xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision 4a075bd4)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include <asm/switch_to.h>
40 #include <asm/xive.h>
41 #ifdef CONFIG_PPC_PSERIES
42 #include <asm/hvcall.h>
43 #include <asm/plpar_wrappers.h>
44 #endif
45 
46 #include "timing.h"
47 #include "irq.h"
48 #include "../mm/mmu_decl.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include "trace.h"
52 
53 struct kvmppc_ops *kvmppc_hv_ops;
54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
55 struct kvmppc_ops *kvmppc_pr_ops;
56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
57 
58 
59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
60 {
61 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 }
63 
64 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
65 {
66 	return false;
67 }
68 
69 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
70 {
71 	return 1;
72 }
73 
74 /*
75  * Common checks before entering the guest world.  Call with interrupts
76  * disabled.
77  *
78  * returns:
79  *
80  * == 1 if we're ready to go into guest state
81  * <= 0 if we need to go back to the host with return value
82  */
83 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
84 {
85 	int r;
86 
87 	WARN_ON(irqs_disabled());
88 	hard_irq_disable();
89 
90 	while (true) {
91 		if (need_resched()) {
92 			local_irq_enable();
93 			cond_resched();
94 			hard_irq_disable();
95 			continue;
96 		}
97 
98 		if (signal_pending(current)) {
99 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
100 			vcpu->run->exit_reason = KVM_EXIT_INTR;
101 			r = -EINTR;
102 			break;
103 		}
104 
105 		vcpu->mode = IN_GUEST_MODE;
106 
107 		/*
108 		 * Reading vcpu->requests must happen after setting vcpu->mode,
109 		 * so we don't miss a request because the requester sees
110 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
111 		 * before next entering the guest (and thus doesn't IPI).
112 		 * This also orders the write to mode from any reads
113 		 * to the page tables done while the VCPU is running.
114 		 * Please see the comment in kvm_flush_remote_tlbs.
115 		 */
116 		smp_mb();
117 
118 		if (kvm_request_pending(vcpu)) {
119 			/* Make sure we process requests preemptable */
120 			local_irq_enable();
121 			trace_kvm_check_requests(vcpu);
122 			r = kvmppc_core_check_requests(vcpu);
123 			hard_irq_disable();
124 			if (r > 0)
125 				continue;
126 			break;
127 		}
128 
129 		if (kvmppc_core_prepare_to_enter(vcpu)) {
130 			/* interrupts got enabled in between, so we
131 			   are back at square 1 */
132 			continue;
133 		}
134 
135 		guest_enter_irqoff();
136 		return 1;
137 	}
138 
139 	/* return to host */
140 	local_irq_enable();
141 	return r;
142 }
143 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144 
145 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
146 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
147 {
148 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
149 	int i;
150 
151 	shared->sprg0 = swab64(shared->sprg0);
152 	shared->sprg1 = swab64(shared->sprg1);
153 	shared->sprg2 = swab64(shared->sprg2);
154 	shared->sprg3 = swab64(shared->sprg3);
155 	shared->srr0 = swab64(shared->srr0);
156 	shared->srr1 = swab64(shared->srr1);
157 	shared->dar = swab64(shared->dar);
158 	shared->msr = swab64(shared->msr);
159 	shared->dsisr = swab32(shared->dsisr);
160 	shared->int_pending = swab32(shared->int_pending);
161 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
162 		shared->sr[i] = swab32(shared->sr[i]);
163 }
164 #endif
165 
166 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
167 {
168 	int nr = kvmppc_get_gpr(vcpu, 11);
169 	int r;
170 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
171 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
172 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
173 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
174 	unsigned long r2 = 0;
175 
176 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177 		/* 32 bit mode */
178 		param1 &= 0xffffffff;
179 		param2 &= 0xffffffff;
180 		param3 &= 0xffffffff;
181 		param4 &= 0xffffffff;
182 	}
183 
184 	switch (nr) {
185 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186 	{
187 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
188 		/* Book3S can be little endian, find it out here */
189 		int shared_big_endian = true;
190 		if (vcpu->arch.intr_msr & MSR_LE)
191 			shared_big_endian = false;
192 		if (shared_big_endian != vcpu->arch.shared_big_endian)
193 			kvmppc_swab_shared(vcpu);
194 		vcpu->arch.shared_big_endian = shared_big_endian;
195 #endif
196 
197 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
198 			/*
199 			 * Older versions of the Linux magic page code had
200 			 * a bug where they would map their trampoline code
201 			 * NX. If that's the case, remove !PR NX capability.
202 			 */
203 			vcpu->arch.disable_kernel_nx = true;
204 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
205 		}
206 
207 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
208 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209 
210 #ifdef CONFIG_PPC_64K_PAGES
211 		/*
212 		 * Make sure our 4k magic page is in the same window of a 64k
213 		 * page within the guest and within the host's page.
214 		 */
215 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
216 		    ((ulong)vcpu->arch.shared & 0xf000)) {
217 			void *old_shared = vcpu->arch.shared;
218 			ulong shared = (ulong)vcpu->arch.shared;
219 			void *new_shared;
220 
221 			shared &= PAGE_MASK;
222 			shared |= vcpu->arch.magic_page_pa & 0xf000;
223 			new_shared = (void*)shared;
224 			memcpy(new_shared, old_shared, 0x1000);
225 			vcpu->arch.shared = new_shared;
226 		}
227 #endif
228 
229 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230 
231 		r = EV_SUCCESS;
232 		break;
233 	}
234 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
235 		r = EV_SUCCESS;
236 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
238 #endif
239 
240 		/* Second return value is in r4 */
241 		break;
242 	case EV_HCALL_TOKEN(EV_IDLE):
243 		r = EV_SUCCESS;
244 		kvm_vcpu_block(vcpu);
245 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246 		break;
247 	default:
248 		r = EV_UNIMPLEMENTED;
249 		break;
250 	}
251 
252 	kvmppc_set_gpr(vcpu, 4, r2);
253 
254 	return r;
255 }
256 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257 
258 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
259 {
260 	int r = false;
261 
262 	/* We have to know what CPU to virtualize */
263 	if (!vcpu->arch.pvr)
264 		goto out;
265 
266 	/* PAPR only works with book3s_64 */
267 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
268 		goto out;
269 
270 	/* HV KVM can only do PAPR mode for now */
271 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272 		goto out;
273 
274 #ifdef CONFIG_KVM_BOOKE_HV
275 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
276 		goto out;
277 #endif
278 
279 	r = true;
280 
281 out:
282 	vcpu->arch.sane = r;
283 	return r ? 0 : -EINVAL;
284 }
285 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286 
287 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
288 {
289 	enum emulation_result er;
290 	int r;
291 
292 	er = kvmppc_emulate_loadstore(vcpu);
293 	switch (er) {
294 	case EMULATE_DONE:
295 		/* Future optimization: only reload non-volatiles if they were
296 		 * actually modified. */
297 		r = RESUME_GUEST_NV;
298 		break;
299 	case EMULATE_AGAIN:
300 		r = RESUME_GUEST;
301 		break;
302 	case EMULATE_DO_MMIO:
303 		run->exit_reason = KVM_EXIT_MMIO;
304 		/* We must reload nonvolatiles because "update" load/store
305 		 * instructions modify register state. */
306 		/* Future optimization: only reload non-volatiles if they were
307 		 * actually modified. */
308 		r = RESUME_HOST_NV;
309 		break;
310 	case EMULATE_FAIL:
311 	{
312 		u32 last_inst;
313 
314 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315 		/* XXX Deliver Program interrupt to guest. */
316 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317 		r = RESUME_HOST;
318 		break;
319 	}
320 	default:
321 		WARN_ON(1);
322 		r = RESUME_GUEST;
323 	}
324 
325 	return r;
326 }
327 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328 
329 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
330 	      bool data)
331 {
