1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <asm/cputable.h> 23 #include <linux/uaccess.h> 24 #include <asm/kvm_ppc.h> 25 #include <asm/cputhreads.h> 26 #include <asm/irqflags.h> 27 #include <asm/iommu.h> 28 #include <asm/switch_to.h> 29 #include <asm/xive.h> 30 #ifdef CONFIG_PPC_PSERIES 31 #include <asm/hvcall.h> 32 #include <asm/plpar_wrappers.h> 33 #endif 34 #include <asm/ultravisor.h> 35 36 #include "timing.h" 37 #include "irq.h" 38 #include "../mm/mmu_decl.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "trace.h" 42 43 struct kvmppc_ops *kvmppc_hv_ops; 44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 45 struct kvmppc_ops *kvmppc_pr_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 47 48 49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 50 { 51 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 52 } 53 54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 55 { 56 return kvm_arch_vcpu_runnable(vcpu); 57 } 58 59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 60 { 61 return false; 62 } 63 64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 65 { 66 return 1; 67 } 68 69 /* 70 * Common checks before entering the guest world. Call with interrupts 71 * disabled. 72 * 73 * returns: 74 * 75 * == 1 if we're ready to go into guest state 76 * <= 0 if we need to go back to the host with return value 77 */ 78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 79 { 80 int r; 81 82 WARN_ON(irqs_disabled()); 83 hard_irq_disable(); 84 85 while (true) { 86 if (need_resched()) { 87 local_irq_enable(); 88 cond_resched(); 89 hard_irq_disable(); 90 continue; 91 } 92 93 if (signal_pending(current)) { 94 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 95 vcpu->run->exit_reason = KVM_EXIT_INTR; 96 r = -EINTR; 97 break; 98 } 99 100 vcpu->mode = IN_GUEST_MODE; 101 102 /* 103 * Reading vcpu->requests must happen after setting vcpu->mode, 104 * so we don't miss a request because the requester sees 105 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 106 * before next entering the guest (and thus doesn't IPI). 107 * This also orders the write to mode from any reads 108 * to the page tables done while the VCPU is running. 109 * Please see the comment in kvm_flush_remote_tlbs. 110 */ 111 smp_mb(); 112 113 if (kvm_request_pending(vcpu)) { 114 /* Make sure we process requests preemptable */ 115 local_irq_enable(); 116 trace_kvm_check_requests(vcpu); 117 r = kvmppc_core_check_requests(vcpu); 118 hard_irq_disable(); 119 if (r > 0) 120 continue; 121 break; 122 } 123 124 if (kvmppc_core_prepare_to_enter(vcpu)) { 125 /* interrupts got enabled in between, so we 126 are back at square 1 */ 127 continue; 128 } 129 130 guest_enter_irqoff(); 131 return 1; 132 } 133 134 /* return to host */ 135 local_irq_enable(); 136 return r; 137 } 138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 139 140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 142 { 143 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 144 int i; 145 146 shared->sprg0 = swab64(shared->sprg0); 147 shared->sprg1 = swab64(shared->sprg1); 148 shared->sprg2 = swab64(shared->sprg2); 149 shared->sprg3 = swab64(shared->sprg3); 150 shared->srr0 = swab64(shared->srr0); 151 shared->srr1 = swab64(shared->srr1); 152 shared->dar = swab64(shared->dar); 153 shared->msr = swab64(shared->msr); 154 shared->dsisr = swab32(shared->dsisr); 155 shared->int_pending = swab32(shared->int_pending); 156 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 157 shared->sr[i] = swab32(shared->sr[i]); 158 } 159 #endif 160 161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 162 { 163 int nr = kvmppc_get_gpr(vcpu, 11); 164 int r; 165 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 166 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 167 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 168 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 169 unsigned long r2 = 0; 170 171 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 172 /* 32 bit mode */ 173 param1 &= 0xffffffff; 174 param2 &= 0xffffffff; 175 param3 &= 0xffffffff; 176 param4 &= 0xffffffff; 177 } 178 179 switch (nr) { 180 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 181 { 182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 183 /* Book3S can be little endian, find it out here */ 184 int shared_big_endian = true; 185 if (vcpu->arch.intr_msr & MSR_LE) 186 shared_big_endian = false; 187 if (shared_big_endian != vcpu->arch.shared_big_endian) 188 kvmppc_swab_shared(vcpu); 189 vcpu->arch.shared_big_endian = shared_big_endian; 190 #endif 191 192 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 193 /* 194 * Older versions of the Linux magic page code had 195 * a bug where they would map their trampoline code 196 * NX. If that's the case, remove !PR NX capability. 197 */ 198 vcpu->arch.disable_kernel_nx = true; 199 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 200 } 201 202 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 203 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 204 205 #ifdef CONFIG_PPC_64K_PAGES 206 /* 207 * Make sure our 4k magic page is in the same window of a 64k 208 * page within the guest and within the host's page. 209 */ 210 if ((vcpu->arch.magic_page_pa & 0xf000) != 211 ((ulong)vcpu->arch.shared & 0xf000)) { 212 void *old_shared = vcpu->arch.shared; 213 ulong shared = (ulong)vcpu->arch.shared; 214 void *new_shared; 215 216 shared &= PAGE_MASK; 217 shared |= vcpu->arch.magic_page_pa & 0xf000; 218 new_shared = (void*)shared; 219 memcpy(new_shared, old_shared, 0x1000); 220 vcpu->arch.shared = new_shared; 221 } 222 #endif 223 224 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 225 226 r = EV_SUCCESS; 227 break; 228 } 229 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 230 r = EV_SUCCESS; 231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 232 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 233 #endif 234 235 /* Second return value is in r4 */ 236 break; 237 case EV_HCALL_TOKEN(EV_IDLE): 238 r = EV_SUCCESS; 239 kvm_vcpu_block(vcpu); 240 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 241 break; 242 default: 243 r = EV_UNIMPLEMENTED; 244 break; 245 } 246 247 kvmppc_set_gpr(vcpu, 4, r2); 248 249 return r; 250 } 251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 252 253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 254 { 255 int r = false; 256 257 /* We have to know what CPU to virtualize */ 258 if (!vcpu->arch.pvr) 259 goto out; 260 261 /* PAPR only works with book3s_64 */ 262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 263 goto out; 264 265 /* HV KVM can only do PAPR mode for now */ 266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 267 goto out; 268 269 #ifdef CONFIG_KVM_BOOKE_HV 270 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 271 goto out; 272 #endif 273 274 r = true; 275 276 out: 277 vcpu->arch.sane = r; 278 return r ? 0 : -EINVAL; 279 } 280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 281 282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 283 { 284 enum emulation_result er; 285 int r; 286 287 er = kvmppc_emulate_loadstore(vcpu); 288 switch (er) { 289 case EMULATE_DONE: 290 /* Future optimization: only reload non-volatiles if they were 291 * actually modified. */ 292 r = RESUME_GUEST_NV; 293 break; 294 case EMULATE_AGAIN: 295 r = RESUME_GUEST; 296 break; 297 case EMULATE_DO_MMIO: 298 vcpu->run->exit_reason = KVM_EXIT_MMIO; 299 /* We must reload nonvolatiles because "update" load/store 300 * instructions modify register state. */ 301 /* Future optimization: only reload non-volatiles if they were 302 * actually modified. */ 303 r = RESUME_HOST_NV; 304 break; 305 case EMULATE_FAIL: 306 { 307 u32 last_inst; 308 309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 310 /* XXX Deliver Program interrupt to guest. */ 311 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 312 r = RESUME_HOST; 313 break; 314 } 315 default: 316 WARN_ON(1); 317 r = RESUME_GUEST; 318 } 319 320 return r; 321 } 322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 323 324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 325 bool data) 326 { 327 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 328 struct