1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <linux/of.h> 23 #include <asm/cputable.h> 24 #include <linux/uaccess.h> 25 #include <asm/kvm_ppc.h> 26 #include <asm/cputhreads.h> 27 #include <asm/irqflags.h> 28 #include <asm/iommu.h> 29 #include <asm/switch_to.h> 30 #include <asm/xive.h> 31 #ifdef CONFIG_PPC_PSERIES 32 #include <asm/hvcall.h> 33 #include <asm/plpar_wrappers.h> 34 #endif 35 #include <asm/ultravisor.h> 36 #include <asm/setup.h> 37 38 #include "timing.h" 39 #include "irq.h" 40 #include "../mm/mmu_decl.h" 41 42 #define CREATE_TRACE_POINTS 43 #include "trace.h" 44 45 struct kvmppc_ops *kvmppc_hv_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 47 struct kvmppc_ops *kvmppc_pr_ops; 48 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 49 50 51 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 52 { 53 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 54 } 55 56 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 57 { 58 return kvm_arch_vcpu_runnable(vcpu); 59 } 60 61 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 62 { 63 return false; 64 } 65 66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 67 { 68 return 1; 69 } 70 71 /* 72 * Common checks before entering the guest world. Call with interrupts 73 * disabled. 74 * 75 * returns: 76 * 77 * == 1 if we're ready to go into guest state 78 * <= 0 if we need to go back to the host with return value 79 */ 80 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 81 { 82 int r; 83 84 WARN_ON(irqs_disabled()); 85 hard_irq_disable(); 86 87 while (true) { 88 if (need_resched()) { 89 local_irq_enable(); 90 cond_resched(); 91 hard_irq_disable(); 92 continue; 93 } 94 95 if (signal_pending(current)) { 96 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 97 vcpu->run->exit_reason = KVM_EXIT_INTR; 98 r = -EINTR; 99 break; 100 } 101 102 vcpu->mode = IN_GUEST_MODE; 103 104 /* 105 * Reading vcpu->requests must happen after setting vcpu->mode, 106 * so we don't miss a request because the requester sees 107 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 108 * before next entering the guest (and thus doesn't IPI). 109 * This also orders the write to mode from any reads 110 * to the page tables done while the VCPU is running. 111 * Please see the comment in kvm_flush_remote_tlbs. 112 */ 113 smp_mb(); 114 115 if (kvm_request_pending(vcpu)) { 116 /* Make sure we process requests preemptable */ 117 local_irq_enable(); 118 trace_kvm_check_requests(vcpu); 119 r = kvmppc_core_check_requests(vcpu); 120 hard_irq_disable(); 121 if (r > 0) 122 continue; 123 break; 124 } 125 126 if (kvmppc_core_prepare_to_enter(vcpu)) { 127 /* interrupts got enabled in between, so we 128 are back at square 1 */ 129 continue; 130 } 131 132 guest_enter_irqoff(); 133 return 1; 134 } 135 136 /* return to host */ 137 local_irq_enable(); 138 return r; 139 } 140 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 141 142 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 143 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 144 { 145 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 146 int i; 147 148 shared->sprg0 = swab64(shared->sprg0); 149 shared->sprg1 = swab64(shared->sprg1); 150 shared->sprg2 = swab64(shared->sprg2); 151 shared->sprg3 = swab64(shared->sprg3); 152 shared->srr0 = swab64(shared->srr0); 153 shared->srr1 = swab64(shared->srr1); 154 shared->dar = swab64(shared->dar); 155 shared->msr = swab64(shared->msr); 156 shared->dsisr = swab32(shared->dsisr); 157 shared->int_pending = swab32(shared->int_pending); 158 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 159 shared->sr[i] = swab32(shared->sr[i]); 160 } 161 #endif 162 163 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 164 { 165 int nr = kvmppc_get_gpr(vcpu, 11); 166 int r; 167 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 168 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 169 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 170 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 171 unsigned long r2 = 0; 172 173 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 174 /* 32 bit mode */ 175 param1 &= 0xffffffff; 176 param2 &= 0xffffffff; 177 param3 &= 0xffffffff; 178 param4 &= 0xffffffff; 179 } 180 181 switch (nr) { 182 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 183 { 184 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 185 /* Book3S can be little endian, find it out here */ 186 int shared_big_endian = true; 187 if (vcpu->arch.intr_msr & MSR_LE) 188 shared_big_endian = false; 189 if (shared_big_endian != vcpu->arch.shared_big_endian) 190 kvmppc_swab_shared(vcpu); 191 vcpu->arch.shared_big_endian = shared_big_endian; 192 #endif 193 194 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 195 /* 196 * Older versions of the Linux magic page code had 197 * a bug where they would map their trampoline code 198 * NX. If that's the case, remove !PR NX capability. 199 */ 200 vcpu->arch.disable_kernel_nx = true; 201 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 202 } 203 204 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 205 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 206 207 #ifdef CONFIG_PPC_64K_PAGES 208 /* 209 * Make sure our 4k magic page is in the same window of a 64k 210 * page within the guest and within the host's page. 211 */ 212 if ((vcpu->arch.magic_page_pa & 0xf000) != 213 ((ulong)vcpu->arch.shared & 0xf000)) { 214 void *old_shared = vcpu->arch.shared; 215 ulong shared = (ulong)vcpu->arch.shared; 216 void *new_shared; 217 218 shared &= PAGE_MASK; 219 shared |= vcpu->arch.magic_page_pa & 0xf000; 220 new_shared = (void*)shared; 221 memcpy(new_shared, old_shared, 0x1000); 222 vcpu->arch.shared = new_shared; 223 } 224 #endif 225 226 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 227 228 r = EV_SUCCESS; 229 break; 230 } 231 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 232 r = EV_SUCCESS; 233 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 234 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 235 #endif 236 237 /* Second return value is in r4 */ 238 break; 239 case EV_HCALL_TOKEN(EV_IDLE): 240 r = EV_SUCCESS; 241 kvm_vcpu_halt(vcpu); 242 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 243 break; 244 default: 245 r = EV_UNIMPLEMENTED; 246 break; 247 } 248 249 kvmppc_set_gpr(vcpu, 4, r2); 250 251 return r; 252 } 253 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 254 255 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 256 { 257 int r = false; 258 259 /* We have to know what CPU to virtualize */ 260 if (!vcpu->arch.pvr) 261 goto out; 262 263 /* PAPR only works with book3s_64 */ 264 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 265 goto out; 266 267 /* HV KVM can only do PAPR mode for now */ 268 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 269 goto out; 270 271 #ifdef CONFIG_KVM_BOOKE_HV 272 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 273 goto out; 274 #endif 275 276 r = true; 277 278 out: 279 vcpu->arch.sane = r; 280 return r ? 