332 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333 	struct kvmppc_pte pte;
334 	int r = -EINVAL;
335 
336 	vcpu->stat.st++;
337 
338 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
339 		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
340 							    size);
341 
342 	if ((!r) || (r == -EAGAIN))
343 		return r;
344 
345 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
346 			 XLATE_WRITE, &pte);
347 	if (r < 0)
348 		return r;
349 
350 	*eaddr = pte.raddr;
351 
352 	if (!pte.may_write)
353 		return -EPERM;
354 
355 	/* Magic page override */
356 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
357 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
358 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
359 		void *magic = vcpu->arch.shared;
360 		magic += pte.eaddr & 0xfff;
361 		memcpy(magic, ptr, size);
362 		return EMULATE_DONE;
363 	}
364 
365 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
366 		return EMULATE_DO_MMIO;
367 
368 	return EMULATE_DONE;
369 }
370 EXPORT_SYMBOL_GPL(kvmppc_st);
371 
372 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
373 		      bool data)
374 {
375 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
376 	struct kvmppc_pte pte;
377 	int rc = -EINVAL;
378 
379 	vcpu->stat.ld++;
380 
381 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
382 		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
383 							      size);
384 
385 	if ((!rc) || (rc == -EAGAIN))
386 		return rc;
387 
388 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
389 			  XLATE_READ, &pte);
390 	if (rc)
391 		return rc;
392 
393 	*eaddr = pte.raddr;
394 
395 	if (!pte.may_read)
396 		return -EPERM;
397 
398 	if (!data && !pte.may_execute)
399 		return -ENOEXEC;
400 
401 	/* Magic page override */
402 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
403 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
404 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
405 		void *magic = vcpu->arch.shared;
406 		magic += pte.eaddr & 0xfff;
407 		memcpy(ptr, magic, size);
408 		return EMULATE_DONE;
409 	}
410 
411 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
412 		return EMULATE_DO_MMIO;
413 
414 	return EMULATE_DONE;
415 }
416 EXPORT_SYMBOL_GPL(kvmppc_ld);
417 
418 int kvm_arch_hardware_enable(void)
419 {
420 	return 0;
421 }
422 
423 int kvm_arch_hardware_setup(void)
424 {
425 	return 0;
426 }
427 
428 void kvm_arch_check_processor_compat(void *rtn)
429 {
430 	*(int *)rtn = kvmppc_core_check_processor_compat();
431 }
432 
433 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
434 {
435 	struct kvmppc_ops *kvm_ops = NULL;
436 	/*
437 	 * if we have both HV and PR enabled, default is HV
438 	 */
439 	if (type == 0) {
440 		if (kvmppc_hv_ops)
441 			kvm_ops = kvmppc_hv_ops;
442 		else
443 			kvm_ops = kvmppc_pr_ops;
444 		if (!kvm_ops)
445 			goto err_out;
446 	} else	if (type == KVM_VM_PPC_HV) {
447 		if (!kvmppc_hv_ops)
448 			goto err_out;
449 		kvm_ops = kvmppc_hv_ops;
450 	} else if (type == KVM_VM_PPC_PR) {
451 		if (!kvmppc_pr_ops)
452 			goto err_out;
453 		kvm_ops = kvmppc_pr_ops;
454 	} else
455 		goto err_out;
456 
457 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
458 		return -ENOENT;
459 
460 	kvm->arch.kvm_ops = kvm_ops;
461 	return kvmppc_core_init_vm(kvm);
462 err_out:
463 	return -EINVAL;
464 }
465 
466 bool kvm_arch_has_vcpu_debugfs(void)
467 {
468 	return false;
469 }
470 
471 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
472 {
473 	return 0;
474 }
475 
476 void kvm_arch_destroy_vm(struct kvm *kvm)
477 {
478 	unsigned int i;
479 	struct kvm_vcpu *vcpu;
480 
481 #ifdef CONFIG_KVM_XICS
482 	/*
483 	 * We call kick_all_cpus_sync() to ensure that all
484 	 * CPUs have executed any pending IPIs before we
485 	 * continue and free VCPUs structures below.
486 	 */
487 	if (is_kvmppc_hv_enabled(kvm))
488 		kick_all_cpus_sync();
489 #endif
490 
491 	kvm_for_each_vcpu(i, vcpu, kvm)
492 		kvm_arch_vcpu_free(vcpu);
493 
494 	mutex_lock(&kvm->lock);
495 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
496 		kvm->vcpus[i] = NULL;
497 
498 	atomic_set(&kvm->online_vcpus, 0);
499 
500 	kvmppc_core_destroy_vm(kvm);
501 
502 	mutex_unlock(&kvm->lock);
503 
504 	/* drop the module reference */
505 	module_put(kvm->arch.kvm_ops->owner);
506 }
507 
508 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
509 {
510 	int r;
511 	/* Assume we're using HV mode when the HV module is loaded */
512 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
513 
514 	if (kvm) {
515 		/*
516 		 * Hooray - we know which VM type we're running on. Depend on
517 		 * that rather than the guess above.
518 		 */
519 		hv_enabled = is_kvmppc_hv_enabled(kvm);
520 	}
521 
522 	switch (ext) {
523 #ifdef CONFIG_BOOKE
524 	case KVM_CAP_PPC_BOOKE_SREGS:
525 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
526 	case KVM_CAP_PPC_EPR:
527 #else
528 	case KVM_CAP_PPC_SEGSTATE:
529 	case KVM_CAP_PPC_HIOR:
530 	case KVM_CAP_PPC_PAPR:
531 #endif
532 	case KVM_CAP_PPC_UNSET_IRQ:
533 	case KVM_CAP_PPC_IRQ_LEVEL:
534 	case KVM_CAP_ENABLE_CAP:
535 	case KVM_CAP_ONE_REG:
536 	case KVM_CAP_IOEVENTFD:
537 	case KVM_CAP_DEVICE_CTRL:
538 	case KVM_CAP_IMMEDIATE_EXIT:
539 		r = 1;
540 		break;
541 	case KVM_CAP_PPC_PAIRED_SINGLES:
542 	case KVM_CAP_PPC_OSI:
543 	case KVM_CAP_PPC_GET_PVINFO:
544 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
545 	case KVM_CAP_SW_TLB:
546 #endif
547 		/* We support this only for PR */
548 		r = !hv_enabled;
549 		break;
550 #ifdef CONFIG_KVM_MPIC
551 	case KVM_CAP_IRQ_MPIC:
552 		r = 1;
553 		break;
554 #endif
555 
556 #ifdef CONFIG_PPC_BOOK3S_64
557 	case KVM_CAP_SPAPR_TCE:
558 	case KVM_CAP_SPAPR_TCE_64:
559 		r = 1;
560 		break;
561 	case KVM_CAP_SPAPR_TCE_VFIO:
562 		r = !!cpu_has_feature(CPU_FTR_HVMODE);
563 		break;
564 	case KVM_CAP_PPC_RTAS:
565 	case KVM_CAP_PPC_FIXUP_HCALL:
566 	case KVM_CAP_PPC_ENABLE_HCALL:
567 #ifdef CONFIG_KVM_XICS
568 	case KVM_CAP_IRQ_XICS:
569 #endif
570 	case KVM_CAP_PPC_GET_CPU_CHAR:
571 		r = 1;
572 		break;
573 #ifdef CONFIG_KVM_XIVE
574 	case KVM_CAP_PPC_IRQ_XIVE:
575 		/*
576 		 * We need XIVE to be enabled on the platform (implies
577 		 * a POWER9 processor) and the PowerNV platform, as
578 		 * nested is not yet supported.
579 		 */
580 		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE);
581 		break;
582 #endif
583 
584 	case KVM_CAP_PPC_ALLOC_HTAB:
585 		r = hv_enabled;
586 		break;
587 #endif /* CONFIG_PPC_BOOK3S_64 */
588 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
589 	case KVM_CAP_PPC_SMT:
590 		r = 0;
591 		if (kvm) {
592 			if (kvm->arch.emul_smt_mode > 1)
593 				r = kvm->arch.emul_smt_mode;
594 			else
595 				r = kvm->arch.smt_mode;
596 		} else if (hv_enabled) {
597 			if (cpu_has_feature(CPU_FTR_ARCH_300))
598 				r = 1;
599 			else
600 				r = threads_per_subcore;
601 		}
602 		break;
603 	case KVM_CAP_PPC_SMT_POSSIBLE:
604 		r = 1;
605 		if (hv_enabled) {
606 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
607 				r = ((threads_per_subcore << 1) - 1);
608 			else
609 				/* P9 can emulate dbells, so allow any mode */
610 				r = 8 | 4 | 2 | 1;
611 		}
612 		break;
613 	case KVM_CAP_PPC_RMA:
614 		r = 0;
615 		break;
616 	case KVM_CAP_PPC_HWRNG:
617 		r = kvmppc_hwrng_present();
618 		break;
619 	case KVM_CAP_PPC_MMU_RADIX:
620 		r = !!(hv_enabled && radix_enabled());
621 		break;
622 	case KVM_CAP_PPC_MMU_HASH_V3:
623 		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
624 		       cpu_has_feature(CPU_FTR_HVMODE));
625 		break;
626 	case KVM_CAP_PPC_NESTED_HV:
627 		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
628 		       !kvmppc_hv_ops->enable_nested(NULL));
629 		break;
630 #endif
631 	case KVM_CAP_SYNC_MMU:
632 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
633 		r = hv_enabled;
634 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
635 		r = 1;
636 #else
637 		r = 0;
638 #endif
639 		break;
640 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
641 	case KVM_CAP_PPC_HTAB_FD:
642 		r = hv_enabled;
643 		break;
644 #endif
645 	case KVM_CAP_NR_VCPUS:
646 		/*
647 		 * Recommending a number of CPUs is somewhat arbitrary; we
648 		 * return the number of present CPUs for -HV (since a host
649 		 * will have secondary threads "offline"), and for other KVM
650 		 * implementations just count online CPUs.