kvmppc_pte pte; 329 int r = -EINVAL; 330 331 vcpu->stat.st++; 332 333 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 334 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 335 size); 336 337 if ((!r) || (r == -EAGAIN)) 338 return r; 339 340 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 341 XLATE_WRITE, &pte); 342 if (r < 0) 343 return r; 344 345 *eaddr = pte.raddr; 346 347 if (!pte.may_write) 348 return -EPERM; 349 350 /* Magic page override */ 351 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 352 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 353 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 354 void *magic = vcpu->arch.shared; 355 magic += pte.eaddr & 0xfff; 356 memcpy(magic, ptr, size); 357 return EMULATE_DONE; 358 } 359 360 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 361 return EMULATE_DO_MMIO; 362 363 return EMULATE_DONE; 364 } 365 EXPORT_SYMBOL_GPL(kvmppc_st); 366 367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 368 bool data) 369 { 370 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 371 struct kvmppc_pte pte; 372 int rc = -EINVAL; 373 374 vcpu->stat.ld++; 375 376 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 377 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 378 size); 379 380 if ((!rc) || (rc == -EAGAIN)) 381 return rc; 382 383 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 384 XLATE_READ, &pte); 385 if (rc) 386 return rc; 387 388 *eaddr = pte.raddr; 389 390 if (!pte.may_read) 391 return -EPERM; 392 393 if (!data && !pte.may_execute) 394 return -ENOEXEC; 395 396 /* Magic page override */ 397 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 398 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 399 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 400 void *magic = vcpu->arch.shared; 401 magic += pte.eaddr & 0xfff; 402 memcpy(ptr, magic, size); 403 return EMULATE_DONE; 404 } 405 406 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 407 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); 408 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 409 if (rc) 410 return EMULATE_DO_MMIO; 411 412 return EMULATE_DONE; 413 } 414 EXPORT_SYMBOL_GPL(kvmppc_ld); 415 416 int kvm_arch_hardware_enable(void) 417 { 418 return 0; 419 } 420 421 int kvm_arch_hardware_setup(void *opaque) 422 { 423 return 0; 424 } 425 426 int kvm_arch_check_processor_compat(void *opaque) 427 { 428 return kvmppc_core_check_processor_compat(); 429 } 430 431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 432 { 433 struct kvmppc_ops *kvm_ops = NULL; 434 /* 435 * if we have both HV and PR enabled, default is HV 436 */ 437 if (type == 0) { 438 if (kvmppc_hv_ops) 439 kvm_ops = kvmppc_hv_ops; 440 else 441 kvm_ops = kvmppc_pr_ops; 442 if (!kvm_ops) 443 goto err_out; 444 } else if (type == KVM_VM_PPC_HV) { 445 if (!kvmppc_hv_ops) 446 goto err_out; 447 kvm_ops = kvmppc_hv_ops; 448 } else if (type == KVM_VM_PPC_PR) { 449 if (!kvmppc_pr_ops) 450 goto err_out; 451 kvm_ops = kvmppc_pr_ops; 452 } else 453 goto err_out; 454 455 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 456 return -ENOENT; 457 458 kvm->arch.kvm_ops = kvm_ops; 459 return kvmppc_core_init_vm(kvm); 460 err_out: 461 return -EINVAL; 462 } 463 464 void kvm_arch_destroy_vm(struct kvm *kvm) 465 { 466 unsigned int i; 467 struct kvm_vcpu *vcpu; 468 469 #ifdef CONFIG_KVM_XICS 470 /* 471 * We call kick_all_cpus_sync() to ensure that all 472 * CPUs have executed any pending IPIs before we 473 * continue and free VCPUs structures below. 474 */ 475 if (is_kvmppc_hv_enabled(kvm)) 476 kick_all_cpus_sync(); 477 #endif 478 479 kvm_for_each_vcpu(i, vcpu, kvm) 480 kvm_vcpu_destroy(vcpu); 481 482 mutex_lock(&kvm->lock); 483 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 484 kvm->vcpus[i] = NULL; 485 486 atomic_set(&kvm->online_vcpus, 0); 487 488 kvmppc_core_destroy_vm(kvm); 489 490 mutex_unlock(&kvm->lock); 491 492 /* drop the module reference */ 493 module_put(kvm->arch.kvm_ops->owner); 494 } 495 496 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 497 { 498 int r; 499 /* Assume we're using HV mode when the HV module is loaded */ 500 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 501 502 if (kvm) { 503 /* 504 * Hooray - we know which VM type we're running on. Depend on 505 * that rather than the guess above. 506 */ 507 hv_enabled = is_kvmppc_hv_enabled(kvm); 508 } 509 510 switch (ext) { 511 #ifdef CONFIG_BOOKE 512 case KVM_CAP_PPC_BOOKE_SREGS: 513 case KVM_CAP_PPC_BOOKE_WATCHDOG: 514 case KVM_CAP_PPC_EPR: 515 #else 516 case KVM_CAP_PPC_SEGSTATE: 517 case KVM_CAP_PPC_HIOR: 518 case KVM_CAP_PPC_PAPR: 519 #endif 520 case KVM_CAP_PPC_UNSET_IRQ: 521 case KVM_CAP_PPC_IRQ_LEVEL: 522 case KVM_CAP_ENABLE_CAP: 523 case KVM_CAP_ONE_REG: 524 case KVM_CAP_IOEVENTFD: 525 case KVM_CAP_DEVICE_CTRL: 526 case KVM_CAP_IMMEDIATE_EXIT: 527 case KVM_CAP_SET_GUEST_DEBUG: 528 r = 1; 529 break; 530 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 531 case KVM_CAP_PPC_PAIRED_SINGLES: 532 case KVM_CAP_PPC_OSI: 533 case KVM_CAP_PPC_GET_PVINFO: 534 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 535 case KVM_CAP_SW_TLB: 536 #endif 537 /* We support this only for PR */ 538 r = !hv_enabled; 539 break; 540 #ifdef CONFIG_KVM_MPIC 541 case KVM_CAP_IRQ_MPIC: 542 r = 1; 543 break; 544 #endif 545 546 #ifdef CONFIG_PPC_BOOK3S_64 547 case KVM_CAP_SPAPR_TCE: 548 case KVM_CAP_SPAPR_TCE_64: 549 r = 1; 550 break; 551 case KVM_CAP_SPAPR_TCE_VFIO: 552 r = !!cpu_has_feature(CPU_FTR_HVMODE); 553 break; 554 case KVM_CAP_PPC_RTAS: 555 case KVM_CAP_PPC_FIXUP_HCALL: 556 case KVM_CAP_PPC_ENABLE_HCALL: 557 #ifdef CONFIG_KVM_XICS 558 case KVM_CAP_IRQ_XICS: 559 #endif 560 case KVM_CAP_PPC_GET_CPU_CHAR: 561 r = 1; 562 break; 563 #ifdef CONFIG_KVM_XIVE 564 case KVM_CAP_PPC_IRQ_XIVE: 565 /* 566 * We need XIVE to be enabled on the platform (implies 567 * a POWER9 processor) and the PowerNV platform, as 568 * nested is not yet supported. 569 */ 570 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 571 kvmppc_xive_native_supported(); 572 break; 573 #endif 574 575 case KVM_CAP_PPC_ALLOC_HTAB: 576 r = hv_enabled; 577 break; 578 #endif /* CONFIG_PPC_BOOK3S_64 */ 579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 580 case KVM_CAP_PPC_SMT: 581 r = 0; 582 if (kvm) { 583 if (kvm->arch.emul_smt_mode > 1) 584 r = kvm->arch.emul_smt_mode; 585 else 586 r = kvm->arch.smt_mode; 587 } else if (hv_enabled) { 588 if (cpu_has_feature(CPU_FTR_ARCH_300)) 589 r = 1; 590 else 591 r = threads_per_subcore; 592 } 593 break; 594 case KVM_CAP_PPC_SMT_POSSIBLE: 595 r = 1; 596 if (hv_enabled) { 597 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 598 r = ((threads_per_subcore << 1) - 1); 599 else 600 /* P9 can emulate dbells, so allow any mode */ 601 r = 8 | 4 | 2 | 1; 602 } 603 break; 604 case KVM_CAP_PPC_RMA: 605 r = 0; 606 break; 607 case KVM_CAP_PPC_HWRNG: 608 r = kvmppc_hwrng_present(); 609 break; 610 case KVM_CAP_PPC_MMU_RADIX: 611 r = !!(hv_enabled && radix_enabled()); 612 break; 613 case KVM_CAP_PPC_MMU_HASH_V3: 614 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible && 615 kvmppc_hv_ops->hash_v3_possible()); 616 break; 617 case KVM_CAP_PPC_NESTED_HV: 618 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 619 !kvmppc_hv_ops->enable_nested(NULL)); 620 break; 621 #endif 622 case KVM_CAP_SYNC_MMU: 623 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 624 r = hv_enabled; 625 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 626 r = 1; 627 #else 628 r = 0; 629 #endif 630 break; 631 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 632 case KVM_CAP_PPC_HTAB_FD: 633 r = hv_enabled; 634 break; 635 #endif 636 case KVM_CAP_NR_VCPUS: 637 /* 638 * Recommending a number of CPUs is somewhat arbitrary; we 639 * return the number of present CPUs for -HV (since a host 640 * will have secondary threads "offline"), and for other KVM 641 * implementations just count online CPUs. 642 */ 643 if (hv_enabled) 644 r = num_present_cpus(); 645 else 646 r = num_online_cpus(); 647 break; 648 case KVM_CAP_MAX_VCPUS: 649 r = KVM_MAX_VCPUS; 650 break; 651 case KVM_CAP_MAX_VCPU_ID: 652 r = KVM_MAX_VCPU_ID; 653 break; 654 #ifdef CONFIG_PPC_BOOK3S_64 655 case KVM_CAP_PPC_GET_SMMU_INFO: 