0 : -EINVAL; 281 } 282 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 283 284 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 285 { 286 enum emulation_result er; 287 int r; 288 289 er = kvmppc_emulate_loadstore(vcpu); 290 switch (er) { 291 case EMULATE_DONE: 292 /* Future optimization: only reload non-volatiles if they were 293 * actually modified. */ 294 r = RESUME_GUEST_NV; 295 break; 296 case EMULATE_AGAIN: 297 r = RESUME_GUEST; 298 break; 299 case EMULATE_DO_MMIO: 300 vcpu->run->exit_reason = KVM_EXIT_MMIO; 301 /* We must reload nonvolatiles because "update" load/store 302 * instructions modify register state. */ 303 /* Future optimization: only reload non-volatiles if they were 304 * actually modified. */ 305 r = RESUME_HOST_NV; 306 break; 307 case EMULATE_FAIL: 308 { 309 u32 last_inst; 310 311 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 312 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n", 313 last_inst); 314 315 /* 316 * Injecting a Data Storage here is a bit more 317 * accurate since the instruction that caused the 318 * access could still be a valid one. 319 */ 320 if (!IS_ENABLED(CONFIG_BOOKE)) { 321 ulong dsisr = DSISR_BADACCESS; 322 323 if (vcpu->mmio_is_write) 324 dsisr |= DSISR_ISSTORE; 325 326 kvmppc_core_queue_data_storage(vcpu, vcpu->arch.vaddr_accessed, dsisr); 327 } else { 328 /* 329 * BookE does not send a SIGBUS on a bad 330 * fault, so use a Program interrupt instead 331 * to avoid a fault loop. 332 */ 333 kvmppc_core_queue_program(vcpu, 0); 334 } 335 336 r = RESUME_GUEST; 337 break; 338 } 339 default: 340 WARN_ON(1); 341 r = RESUME_GUEST; 342 } 343 344 return r; 345 } 346 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 347 348 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 349 bool data) 350 { 351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 352 struct kvmppc_pte pte; 353 int r = -EINVAL; 354 355 vcpu->stat.st++; 356 357 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 358 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 359 size); 360 361 if ((!r) || (r == -EAGAIN)) 362 return r; 363 364 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 365 XLATE_WRITE, &pte); 366 if (r < 0) 367 return r; 368 369 *eaddr = pte.raddr; 370 371 if (!pte.may_write) 372 return -EPERM; 373 374 /* Magic page override */ 375 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 376 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 377 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 378 void *magic = vcpu->arch.shared; 379 magic += pte.eaddr & 0xfff; 380 memcpy(magic, ptr, size); 381 return EMULATE_DONE; 382 } 383 384 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 385 return EMULATE_DO_MMIO; 386 387 return EMULATE_DONE; 388 } 389 EXPORT_SYMBOL_GPL(kvmppc_st); 390 391 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 392 bool data) 393 { 394 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 395 struct kvmppc_pte pte; 396 int rc = -EINVAL; 397 398 vcpu->stat.ld++; 399 400 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 401 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 402 size); 403 404 if ((!rc) || (rc == -EAGAIN)) 405 return rc; 406 407 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 408 XLATE_READ, &pte); 409 if (rc) 410 return rc; 411 412 *eaddr = pte.raddr; 413 414 if (!pte.may_read) 415 return -EPERM; 416 417 if (!data && !pte.may_execute) 418 return -ENOEXEC; 419 420 /* Magic page override */ 421 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 422 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 423 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 424 void *magic = vcpu->arch.shared; 425 magic += pte.eaddr & 0xfff; 426 memcpy(ptr, magic, size); 427 return EMULATE_DONE; 428 } 429 430 kvm_vcpu_srcu_read_lock(vcpu); 431 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); 432 kvm_vcpu_srcu_read_unlock(vcpu); 433 if (rc) 434 return EMULATE_DO_MMIO; 435 436 return EMULATE_DONE; 437 } 438 EXPORT_SYMBOL_GPL(kvmppc_ld); 439 440 int kvm_arch_hardware_enable(void) 441 { 442 return 0; 443 } 444 445 int kvm_arch_hardware_setup(void *opaque) 446 { 447 return 0; 448 } 449 450 int kvm_arch_check_processor_compat(void *opaque) 451 { 452 return kvmppc_core_check_processor_compat(); 453 } 454 455 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 456 { 457 struct kvmppc_ops *kvm_ops = NULL; 458 int r; 459 460 /* 461 * if we have both HV and PR enabled, default is HV 462 */ 463 if (type == 0) { 464 if (kvmppc_hv_ops) 465 kvm_ops = kvmppc_hv_ops; 466 else 467 kvm_ops = kvmppc_pr_ops; 468 if (!kvm_ops) 469 goto err_out; 470 } else if (type == KVM_VM_PPC_HV) { 471 if (!kvmppc_hv_ops) 472 goto err_out; 473 kvm_ops = kvmppc_hv_ops; 474 } else if (type == KVM_VM_PPC_PR) { 475 if (!kvmppc_pr_ops) 476 goto err_out; 477 kvm_ops = kvmppc_pr_ops; 478 } else 479 goto err_out; 480 481 if (!try_module_get(kvm_ops->owner)) 482 return -ENOENT; 483 484 kvm->arch.kvm_ops = kvm_ops; 485 r = kvmppc_core_init_vm(kvm); 486 if (r) 487 module_put(kvm_ops->owner); 488 return r; 489 err_out: 490 return -EINVAL; 491 } 492 493 void kvm_arch_destroy_vm(struct kvm *kvm) 494 { 495 #ifdef CONFIG_KVM_XICS 496 /* 497 * We call kick_all_cpus_sync() to ensure that all 498 * CPUs have executed any pending IPIs before we 499 * continue and free VCPUs structures below. 