651 		 */
652 		if (hv_enabled)
653 			r = num_present_cpus();
654 		else
655 			r = num_online_cpus();
656 		break;
657 	case KVM_CAP_MAX_VCPUS:
658 		r = KVM_MAX_VCPUS;
659 		break;
660 #ifdef CONFIG_PPC_BOOK3S_64
661 	case KVM_CAP_PPC_GET_SMMU_INFO:
662 		r = 1;
663 		break;
664 	case KVM_CAP_SPAPR_MULTITCE:
665 		r = 1;
666 		break;
667 	case KVM_CAP_SPAPR_RESIZE_HPT:
668 		r = !!hv_enabled;
669 		break;
670 #endif
671 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
672 	case KVM_CAP_PPC_FWNMI:
673 		r = hv_enabled;
674 		break;
675 #endif
676 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
677 	case KVM_CAP_PPC_HTM:
678 		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
679 		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
680 		break;
681 #endif
682 	default:
683 		r = 0;
684 		break;
685 	}
686 	return r;
687 
688 }
689 
690 long kvm_arch_dev_ioctl(struct file *filp,
691                         unsigned int ioctl, unsigned long arg)
692 {
693 	return -EINVAL;
694 }
695 
696 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
697 			   struct kvm_memory_slot *dont)
698 {
699 	kvmppc_core_free_memslot(kvm, free, dont);
700 }
701 
702 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
703 			    unsigned long npages)
704 {
705 	return kvmppc_core_create_memslot(kvm, slot, npages);
706 }
707 
708 int kvm_arch_prepare_memory_region(struct kvm *kvm,
709 				   struct kvm_memory_slot *memslot,
710 				   const struct kvm_userspace_memory_region *mem,
711 				   enum kvm_mr_change change)
712 {
713 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
714 }
715 
716 void kvm_arch_commit_memory_region(struct kvm *kvm,
717 				   const struct kvm_userspace_memory_region *mem,
718 				   const struct kvm_memory_slot *old,
719 				   const struct kvm_memory_slot *new,
720 				   enum kvm_mr_change change)
721 {
722 	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
723 }
724 
725 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
726 				   struct kvm_memory_slot *slot)
727 {
728 	kvmppc_core_flush_memslot(kvm, slot);
729 }
730 
731 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
732 {
733 	struct kvm_vcpu *vcpu;
734 	vcpu = kvmppc_core_vcpu_create(kvm, id);
735 	if (!IS_ERR(vcpu)) {
736 		vcpu->arch.wqp = &vcpu->wq;
737 		kvmppc_create_vcpu_debugfs(vcpu, id);
738 	}
739 	return vcpu;
740 }
741 
742 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
743 {
744 }
745 
746 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
747 {
748 	/* Make sure we're not using the vcpu anymore */
749 	hrtimer_cancel(&vcpu->arch.dec_timer);
750 
751 	kvmppc_remove_vcpu_debugfs(vcpu);
752 
753 	switch (vcpu->arch.irq_type) {
754 	case KVMPPC_IRQ_MPIC:
755 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
756 		break;
757 	case KVMPPC_IRQ_XICS:
758 		if (xics_on_xive())
759 			kvmppc_xive_cleanup_vcpu(vcpu);
760 		else
761 			kvmppc_xics_free_icp(vcpu);
762 		break;
763 	case KVMPPC_IRQ_XIVE:
764 		kvmppc_xive_native_cleanup_vcpu(vcpu);
765 		break;
766 	}
767 
768 	kvmppc_core_vcpu_free(vcpu);
769 }
770 
771 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
772 {
773 	kvm_arch_vcpu_free(vcpu);
774 }
775 
776 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
777 {
778 	return kvmppc_core_pending_dec(vcpu);
779 }
780 
781 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
782 {
783 	struct kvm_vcpu *vcpu;
784 
785 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
786 	kvmppc_decrementer_func(vcpu);
787 
788 	return HRTIMER_NORESTART;
789 }
790 
791 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
792 {
793 	int ret;
794 
795 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
796 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
797 	vcpu->arch.dec_expires = get_tb();
798 
799 #ifdef CONFIG_KVM_EXIT_TIMING
800 	mutex_init(&vcpu->arch.exit_timing_lock);
801 #endif
802 	ret = kvmppc_subarch_vcpu_init(vcpu);
803 	return ret;
804 }
805 
806 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
807 {
808 	kvmppc_mmu_destroy(vcpu);
809 	kvmppc_subarch_vcpu_uninit(vcpu);
810 }
811 
812 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
813 {
814 #ifdef CONFIG_BOOKE
815 	/*
816 	 * vrsave (formerly usprg0) isn't used by Linux, but may
817 	 * be used by the guest.
818 	 *
819 	 * On non-booke this is associated with Altivec and
820 	 * is handled by code in book3s.c.
821 	 */
822 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
823 #endif
824 	kvmppc_core_vcpu_load(vcpu, cpu);
825 }
826 
827 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
828 {
829 	kvmppc_core_vcpu_put(vcpu);
830 #ifdef CONFIG_BOOKE
831 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
832 #endif
833 }
834 
835 /*
836  * irq_bypass_add_producer and irq_bypass_del_producer are only
837  * useful if the architecture supports PCI passthrough.
838  * irq_bypass_stop and irq_bypass_start are not needed and so
839  * kvm_ops are not defined for them.
840  */
841 bool kvm_arch_has_irq_bypass(void)
842 {
843 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
844 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
845 }
846 
847 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
848 				     struct irq_bypass_producer *prod)
849 {
850 	struct kvm_kernel_irqfd *irqfd =
851 		container_of(cons, struct kvm_kernel_irqfd, consumer);
852 	struct kvm *kvm = irqfd->kvm;
853 
854 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
855 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
856 
857 	return 0;
858 }
859 
860 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
861 				      struct irq_bypass_producer *prod)
862 {
863 	struct kvm_kernel_irqfd *irqfd =
864 		container_of(cons, struct kvm_kernel_irqfd, consumer);
865 	struct kvm *kvm = irqfd->kvm;
866 
867 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
868 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
869 }
870 
871 #ifdef CONFIG_VSX
872 static inline int kvmppc_get_vsr_dword_offset(int index)
873 {
874 	int offset;
875 
876 	if ((index != 0) && (index != 1))
877 		return -1;
878 
879 #ifdef __BIG_ENDIAN
880 	offset =  index;
881 #else
882 	offset = 1 - index;
883 #endif
884 
885 	return offset;
886 }
887 
888 static inline int kvmppc_get_vsr_word_offset(int index)
889 {
890 	int offset;
891 
892 	if ((index > 3) || (index < 0))
893 		return -1;
894 
895 #ifdef __BIG_ENDIAN
896 	offset = index;
897 #else
898 	offset = 3 - index;
899 #endif
900 	return offset;
901 }
902 
903 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
904 	u64 gpr)
905 {
906 	union kvmppc_one_reg val;
907 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
908 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
909 
910 	if (offset == -1)
911 		return;
912 
913 	if (index >= 32) {
914 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
915 		val.vsxval[offset] = gpr;
916 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
917 	} else {
918 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
919 	}
920 }
921 
922 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
923 	u64 gpr)
924 {
925 	union kvmppc_one_reg val;
926 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
927 
928 	if (index >= 32) {
929 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
930 		val.vsxval[0] = gpr;
931 		val.vsxval[1] = gpr;
932 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
933 	} else {
934 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
935 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
936 	}
937 }
938 
939 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
940 	u32 gpr)
941 {
942 	union kvmppc_one_reg val;
943 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
944 
945 	if (index >= 32) {
946 		val.vsx32val[0] = gpr;
947 		val.vsx32val[1] = gpr;
948 		val.vsx32val[2] = gpr;
949 		val.vsx32val[3] = gpr;
950 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
951 	} else {
952 		val.vsx32val[0] = gpr;
953 		val.vsx32val[1] = gpr;
954 		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
955 		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
956 	}
957 }
958 
959 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
960 	u32 gpr32)
961 {
962 	union kvmppc_one_reg val;
963 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
964 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
965 	int dword_offset, word_offset;
966 
967 	if (offset == -1)
968 		return;