656 r = 1; 657 break; 658 case KVM_CAP_SPAPR_MULTITCE: 659 r = 1; 660 break; 661 case KVM_CAP_SPAPR_RESIZE_HPT: 662 r = !!hv_enabled; 663 break; 664 #endif 665 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 666 case KVM_CAP_PPC_FWNMI: 667 r = hv_enabled; 668 break; 669 #endif 670 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 671 case KVM_CAP_PPC_HTM: 672 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 673 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 674 break; 675 #endif 676 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 677 case KVM_CAP_PPC_SECURE_GUEST: 678 r = hv_enabled && kvmppc_hv_ops->enable_svm && 679 !kvmppc_hv_ops->enable_svm(NULL); 680 break; 681 case KVM_CAP_PPC_DAWR1: 682 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 && 683 !kvmppc_hv_ops->enable_dawr1(NULL)); 684 break; 685 case KVM_CAP_PPC_RPT_INVALIDATE: 686 r = 1; 687 break; 688 #endif 689 default: 690 r = 0; 691 break; 692 } 693 return r; 694 695 } 696 697 long kvm_arch_dev_ioctl(struct file *filp, 698 unsigned int ioctl, unsigned long arg) 699 { 700 return -EINVAL; 701 } 702 703 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 704 { 705 kvmppc_core_free_memslot(kvm, slot); 706 } 707 708 int kvm_arch_prepare_memory_region(struct kvm *kvm, 709 struct kvm_memory_slot *memslot, 710 const struct kvm_userspace_memory_region *mem, 711 enum kvm_mr_change change) 712 { 713 return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change); 714 } 715 716 void kvm_arch_commit_memory_region(struct kvm *kvm, 717 const struct kvm_userspace_memory_region *mem, 718 struct kvm_memory_slot *old, 719 const struct kvm_memory_slot *new, 720 enum kvm_mr_change change) 721 { 722 kvmppc_core_commit_memory_region(kvm, mem, old, new, change); 723 } 724 725 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 726 struct kvm_memory_slot *slot) 727 { 728 kvmppc_core_flush_memslot(kvm, slot); 729 } 730 731 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 732 { 733 return 0; 734 } 735 736 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 737 { 738 struct kvm_vcpu *vcpu; 739 740 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 741 kvmppc_decrementer_func(vcpu); 742 743 return HRTIMER_NORESTART; 744 } 745 746 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 747 { 748 int err; 749 750 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 751 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 752 vcpu->arch.dec_expires = get_tb(); 753 754 #ifdef CONFIG_KVM_EXIT_TIMING 755 mutex_init(&vcpu->arch.exit_timing_lock); 756 #endif 757 err = kvmppc_subarch_vcpu_init(vcpu); 758 if (err) 759 return err; 760 761 err = kvmppc_core_vcpu_create(vcpu); 762 if (err) 763 goto out_vcpu_uninit; 764 765 vcpu->arch.waitp = &vcpu->wait; 766 kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id); 767 return 0; 768 769 out_vcpu_uninit: 770 kvmppc_subarch_vcpu_uninit(vcpu); 771 return err; 772 } 773 774 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 775 { 776 } 777 778 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 779 { 780 /* Make sure we're not using the vcpu anymore */ 781 hrtimer_cancel(&vcpu->arch.dec_timer); 782 783 kvmppc_remove_vcpu_debugfs(vcpu); 784 785 switch (vcpu->arch.irq_type) { 786 case KVMPPC_IRQ_MPIC: 787 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 788 break; 789 case KVMPPC_IRQ_XICS: 790 if (xics_on_xive()) 791 kvmppc_xive_cleanup_vcpu(vcpu); 792 else 793 kvmppc_xics_free_icp(vcpu); 794 break; 795 case KVMPPC_IRQ_XIVE: 796 kvmppc_xive_native_cleanup_vcpu(vcpu); 797 break; 798 } 799 800 kvmppc_core_vcpu_free(vcpu); 801 802 kvmppc_subarch_vcpu_uninit(vcpu); 803 } 804 805 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 806 { 807 return kvmppc_core_pending_dec(vcpu); 808 } 809 810 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 811 { 812 #ifdef CONFIG_BOOKE 813 /* 814 * vrsave (formerly usprg0) isn't used by Linux, but may 815 * be used by the guest. 816 * 817 * On non-booke this is associated with Altivec and 818 * is handled by code in book3s.c. 819 */ 820 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 821 #endif 822 kvmppc_core_vcpu_load(vcpu, cpu); 823 } 824 825 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 826 { 827 kvmppc_core_vcpu_put(vcpu); 828 #ifdef CONFIG_BOOKE 829 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 830 #endif 831 } 832 833 /* 834 * irq_bypass_add_producer and irq_bypass_del_producer are only 835 * useful if the architecture supports PCI passthrough. 836 * irq_bypass_stop and irq_bypass_start are not needed and so 837 * kvm_ops are not defined for them. 838 */ 839 bool kvm_arch_has_irq_bypass(void) 840 { 841 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 842 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 843 } 844 845 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 846 struct irq_bypass_producer *prod) 847 { 848 struct kvm_kernel_irqfd *irqfd = 849 container_of(cons, struct kvm_kernel_irqfd, consumer); 850 struct kvm *kvm = irqfd->kvm; 851 852 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 853 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 854 855 return 0; 856 } 857 858 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 859 struct irq_bypass_producer *prod) 860 { 861 struct kvm_kernel_irqfd *irqfd = 862 container_of(cons, struct kvm_kernel_irqfd, consumer); 863 struct kvm *kvm = irqfd->kvm; 864 865 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 866 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 867 } 868 869 #ifdef CONFIG_VSX 870 static inline int kvmppc_get_vsr_dword_offset(int index) 871 { 872 int offset; 873 874 if ((index != 0) && (index != 1)) 875 return -1; 876 877 #ifdef __BIG_ENDIAN 878 offset = index; 879 #else 880 offset = 1 - index; 881 #endif 882 883 return offset; 884 } 885 886 static inline int kvmppc_get_vsr_word_offset(int index) 887 { 888 int offset; 889 890 if ((index > 3) || (index < 0)) 891 return -1; 892 893 #ifdef __BIG_ENDIAN 894 offset = index; 895 #else 896 offset = 3 - index; 897 #endif 898 return offset; 899 } 900 901 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 902 u64 gpr) 903 { 904 union kvmppc_one_reg val; 905 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 906 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 907 908 if (offset == -1) 909 return; 910 911 if (index >= 32) { 912 val.vval = VCPU_VSX_VR(vcpu, index - 32); 913 val.vsxval[offset] = gpr; 914 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 915 } else { 916 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 917 } 918 } 919 920 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 921 u64 gpr) 922 { 923 union kvmppc_one_reg val; 924 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 925 926 if (index >= 32) { 927 val.vval = VCPU_VSX_VR(vcpu, index - 32); 928 val.vsxval[0] = gpr; 929 val.vsxval[1] = gpr; 930 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 931 } else { 932 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 933 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 934 } 935 } 936 937 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 938 u32 gpr) 939 { 940 union kvmppc_one_reg val; 941 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 942 943 if (index >= 32) { 944 val.vsx32val[0] = gpr; 945 val.vsx32val[1] = gpr; 946 val.vsx32val[2] = gpr; 947 val.vsx32val[3] = gpr; 948 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 949 } else { 950 val.vsx32val[0] = gpr; 951 val.vsx32val[1] = gpr; 952 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 953 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 954 } 955 } 956 957 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 958 u32 gpr32) 959 { 960 union kvmppc_one_reg val; 961 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 962 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 963 int dword_offset, word_offset; 964 965 if (offset == -1) 966 return; 967 968 if (index >= 32) { 969 val.vval = VCPU_VSX_VR(vcpu, index - 32); 970 val.vsx32val[offset] = gpr32; 971 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 972 } else { 973 dword_offset = offset / 2; 974 word_offset = offset % 2; 975 