500 */ 501 if (is_kvmppc_hv_enabled(kvm)) 502 kick_all_cpus_sync(); 503 #endif 504 505 kvm_destroy_vcpus(kvm); 506 507 mutex_lock(&kvm->lock); 508 509 kvmppc_core_destroy_vm(kvm); 510 511 mutex_unlock(&kvm->lock); 512 513 /* drop the module reference */ 514 module_put(kvm->arch.kvm_ops->owner); 515 } 516 517 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 518 { 519 int r; 520 /* Assume we're using HV mode when the HV module is loaded */ 521 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 522 523 if (kvm) { 524 /* 525 * Hooray - we know which VM type we're running on. Depend on 526 * that rather than the guess above. 527 */ 528 hv_enabled = is_kvmppc_hv_enabled(kvm); 529 } 530 531 switch (ext) { 532 #ifdef CONFIG_BOOKE 533 case KVM_CAP_PPC_BOOKE_SREGS: 534 case KVM_CAP_PPC_BOOKE_WATCHDOG: 535 case KVM_CAP_PPC_EPR: 536 #else 537 case KVM_CAP_PPC_SEGSTATE: 538 case KVM_CAP_PPC_HIOR: 539 case KVM_CAP_PPC_PAPR: 540 #endif 541 case KVM_CAP_PPC_UNSET_IRQ: 542 case KVM_CAP_PPC_IRQ_LEVEL: 543 case KVM_CAP_ENABLE_CAP: 544 case KVM_CAP_ONE_REG: 545 case KVM_CAP_IOEVENTFD: 546 case KVM_CAP_DEVICE_CTRL: 547 case KVM_CAP_IMMEDIATE_EXIT: 548 case KVM_CAP_SET_GUEST_DEBUG: 549 r = 1; 550 break; 551 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 552 case KVM_CAP_PPC_PAIRED_SINGLES: 553 case KVM_CAP_PPC_OSI: 554 case KVM_CAP_PPC_GET_PVINFO: 555 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 556 case KVM_CAP_SW_TLB: 557 #endif 558 /* We support this only for PR */ 559 r = !hv_enabled; 560 break; 561 #ifdef CONFIG_KVM_MPIC 562 case KVM_CAP_IRQ_MPIC: 563 r = 1; 564 break; 565 #endif 566 567 #ifdef CONFIG_PPC_BOOK3S_64 568 case KVM_CAP_SPAPR_TCE: 569 case KVM_CAP_SPAPR_TCE_64: 570 r = 1; 571 break; 572 case KVM_CAP_SPAPR_TCE_VFIO: 573 r = !!cpu_has_feature(CPU_FTR_HVMODE); 574 break; 575 case KVM_CAP_PPC_RTAS: 576 case KVM_CAP_PPC_FIXUP_HCALL: 577 case KVM_CAP_PPC_ENABLE_HCALL: 578 #ifdef CONFIG_KVM_XICS 579 case KVM_CAP_IRQ_XICS: 580 #endif 581 case KVM_CAP_PPC_GET_CPU_CHAR: 582 r = 1; 583 break; 584 #ifdef CONFIG_KVM_XIVE 585 case KVM_CAP_PPC_IRQ_XIVE: 586 /* 587 * We need XIVE to be enabled on the platform (implies 588 * a POWER9 processor) and the PowerNV platform, as 589 * nested is not yet supported. 590 */ 591 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 592 kvmppc_xive_native_supported(); 593 break; 594 #endif 595 596 case KVM_CAP_PPC_ALLOC_HTAB: 597 r = hv_enabled; 598 break; 599 #endif /* CONFIG_PPC_BOOK3S_64 */ 600 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 601 case KVM_CAP_PPC_SMT: 602 r = 0; 603 if (kvm) { 604 if (kvm->arch.emul_smt_mode > 1) 605 r = kvm->arch.emul_smt_mode; 606 else 607 r = kvm->arch.smt_mode; 608 } else if (hv_enabled) { 609 if (cpu_has_feature(CPU_FTR_ARCH_300)) 610 r = 1; 611 else 612 r = threads_per_subcore; 613 } 614 break; 615 case KVM_CAP_PPC_SMT_POSSIBLE: 616 r = 1; 617 if (hv_enabled) { 618 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 619 r = ((threads_per_subcore << 1) - 1); 620 else 621 /* P9 can emulate dbells, so allow any mode */ 622 r = 8 | 4 | 2 | 1; 623 } 624 break; 625 case KVM_CAP_PPC_RMA: 626 r = 0; 627 break; 628 case KVM_CAP_PPC_HWRNG: 629 r = kvmppc_hwrng_present(); 630 break; 631 case KVM_CAP_PPC_MMU_RADIX: 632 r = !!(hv_enabled && radix_enabled()); 633 break; 634 case KVM_CAP_PPC_MMU_HASH_V3: 635 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible && 636 kvmppc_hv_ops->hash_v3_possible()); 637 break; 638 case KVM_CAP_PPC_NESTED_HV: 639 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 640 !kvmppc_hv_ops->enable_nested(NULL)); 641 break; 642 #endif 643 case KVM_CAP_SYNC_MMU: 644 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 645 r = hv_enabled; 646 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 647 r = 1; 648 #else 649 r = 0; 650 #endif 651 break; 652 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 653 case KVM_CAP_PPC_HTAB_FD: 654 r = hv_enabled; 655 break; 656 #endif 657 case KVM_CAP_NR_VCPUS: 658 /* 659 * Recommending a number of CPUs is somewhat arbitrary; we 660 * return the number of present CPUs for -HV (since a host 661 * will have secondary threads "offline"), and for other KVM 662 * implementations just count online CPUs. 663 */ 664 if (hv_enabled) 665 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS); 666 else 667 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 668 break; 669 case KVM_CAP_MAX_VCPUS: 670 r = KVM_MAX_VCPUS; 671 break; 672 case KVM_CAP_MAX_VCPU_ID: 673 r = KVM_MAX_VCPU_IDS; 674 break; 675 #ifdef CONFIG_PPC_BOOK3S_64 676 case KVM_CAP_PPC_GET_SMMU_INFO: 677 r = 1; 678 break; 679 case KVM_CAP_SPAPR_MULTITCE: 680 r = 1; 681 break; 682 case KVM_CAP_SPAPR_RESIZE_HPT: 683 r = !!hv_enabled; 684 break; 685 #endif 686 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 687 case KVM_CAP_PPC_FWNMI: 688 r = hv_enabled; 689 break; 690 #endif 691 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 692 case KVM_CAP_PPC_HTM: 693 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 694 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 695 break; 696 #endif 697 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 698 case KVM_CAP_PPC_SECURE_GUEST: 699 r = hv_enabled && kvmppc_hv_ops->enable_svm && 700 !kvmppc_hv_ops->enable_svm(NULL); 701 break; 702 case KVM_CAP_PPC_DAWR1: 703 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 && 704 !kvmppc_hv_ops->enable_dawr1(NULL)); 705 break; 706 case KVM_CAP_PPC_RPT_INVALIDATE: 707 r = 1; 708 break; 709 #endif 710 case KVM_CAP_PPC_AIL_MODE_3: 711 r = 0; 712 /* 713 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode. 714 * The POWER9s can support it if the guest runs in hash mode, 715 * but QEMU doesn't necessarily query the capability in time. 716 */ 717 if (hv_enabled) { 718 if (kvmhv_on_pseries()) { 719 if (pseries_reloc_on_exception()) 720 r = 1; 721 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) && 722 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { 723 r = 1; 724 } 725 } 726 break; 727 default: 728 r = 0; 729 break; 730 } 731 return r; 732 733 } 734 735 long kvm_arch_dev_ioctl(struct file *filp, 736 unsigned int ioctl, unsigned long arg) 737 { 738 return -EINVAL; 739 } 740 741 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 742 { 743 kvmppc_core_free_memslot(kvm, slot); 744 } 745 746 int kvm_arch_prepare_memory_region(struct kvm *kvm, 747 const struct kvm_memory_slot *old, 748 struct kvm_memory_slot *new, 749 enum kvm_mr_change change) 750 { 751 return kvmppc_core_prepare_memory_region(kvm, old, new, change); 752 } 753 754 void kvm_arch_commit_memory_region(struct kvm *kvm, 755 struct kvm_memory_slot *old, 756 const struct kvm_memory_slot *new, 757 enum kvm_mr_change change) 758 { 759 kvmppc_core_commit_memory_region(kvm, old, new, change); 760 } 761 762 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 763 struct kvm_memory_slot *slot) 764 { 765 kvmppc_core_flush_memslot(kvm, slot); 766 } 767 768 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 769 { 770 return 0; 771 } 772 773 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 774 { 775 struct kvm_vcpu *vcpu; 776 777 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 778 kvmppc_decrementer_func(vcpu); 779 780 return HRTIMER_NORESTART; 781 } 782 783 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 784 { 785 int err; 786 787 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 788 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 789 vcpu->arch.dec_expires = get_tb(); 790 791 #ifdef CONFIG_KVM_EXIT_TIMING 792 mutex_init(&vcpu->arch.exit_timing_lock); 793 #endif 794 err = kvmppc_subarch_vcpu_init(vcpu); 795 if (err) 796 return err; 797 798 err = kvmppc_core_vcpu_create(vcpu); 799 if (err) 800 goto out_vcpu_uninit; 801 802 rcuwait_init(&vcpu->arch.wait); 803 vcpu->arch.waitp = &vcpu->arch.wait; 804 return 0; 805 806 out_vcpu_uninit: 807 kvmppc_subarch_vcpu_uninit(vcpu); 808 return err; 809 } 810 811 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 812 { 813 } 814 815 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 816 { 817 /* Make sure we're not using the vcpu anymore */ 818 hrtimer_cancel(&vcpu->arch.dec_timer); 819 820 switch (vcpu->arch.irq_type) { 821 case KVMPPC_IRQ_MPIC: 822 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 823 break; 824 case KVMPPC_IRQ_XICS: 825 if (xics_on_xive()) 826 kvmppc_xive_cleanup_vcpu(vcpu); 827 else 828 kvmppc_xics_free_icp(vcpu); 829 break; 830 case KVMPPC_IRQ_XIVE: 831 kvmppc_xive_native_cleanup_vcpu(vcpu); 832 break; 833 } 834 835 kvmppc_core_vcpu_free(vcpu); 836 837 kvmppc_subarch_vcpu_uninit(vcpu); 838 } 839 840 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 841 { 842 return kvmppc_core_pending_dec(vcpu); 843 } 844 845 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 846 { 847 #ifdef CONFIG_BOOKE 848 /* 849 * vrsave (formerly usprg0) isn't used by Linux, but may 850 * be used by the guest. 851 * 852 * On non-booke this is associated with Altivec and 853 * is handled by code in book3s.c. 854 */ 855 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 856 #endif 857 kvmppc_core_vcpu_load(vcpu, cpu); 858 } 859 860 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 861 { 862 kvmppc_core_vcpu_put(vcpu); 863 #ifdef CONFIG_BOOKE 864 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 865 #endif 866 } 867 868 /* 869 * irq_bypass_add_producer and irq_bypass_del_producer are only 870 * useful if the architecture supports PCI passthrough. 871 * irq_bypass_stop and irq_bypass_start are not needed and so 872 * kvm_ops are not defined for them. 873 */ 874 bool kvm_arch_has_irq_bypass(void) 875 { 876 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 877 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 878 } 879 880 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 881 struct irq_bypass_producer *prod) 882 { 883 struct kvm_kernel_irqfd *irqfd = 884 container_of(cons, struct kvm_kernel_irqfd, consumer); 885 struct kvm *kvm = irqfd->kvm; 886 887 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 888 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 889 890 return 0; 891 } 892 893 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 894 struct irq_bypass_producer *prod) 895 { 896 struct kvm_kernel_irqfd *irqfd = 897 container_of(cons, struct kvm_kernel_irqfd, consumer); 898 struct kvm *kvm = irqfd->kvm; 899 900 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 901 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 902 } 903 904 #ifdef CONFIG_VSX 905 static inline int kvmppc_get_vsr_dword_offset(int index) 906 { 907 int offset; 908 909 if ((index != 0) && (index != 1)) 910 return -1; 911 912 #ifdef __BIG_ENDIAN 913 offset = index; 914 #else 915 offset = 1 - index; 916 #endif 917 918 return offset; 919 } 920 921 static inline int kvmppc_get_vsr_word_offset(int index) 922 { 923 int offset; 924 925 if ((index > 3) || (index < 0)) 926 return -1; 927 928 #ifdef __BIG_ENDIAN 929 offset = index; 930 #else 931 offset = 3 - index; 932 #endif 933 return offset; 934 } 935 936 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 937 u64 gpr) 938 { 939 union kvmppc_one_reg val; 940 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 941 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 942 943 if (offset == -1) 944 return; 945 946 if (index >= 32) { 947 val.vval = VCPU_VSX_VR(vcpu, index - 32); 948 val.vsxval[offset] = gpr; 949 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 950 } else { 951 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 952 } 953 } 954 955 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 956 u64 gpr) 957 { 958 union kvmppc_one_reg val; 959 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 960 961 if (index >= 32) { 962 val.vval = VCPU_VSX_VR(vcpu, index - 32); 963 val.vsxval[0] = gpr; 964 val.vsxval[1] = gpr; 965 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 966 } else { 967 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 968 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 969 } 970 } 971 972 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 973 u32 gpr) 974 { 975 union kvmppc_one_reg val; 976 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 977 978 if (index >= 32) { 979 val.vsx32val[0] = gpr; 980 val.vsx32val[1] = gpr; 981 val.vsx32val[2] = gpr; 982 val.vsx32val[3] = gpr; 983 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 984 } else { 985 val.vsx32val[0] = gpr; 986 val.vsx32val[1] = gpr; 987 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 988 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 989 } 990 } 991 992 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 993 u32 gpr32) 994 { 995 union kvmppc_one_reg val; 996 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 997 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 998 int dword_offset, word_offset; 999 1000 if (offset == -1) 1001 return; 1002 1003 if (index >= 32) { 1004 val.vval = VCPU_VSX_VR(vcpu, index - 