969 
970 	if (index >= 32) {
971 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
972 		val.vsx32val[offset] = gpr32;
973 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
974 	} else {
975 		dword_offset = offset / 2;
976 		word_offset = offset % 2;
977 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
978 		val.vsx32val[word_offset] = gpr32;
979 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
980 	}
981 }
982 #endif /* CONFIG_VSX */
983 
984 #ifdef CONFIG_ALTIVEC
985 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
986 		int index, int element_size)
987 {
988 	int offset;
989 	int elts = sizeof(vector128)/element_size;
990 
991 	if ((index < 0) || (index >= elts))
992 		return -1;
993 
994 	if (kvmppc_need_byteswap(vcpu))
995 		offset = elts - index - 1;
996 	else
997 		offset = index;
998 
999 	return offset;
1000 }
1001 
1002 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1003 		int index)
1004 {
1005 	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1006 }
1007 
1008 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1009 		int index)
1010 {
1011 	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1012 }
1013 
1014 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1015 		int index)
1016 {
1017 	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1018 }
1019 
1020 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1021 		int index)
1022 {
1023 	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1024 }
1025 
1026 
1027 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1028 	u64 gpr)
1029 {
1030 	union kvmppc_one_reg val;
1031 	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1032 			vcpu->arch.mmio_vmx_offset);
1033 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1034 
1035 	if (offset == -1)
1036 		return;
1037 
1038 	val.vval = VCPU_VSX_VR(vcpu, index);
1039 	val.vsxval[offset] = gpr;
1040 	VCPU_VSX_VR(vcpu, index) = val.vval;
1041 }
1042 
1043 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1044 	u32 gpr32)
1045 {
1046 	union kvmppc_one_reg val;
1047 	int offset = kvmppc_get_vmx_word_offset(vcpu,
1048 			vcpu->arch.mmio_vmx_offset);
1049 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1050 
1051 	if (offset == -1)
1052 		return;
1053 
1054 	val.vval = VCPU_VSX_VR(vcpu, index);
1055 	val.vsx32val[offset] = gpr32;
1056 	VCPU_VSX_VR(vcpu, index) = val.vval;
1057 }
1058 
1059 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1060 	u16 gpr16)
1061 {
1062 	union kvmppc_one_reg val;
1063 	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1064 			vcpu->arch.mmio_vmx_offset);
1065 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1066 
1067 	if (offset == -1)
1068 		return;
1069 
1070 	val.vval = VCPU_VSX_VR(vcpu, index);
1071 	val.vsx16val[offset] = gpr16;
1072 	VCPU_VSX_VR(vcpu, index) = val.vval;
1073 }
1074 
1075 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1076 	u8 gpr8)
1077 {
1078 	union kvmppc_one_reg val;
1079 	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1080 			vcpu->arch.mmio_vmx_offset);
1081 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1082 
1083 	if (offset == -1)
1084 		return;
1085 
1086 	val.vval = VCPU_VSX_VR(vcpu, index);
1087 	val.vsx8val[offset] = gpr8;
1088 	VCPU_VSX_VR(vcpu, index) = val.vval;
1089 }
1090 #endif /* CONFIG_ALTIVEC */
1091 
1092 #ifdef CONFIG_PPC_FPU
1093 static inline u64 sp_to_dp(u32 fprs)
1094 {
1095 	u64 fprd;
1096 
1097 	preempt_disable();
1098 	enable_kernel_fp();
1099 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1100 	     : "fr0");
1101 	preempt_enable();
1102 	return fprd;
1103 }
1104 
1105 static inline u32 dp_to_sp(u64 fprd)
1106 {
1107 	u32 fprs;
1108 
1109 	preempt_disable();
1110 	enable_kernel_fp();
1111 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1112 	     : "fr0");
1113 	preempt_enable();
1114 	return fprs;
1115 }
1116 
1117 #else
1118 #define sp_to_dp(x)	(x)
1119 #define dp_to_sp(x)	(x)
1120 #endif /* CONFIG_PPC_FPU */
1121 
1122 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1123                                       struct kvm_run *run)
1124 {
1125 	u64 uninitialized_var(gpr);
1126 
1127 	if (run->mmio.len > sizeof(gpr)) {
1128 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1129 		return;
1130 	}
1131 
1132 	if (!vcpu->arch.mmio_host_swabbed) {
1133 		switch (run->mmio.len) {
1134 		case 8: gpr = *(u64 *)run->mmio.data; break;
1135 		case 4: gpr = *(u32 *)run->mmio.data; break;
1136 		case 2: gpr = *(u16 *)run->mmio.data; break;
1137 		case 1: gpr = *(u8 *)run->mmio.data; break;
1138 		}
1139 	} else {
1140 		switch (run->mmio.len) {
1141 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1142 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1143 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1144 		case 1: gpr = *(u8 *)run->mmio.data; break;
1145 		}
1146 	}
1147 
1148 	/* conversion between single and double precision */
1149 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1150 		gpr = sp_to_dp(gpr);
1151 
1152 	if (vcpu->arch.mmio_sign_extend) {
1153 		switch (run->mmio.len) {
1154 #ifdef CONFIG_PPC64
1155 		case 4:
1156 			gpr = (s64)(s32)gpr;
1157 			break;
1158 #endif
1159 		case 2:
1160 			gpr = (s64)(s16)gpr;
1161 			break;
1162 		case 1:
1163 			gpr = (s64)(s8)gpr;
1164 			break;
1165 		}
1166 	}
1167 
1168 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1169 	case KVM_MMIO_REG_GPR:
1170 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1171 		break;
1172 	case KVM_MMIO_REG_FPR:
1173 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1174 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1175 
1176 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1177 		break;
1178 #ifdef CONFIG_PPC_BOOK3S
1179 	case KVM_MMIO_REG_QPR:
1180 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1181 		break;
1182 	case KVM_MMIO_REG_FQPR:
1183 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1184 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1185 		break;
1186 #endif
1187 #ifdef CONFIG_VSX
1188 	case KVM_MMIO_REG_VSX:
1189 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1190 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1191 
1192 		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1193 			kvmppc_set_vsr_dword(vcpu, gpr);
1194 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1195 			kvmppc_set_vsr_word(vcpu, gpr);
1196 		else if (vcpu->arch.mmio_copy_type ==
1197 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1198 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1199 		else if (vcpu->arch.mmio_copy_type ==
1200 				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1201 			kvmppc_set_vsr_word_dump(vcpu, gpr);
1202 		break;
1203 #endif
1204 #ifdef CONFIG_ALTIVEC
1205 	case KVM_MMIO_REG_VMX:
1206 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1207 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1208 
1209 		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1210 			kvmppc_set_vmx_dword(vcpu, gpr);
1211 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1212 			kvmppc_set_vmx_word(vcpu, gpr);
1213 		else if (vcpu->arch.mmio_copy_type ==
1214 				KVMPPC_VMX_COPY_HWORD)
1215 			kvmppc_set_vmx_hword(vcpu, gpr);
1216 		else if (vcpu->arch.mmio_copy_type ==
1217 				KVMPPC_VMX_COPY_BYTE)
1218 			kvmppc_set_vmx_byte(vcpu, gpr);
1219 		break;
1220 #endif
1221 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1222 	case KVM_MMIO_REG_NESTED_GPR:
1223 		if (kvmppc_need_byteswap(vcpu))
1224 			gpr = swab64(gpr);
1225 		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1226 				     sizeof(gpr));
1227 		break;
1228 #endif
1229 	default:
1230 		BUG();
1231 	}
1232 }
1233 
1234 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1235 				unsigned int rt, unsigned int bytes,
1236 				int is_default_endian, int sign_extend)
1237 {
1238 	int idx, ret;
1239 	bool host_swabbed;
1240 
1241 	/* Pity C doesn't have a logical XOR operator */
1242 	if (kvmppc_need_byteswap(vcpu)) {
1243 		host_swabbed = is_default_endian;
1244 	} else {
1245 		host_swabbed = !is_default_endian;
1246 	}
1247 
1248 	if (bytes > sizeof(run->mmio.data)) {
1249 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1250 		       run->mmio.len);
1251 	}
1252 
1253 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1254 	run->mmio.len = bytes;
1255 	run->mmio.is_write = 0;
1256 
1257 	vcpu->arch.io_gpr = rt;