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 976 val.vsx32val[word_offset] = gpr32; 977 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 978 } 979 } 980 #endif /* CONFIG_VSX */ 981 982 #ifdef CONFIG_ALTIVEC 983 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 984 int index, int element_size) 985 { 986 int offset; 987 int elts = sizeof(vector128)/element_size; 988 989 if ((index < 0) || (index >= elts)) 990 return -1; 991 992 if (kvmppc_need_byteswap(vcpu)) 993 offset = elts - index - 1; 994 else 995 offset = index; 996 997 return offset; 998 } 999 1000 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 1001 int index) 1002 { 1003 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 1004 } 1005 1006 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1007 int index) 1008 { 1009 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1010 } 1011 1012 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1013 int index) 1014 { 1015 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1016 } 1017 1018 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1019 int index) 1020 { 1021 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1022 } 1023 1024 1025 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1026 u64 gpr) 1027 { 1028 union kvmppc_one_reg val; 1029 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1030 vcpu->arch.mmio_vmx_offset); 1031 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1032 1033 if (offset == -1) 1034 return; 1035 1036 val.vval = VCPU_VSX_VR(vcpu, index); 1037 val.vsxval[offset] = gpr; 1038 VCPU_VSX_VR(vcpu, index) = val.vval; 1039 } 1040 1041 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1042 u32 gpr32) 1043 { 1044 union kvmppc_one_reg val; 1045 int offset = kvmppc_get_vmx_word_offset(vcpu, 1046 vcpu->arch.mmio_vmx_offset); 1047 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1048 1049 if (offset == -1) 1050 return; 1051 1052 val.vval = VCPU_VSX_VR(vcpu, index); 1053 val.vsx32val[offset] = gpr32; 1054 VCPU_VSX_VR(vcpu, index) = val.vval; 1055 } 1056 1057 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1058 u16 gpr16) 1059 { 1060 union kvmppc_one_reg val; 1061 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1062 vcpu->arch.mmio_vmx_offset); 1063 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1064 1065 if (offset == -1) 1066 return; 1067 1068 val.vval = VCPU_VSX_VR(vcpu, index); 1069 val.vsx16val[offset] = gpr16; 1070 VCPU_VSX_VR(vcpu, index) = val.vval; 1071 } 1072 1073 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1074 u8 gpr8) 1075 { 1076 union kvmppc_one_reg val; 1077 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1078 vcpu->arch.mmio_vmx_offset); 1079 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1080 1081 if (offset == -1) 1082 return; 1083 1084 val.vval = VCPU_VSX_VR(vcpu, index); 1085 val.vsx8val[offset] = gpr8; 1086 VCPU_VSX_VR(vcpu, index) = val.vval; 1087 } 1088 #endif /* CONFIG_ALTIVEC */ 1089 1090 #ifdef CONFIG_PPC_FPU 1091 static inline u64 sp_to_dp(u32 fprs) 1092 { 1093 u64 fprd; 1094 1095 preempt_disable(); 1096 enable_kernel_fp(); 1097 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m"UPD_CONSTR (fprd) : "m"UPD_CONSTR (fprs) 1098 : "fr0"); 1099 preempt_enable(); 1100 return fprd; 1101 } 1102 1103 static inline u32 dp_to_sp(u64 fprd) 1104 { 1105 u32 fprs; 1106 1107 preempt_disable(); 1108 enable_kernel_fp(); 1109 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m"UPD_CONSTR (fprs) : "m"UPD_CONSTR (fprd) 1110 : "fr0"); 1111 preempt_enable(); 1112 return fprs; 1113 } 1114 1115 #else 1116 #define sp_to_dp(x) (x) 1117 #define dp_to_sp(x) (x) 1118 #endif /* CONFIG_PPC_FPU */ 1119 1120 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1121 { 1122 struct kvm_run *run = vcpu->run; 1123 u64 gpr; 1124 1125 if (run->mmio.len > sizeof(gpr)) { 1126 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1127 return; 1128 } 1129 1130 if (!vcpu->arch.mmio_host_swabbed) { 1131 switch (run->mmio.len) { 1132 case 8: gpr = *(u64 *)run->mmio.data; break; 1133 case 4: gpr = *(u32 *)run->mmio.data; break; 1134 case 2: gpr = *(u16 *)run->mmio.data; break; 1135 case 1: gpr = *(u8 *)run->mmio.data; break; 1136 } 1137 } else { 1138 switch (run->mmio.len) { 1139 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1140 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1141 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1142 case 1: gpr = *(u8 *)run->mmio.data; break; 1143 } 1144 } 1145 1146 /* conversion between single and double precision */ 1147 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1148 gpr = sp_to_dp(gpr); 1149 1150 if (vcpu->arch.mmio_sign_extend) { 1151 switch (run->mmio.len) { 1152 #ifdef CONFIG_PPC64 1153 case 4: 1154 gpr = (s64)(s32)gpr; 1155 break; 1156 #endif 1157 case 2: 1158 gpr = (s64)(s16)gpr; 1159 break; 1160 case 1: 1161 gpr = (s64)(s8)gpr; 1162 break; 1163 } 1164 } 1165 1166 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1167 case KVM_MMIO_REG_GPR: 1168 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1169 break; 1170 case KVM_MMIO_REG_FPR: 1171 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1172 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1173 1174 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1175 break; 1176 #ifdef CONFIG_PPC_BOOK3S 1177 case KVM_MMIO_REG_QPR: 1178 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1179 break; 1180 case KVM_MMIO_REG_FQPR: 1181 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1182 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1183 break; 1184 #endif 1185 #ifdef CONFIG_VSX 1186 case KVM_MMIO_REG_VSX: 1187 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1188 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1189 1190 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1191 kvmppc_set_vsr_dword(vcpu, gpr); 1192 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1193 kvmppc_set_vsr_word(vcpu, gpr); 1194 else if (vcpu->arch.mmio_copy_type == 1195 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1196 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1197 else if (vcpu->arch.mmio_copy_type == 1198 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1199 kvmppc_set_vsr_word_dump(vcpu, gpr); 1200 break; 1201 #endif 1202 #ifdef CONFIG_ALTIVEC 1203 case KVM_MMIO_REG_VMX: 1204 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1205 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1206 1207 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1208 kvmppc_set_vmx_dword(vcpu, gpr); 1209 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1210 kvmppc_set_vmx_word(vcpu, gpr); 1211 else if (vcpu->arch.mmio_copy_type == 1212 KVMPPC_VMX_COPY_HWORD) 1213 kvmppc_set_vmx_hword(vcpu, gpr); 1214 else if (vcpu->arch.mmio_copy_type == 1215 KVMPPC_VMX_COPY_BYTE) 1216 kvmppc_set_vmx_byte(vcpu, gpr); 1217 break; 1218 #endif 1219 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1220 case KVM_MMIO_REG_NESTED_GPR: 1221 if (kvmppc_need_byteswap(vcpu)) 1222 gpr = swab64(gpr); 1223 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1224 sizeof(gpr)); 1225 break; 1226 #endif 1227 default: 1228 BUG(); 1229 } 1230 } 1231 1232 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1233 unsigned int rt, unsigned int bytes, 1234 int is_default_endian, int sign_extend) 1235 { 1236 struct kvm_run *run = vcpu->run; 1237 int idx, ret; 1238 bool host_swabbed; 1239 1240 /* Pity C doesn't have a logical XOR operator */ 1241 if (kvmppc_need_byteswap(vcpu)) { 1242 host_swabbed = is_default_endian; 1243 } else { 1244 host_swabbed = !is_default_endian; 1245 } 1246 1247 if (bytes > sizeof(run->mmio.data)) { 1248 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1249 run->mmio.len); 1250 } 1251 1252 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1253 run->mmio.len = bytes; 1254 run->mmio.is_write = 0; 1255 1256 vcpu->arch.io_gpr = rt; 1257 vcpu->arch.mmio_host_swabbed = host_swabbed; 1258 vcpu->mmio_needed = 1; 1259 vcpu->mmio_is_write = 0; 1260 vcpu->arch.mmio_sign_extend = sign_extend; 1261 1262 idx = srcu_read_lock(&vcpu->kvm->srcu); 1263 1264 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1265 bytes, &run->mmio.data); 1266 1267 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1268 