc_vcpu_run(run, vcpu); 1035 1036 if (vcpu->sigset_active) 1037 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1038 1039 return r; 1040 } 1041 1042 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1043 { 1044 if (irq->irq == KVM_INTERRUPT_UNSET) { 1045 kvmppc_core_dequeue_external(vcpu); 1046 return 0; 1047 } 1048 1049 kvmppc_core_queue_external(vcpu, irq); 1050 1051 kvm_vcpu_kick(vcpu); 1052 1053 return 0; 1054 } 1055 1056 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1057 struct kvm_enable_cap *cap) 1058 { 1059 int r; 1060 1061 if (cap->flags) 1062 return -EINVAL; 1063 1064 switch (cap->cap) { 1065 case KVM_CAP_PPC_OSI: 1066 r = 0; 1067 vcpu->arch.osi_enabled = true; 1068 break; 1069 case KVM_CAP_PPC_PAPR: 1070 r = 0; 1071 vcpu->arch.papr_enabled = true; 1072 break; 1073 case KVM_CAP_PPC_EPR: 1074 r = 0; 1075 if (cap->args[0]) 1076 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1077 else 1078 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1079 break; 1080 #ifdef CONFIG_BOOKE 1081 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1082 r = 0; 1083 vcpu->arch.watchdog_enabled = true; 1084 break; 1085 #endif 1086 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1087 case KVM_CAP_SW_TLB: { 1088 struct kvm_config_tlb cfg; 1089 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1090 1091 r = -EFAULT; 1092 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1093 break; 1094 1095 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1096 break; 1097 } 1098 #endif 1099 #ifdef CONFIG_KVM_MPIC 1100 case KVM_CAP_IRQ_MPIC: { 1101 struct fd f; 1102 struct kvm_device *dev; 1103 1104 r = -EBADF; 1105 f = fdget(cap->args[0]); 1106 if (!f.file) 1107 break; 1108 1109 r = -EPERM; 1110 dev = kvm_device_from_filp(f.file); 1111 if (dev) 1112 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1113 1114 fdput(f); 1115 break; 1116 } 1117 #endif 1118 #ifdef CONFIG_KVM_XICS 1119 case KVM_CAP_IRQ_XICS: { 1120 struct fd f; 1121 struct kvm_device *dev; 1122 1123 r = -EBADF; 1124 f = fdget(cap->args[0]); 1125 if (!f.file) 1126 break; 1127 1128 r = -EPERM; 1129 dev = kvm_device_from_filp(f.file); 1130 if (dev) 1131 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1132 1133 fdput(f); 1134 break; 1135 } 1136 #endif /* CONFIG_KVM_XICS */ 1137 default: 1138 r = -EINVAL; 1139 break; 1140 } 1141 1142 if (!r) 1143 r = kvmppc_sanity_check(vcpu); 1144 1145 return r; 1146 } 1147 1148 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1149 struct kvm_mp_state *mp_state) 1150 { 1151 return -EINVAL; 1152 } 1153 1154 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1155 struct kvm_mp_state *mp_state) 1156 { 1157 return -EINVAL; 1158 } 1159 1160 long kvm_arch_vcpu_ioctl(struct file *filp, 1161 unsigned int ioctl, unsigned long arg) 1162 { 1163 struct kvm_vcpu *vcpu = filp->private_data; 1164 void __user *argp = (void __user *)arg; 1165 long r; 1166 1167 switch (ioctl) { 1168 case KVM_INTERRUPT: { 1169 struct kvm_interrupt irq; 1170 r = -EFAULT; 1171 if (copy_from_user(&irq, argp, sizeof(irq))) 1172 goto out; 1173 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 1174 goto out; 1175 } 1176 1177 case KVM_ENABLE_CAP: 1178 { 1179 struct kvm_enable_cap cap; 1180 r = -EFAULT; 1181 if (copy_from_user(&cap, argp, sizeof(cap))) 1182 goto out; 1183 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 1184 break; 1185 } 1186 1187 case KVM_SET_ONE_REG: 1188 case KVM_GET_ONE_REG: 1189 { 1190 struct kvm_one_reg reg; 1191 r = -EFAULT; 1192 if (copy_from_user(®, argp, sizeof(reg))) 1193 goto out; 1194 if (ioctl == KVM_SET_ONE_REG) 1195 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 1196 else 1197 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 1198 break; 1199 } 1200 1201 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1202 case KVM_DIRTY_TLB: { 1203 struct kvm_dirty_tlb dirty; 1204 r = -EFAULT; 1205 if (copy_from_user(&dirty, argp, sizeof(dirty))) 1206 goto out; 1207 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 1208 break; 1209 } 1210 #endif 1211 default: 1212 r = -EINVAL; 1213 } 1214 1215 out: 1216 return r; 1217 } 1218 1219 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1220 { 1221 return VM_FAULT_SIGBUS; 1222 } 1223 1224 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 1225 { 1226 u32 inst_nop = 0x60000000; 1227 #ifdef CONFIG_KVM_BOOKE_HV 1228 u32 inst_sc1 = 0x44000022; 1229 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 1230 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 1231 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 1232 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1233 #else 1234 u32 inst_lis = 0x3c000000; 1235 