1258 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1259 	vcpu->mmio_needed = 1;
1260 	vcpu->mmio_is_write = 0;
1261 	vcpu->arch.mmio_sign_extend = sign_extend;
1262 
1263 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1264 
1265 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1266 			      bytes, &run->mmio.data);
1267 
1268 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1269 
1270 	if (!ret) {
1271 		kvmppc_complete_mmio_load(vcpu, run);
1272 		vcpu->mmio_needed = 0;
1273 		return EMULATE_DONE;
1274 	}
1275 
1276 	return EMULATE_DO_MMIO;
1277 }
1278 
1279 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1280 		       unsigned int rt, unsigned int bytes,
1281 		       int is_default_endian)
1282 {
1283 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1284 }
1285 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1286 
1287 /* Same as above, but sign extends */
1288 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1289 			unsigned int rt, unsigned int bytes,
1290 			int is_default_endian)
1291 {
1292 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1293 }
1294 
1295 #ifdef CONFIG_VSX
1296 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1297 			unsigned int rt, unsigned int bytes,
1298 			int is_default_endian, int mmio_sign_extend)
1299 {
1300 	enum emulation_result emulated = EMULATE_DONE;
1301 
1302 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1303 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1304 		return EMULATE_FAIL;
1305 
1306 	while (vcpu->arch.mmio_vsx_copy_nums) {
1307 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1308 			is_default_endian, mmio_sign_extend);
1309 
1310 		if (emulated != EMULATE_DONE)
1311 			break;
1312 
1313 		vcpu->arch.paddr_accessed += run->mmio.len;
1314 
1315 		vcpu->arch.mmio_vsx_copy_nums--;
1316 		vcpu->arch.mmio_vsx_offset++;
1317 	}
1318 	return emulated;
1319 }
1320 #endif /* CONFIG_VSX */
1321 
1322 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1323 			u64 val, unsigned int bytes, int is_default_endian)
1324 {
1325 	void *data = run->mmio.data;
1326 	int idx, ret;
1327 	bool host_swabbed;
1328 
1329 	/* Pity C doesn't have a logical XOR operator */
1330 	if (kvmppc_need_byteswap(vcpu)) {
1331 		host_swabbed = is_default_endian;
1332 	} else {
1333 		host_swabbed = !is_default_endian;
1334 	}
1335 
1336 	if (bytes > sizeof(run->mmio.data)) {
1337 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1338 		       run->mmio.len);
1339 	}
1340 
1341 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1342 	run->mmio.len = bytes;
1343 	run->mmio.is_write = 1;
1344 	vcpu->mmio_needed = 1;
1345 	vcpu->mmio_is_write = 1;
1346 
1347 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1348 		val = dp_to_sp(val);
1349 
1350 	/* Store the value at the lowest bytes in 'data'. */
1351 	if (!host_swabbed) {
1352 		switch (bytes) {
1353 		case 8: *(u64 *)data = val; break;
1354 		case 4: *(u32 *)data = val; break;
1355 		case 2: *(u16 *)data = val; break;
1356 		case 1: *(u8  *)data = val; break;
1357 		}
1358 	} else {
1359 		switch (bytes) {
1360 		case 8: *(u64 *)data = swab64(val); break;
1361 		case 4: *(u32 *)data = swab32(val); break;
1362 		case 2: *(u16 *)data = swab16(val); break;
1363 		case 1: *(u8  *)data = val; break;
1364 		}
1365 	}
1366 
1367 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1368 
1369 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1370 			       bytes, &run->mmio.data);
1371 
1372 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1373 
1374 	if (!ret) {
1375 		vcpu->mmio_needed = 0;
1376 		return EMULATE_DONE;
1377 	}
1378 
1379 	return EMULATE_DO_MMIO;
1380 }
1381 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1382 
1383 #ifdef CONFIG_VSX
1384 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1385 {
1386 	u32 dword_offset, word_offset;
1387 	union kvmppc_one_reg reg;
1388 	int vsx_offset = 0;
1389 	int copy_type = vcpu->arch.mmio_copy_type;
1390 	int result = 0;
1391 
1392 	switch (copy_type) {
1393 	case KVMPPC_VSX_COPY_DWORD:
1394 		vsx_offset =
1395 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1396 
1397 		if (vsx_offset == -1) {
1398 			result = -1;
1399 			break;
1400 		}
1401 
1402 		if (rs < 32) {
1403 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1404 		} else {
1405 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1406 			*val = reg.vsxval[vsx_offset];
1407 		}
1408 		break;
1409 
1410 	case KVMPPC_VSX_COPY_WORD:
1411 		vsx_offset =
1412 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1413 
1414 		if (vsx_offset == -1) {
1415 			result = -1;
1416 			break;
1417 		}
1418 
1419 		if (rs < 32) {
1420 			dword_offset = vsx_offset / 2;
1421 			word_offset = vsx_offset % 2;
1422 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1423 			*val = reg.vsx32val[word_offset];
1424 		} else {
1425 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1426 			*val = reg.vsx32val[vsx_offset];
1427 		}
1428 		break;
1429 
1430 	default:
1431 		result = -1;
1432 		break;
1433 	}
1434 
1435 	return result;
1436 }
1437 
1438 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1439 			int rs, unsigned int bytes, int is_default_endian)
1440 {
1441 	u64 val;
1442 	enum emulation_result emulated = EMULATE_DONE;
1443 
1444 	vcpu->arch.io_gpr = rs;
1445 
1446 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1447 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1448 		return EMULATE_FAIL;
1449 
1450 	while (vcpu->arch.mmio_vsx_copy_nums) {
1451 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1452 			return EMULATE_FAIL;
1453 
1454 		emulated = kvmppc_handle_store(run, vcpu,
1455 			 val, bytes, is_default_endian);
1456 
1457 		if (emulated != EMULATE_DONE)
1458 			break;
1459 
1460 		vcpu->arch.paddr_accessed += run->mmio.len;
1461 
1462 		vcpu->arch.mmio_vsx_copy_nums--;
1463 		vcpu->arch.mmio_vsx_offset++;
1464 	}
1465 
1466 	return emulated;
1467 }
1468 
1469 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1470 			struct kvm_run *run)
1471 {
1472 	enum emulation_result emulated = EMULATE_FAIL;
1473 	int r;
1474 
1475 	vcpu->arch.paddr_accessed += run->mmio.len;
1476 
1477 	if (!vcpu->mmio_is_write) {
1478 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1479 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1480 	} else {
1481 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1482 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1483 	}
1484 
1485 	switch (emulated) {
1486 	case EMULATE_DO_MMIO:
1487 		run->exit_reason = KVM_EXIT_MMIO;
1488 		r = RESUME_HOST;
1489 		break;
1490 	case EMULATE_FAIL:
1491 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1492 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1493 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1494 		r = RESUME_HOST;
1495 		break;
1496 	default:
1497 		r = RESUME_GUEST;
1498 		break;
1499 	}
1500 	return r;
1501 }
1502 #endif /* CONFIG_VSX */
1503 
1504 #ifdef CONFIG_ALTIVEC
1505 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1506 		unsigned int rt, unsigned int bytes, int is_default_endian)
1507 {
1508 	enum emulation_result emulated = EMULATE_DONE;
1509 
1510 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1511 		return EMULATE_FAIL;
1512 
1513 	while (vcpu->arch.mmio_vmx_copy_nums) {
1514 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1515 				is_default_endian, 0);
1516 
1517 		if (emulated != EMULATE_DONE)
1518 			break;
1519 
1520 		vcpu->arch.paddr_accessed += run->mmio.len;
1521 		vcpu->arch.mmio_vmx_copy_nums--;
1522 		vcpu->arch.mmio_vmx_offset++;
1523 	}
1524 
1525 	return emulated;
1526 }
1527 
1528 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1529 {
1530 	union kvmppc_one_reg reg;
1531 	int vmx_offset = 0;
1532 	int result = 0;
1533 
1534 	vmx_offset =
1535 		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1536 
1537 	if (vmx_offset == -1)
1538 		return -1;
1539 
1540 	reg.vval = VCPU_VSX_VR(vcpu, index);
1541 	*val = reg.vsxval[vmx_offset];
1542 
1543 	return result;
1544 }
1545 
1546 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1547 {
1548 	union kvmppc_one_reg reg;
1549 	int vmx_offset = 0;
1550 	int result = 0;
1551 
1552 	vmx_offset =
1553 		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1554 
1555 	if (vmx_offset == -1)
1556 		return -1;
1557 
1558 	reg.vval = VCPU_VSX_VR(vcpu, index);
1559 	*val = reg.vsx32val[vmx_offset];
1560 
1561 	return result;