1269 if (!ret) { 1270 kvmppc_complete_mmio_load(vcpu); 1271 vcpu->mmio_needed = 0; 1272 return EMULATE_DONE; 1273 } 1274 1275 return EMULATE_DO_MMIO; 1276 } 1277 1278 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1279 unsigned int rt, unsigned int bytes, 1280 int is_default_endian) 1281 { 1282 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1283 } 1284 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1285 1286 /* Same as above, but sign extends */ 1287 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1288 unsigned int rt, unsigned int bytes, 1289 int is_default_endian) 1290 { 1291 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1292 } 1293 1294 #ifdef CONFIG_VSX 1295 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1296 unsigned int rt, unsigned int bytes, 1297 int is_default_endian, int mmio_sign_extend) 1298 { 1299 enum emulation_result emulated = EMULATE_DONE; 1300 1301 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1302 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1303 return EMULATE_FAIL; 1304 1305 while (vcpu->arch.mmio_vsx_copy_nums) { 1306 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1307 is_default_endian, mmio_sign_extend); 1308 1309 if (emulated != EMULATE_DONE) 1310 break; 1311 1312 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1313 1314 vcpu->arch.mmio_vsx_copy_nums--; 1315 vcpu->arch.mmio_vsx_offset++; 1316 } 1317 return emulated; 1318 } 1319 #endif /* CONFIG_VSX */ 1320 1321 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1322 u64 val, unsigned int bytes, int is_default_endian) 1323 { 1324 struct kvm_run *run = vcpu->run; 1325 void *data = run->mmio.data; 1326 int idx, ret; 1327 bool host_swabbed; 1328 1329 /* Pity C doesn't have a logical XOR operator */ 1330 if (kvmppc_need_byteswap(vcpu)) { 1331 host_swabbed = is_default_endian; 1332 } else { 1333 host_swabbed = !is_default_endian; 1334 } 1335 1336 if (bytes > sizeof(run->mmio.data)) { 1337 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1338 run->mmio.len); 1339 } 1340 1341 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1342 run->mmio.len = bytes; 1343 run->mmio.is_write = 1; 1344 vcpu->mmio_needed = 1; 1345 vcpu->mmio_is_write = 1; 1346 1347 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1348 val = dp_to_sp(val); 1349 1350 /* Store the value at the lowest bytes in 'data'. */ 1351 if (!host_swabbed) { 1352 switch (bytes) { 1353 case 8: *(u64 *)data = val; break; 1354 case 4: *(u32 *)data = val; break; 1355 case 2: *(u16 *)data = val; break; 1356 case 1: *(u8 *)data = val; break; 1357 } 1358 } else { 1359 switch (bytes) { 1360 case 8: *(u64 *)data = swab64(val); break; 1361 case 4: *(u32 *)data = swab32(val); break; 1362 case 2: *(u16 *)data = swab16(val); break; 1363 case 1: *(u8 *)data = val; break; 1364 } 1365 } 1366 1367 idx = srcu_read_lock(&vcpu->kvm->srcu); 1368 1369 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1370 bytes, &run->mmio.data); 1371 1372 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1373 1374 if (!ret) { 1375 vcpu->mmio_needed = 0; 1376 return EMULATE_DONE; 1377 } 1378 1379 return EMULATE_DO_MMIO; 1380 } 1381 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1382 1383 #ifdef CONFIG_VSX 1384 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1385 { 1386 u32 dword_offset, word_offset; 1387 union kvmppc_one_reg reg; 1388 int vsx_offset = 0; 1389 int copy_type = vcpu->arch.mmio_copy_type; 1390 int result = 0; 1391 1392 switch (copy_type) { 1393 case KVMPPC_VSX_COPY_DWORD: 1394 vsx_offset = 1395 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1396 1397 if (vsx_offset == -1) { 1398 result = -1; 1399 break; 1400 } 1401 1402 if (rs < 32) { 1403 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1404 } else { 1405 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1406 *val = reg.vsxval[vsx_offset]; 1407 } 1408 break; 1409 1410 case KVMPPC_VSX_COPY_WORD: 1411 vsx_offset = 1412 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1413 1414 if (vsx_offset == -1) { 1415 result = -1; 1416 break; 1417 } 1418 1419 if (rs < 32) { 1420 dword_offset = vsx_offset / 2; 1421 word_offset = vsx_offset % 2; 1422 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1423 *val = reg.vsx32val[word_offset]; 1424 } else { 1425 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1426 *val = reg.vsx32val[vsx_offset]; 1427 } 1428 break; 1429 1430 default: 1431 result = -1; 1432 break; 1433 } 1434 1435 return result; 1436 } 1437 1438 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1439 int rs, unsigned int bytes, int is_default_endian) 1440 { 1441 u64 val; 1442 enum emulation_result emulated = EMULATE_DONE; 1443 1444 vcpu->arch.io_gpr = rs; 1445 1446 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1447 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1448 return EMULATE_FAIL; 1449 1450 while (vcpu->arch.mmio_vsx_copy_nums) { 1451 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1452 return EMULATE_FAIL; 1453 1454 emulated = kvmppc_handle_store(vcpu, 1455 val, bytes, is_default_endian); 1456 1457 if (emulated != EMULATE_DONE) 1458 break; 1459 1460 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1461 1462 vcpu->arch.mmio_vsx_copy_nums--; 1463 vcpu->arch.mmio_vsx_offset++; 1464 } 1465 1466 return emulated; 1467 } 1468 1469 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1470 { 1471 struct kvm_run *run = vcpu->run; 1472 enum emulation_result emulated = EMULATE_FAIL; 1473 int r; 1474 1475 vcpu->arch.paddr_accessed += run->mmio.len; 1476 1477 if (!vcpu->mmio_is_write) { 1478 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1479 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1480 } else { 1481 emulated = kvmppc_handle_vsx_store(vcpu, 1482 vcpu->arch.io_gpr, run->mmio.len, 1); 1483 } 1484 1485 switch (emulated) { 1486 case EMULATE_DO_MMIO: 1487 run->exit_reason = KVM_EXIT_MMIO; 1488 r = RESUME_HOST; 1489 break; 1490 case EMULATE_FAIL: 1491 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1492 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1493 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1494 r = RESUME_HOST; 1495 break; 1496 default: 1497 r = RESUME_GUEST; 1498 break; 1499 } 1500 return r; 1501 } 1502 #endif /* CONFIG_VSX */ 1503 1504 #ifdef CONFIG_ALTIVEC 1505 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1506 unsigned int rt, unsigned int bytes, int is_default_endian) 1507 { 1508 enum emulation_result emulated = EMULATE_DONE; 1509 1510 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1511 return EMULATE_FAIL; 1512 1513 while (vcpu->arch.mmio_vmx_copy_nums) { 1514 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1515 is_default_endian, 0); 1516 1517 if (emulated != EMULATE_DONE) 1518 break; 1519 1520 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1521 vcpu->arch.mmio_vmx_copy_nums--; 1522 vcpu->arch.mmio_vmx_offset++; 1523 } 1524 1525 return emulated; 1526 } 1527 1528 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1529 { 1530 union kvmppc_one_reg reg; 1531 int vmx_offset = 0; 1532 int result = 0; 1533 1534 vmx_offset = 1535 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1536 1537 if (vmx_offset == -1) 1538 return -1; 1539 1540 reg.vval = VCPU_VSX_VR(vcpu, index); 1541 *val = reg.vsxval[vmx_offset]; 1542 1543 return result; 1544 } 1545 1546 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1547 { 1548 union kvmppc_one_reg reg; 1549 int vmx_offset = 0; 1550 int result = 0; 1551 1552 vmx_offset = 1553 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1554 1555 if (vmx_offset == -1) 1556 return -1; 1557 1558 reg.vval = VCPU_VSX_VR(vcpu, index); 1559 *val = reg.vsx32val[vmx_offset]; 1560 1561 return result; 1562 } 1563 1564 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1565 { 1566 union kvmppc_one_reg reg; 1567 int vmx_offset = 0; 1568 int result = 0; 1569 1570 vmx_offset = 1571 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1572 1573 if (vmx_offset == -1) 1574 return -1; 1575 1576 reg.vval = VCPU_VSX_VR(vcpu, index); 1577 *val = reg.vsx16val[vmx_offset]; 1578 1579 return result; 1580 } 1581 1582 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1583 { 1584 union kvmppc_one_reg