u32 inst_ori = 0x60000000; 1236 u32 inst_sc = 0x44000002; 1237 u32 inst_imm_mask = 0xffff; 1238 1239 /* 1240 * The hypercall to get into KVM from within guest context is as 1241 * follows: 1242 * 1243 * lis r0, r0, KVM_SC_MAGIC_R0@h 1244 * ori r0, KVM_SC_MAGIC_R0@l 1245 * sc 1246 * nop 1247 */ 1248 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 1249 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 1250 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 1251 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 1252 #endif 1253 1254 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 1255 1256 return 0; 1257 } 1258 1259 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 1260 bool line_status) 1261 { 1262 if (!irqchip_in_kernel(kvm)) 1263 return -ENXIO; 1264 1265 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1266 irq_event->irq, irq_event->level, 1267 line_status); 1268 return 0; 1269 } 1270 1271 1272 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1273 struct kvm_enable_cap *cap) 1274 { 1275 int r; 1276 1277 if (cap->flags) 1278 return -EINVAL; 1279 1280 switch (cap->cap) { 1281 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 1282 case KVM_CAP_PPC_ENABLE_HCALL: { 1283 unsigned long hcall = cap->args[0]; 1284 1285 r = -EINVAL; 1286 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 1287 cap->args[1] > 1) 1288 break; 1289 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 1290 break; 1291 if (cap->args[1]) 1292 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 1293 else 1294 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 1295 r = 0; 1296 break; 1297 } 1298 #endif 1299 default: 1300 r = -EINVAL; 1301 break; 1302 } 1303 1304 return r; 1305 } 1306 1307 long kvm_arch_vm_ioctl(struct file *filp, 1308 unsigned int ioctl, unsigned long arg) 1309 { 1310 struct kvm *kvm __maybe_unused = filp->private_data; 1311 void __user *argp = (void __user *)arg; 1312 long r; 1313 1314 switch (ioctl) { 1315 case KVM_PPC_GET_PVINFO: { 1316 struct kvm_ppc_pvinfo pvinfo; 1317 memset(&pvinfo, 0, sizeof(pvinfo)); 1318 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 1319 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 1320 r = -EFAULT; 1321 goto out; 1322 } 1323 1324 break; 1325 } 1326 case KVM_ENABLE_CAP: 1327 { 1328 struct kvm_enable_cap cap; 1329 r = -EFAULT; 1330 if (copy_from_user(&cap, argp, sizeof(cap))) 1331 goto out; 1332 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1333 break; 1334 } 1335 #ifdef CONFIG_PPC_BOOK3S_64 1336 case KVM_CREATE_SPAPR_TCE: { 1337 struct kvm_create_spapr_tce create_tce; 1338 1339 r = -EFAULT; 1340 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 1341 goto out; 1342 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce); 1343 goto out; 1344 } 1345 case KVM_PPC_GET_SMMU_INFO: { 1346 struct kvm_ppc_smmu_info info; 1347 struct kvm *kvm = filp->private_data; 1348 1349 memset(&info, 0, sizeof(info)); 1350 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 1351 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 1352 r = -EFAULT; 1353 break; 1354 } 1355 case KVM_PPC_RTAS_DEFINE_TOKEN: { 1356 struct kvm *kvm = filp->private_data; 1357 1358 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 1359 break; 1360 } 1361 default: { 1362 struct kvm *kvm = filp->private_data; 1363 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 1364 } 1365 #else /* CONFIG_PPC_BOOK3S_64 */ 1366 default: 1367 r = -ENOTTY; 1368 #endif 1369 } 1370 out: 1371 return r; 1372 } 1373 1374 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 1375 static unsigned long nr_lpids; 1376 1377 long kvmppc_alloc_lpid(void) 1378 { 1379 long lpid; 1380 1381 do { 1382 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 1383 if (lpid >= nr_lpids) { 1384 pr_err("%s: No LPIDs free\n", __func__); 1385 return -ENOMEM; 1386 } 1387 } while (test_and_set_bit(lpid, lpid_inuse)); 1388 1389 return lpid; 1390 } 1391 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 1392 1393 void kvmppc_claim_lpid(long lpid) 1394 { 1395 set_bit(lpid, lpid_inuse); 1396 } 1397 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 1398 1399 void kvmppc_free_lpid(long lpid) 1400 { 1401 clear_bit(lpid, lpid_inuse); 1402 } 1403 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 1404 1405 void kvmppc_init_lpid(unsigned long nr_lpids_param) 1406 { 1407 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 1408 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 1409 } 1410 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 1411 1412 int kvm_arch_init(void *opaque) 1413 { 1414 return 0; 1415 } 1416 1417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 1418