1562 }
1563 
1564 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1565 {
1566 	union kvmppc_one_reg reg;
1567 	int vmx_offset = 0;
1568 	int result = 0;
1569 
1570 	vmx_offset =
1571 		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1572 
1573 	if (vmx_offset == -1)
1574 		return -1;
1575 
1576 	reg.vval = VCPU_VSX_VR(vcpu, index);
1577 	*val = reg.vsx16val[vmx_offset];
1578 
1579 	return result;
1580 }
1581 
1582 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1583 {
1584 	union kvmppc_one_reg reg;
1585 	int vmx_offset = 0;
1586 	int result = 0;
1587 
1588 	vmx_offset =
1589 		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1590 
1591 	if (vmx_offset == -1)
1592 		return -1;
1593 
1594 	reg.vval = VCPU_VSX_VR(vcpu, index);
1595 	*val = reg.vsx8val[vmx_offset];
1596 
1597 	return result;
1598 }
1599 
1600 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1601 		unsigned int rs, unsigned int bytes, int is_default_endian)
1602 {
1603 	u64 val = 0;
1604 	unsigned int index = rs & KVM_MMIO_REG_MASK;
1605 	enum emulation_result emulated = EMULATE_DONE;
1606 
1607 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1608 		return EMULATE_FAIL;
1609 
1610 	vcpu->arch.io_gpr = rs;
1611 
1612 	while (vcpu->arch.mmio_vmx_copy_nums) {
1613 		switch (vcpu->arch.mmio_copy_type) {
1614 		case KVMPPC_VMX_COPY_DWORD:
1615 			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1616 				return EMULATE_FAIL;
1617 
1618 			break;
1619 		case KVMPPC_VMX_COPY_WORD:
1620 			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1621 				return EMULATE_FAIL;
1622 			break;
1623 		case KVMPPC_VMX_COPY_HWORD:
1624 			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1625 				return EMULATE_FAIL;
1626 			break;
1627 		case KVMPPC_VMX_COPY_BYTE:
1628 			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1629 				return EMULATE_FAIL;
1630 			break;
1631 		default:
1632 			return EMULATE_FAIL;
1633 		}
1634 
1635 		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1636 				is_default_endian);
1637 		if (emulated != EMULATE_DONE)
1638 			break;
1639 
1640 		vcpu->arch.paddr_accessed += run->mmio.len;
1641 		vcpu->arch.mmio_vmx_copy_nums--;
1642 		vcpu->arch.mmio_vmx_offset++;
1643 	}
1644 
1645 	return emulated;
1646 }
1647 
1648 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1649 		struct kvm_run *run)
1650 {
1651 	enum emulation_result emulated = EMULATE_FAIL;
1652 	int r;
1653 
1654 	vcpu->arch.paddr_accessed += run->mmio.len;
1655 
1656 	if (!vcpu->mmio_is_write) {
1657 		emulated = kvmppc_handle_vmx_load(run, vcpu,
1658 				vcpu->arch.io_gpr, run->mmio.len, 1);
1659 	} else {
1660 		emulated = kvmppc_handle_vmx_store(run, vcpu,
1661 				vcpu->arch.io_gpr, run->mmio.len, 1);
1662 	}
1663 
1664 	switch (emulated) {
1665 	case EMULATE_DO_MMIO:
1666 		run->exit_reason = KVM_EXIT_MMIO;
1667 		r = RESUME_HOST;
1668 		break;
1669 	case EMULATE_FAIL:
1670 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1671 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1672 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1673 		r = RESUME_HOST;
1674 		break;
1675 	default:
1676 		r = RESUME_GUEST;
1677 		break;
1678 	}
1679 	return r;
1680 }
1681 #endif /* CONFIG_ALTIVEC */
1682 
1683 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1684 {
1685 	int r = 0;
1686 	union kvmppc_one_reg val;
1687 	int size;
1688 
1689 	size = one_reg_size(reg->id);
1690 	if (size > sizeof(val))
1691 		return -EINVAL;
1692 
1693 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1694 	if (r == -EINVAL) {
1695 		r = 0;
1696 		switch (reg->id) {
1697 #ifdef CONFIG_ALTIVEC
1698 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1699 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1700 				r = -ENXIO;
1701 				break;
1702 			}
1703 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1704 			break;
1705 		case KVM_REG_PPC_VSCR:
1706 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1707 				r = -ENXIO;
1708 				break;
1709 			}
1710 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1711 			break;
1712 		case KVM_REG_PPC_VRSAVE:
1713 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1714 			break;
1715 #endif /* CONFIG_ALTIVEC */
1716 		default:
1717 			r = -EINVAL;
1718 			break;
1719 		}
1720 	}
1721 
1722 	if (r)
1723 		return r;
1724 
1725 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1726 		r = -EFAULT;
1727 
1728 	return r;
1729 }
1730 
1731 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1732 {
1733 	int r;
1734 	union kvmppc_one_reg val;
1735 	int size;
1736 
1737 	size = one_reg_size(reg->id);
1738 	if (size > sizeof(val))
1739 		return -EINVAL;
1740 
1741 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1742 		return -EFAULT;
1743 
1744 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1745 	if (r == -EINVAL) {
1746 		r = 0;
1747 		switch (reg->id) {
1748 #ifdef CONFIG_ALTIVEC
1749 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1750 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1751 				r = -ENXIO;
1752 				break;
1753 			}
1754 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1755 			break;
1756 		case KVM_REG_PPC_VSCR:
1757 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1758 				r = -ENXIO;
1759 				break;
1760 			}
1761 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1762 			break;
1763 		case KVM_REG_PPC_VRSAVE:
1764 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1765 				r = -ENXIO;
1766 				break;
1767 			}
1768 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1769 			break;
1770 #endif /* CONFIG_ALTIVEC */
1771 		default:
1772 			r = -EINVAL;
1773 			break;
1774 		}
1775 	}
1776 
1777 	return r;
1778 }
1779 
1780 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1781 {
1782 	int r;
1783 
1784 	vcpu_load(vcpu);
1785 
1786 	if (vcpu->mmio_needed) {
1787 		vcpu->mmio_needed = 0;
1788 		if (!vcpu->mmio_is_write)
1789 			kvmppc_complete_mmio_load(vcpu, run);
1790 #ifdef CONFIG_VSX
1791 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1792 			vcpu->arch.mmio_vsx_copy_nums--;
1793 			vcpu->arch.mmio_vsx_offset++;
1794 		}
1795 
1796 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1797 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1798 			if (r == RESUME_HOST) {
1799 				vcpu->mmio_needed = 1;
1800 				goto out;
1801 			}
1802 		}
1803 #endif
1804 #ifdef CONFIG_ALTIVEC
1805 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1806 			vcpu->arch.mmio_vmx_copy_nums--;
1807 			vcpu->arch.mmio_vmx_offset++;
1808 		}
1809 
1810 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1811 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1812 			if (r == RESUME_HOST) {
1813 				vcpu->mmio_needed = 1;
1814 				goto out;
1815 			}
1816 		}
1817 #endif
1818 	} else if (vcpu->arch.osi_needed) {
1819 		u64 *gprs = run->osi.gprs;
1820 		int i;
1821 
1822 		for (i = 0; i < 32; i++)
1823 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1824 		vcpu->arch.osi_needed = 0;
1825 	} else if (vcpu->arch.hcall_needed) {
1826 		int i;
1827 
1828 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1829 		for (i = 0; i < 9; ++i)
1830 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1831 		vcpu->arch.hcall_needed = 0;
1832 #ifdef CONFIG_BOOKE
1833 	} else if (vcpu->arch.epr_needed) {
1834 		kvmppc_set_epr(vcpu, run->epr.epr);
1835 		vcpu->arch.epr_needed = 0;
1836 #endif
1837 	}
1838 
1839 	kvm_sigset_activate(vcpu);
1840 
1841 	if (run->immediate_exit)
1842 		r = -EINTR;
1843 	else
1844 		r = kvmppc_vcpu_run(run, vcpu);
1845 
1846 	kvm_sigset_deactivate(vcpu);
1847 
1848 #ifdef CONFIG_ALTIVEC
1849 out:
1850 #endif
1851 	vcpu_put(vcpu);
1852 	return r;
1853 }
1854 
1855 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1856 {
1857 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1858 		kvmppc_core_dequeue_external(vcpu);
1859 		return 0;
1860 	}
1861 
1862 	kvmppc_core_queue_external(vcpu, irq);
1863 
1864 	kvm_vcpu_kick(vcpu);
1865 
1866 	return 0;
1867 }
1868 
1869 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1870 				     struct kvm_enable_cap *cap)
1871 {
1872 	int r;
1873 
1874 	if (cap->flags)
1875 		return -EINVAL;
1876 
1877 	switch (cap->cap) {
1878 	case KVM_CAP_PPC_OSI:
1879 		r = 0;
1880 		vcpu->arch.osi_enabled = true;
1881 		break;
1882 	case KVM_CAP_PPC_PAPR:
1883 		r = 0;
1884 		vcpu->arch.papr_enabled = true;
1885 		break;
1886 	case KVM_CAP_PPC_EPR:
1887 		r = 0;