reg; 1585 int vmx_offset = 0; 1586 int result = 0; 1587 1588 vmx_offset = 1589 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1590 1591 if (vmx_offset == -1) 1592 return -1; 1593 1594 reg.vval = VCPU_VSX_VR(vcpu, index); 1595 *val = reg.vsx8val[vmx_offset]; 1596 1597 return result; 1598 } 1599 1600 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1601 unsigned int rs, unsigned int bytes, int is_default_endian) 1602 { 1603 u64 val = 0; 1604 unsigned int index = rs & KVM_MMIO_REG_MASK; 1605 enum emulation_result emulated = EMULATE_DONE; 1606 1607 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1608 return EMULATE_FAIL; 1609 1610 vcpu->arch.io_gpr = rs; 1611 1612 while (vcpu->arch.mmio_vmx_copy_nums) { 1613 switch (vcpu->arch.mmio_copy_type) { 1614 case KVMPPC_VMX_COPY_DWORD: 1615 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1616 return EMULATE_FAIL; 1617 1618 break; 1619 case KVMPPC_VMX_COPY_WORD: 1620 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1621 return EMULATE_FAIL; 1622 break; 1623 case KVMPPC_VMX_COPY_HWORD: 1624 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1625 return EMULATE_FAIL; 1626 break; 1627 case KVMPPC_VMX_COPY_BYTE: 1628 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1629 return EMULATE_FAIL; 1630 break; 1631 default: 1632 return EMULATE_FAIL; 1633 } 1634 1635 emulated = kvmppc_handle_store(vcpu, val, bytes, 1636 is_default_endian); 1637 if (emulated != EMULATE_DONE) 1638 break; 1639 1640 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1641 vcpu->arch.mmio_vmx_copy_nums--; 1642 vcpu->arch.mmio_vmx_offset++; 1643 } 1644 1645 return emulated; 1646 } 1647 1648 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1649 { 1650 struct kvm_run *run = vcpu->run; 1651 enum emulation_result emulated = EMULATE_FAIL; 1652 int r; 1653 1654 vcpu->arch.paddr_accessed += run->mmio.len; 1655 1656 if (!vcpu->mmio_is_write) { 1657 emulated = kvmppc_handle_vmx_load(vcpu, 1658 vcpu->arch.io_gpr, run->mmio.len, 1); 1659 } else { 1660 emulated = kvmppc_handle_vmx_store(vcpu, 1661 vcpu->arch.io_gpr, run->mmio.len, 1); 1662 } 1663 1664 switch (emulated) { 1665 case EMULATE_DO_MMIO: 1666 run->exit_reason = KVM_EXIT_MMIO; 1667 r = RESUME_HOST; 1668 break; 1669 case EMULATE_FAIL: 1670 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1671 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1672 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1673 r = RESUME_HOST; 1674 break; 1675 default: 1676 r = RESUME_GUEST; 1677 break; 1678 } 1679 return r; 1680 } 1681 #endif /* CONFIG_ALTIVEC */ 1682 1683 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1684 { 1685 int r = 0; 1686 union kvmppc_one_reg val; 1687 int size; 1688 1689 size = one_reg_size(reg->id); 1690 if (size > sizeof(val)) 1691 return -EINVAL; 1692 1693 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1694 if (r == -EINVAL) { 1695 r = 0; 1696 switch (reg->id) { 1697 #ifdef CONFIG_ALTIVEC 1698 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1699 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1700 r = -ENXIO; 1701 break; 1702 } 1703 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1704 break; 1705 case KVM_REG_PPC_VSCR: 1706 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1707 r = -ENXIO; 1708 break; 1709 } 1710 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1711 break; 1712 case KVM_REG_PPC_VRSAVE: 1713 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1714 break; 1715 #endif /* CONFIG_ALTIVEC */ 1716 default: 1717 r = -EINVAL; 1718 break; 1719 } 1720 } 1721 1722 if (r) 1723 return r; 1724 1725 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1726 r = -EFAULT; 1727 1728 return r; 1729 } 1730 1731 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1732 { 1733 int r; 1734 union kvmppc_one_reg val; 1735 int size; 1736 1737 size = one_reg_size(reg->id); 1738 if (size > sizeof(val)) 1739 return -EINVAL; 1740 1741 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1742 return -EFAULT; 1743 1744 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1745 if (r == -EINVAL) { 1746 r = 0; 1747 switch (reg->id) { 1748 #ifdef CONFIG_ALTIVEC 1749 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1750 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1751 r = -ENXIO; 1752 break; 1753 } 1754 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1755 break; 1756 case KVM_REG_PPC_VSCR: 1757 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1758 r = -ENXIO; 1759 break; 1760 } 1761 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1762 break; 1763 case KVM_REG_PPC_VRSAVE: 1764 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1765 r = -ENXIO; 1766 break; 1767 } 1768 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1769 break; 1770 #endif /* CONFIG_ALTIVEC */ 1771 default: 1772 r = -EINVAL; 1773 break; 1774 } 1775 } 1776 1777 return r; 1778 } 1779 1780 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1781 { 1782 struct kvm_run *run = vcpu->run; 1783 int r; 1784 1785 vcpu_load(vcpu); 1786 1787 if (vcpu->mmio_needed) { 1788 vcpu->mmio_needed = 0; 1789 if (!vcpu->mmio_is_write) 1790 kvmppc_complete_mmio_load(vcpu); 1791 #ifdef CONFIG_VSX 1792 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1793 vcpu->arch.mmio_vsx_copy_nums--; 1794 vcpu->arch.mmio_vsx_offset++; 1795 } 1796 1797 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1798 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1799 if (r == RESUME_HOST) { 1800 vcpu->mmio_needed = 1; 1801 goto out; 1802 } 1803 } 1804 #endif 1805 #ifdef CONFIG_ALTIVEC 1806 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1807 vcpu->arch.mmio_vmx_copy_nums--; 1808 vcpu->arch.mmio_vmx_offset++; 1809 } 1810 1811 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1812 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1813 if (r == RESUME_HOST) { 1814 vcpu->mmio_needed = 1; 1815 goto out; 1816 } 1817 } 1818 #endif 1819 } else if (vcpu->arch.osi_needed) { 1820 u64 *gprs = run->osi.gprs; 1821 int i; 1822 1823 for (i = 0; i < 32; i++) 1824 kvmppc_set_gpr(vcpu, i, gprs[i]); 1825 vcpu->arch.osi_needed = 0; 1826 } else if (vcpu->arch.hcall_needed) { 1827 int i; 1828 1829 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1830 for (i = 0; i < 9; ++i) 1831 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1832 vcpu->arch.hcall_needed = 0; 1833 #ifdef CONFIG_BOOKE 1834 } else if (vcpu->arch.epr_needed) { 1835 kvmppc_set_epr(vcpu, run->epr.epr); 1836 vcpu->arch.epr_needed = 0; 1837 #endif 1838 } 1839 1840 kvm_sigset_activate(vcpu); 1841 1842 if (run->immediate_exit) 1843 r = -EINTR; 1844 else 1845 r = kvmppc_vcpu_run(vcpu); 1846 1847 kvm_sigset_deactivate(vcpu); 1848 1849 #ifdef CONFIG_ALTIVEC 1850 out: 1851 #endif 1852 vcpu_put(vcpu); 1853 return r; 1854 } 1855 1856 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1857 { 1858 if (irq->irq == KVM_INTERRUPT_UNSET) { 1859 kvmppc_core_dequeue_external(vcpu); 1860 return 0; 1861 } 1862 1863 kvmppc_core_queue_external(vcpu, irq); 1864 1865 kvm_vcpu_kick(vcpu); 1866 1867 return 0; 1868 } 1869 1870 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1871 struct kvm_enable_cap *cap) 1872 { 1873 int r; 1874 1875 if (cap->flags) 1876 return -EINVAL; 1877 1878 switch (cap->cap) { 1879 case KVM_CAP_PPC_OSI: 1880 r = 0; 1881 vcpu->arch.osi_enabled = true; 1882 break; 1883 case KVM_CAP_PPC_PAPR: 1884 r = 0; 1885 vcpu->arch.papr_enabled = true; 1886 break; 1887 case KVM_CAP_PPC_EPR: 1888 r = 0; 1889 if (cap->args[0]) 1890 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1891 else 1892 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1893 break; 1894 #ifdef CONFIG_BOOKE 1895 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1896 r = 0; 1897 vcpu->arch.watchdog_enabled = true; 1898 break; 1899 #endif 1900 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1901 case KVM_CAP_SW_TLB: { 1902 struct kvm_config_tlb cfg; 1903 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1904 1905 r = -EFAULT; 1906 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1907 break; 1908 1909 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1910 break; 1911 } 1912 #endif 1913 #ifdef CONFIG_KVM_MPIC 1914 case KVM_CAP_IRQ_MPIC: { 