32); 1005 val.vsx32val[offset] = gpr32; 1006 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 1007 } else { 1008 dword_offset = offset / 2; 1009 word_offset = offset % 2; 1010 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 1011 val.vsx32val[word_offset] = gpr32; 1012 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 1013 } 1014 } 1015 #endif /* CONFIG_VSX */ 1016 1017 #ifdef CONFIG_ALTIVEC 1018 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 1019 int index, int element_size) 1020 { 1021 int offset; 1022 int elts = sizeof(vector128)/element_size; 1023 1024 if ((index < 0) || (index >= elts)) 1025 return -1; 1026 1027 if (kvmppc_need_byteswap(vcpu)) 1028 offset = elts - index - 1; 1029 else 1030 offset = index; 1031 1032 return offset; 1033 } 1034 1035 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 1036 int index) 1037 { 1038 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 1039 } 1040 1041 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1042 int index) 1043 { 1044 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1045 } 1046 1047 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1048 int index) 1049 { 1050 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1051 } 1052 1053 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1054 int index) 1055 { 1056 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1057 } 1058 1059 1060 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1061 u64 gpr) 1062 { 1063 union kvmppc_one_reg val; 1064 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1065 vcpu->arch.mmio_vmx_offset); 1066 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1067 1068 if (offset == -1) 1069 return; 1070 1071 val.vval = VCPU_VSX_VR(vcpu, index); 1072 val.vsxval[offset] = gpr; 1073 VCPU_VSX_VR(vcpu, index) = val.vval; 1074 } 1075 1076 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1077 u32 gpr32) 1078 { 1079 union kvmppc_one_reg val; 1080 int offset = kvmppc_get_vmx_word_offset(vcpu, 1081 vcpu->arch.mmio_vmx_offset); 1082 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1083 1084 if (offset == -1) 1085 return; 1086 1087 val.vval = VCPU_VSX_VR(vcpu, index); 1088 val.vsx32val[offset] = gpr32; 1089 VCPU_VSX_VR(vcpu, index) = val.vval; 1090 } 1091 1092 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1093 u16 gpr16) 1094 { 1095 union kvmppc_one_reg val; 1096 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1097 vcpu->arch.mmio_vmx_offset); 1098 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1099 1100 if (offset == -1) 1101 return; 1102 1103 val.vval = VCPU_VSX_VR(vcpu, index); 1104 val.vsx16val[offset] = gpr16; 1105 VCPU_VSX_VR(vcpu, index) = val.vval; 1106 } 1107 1108 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1109 u8 gpr8) 1110 { 1111 union kvmppc_one_reg val; 1112 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1113 vcpu->arch.mmio_vmx_offset); 1114 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1115 1116 if (offset == -1) 1117 return; 1118 1119 val.vval = VCPU_VSX_VR(vcpu, index); 1120 val.vsx8val[offset] = gpr8; 1121 VCPU_VSX_VR(vcpu, index) = val.vval; 1122 } 1123 #endif /* CONFIG_ALTIVEC */ 1124 1125 #ifdef CONFIG_PPC_FPU 1126 static inline u64 sp_to_dp(u32 fprs) 1127 { 1128 u64 fprd; 1129 1130 preempt_disable(); 1131 enable_kernel_fp(); 1132 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs) 1133 : "fr0"); 1134 preempt_enable(); 1135 return fprd; 1136 } 1137 1138 static inline u32 dp_to_sp(u64 fprd) 1139 { 1140 u32 fprs; 1141 1142 preempt_disable(); 1143 enable_kernel_fp(); 1144 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd) 1145 : "fr0"); 1146 preempt_enable(); 1147 return fprs; 1148 } 1149 1150 #else 1151 #define sp_to_dp(x) (x) 1152 #define dp_to_sp(x) (x) 1153 #endif /* CONFIG_PPC_FPU */ 1154 1155 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1156 { 1157 struct kvm_run *run = vcpu->run; 1158 u64 gpr; 1159 1160 if (run->mmio.len > sizeof(gpr)) 1161 return; 1162 1163 if (!vcpu->arch.mmio_host_swabbed) { 1164 switch (run->mmio.len) { 1165 case 8: gpr = *(u64 *)run->mmio.data; break; 1166 case 4: gpr = *(u32 *)run->mmio.data; break; 1167 case 2: gpr = *(u16 *)run->mmio.data; break; 1168 case 1: gpr = *(u8 *)run->mmio.data; break; 1169 } 1170 } else { 1171 switch (run->mmio.len) { 1172 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1173 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1174 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1175 case 1: gpr = *(u8 *)run->mmio.data; break; 1176 } 1177 } 1178 1179 /* conversion between single and double precision */ 1180 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1181 gpr = sp_to_dp(gpr); 1182 1183 if (vcpu->arch.mmio_sign_extend) { 1184 switch (run->mmio.len) { 1185 #ifdef CONFIG_PPC64 1186 case 4: 1187 gpr = (s64)(s32)gpr; 1188 break; 1189 #endif 1190 case 2: 1191 gpr = (s64)(s16)gpr; 1192 break; 1193 case 1: 1194 gpr = (s64)(s8)gpr; 1195 break; 1196 } 1197 } 1198 1199 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1200 case KVM_MMIO_REG_GPR: 1201 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1202 break; 1203 case KVM_MMIO_REG_FPR: 1204 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1205 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1206 1207 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1208 break; 1209 #ifdef CONFIG_PPC_BOOK3S 1210 case KVM_MMIO_REG_QPR: 1211 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1212 break; 1213 case KVM_MMIO_REG_FQPR: 1214 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1215 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1216 break; 1217 #endif 1218 #ifdef CONFIG_VSX 1219 case KVM_MMIO_REG_VSX: 1220 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1221 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1222 1223 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1224 kvmppc_set_vsr_dword(vcpu, gpr); 1225 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1226 kvmppc_set_vsr_word(vcpu, gpr); 1227 else if (vcpu->arch.mmio_copy_type == 1228 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1229 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1230 else if (vcpu->arch.mmio_copy_type == 1231 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1232 kvmppc_set_vsr_word_dump(vcpu, gpr); 1233 break; 1234 #endif 1235 #ifdef