1888 		if (cap->args[0])
1889 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1890 		else
1891 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1892 		break;
1893 #ifdef CONFIG_BOOKE
1894 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1895 		r = 0;
1896 		vcpu->arch.watchdog_enabled = true;
1897 		break;
1898 #endif
1899 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1900 	case KVM_CAP_SW_TLB: {
1901 		struct kvm_config_tlb cfg;
1902 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1903 
1904 		r = -EFAULT;
1905 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1906 			break;
1907 
1908 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1909 		break;
1910 	}
1911 #endif
1912 #ifdef CONFIG_KVM_MPIC
1913 	case KVM_CAP_IRQ_MPIC: {
1914 		struct fd f;
1915 		struct kvm_device *dev;
1916 
1917 		r = -EBADF;
1918 		f = fdget(cap->args[0]);
1919 		if (!f.file)
1920 			break;
1921 
1922 		r = -EPERM;
1923 		dev = kvm_device_from_filp(f.file);
1924 		if (dev)
1925 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1926 
1927 		fdput(f);
1928 		break;
1929 	}
1930 #endif
1931 #ifdef CONFIG_KVM_XICS
1932 	case KVM_CAP_IRQ_XICS: {
1933 		struct fd f;
1934 		struct kvm_device *dev;
1935 
1936 		r = -EBADF;
1937 		f = fdget(cap->args[0]);
1938 		if (!f.file)
1939 			break;
1940 
1941 		r = -EPERM;
1942 		dev = kvm_device_from_filp(f.file);
1943 		if (dev) {
1944 			if (xics_on_xive())
1945 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1946 			else
1947 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1948 		}
1949 
1950 		fdput(f);
1951 		break;
1952 	}
1953 #endif /* CONFIG_KVM_XICS */
1954 #ifdef CONFIG_KVM_XIVE
1955 	case KVM_CAP_PPC_IRQ_XIVE: {
1956 		struct fd f;
1957 		struct kvm_device *dev;
1958 
1959 		r = -EBADF;
1960 		f = fdget(cap->args[0]);
1961 		if (!f.file)
1962 			break;
1963 
1964 		r = -ENXIO;
1965 		if (!xive_enabled())
1966 			break;
1967 
1968 		r = -EPERM;
1969 		dev = kvm_device_from_filp(f.file);
1970 		if (dev)
1971 			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1972 							    cap->args[1]);
1973 
1974 		fdput(f);
1975 		break;
1976 	}
1977 #endif /* CONFIG_KVM_XIVE */
1978 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1979 	case KVM_CAP_PPC_FWNMI:
1980 		r = -EINVAL;
1981 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1982 			break;
1983 		r = 0;
1984 		vcpu->kvm->arch.fwnmi_enabled = true;
1985 		break;
1986 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1987 	default:
1988 		r = -EINVAL;
1989 		break;
1990 	}
1991 
1992 	if (!r)
1993 		r = kvmppc_sanity_check(vcpu);
1994 
1995 	return r;
1996 }
1997 
1998 bool kvm_arch_intc_initialized(struct kvm *kvm)
1999 {
2000 #ifdef CONFIG_KVM_MPIC
2001 	if (kvm->arch.mpic)
2002 		return true;
2003 #endif
2004 #ifdef CONFIG_KVM_XICS
2005 	if (kvm->arch.xics || kvm->arch.xive)
2006 		return true;
2007 #endif
2008 	return false;
2009 }
2010 
2011 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2012                                     struct kvm_mp_state *mp_state)
2013 {
2014 	return -EINVAL;
2015 }
2016 
2017 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2018                                     struct kvm_mp_state *mp_state)
2019 {
2020 	return -EINVAL;
2021 }
2022 
2023 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2024 			       unsigned int ioctl, unsigned long arg)
2025 {
2026 	struct kvm_vcpu *vcpu = filp->private_data;
2027 	void __user *argp = (void __user *)arg;
2028 
2029 	if (ioctl == KVM_INTERRUPT) {
2030 		struct kvm_interrupt irq;
2031 		if (copy_from_user(&irq, argp, sizeof(irq)))
2032 			return -EFAULT;
2033 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2034 	}
2035 	return -ENOIOCTLCMD;
2036 }
2037 
2038 long kvm_arch_vcpu_ioctl(struct file *filp,
2039                          unsigned int ioctl, unsigned long arg)
2040 {
2041 	struct kvm_vcpu *vcpu = filp->private_data;
2042 	void __user *argp = (void __user *)arg;
2043 	long r;
2044 
2045 	switch (ioctl) {
2046 	case KVM_ENABLE_CAP:
2047 	{
2048 		struct kvm_enable_cap cap;
2049 		r = -EFAULT;
2050 		vcpu_load(vcpu);
2051 		if (copy_from_user(&cap, argp, sizeof(cap)))
2052 			goto out;
2053 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2054 		vcpu_put(vcpu);
2055 		break;
2056 	}
2057 
2058 	case KVM_SET_ONE_REG:
2059 	case KVM_GET_ONE_REG:
2060 	{
2061 		struct kvm_one_reg reg;
2062 		r = -EFAULT;
2063 		if (copy_from_user(&reg, argp, sizeof(reg)))
2064 			goto out;
2065 		if (ioctl == KVM_SET_ONE_REG)
2066 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2067 		else
2068 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2069 		break;
2070 	}
2071 
2072 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2073 	case KVM_DIRTY_TLB: {
2074 		struct kvm_dirty_tlb dirty;
2075 		r = -EFAULT;
2076 		vcpu_load(vcpu);
2077 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2078 			goto out;
2079 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2080 		vcpu_put(vcpu);
2081 		break;
2082 	}
2083 #endif
2084 	default:
2085 		r = -EINVAL;
2086 	}
2087 
2088 out:
2089 	return r;
2090 }
2091 
2092 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2093 {
2094 	return VM_FAULT_SIGBUS;
2095 }
2096 
2097 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2098 {
2099 	u32 inst_nop = 0x60000000;
2100 #ifdef CONFIG_KVM_BOOKE_HV
2101 	u32 inst_sc1 = 0x44000022;
2102 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2103 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2104 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2105 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2106 #else
2107 	u32 inst_lis = 0x3c000000;
2108 	u32 inst_ori = 0x60000000;
2109 	u32 inst_sc = 0x44000002;
2110 	u32 inst_imm_mask = 0xffff;
2111 
2112 	/*
2113 	 * The hypercall to get into KVM from within guest context is as
2114 	 * follows:
2115 	 *
2116 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2117 	 *    ori r0, KVM_SC_MAGIC_R0@l
2118 	 *    sc
2119 	 *    nop
2120 	 */
2121 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2122 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2123 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2124 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2125 #endif
2126 
2127 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2128 
2129 	return 0;
2130 }
2131 
2132 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2133 			  bool line_status)
2134 {
2135 	if (!irqchip_in_kernel(kvm))
2136 		return -ENXIO;
2137 
2138 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2139 					irq_event->irq, irq_event->level,
2140 					line_status);
2141 	return 0;
2142 }
2143 
2144 
2145 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2146 			    struct kvm_enable_cap *cap)
2147 {
2148 	int r;
2149 
2150 	if (cap->flags)
2151 		return -EINVAL;
2152 
2153 	switch (cap->cap) {
2154 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2155 	case KVM_CAP_PPC_ENABLE_HCALL: {
2156 		unsigned long hcall = cap->args[0];
2157 
2158 		r = -EINVAL;
2159 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2160 		    cap->args[1] > 1)
2161 			break;
2162 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2163 			break;
2164 		if (cap->args[1])
2165 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2166 		else
2167 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2168 		r = 0;
2169 		break;
2170 	}
2171 	case KVM_CAP_PPC_SMT: {
2172 		unsigned long mode = cap->args[0];
2173 		unsigned long flags = cap->args[1];
2174 
2175 		r = -EINVAL;
2176 		if (kvm->arch.kvm_ops->set_smt_mode)
2177 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2178 		break;
2179 	}
2180 
2181 	case KVM_CAP_PPC_NESTED_HV:
2182 		r = -EINVAL;
2183 		if (!is_kvmppc_hv_enabled(kvm) ||
2184 		    !kvm->arch.kvm_ops->enable_nested)
2185 			break;
2186 		r = kvm->arch.kvm_ops->enable_nested(kvm);
2187 		break;
2188 #endif
2189 	default:
2190 		r = -EINVAL;
2191 		break;
2192 	}
2193 
2194 	return r;
2195 }
2196 
2197 #ifdef CONFIG_PPC_BOOK3S_64
2198 /*
2199  * These functions check whether the underlying hardware is safe
2200  * against attacks based on observing the effects of speculatively
2201  * executed instructions, and whether it supplies instructions for
2202  * use in workarounds.  The information comes from firmware, either
2203  * via the device tree on powernv platforms or from an hcall on
2204  * pseries platforms.