1915 struct fd f; 1916 struct kvm_device *dev; 1917 1918 r = -EBADF; 1919 f = fdget(cap->args[0]); 1920 if (!f.file) 1921 break; 1922 1923 r = -EPERM; 1924 dev = kvm_device_from_filp(f.file); 1925 if (dev) 1926 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1927 1928 fdput(f); 1929 break; 1930 } 1931 #endif 1932 #ifdef CONFIG_KVM_XICS 1933 case KVM_CAP_IRQ_XICS: { 1934 struct fd f; 1935 struct kvm_device *dev; 1936 1937 r = -EBADF; 1938 f = fdget(cap->args[0]); 1939 if (!f.file) 1940 break; 1941 1942 r = -EPERM; 1943 dev = kvm_device_from_filp(f.file); 1944 if (dev) { 1945 if (xics_on_xive()) 1946 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1947 else 1948 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1949 } 1950 1951 fdput(f); 1952 break; 1953 } 1954 #endif /* CONFIG_KVM_XICS */ 1955 #ifdef CONFIG_KVM_XIVE 1956 case KVM_CAP_PPC_IRQ_XIVE: { 1957 struct fd f; 1958 struct kvm_device *dev; 1959 1960 r = -EBADF; 1961 f = fdget(cap->args[0]); 1962 if (!f.file) 1963 break; 1964 1965 r = -ENXIO; 1966 if (!xive_enabled()) 1967 break; 1968 1969 r = -EPERM; 1970 dev = kvm_device_from_filp(f.file); 1971 if (dev) 1972 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1973 cap->args[1]); 1974 1975 fdput(f); 1976 break; 1977 } 1978 #endif /* CONFIG_KVM_XIVE */ 1979 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1980 case KVM_CAP_PPC_FWNMI: 1981 r = -EINVAL; 1982 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1983 break; 1984 r = 0; 1985 vcpu->kvm->arch.fwnmi_enabled = true; 1986 break; 1987 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1988 default: 1989 r = -EINVAL; 1990 break; 1991 } 1992 1993 if (!r) 1994 r = kvmppc_sanity_check(vcpu); 1995 1996 return r; 1997 } 1998 1999 bool kvm_arch_intc_initialized(struct kvm *kvm) 2000 { 2001 #ifdef CONFIG_KVM_MPIC 2002 if (kvm->arch.mpic) 2003 return true; 2004 #endif 2005 #ifdef CONFIG_KVM_XICS 2006 if (kvm->arch.xics || kvm->arch.xive) 2007 return true; 2008 #endif 2009 return false; 2010 } 2011 2012 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2013 struct kvm_mp_state *mp_state) 2014 { 2015 return -EINVAL; 2016 } 2017 2018 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2019 struct kvm_mp_state *mp_state) 2020 { 2021 return -EINVAL; 2022 } 2023 2024 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2025 unsigned int ioctl, unsigned long arg) 2026 { 2027 struct kvm_vcpu *vcpu = filp->private_data; 2028 void __user *argp = (void __user *)arg; 2029 2030 if (ioctl == KVM_INTERRUPT) { 2031 struct kvm_interrupt irq; 2032 if (copy_from_user(&irq, argp, sizeof(irq))) 2033 return -EFAULT; 2034 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2035 } 2036 return -ENOIOCTLCMD; 2037 } 2038 2039 long kvm_arch_vcpu_ioctl(struct file *filp, 2040 unsigned int ioctl, unsigned long arg) 2041 { 2042 struct kvm_vcpu *vcpu = filp->private_data; 2043 void __user *argp = (void __user *)arg; 2044 long r; 2045 2046 switch (ioctl) { 2047 case KVM_ENABLE_CAP: 2048 { 2049 struct kvm_enable_cap cap; 2050 r = -EFAULT; 2051 if (copy_from_user(&cap, argp, sizeof(cap))) 2052 goto out; 2053 vcpu_load(vcpu); 2054 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2055 vcpu_put(vcpu); 2056 break; 2057 } 2058 2059 case KVM_SET_ONE_REG: 2060 case KVM_GET_ONE_REG: 2061 { 2062 struct kvm_one_reg reg; 2063 r = -EFAULT; 2064 if (copy_from_user(®, argp, sizeof(reg))) 2065 goto out; 2066 if (ioctl == KVM_SET_ONE_REG) 2067 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2068 else 2069 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2070 break; 2071 } 2072 2073 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2074 case KVM_DIRTY_TLB: { 2075 struct kvm_dirty_tlb dirty; 2076 r = -EFAULT; 2077 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2078 goto out; 2079 vcpu_load(vcpu); 2080 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2081 vcpu_put(vcpu); 2082 break; 2083 } 2084 #endif 2085 default: 2086 r = -EINVAL; 2087 } 2088 2089 out: 2090 return r; 2091 } 2092 2093 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2094 { 2095 return VM_FAULT_SIGBUS; 2096 } 2097 2098 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2099 { 2100 u32 inst_nop = 0x60000000; 2101 #ifdef CONFIG_KVM_BOOKE_HV 2102 u32 inst_sc1 = 0x44000022; 2103 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2104 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2105 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2106 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2107 #else 2108 u32 inst_lis = 0x3c000000; 2109 u32 inst_ori = 0x60000000; 2110 u32 inst_sc = 0x44000002; 2111 u32 inst_imm_mask = 0xffff; 2112 2113 /* 2114 * The hypercall to get into KVM from within guest context is as 2115 * follows: 2116 * 2117 * lis r0, r0, KVM_SC_MAGIC_R0@h 2118 * ori r0, KVM_SC_MAGIC_R0@l 2119 * sc 2120 * nop 2121 */ 2122 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2123 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2124 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2125 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2126 #endif 2127 2128 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2129 2130 return 0; 2131 } 2132 2133 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2134 bool line_status) 2135 { 2136 if (!irqchip_in_kernel(kvm)) 2137 return -ENXIO; 2138 2139 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2140 irq_event->irq, irq_event->level, 2141 line_status); 2142 return 0; 2143 } 2144 2145 2146 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2147 struct kvm_enable_cap *cap) 2148 { 2149 int r; 2150 2151 if (cap->flags) 2152 return -EINVAL; 2153 2154 switch (cap->cap) { 2155 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2156 case KVM_CAP_PPC_ENABLE_HCALL: { 2157 unsigned long hcall = cap->args[0]; 2158 2159 r = -EINVAL; 2160 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2161 cap->args[1] > 1) 2162 break; 2163 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2164 break; 2165 if (cap->args[1]) 2166 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2167 else 2168 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2169 r = 0; 2170 break; 2171 } 2172 case KVM_CAP_PPC_SMT: { 2173 unsigned long mode = cap->args[0]; 2174 unsigned long flags = cap->args[1]; 2175 2176 r = -EINVAL; 2177 if (kvm->arch.kvm_ops->set_smt_mode) 2178 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2179 break; 2180 } 2181 2182 case KVM_CAP_PPC_NESTED_HV: 2183 r = -EINVAL; 2184 if (!is_kvmppc_hv_enabled(kvm) || 2185 !kvm->arch.kvm_ops->enable_nested) 2186 break; 2187 r = kvm->arch.kvm_ops->enable_nested(kvm); 2188 break; 2189 #endif 2190 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2191 case KVM_CAP_PPC_SECURE_GUEST: 2192 r = -EINVAL; 2193 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2194 break; 2195 r = kvm->arch.kvm_ops->enable_svm(kvm); 2196 break; 2197 case KVM_CAP_PPC_DAWR1: 2198 r = -EINVAL; 2199 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1) 2200 break; 2201 r = kvm->arch.kvm_ops->enable_dawr1(kvm); 2202 break; 2203 #endif 2204 default: 2205 r = -EINVAL; 2206 break; 2207 } 2208 2209 return r; 2210 } 2211 2212 #ifdef CONFIG_PPC_BOOK3S_64 2213 /* 2214 * These functions check whether the underlying hardware is safe 2215 * against attacks based on observing the effects of speculatively 2216 * executed instructions, and whether it supplies instructions for 2217 * use in workarounds. The information comes from firmware, either 2218 * via the device tree on powernv platforms or from an hcall on 2219 * pseries platforms. 