CONFIG_ALTIVEC 1236 case KVM_MMIO_REG_VMX: 1237 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1238 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1239 1240 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1241 kvmppc_set_vmx_dword(vcpu, gpr); 1242 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1243 kvmppc_set_vmx_word(vcpu, gpr); 1244 else if (vcpu->arch.mmio_copy_type == 1245 KVMPPC_VMX_COPY_HWORD) 1246 kvmppc_set_vmx_hword(vcpu, gpr); 1247 else if (vcpu->arch.mmio_copy_type == 1248 KVMPPC_VMX_COPY_BYTE) 1249 kvmppc_set_vmx_byte(vcpu, gpr); 1250 break; 1251 #endif 1252 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1253 case KVM_MMIO_REG_NESTED_GPR: 1254 if (kvmppc_need_byteswap(vcpu)) 1255 gpr = swab64(gpr); 1256 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1257 sizeof(gpr)); 1258 break; 1259 #endif 1260 default: 1261 BUG(); 1262 } 1263 } 1264 1265 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1266 unsigned int rt, unsigned int bytes, 1267 int is_default_endian, int sign_extend) 1268 { 1269 struct kvm_run *run = vcpu->run; 1270 int idx, ret; 1271 bool host_swabbed; 1272 1273 /* Pity C doesn't have a logical XOR operator */ 1274 if (kvmppc_need_byteswap(vcpu)) { 1275 host_swabbed = is_default_endian; 1276 } else { 1277 host_swabbed = !is_default_endian; 1278 } 1279 1280 if (bytes > sizeof(run->mmio.data)) 1281 return EMULATE_FAIL; 1282 1283 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1284 run->mmio.len = bytes; 1285 run->mmio.is_write = 0; 1286 1287 vcpu->arch.io_gpr = rt; 1288 vcpu->arch.mmio_host_swabbed = host_swabbed; 1289 vcpu->mmio_needed = 1; 1290 vcpu->mmio_is_write = 0; 1291 vcpu->arch.mmio_sign_extend = sign_extend; 1292 1293 idx = srcu_read_lock(&vcpu->kvm->srcu); 1294 1295 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1296 bytes, &run->mmio.data); 1297 1298 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1299 1300 if (!ret) { 1301 kvmppc_complete_mmio_load(vcpu); 1302 vcpu->mmio_needed = 0; 1303 return EMULATE_DONE; 1304 } 1305 1306 return EMULATE_DO_MMIO; 1307 } 1308 1309 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1310 unsigned int rt, unsigned int bytes, 1311 int is_default_endian) 1312 { 1313 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1314 } 1315 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1316 1317 /* Same as above, but sign extends */ 1318 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1319 unsigned int rt, unsigned int bytes, 1320 int is_default_endian) 1321 { 1322 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1323 } 1324 1325 #ifdef CONFIG_VSX 1326 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1327 unsigned int rt, unsigned int bytes, 1328 int is_default_endian, int mmio_sign_extend) 1329 { 1330 enum emulation_result emulated = EMULATE_DONE; 1331 1332 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1333 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1334 return EMULATE_FAIL; 1335 1336 while (vcpu->arch.mmio_vsx_copy_nums) { 1337 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1338 is_default_endian, mmio_sign_extend); 1339 1340 if (emulated != EMULATE_DONE) 1341 break; 1342 1343 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1344 1345 vcpu->arch.mmio_vsx_copy_nums--; 1346 vcpu->arch.mmio_vsx_offset++; 1347 } 1348 return emulated; 1349 } 1350 #endif /* CONFIG_VSX */ 1351 1352 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1353 u64 val, unsigned int bytes, int is_default_endian) 1354 { 1355 struct kvm_run *run = vcpu->run; 1356 void *data = run->mmio.data; 1357 int idx, ret; 1358 bool host_swabbed; 1359 1360 /* Pity C doesn't have a logical XOR operator */ 1361 if (kvmppc_need_byteswap(vcpu)) { 1362 host_swabbed = is_default_endian; 1363 } else { 1364 host_swabbed = !is_default_endian; 1365 } 1366 1367 if (bytes > sizeof(run->mmio.data)) 1368 return EMULATE_FAIL; 1369 1370 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1371 run->mmio.len = bytes; 1372 run->mmio.is_write = 1; 1373 vcpu->mmio_needed = 1; 1374 vcpu->mmio_is_write = 1; 1375 1376 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1377 val = dp_to_sp(val); 1378 1379 /* Store the value at the lowest bytes in 'data'. */ 1380 if (!host_swabbed) { 1381 switch (bytes) { 1382 case 8: *(u64 *)data = val; break; 1383 case 4: *(u32 *)data = val; break; 1384 case 2: *(u16 *)data = val; break; 1385 case 1: *(u8 *)data = val; break; 1386 } 1387 } else { 1388 switch (bytes) { 1389 case 8: *(u64 *)data = swab64(val); break; 1390 case 4: *(u32 *)data = swab32(val); break; 1391 case 2: *(u16 *)data = swab16(val); break; 1392 case 1: *(u8 *)data = val; break; 1393 } 1394 } 1395 1396 idx = srcu_read_lock(&vcpu->kvm->srcu); 1397 1398 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1399 bytes, &run->mmio.data); 1400 1401 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1402 1403 if (!ret) { 1404 vcpu->mmio_needed = 0; 1405 return EMULATE_DONE; 1406 } 1407 1408 return EMULATE_DO_MMIO; 1409 } 1410 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1411 1412 #ifdef CONFIG_VSX 1413 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1414 { 1415 u32 dword_offset, word_offset; 1416 union kvmppc_one_reg reg; 1417 int vsx_offset = 0; 1418 int copy_type = vcpu->arch.mmio_copy_type; 1419 int result = 0; 1420 1421 switch (copy_type) { 1422 case KVMPPC_VSX_COPY_DWORD: 1423 vsx_offset = 1424 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1425 1426 if (vsx_offset == -1) { 1427 result = -1; 1428 break; 1429 } 1430 1431 if (rs < 32) { 1432 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1433 } else { 1434 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1435 *val = reg.vsxval[vsx_offset]; 1436 } 1437 break; 1438 1439 case KVMPPC_VSX_COPY_WORD: 1440 vsx_offset = 1441 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1442 1443 if (vsx_offset == -1) { 1444 result = -1; 1445 break; 1446 } 1447 1448 if (rs < 32) { 1449 dword_offset = vsx_offset / 2; 1450 word_offset = vsx_offset % 2; 1451 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1452 *val = reg.vsx32val[word_offset]; 1453 } else { 1454 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1455 *val = reg.vsx32val[vsx_offset]; 1456 } 1457 break; 1458 1459 default: 1460 result = -1; 1461 break; 1462 } 1463 1464 return result; 1465 } 1466 1467 