2205  */
2206 #ifdef CONFIG_PPC_PSERIES
2207 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2208 {
2209 	struct h_cpu_char_result c;
2210 	unsigned long rc;
2211 
2212 	if (!machine_is(pseries))
2213 		return -ENOTTY;
2214 
2215 	rc = plpar_get_cpu_characteristics(&c);
2216 	if (rc == H_SUCCESS) {
2217 		cp->character = c.character;
2218 		cp->behaviour = c.behaviour;
2219 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2220 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2221 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2222 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2223 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2224 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2225 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2226 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2227 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2228 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2229 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2230 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2231 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2232 	}
2233 	return 0;
2234 }
2235 #else
2236 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2237 {
2238 	return -ENOTTY;
2239 }
2240 #endif
2241 
2242 static inline bool have_fw_feat(struct device_node *fw_features,
2243 				const char *state, const char *name)
2244 {
2245 	struct device_node *np;
2246 	bool r = false;
2247 
2248 	np = of_get_child_by_name(fw_features, name);
2249 	if (np) {
2250 		r = of_property_read_bool(np, state);
2251 		of_node_put(np);
2252 	}
2253 	return r;
2254 }
2255 
2256 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2257 {
2258 	struct device_node *np, *fw_features;
2259 	int r;
2260 
2261 	memset(cp, 0, sizeof(*cp));
2262 	r = pseries_get_cpu_char(cp);
2263 	if (r != -ENOTTY)
2264 		return r;
2265 
2266 	np = of_find_node_by_name(NULL, "ibm,opal");
2267 	if (np) {
2268 		fw_features = of_get_child_by_name(np, "fw-features");
2269 		of_node_put(np);
2270 		if (!fw_features)
2271 			return 0;
2272 		if (have_fw_feat(fw_features, "enabled",
2273 				 "inst-spec-barrier-ori31,31,0"))
2274 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2275 		if (have_fw_feat(fw_features, "enabled",
2276 				 "fw-bcctrl-serialized"))
2277 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2278 		if (have_fw_feat(fw_features, "enabled",
2279 				 "inst-l1d-flush-ori30,30,0"))
2280 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2281 		if (have_fw_feat(fw_features, "enabled",
2282 				 "inst-l1d-flush-trig2"))
2283 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2284 		if (have_fw_feat(fw_features, "enabled",
2285 				 "fw-l1d-thread-split"))
2286 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2287 		if (have_fw_feat(fw_features, "enabled",
2288 				 "fw-count-cache-disabled"))
2289 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2290 		if (have_fw_feat(fw_features, "enabled",
2291 				 "fw-count-cache-flush-bcctr2,0,0"))
2292 			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2293 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2294 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2295 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2296 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2297 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2298 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2299 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2300 
2301 		if (have_fw_feat(fw_features, "enabled",
2302 				 "speculation-policy-favor-security"))
2303 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2304 		if (!have_fw_feat(fw_features, "disabled",
2305 				  "needs-l1d-flush-msr-pr-0-to-1"))
2306 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2307 		if (!have_fw_feat(fw_features, "disabled",
2308 				  "needs-spec-barrier-for-bound-checks"))
2309 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2310 		if (have_fw_feat(fw_features, "enabled",
2311 				 "needs-count-cache-flush-on-context-switch"))
2312 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2313 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2314 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2315 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2316 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2317 
2318 		of_node_put(fw_features);
2319 	}
2320 
2321 	return 0;
2322 }
2323 #endif
2324 
2325 long kvm_arch_vm_ioctl(struct file *filp,
2326                        unsigned int ioctl, unsigned long arg)
2327 {
2328 	struct kvm *kvm __maybe_unused = filp->private_data;
2329 	void __user *argp = (void __user *)arg;
2330 	long r;
2331 
2332 	switch (ioctl) {
2333 	case KVM_PPC_GET_PVINFO: {
2334 		struct kvm_ppc_pvinfo pvinfo;
2335 		memset(&pvinfo, 0, sizeof(pvinfo));
2336 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2337 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2338 			r = -EFAULT;
2339 			goto out;
2340 		}
2341 
2342 		break;
2343 	}
2344 #ifdef CONFIG_SPAPR_TCE_IOMMU
2345 	case KVM_CREATE_SPAPR_TCE_64: {
2346 		struct kvm_create_spapr_tce_64 create_tce_64;
2347 
2348 		r = -EFAULT;
2349 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2350 			goto out;
2351 		if (create_tce_64.flags) {
2352 			r = -EINVAL;
2353 			goto out;
2354 		}
2355 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2356 		goto out;
2357 	}
2358 	case KVM_CREATE_SPAPR_TCE: {
2359 		struct kvm_create_spapr_tce create_tce;
2360 		struct kvm_create_spapr_tce_64 create_tce_64;
2361 
2362 		r = -EFAULT;
2363 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2364 			goto out;
2365 
2366 		create_tce_64.liobn = create_tce.liobn;
2367 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2368 		create_tce_64.offset = 0;
2369 		create_tce_64.size = create_tce.window_size >>
2370 				IOMMU_PAGE_SHIFT_4K;
2371 		create_tce_64.flags = 0;
2372 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2373 		goto out;
2374 	}
2375 #endif
2376 #ifdef CONFIG_PPC_BOOK3S_64
2377 	case KVM_PPC_GET_SMMU_INFO: {
2378 		struct kvm_ppc_smmu_info info;
2379 		struct kvm *kvm = filp->private_data;
2380 
2381 		memset(&info, 0, sizeof(info));
2382 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2383 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2384 			r = -EFAULT;
2385 		break;
2386 	}
2387 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2388 		struct kvm *kvm = filp->private_data;
2389 
2390 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2391 		break;
2392 	}
2393 	case KVM_PPC_CONFIGURE_V3_MMU: {
2394 		struct kvm *kvm = filp->private_data;
2395 		struct kvm_ppc_mmuv3_cfg cfg;
2396 
2397 		r = -EINVAL;
2398 		if (!kvm->arch.kvm_ops->configure_mmu)
2399 			goto out;
2400 		r = -EFAULT;
2401 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2402 			goto out;
2403 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2404 		break;
2405 	}
2406 	case KVM_PPC_GET_RMMU_INFO: {
2407 		struct kvm *kvm = filp->private_data;
2408 		struct kvm_ppc_rmmu_info info;
2409 
2410 		r = -EINVAL;
2411 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2412 			goto out;
2413 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2414 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2415 			r = -EFAULT;
2416 		break;
2417 	}
2418 	case KVM_PPC_GET_CPU_CHAR: {
2419 		struct kvm_ppc_cpu_char cpuchar;
2420 
2421 		r = kvmppc_get_cpu_char(&cpuchar);
2422 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2423 			r = -EFAULT;
2424 		break;
2425 	}
2426 	default: {
2427 		struct kvm *kvm = filp->private_data;
2428 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2429 	}
2430 #else /* CONFIG_PPC_BOOK3S_64 */
2431 	default:
2432 		r = -ENOTTY;
2433 #endif
2434 	}
2435 out:
2436 	return r;
2437 }
2438 
2439 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2440 static unsigned long nr_lpids;
2441 
2442 long kvmppc_alloc_lpid(void)
2443 {
2444 	long lpid;
2445 
2446 	do {
2447 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2448 		if (lpid >= nr_lpids) {
2449 			pr_err("%s: No LPIDs free\n", __func__);
2450 			return -ENOMEM;
2451 		}
2452 	} while (test_and_set_bit(lpid, lpid_inuse));
2453 
2454 	return lpid;
2455 }
2456 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2457 
2458 void kvmppc_claim_lpid(long lpid)
2459 {
2460 	set_bit(lpid, lpid_inuse);
2461 }
2462 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2463 
2464 void kvmppc_free_lpid(long lpid)
2465 {
2466 	clear_bit(lpid, lpid_inuse);
2467 }
2468 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2469 
2470 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2471 {
2472 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2473 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2474 }
2475 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2476 
2477 int kvm_arch_init(void *opaque)
2478 {
2479 	return 0;
2480 }
2481 
2482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2483