2220 */ 2221 #ifdef CONFIG_PPC_PSERIES 2222 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2223 { 2224 struct h_cpu_char_result c; 2225 unsigned long rc; 2226 2227 if (!machine_is(pseries)) 2228 return -ENOTTY; 2229 2230 rc = plpar_get_cpu_characteristics(&c); 2231 if (rc == H_SUCCESS) { 2232 cp->character = c.character; 2233 cp->behaviour = c.behaviour; 2234 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2235 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2236 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2237 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2238 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2239 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2240 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2241 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2242 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2243 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2244 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2245 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2246 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2247 } 2248 return 0; 2249 } 2250 #else 2251 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2252 { 2253 return -ENOTTY; 2254 } 2255 #endif 2256 2257 static inline bool have_fw_feat(struct device_node *fw_features, 2258 const char *state, const char *name) 2259 { 2260 struct device_node *np; 2261 bool r = false; 2262 2263 np = of_get_child_by_name(fw_features, name); 2264 if (np) { 2265 r = of_property_read_bool(np, state); 2266 of_node_put(np); 2267 } 2268 return r; 2269 } 2270 2271 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2272 { 2273 struct device_node *np, *fw_features; 2274 int r; 2275 2276 memset(cp, 0, sizeof(*cp)); 2277 r = pseries_get_cpu_char(cp); 2278 if (r != -ENOTTY) 2279 return r; 2280 2281 np = of_find_node_by_name(NULL, "ibm,opal"); 2282 if (np) { 2283 fw_features = of_get_child_by_name(np, "fw-features"); 2284 of_node_put(np); 2285 if (!fw_features) 2286 return 0; 2287 if (have_fw_feat(fw_features, "enabled", 2288 "inst-spec-barrier-ori31,31,0")) 2289 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2290 if (have_fw_feat(fw_features, "enabled", 2291 "fw-bcctrl-serialized")) 2292 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2293 if (have_fw_feat(fw_features, "enabled", 2294 "inst-l1d-flush-ori30,30,0")) 2295 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2296 if (have_fw_feat(fw_features, "enabled", 2297 "inst-l1d-flush-trig2")) 2298 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2299 if (have_fw_feat(fw_features, "enabled", 2300 "fw-l1d-thread-split")) 2301 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2302 if (have_fw_feat(fw_features, "enabled", 2303 "fw-count-cache-disabled")) 2304 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2305 if (have_fw_feat(fw_features, "enabled", 2306 "fw-count-cache-flush-bcctr2,0,0")) 2307 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2308 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2309 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2310 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2311 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2312 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2313 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2314 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2315 2316 if (have_fw_feat(fw_features, "enabled", 2317 "speculation-policy-favor-security")) 2318 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2319 if (!have_fw_feat(fw_features, "disabled", 2320 "needs-l1d-flush-msr-pr-0-to-1")) 2321 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2322 if (!have_fw_feat(fw_features, "disabled", 2323 "needs-spec-barrier-for-bound-checks")) 2324 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2325 if (have_fw_feat(fw_features, "enabled", 2326 "needs-count-cache-flush-on-context-switch")) 2327 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2328 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2329 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2330 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2331 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2332 2333 of_node_put(fw_features); 2334 } 2335 2336 return 0; 2337 } 2338 #endif 2339 2340 long kvm_arch_vm_ioctl(struct file *filp, 2341 unsigned int ioctl, unsigned long arg) 2342 { 2343 struct kvm *kvm __maybe_unused = filp->private_data; 2344 void __user *argp = (void __user *)arg; 2345 long r; 2346 2347 switch (ioctl) { 2348 case KVM_PPC_GET_PVINFO: { 2349 struct kvm_ppc_pvinfo pvinfo; 2350 memset(&pvinfo, 0, sizeof(pvinfo)); 2351 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2352 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2353 r = -EFAULT; 2354 goto out; 2355 } 2356 2357 break; 2358 } 2359 #ifdef CONFIG_SPAPR_TCE_IOMMU 2360 case KVM_CREATE_SPAPR_TCE_64: { 2361 struct kvm_create_spapr_tce_64 create_tce_64; 2362 2363 r = -EFAULT; 2364 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2365 goto out; 2366 if (create_tce_64.flags) { 2367 r = -EINVAL; 2368 goto out; 2369 } 2370 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2371 goto out; 2372 } 2373 case KVM_CREATE_SPAPR_TCE: { 2374 struct kvm_create_spapr_tce create_tce; 2375 struct kvm_create_spapr_tce_64 create_tce_64; 2376 2377 r = -EFAULT; 2378 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2379 goto out; 2380 2381 create_tce_64.liobn = create_tce.liobn; 2382 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2383 create_tce_64.offset = 0; 2384 create_tce_64.size = create_tce.window_size >> 2385 IOMMU_PAGE_SHIFT_4K; 2386 create_tce_64.flags = 0; 2387 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2388 goto out; 2389 } 2390 #endif 2391 #ifdef CONFIG_PPC_BOOK3S_64 2392 case KVM_PPC_GET_SMMU_INFO: { 2393 struct kvm_ppc_smmu_info info; 2394 struct kvm *kvm = filp->private_data; 2395 2396 memset(&info, 0, sizeof(info)); 2397 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2398 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2399 r = -EFAULT; 2400 break; 2401 } 2402 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2403 struct kvm *kvm = filp->private_data; 2404 2405 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2406 break; 2407 } 2408 case KVM_PPC_CONFIGURE_V3_MMU: { 2409 struct kvm *kvm = filp->private_data; 2410 struct kvm_ppc_mmuv3_cfg cfg; 2411 2412 r = -EINVAL; 2413 if (!kvm->arch.kvm_ops->configure_mmu) 2414 goto out; 2415 r = -EFAULT; 2416 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2417 goto out; 2418 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2419 break; 2420 } 2421 case KVM_PPC_GET_RMMU_INFO: { 2422 struct kvm *kvm = filp->private_data; 2423 struct kvm_ppc_rmmu_info info; 2424 2425 r = -EINVAL; 2426 if (!kvm->arch.kvm_ops->get_rmmu_info) 2427 goto out; 2428 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2429 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2430 r = -EFAULT; 2431 break; 2432 } 2433 case KVM_PPC_GET_CPU_CHAR: { 2434 struct kvm_ppc_cpu_char cpuchar; 2435 2436 r = kvmppc_get_cpu_char(&cpuchar); 2437 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2438 r = -EFAULT; 2439 break; 2440 } 2441 case KVM_PPC_SVM_OFF: { 2442 struct kvm *kvm = filp->private_data; 2443 2444 r = 0; 2445 if (!kvm->arch.kvm_ops->svm_off) 2446 goto out; 2447 2448 r = kvm->arch.kvm_ops->svm_off(kvm); 2449 break; 2450 } 2451 default: { 2452 struct kvm *kvm = filp->private_data; 2453 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2454 } 2455 #else /* CONFIG_PPC_BOOK3S_64 */ 2456 default: 2457 r = -ENOTTY; 2458 #endif 2459 } 2460 out: 2461 return r; 2462 } 2463 2464 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2465 static unsigned long nr_lpids; 2466 2467 long kvmppc_alloc_lpid(void) 2468 { 2469 long lpid; 2470 2471 do { 2472 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2473 if (lpid >= nr_lpids) { 2474 pr_err("%s: No LPIDs free\n", __func__); 2475 return -ENOMEM; 2476 } 2477 } while (test_and_set_bit(lpid, lpid_inuse)); 2478 2479 return lpid; 2480 } 2481 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2482 2483 void kvmppc_claim_lpid(long lpid) 2484 { 2485 set_bit(lpid, lpid_inuse); 2486 } 2487 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2488 2489 void kvmppc_free_lpid(long lpid) 2490 { 2491 clear_bit(lpid, lpid_inuse); 2492 } 2493 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2494 2495 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2496 { 2497 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2498 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2499 } 2500 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2501 2502 int kvm_arch_init(void *opaque) 2503 { 2504 return 0; 2505 } 2506 2507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2508