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1468 int rs, unsigned int bytes, int is_default_endian) 1469 { 1470 u64 val; 1471 enum emulation_result emulated = EMULATE_DONE; 1472 1473 vcpu->arch.io_gpr = rs; 1474 1475 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1476 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1477 return EMULATE_FAIL; 1478 1479 while (vcpu->arch.mmio_vsx_copy_nums) { 1480 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1481 return EMULATE_FAIL; 1482 1483 emulated = kvmppc_handle_store(vcpu, 1484 val, bytes, is_default_endian); 1485 1486 if (emulated != EMULATE_DONE) 1487 break; 1488 1489 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1490 1491 vcpu->arch.mmio_vsx_copy_nums--; 1492 vcpu->arch.mmio_vsx_offset++; 1493 } 1494 1495 return emulated; 1496 } 1497 1498 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1499 { 1500 struct kvm_run *run = vcpu->run; 1501 enum emulation_result emulated = EMULATE_FAIL; 1502 int r; 1503 1504 vcpu->arch.paddr_accessed += run->mmio.len; 1505 1506 if (!vcpu->mmio_is_write) { 1507 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1508 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1509 } else { 1510 emulated = kvmppc_handle_vsx_store(vcpu, 1511 vcpu->arch.io_gpr, run->mmio.len, 1); 1512 } 1513 1514 switch (emulated) { 1515 case EMULATE_DO_MMIO: 1516 run->exit_reason = KVM_EXIT_MMIO; 1517 r = RESUME_HOST; 1518 break; 1519 case EMULATE_FAIL: 1520 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1521 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1522 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1523 r = RESUME_HOST; 1524 break; 1525 default: 1526 r = RESUME_GUEST; 1527 break; 1528 } 1529 return r; 1530 } 1531 #endif /* CONFIG_VSX */ 1532 1533 #ifdef CONFIG_ALTIVEC 1534 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1535 unsigned int rt, unsigned int bytes, int is_default_endian) 1536 { 1537 enum emulation_result emulated = EMULATE_DONE; 1538 1539 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1540 return EMULATE_FAIL; 1541 1542 while (vcpu->arch.mmio_vmx_copy_nums) { 1543 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1544 is_default_endian, 0); 1545 1546 if (emulated != EMULATE_DONE) 1547 break; 1548 1549 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1550 vcpu->arch.mmio_vmx_copy_nums--; 1551 vcpu->arch.mmio_vmx_offset++; 1552 } 1553 1554 return emulated; 1555 } 1556 1557 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1558 { 1559 union kvmppc_one_reg reg; 1560 int vmx_offset = 0; 1561 int result = 0; 1562 1563 vmx_offset = 1564 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1565 1566 if (vmx_offset == -1) 1567 return -1; 1568 1569 reg.vval = VCPU_VSX_VR(vcpu, index); 1570 *val = reg.vsxval[vmx_offset]; 1571 1572 return result; 1573 } 1574 1575 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1576 { 1577 union kvmppc_one_reg reg; 1578 int vmx_offset = 0; 1579 int result = 0; 1580 1581 vmx_offset = 1582 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1583 1584 if (vmx_offset == -1) 1585 return -1; 1586 1587 reg.vval = VCPU_VSX_VR(vcpu, index); 1588 *val = reg.vsx32val[vmx_offset]; 1589 1590 return result; 1591 } 1592 1593 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1594 { 1595 union kvmppc_one_reg reg; 1596 int vmx_offset = 0; 1597 int result = 0; 1598 1599 vmx_offset = 1600 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1601 1602 if (vmx_offset == -1) 1603 return -1; 1604 1605 reg.vval = VCPU_VSX_VR(vcpu, index); 1606 *val = reg.vsx16val[vmx_offset]; 1607 1608 return result; 1609 } 1610 1611 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1612 { 1613 union kvmppc_one_reg reg; 1614 int vmx_offset = 0; 1615 int result = 0; 1616 1617 vmx_offset = 1618 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1619 1620 if (vmx_offset == -1) 1621 return -1; 1622 1623 reg.vval = VCPU_VSX_VR(vcpu, index); 1624 *val = reg.vsx8val[vmx_offset]; 1625 1626 return result; 1627 } 1628 1629 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1630 unsigned int rs, unsigned int bytes, int is_default_endian) 1631 { 1632 u64 val = 0; 1633 unsigned int index = rs & KVM_MMIO_REG_MASK; 1634 enum emulation_result emulated = EMULATE_DONE; 1635 1636 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1637 return EMULATE_FAIL; 1638 1639 vcpu->arch.io_gpr = rs; 1640 1641 while (vcpu->arch.mmio_vmx_copy_nums) { 1642 switch (vcpu->arch.mmio_copy_type) { 1643 case KVMPPC_VMX_COPY_DWORD: 1644 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1645 return EMULATE_FAIL; 1646 1647 break; 1648 case KVMPPC_VMX_COPY_WORD: 1649 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1650 return EMULATE_FAIL; 1651 break; 1652 case KVMPPC_VMX_COPY_HWORD: 1653 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1654 return EMULATE_FAIL; 1655 break; 1656 case KVMPPC_VMX_COPY_BYTE: 1657 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1658 return EMULATE_FAIL; 1659 break; 1660 default: 1661 return EMULATE_FAIL; 1662 } 1663 1664 emulated = kvmppc_handle_store(vcpu, val, bytes, 1665 is_default_endian); 1666 if (emulated != EMULATE_DONE) 1667 break; 1668 1669 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1670 vcpu->arch.mmio_vmx_copy_nums--; 1671 vcpu->arch.mmio_vmx_offset++; 1672 } 1673 1674 return emulated; 1675 } 1676 1677 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1678 { 1679 struct kvm_run *run = vcpu->run; 1680 enum emulation_result emulated = EMULATE_FAIL; 1681 int r; 1682 1683 vcpu->arch.paddr_accessed += run->mmio.len; 1684 1685 if (!vcpu->mmio_is_write) { 1686 emulated = kvmppc_handle_vmx_load(vcpu, 1687 vcpu->arch.io_gpr, run->mmio.len, 1); 1688 } else { 1689 emulated = kvmppc_handle_vmx_store(vcpu, 1690 vcpu->arch.io_gpr, run->mmio.len, 1); 1691 } 1692 1693 switch (emulated) { 1694 case EMULATE_DO_MMIO: 1695 run->exit_reason = KVM_EXIT_MMIO; 1696 r = RESUME_HOST; 1697 break; 1698 case EMULATE_FAIL: 1699 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1700 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1701 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1702 r = RESUME_HOST; 1703 break; 1704 default: 1705 r = RESUME_GUEST; 1706 break; 1707 } 1708 return r; 1709 } 1710 #endif /* CONFIG_ALTIVEC */ 1711 1712 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1713 { 1714 int r = 0; 1715 union kvmppc_one_reg val; 1716 int size; 1717 1718 size = one_reg_size(reg->id); 1719 if (size > sizeof(val)) 1720 return -EINVAL; 1721 1722 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1723 if (r == -EINVAL) { 1724 r = 0; 1725 switch (reg->id) { 1726 #ifdef CONFIG_ALTIVEC 1727 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1728 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1729 r = -ENXIO; 1730 break; 1731 } 1732 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1733 break; 1734 case KVM_REG_PPC_VSCR: 1735 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1736 r = -ENXIO; 1737 break; 1738 } 1739 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1740 break; 1741 case KVM_REG_PPC_VRSAVE: 1742 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1743 break; 1744 #endif /* CONFIG_ALTIVEC */ 1745 default: 1746 r = -EINVAL; 1747 break; 1748 } 1749 } 1750 1751 if (r) 1752 return r; 1753 1754 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1755 r = -EFAULT; 1756 1757 return r; 1758 } 1759 1760 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1761 { 1762 int r; 1763 union kvmppc_one_reg val; 1764 int size; 1765 1766 size = one_reg_size(reg->id); 1767 if (size > sizeof(val)) 1768 return -EINVAL; 1769 1770 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1771 return -EFAULT; 1772 1773 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1774 if (r == -EINVAL) { 1775 r = 0; 1776 switch (reg->id) { 1777 #ifdef CONFIG_ALTIVEC 1778 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1779 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1780 r = -ENXIO; 1781 break; 1782 } 1783 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1784 break; 1785 case KVM_REG_PPC_VSCR: 1786 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1787 r = -ENXIO; 1788 break; 1789 } 1790 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1791 break; 1792 case KVM_REG_PPC_VRSAVE: 1793 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1794 r = -ENXIO; 1795 break; 1796 } 1797 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1798 break; 1799 #endif /* CONFIG_ALTIVEC */ 1800 default: 1801 r = -EINVAL; 1802 break; 1803 } 1804 } 1805 1806 return r; 1807 } 1808 1809 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1810 { 1811 struct kvm_run *run = vcpu->run; 1812 int r; 1813 1814 vcpu_load(vcpu); 1815 1816 if (vcpu->mmio_needed) { 1817 vcpu->mmio_needed = 0; 1818 if (!vcpu->mmio_is_write) 1819 kvmppc_complete_mmio_load(vcpu); 1820 #ifdef CONFIG_VSX 1821 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1822 vcpu->arch.mmio_vsx_copy_nums--; 1823 vcpu->arch.mmio_vsx_offset++; 1824 } 1825 1826 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1827 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1828 if (r == RESUME_HOST) { 1829 vcpu->mmio_needed = 1; 1830 goto out; 1831 } 1832 } 1833 #endif 1834 #ifdef CONFIG_ALTIVEC 1835 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1836 vcpu->arch.mmio_vmx_copy_nums--; 1837 vcpu->arch.mmio_vmx_offset++; 1838 } 1839 1840 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1841 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1842 if (r == RESUME_HOST) { 1843 vcpu->mmio_needed = 1; 1844 goto out; 1845 } 1846 } 1847 #endif 1848 } else if (vcpu->arch.osi_needed) { 1849 u64 *gprs = run->osi.gprs; 1850 int i; 1851 1852 for (i = 0; i < 32; i++) 1853 kvmppc_set_gpr(vcpu, i, gprs[i]); 1854 vcpu->arch.osi_needed = 0; 1855 } else if (vcpu->arch.hcall_needed) { 1856 int i; 1857 1858 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1859 for (i = 0; i < 9; ++i) 1860 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1861 vcpu->arch.hcall_needed = 0; 1862 #ifdef CONFIG_BOOKE 1863 } else if (vcpu->arch.epr_needed) { 1864 kvmppc_set_epr(vcpu, run->epr.epr); 1865 vcpu->arch.epr_needed = 0; 1866 #endif 1867 } 1868 1869 kvm_sigset_activate(vcpu); 1870 1871 if (run->immediate_exit) 1872 r = -EINTR; 1873 else 1874 r = kvmppc_vcpu_run(vcpu); 1875 1876 kvm_sigset_deactivate(vcpu); 1877 1878 #ifdef CONFIG_ALTIVEC 1879 out: 1880 #endif 1881 1882 /* 1883 * We're already returning to userspace, don't pass the 1884 * RESUME_HOST flags along. 1885 */ 1886 if (r > 0) 1887 r = 0; 1888 1889 vcpu_put(vcpu); 1890 return r; 1891 } 1892 1893 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1894 { 1895 if (irq->irq == KVM_INTERRUPT_UNSET) { 1896 kvmppc_core_dequeue_external(vcpu); 1897 return 0; 1898 } 1899 1900 kvmppc_core_queue_external(vcpu, irq); 1901 1902 kvm_vcpu_kick(vcpu); 1903 1904 return 0; 1905 } 1906 1907 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1908 struct kvm_enable_cap *cap) 1909 { 1910 int r; 1911 1912 if (cap->flags) 1913 return -EINVAL; 1914 1915 switch (cap->cap) { 1916 case KVM_CAP_PPC_OSI: 1917 r = 0; 1918 vcpu->arch.osi_enabled = true; 1919 break; 1920 case KVM_CAP_PPC_PAPR: 1921 r = 0; 1922 vcpu->arch.papr_enabled = true; 1923 break; 1924 case KVM_CAP_PPC_EPR: 1925 r = 0; 1926 if (cap->args[0]) 1927 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1928 else 1929 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1930 break; 1931 #ifdef CONFIG_BOOKE 1932 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1933 r = 0; 1934 vcpu->arch.watchdog_enabled = true; 1935 break; 1936 #endif 1937 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1938 case KVM_CAP_SW_TLB: { 1939 struct kvm_config_tlb cfg; 1940 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1941 1942 r = -EFAULT; 1943 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1944 break; 1945 1946 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1947 break; 1948 } 1949 #endif 1950 #ifdef CONFIG_KVM_MPIC 1951 case KVM_CAP_IRQ_MPIC: { 1952 struct fd f; 1953 struct kvm_device *dev; 1954 1955 r = -EBADF; 1956 f = fdget(cap->args[0]); 1957 if (!f.file) 1958 break; 1959 1960 r = -EPERM; 1961 dev = kvm_device_from_filp(f.file); 1962 if (dev) 1963 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1964 1965 fdput(f); 1966 break; 1967 } 1968 #endif 1969 #ifdef CONFIG_KVM_XICS 1970 case KVM_CAP_IRQ_XICS: { 1971 struct fd f; 1972 struct kvm_device *dev; 1973 1974 r = -EBADF; 1975 f = fdget(cap->args[0]); 1976 if (!f.file) 1977 break; 1978 1979 r = -EPERM; 1980 dev = kvm_device_from_filp(f.file); 1981 if (dev) { 1982 if (xics_on_xive()) 1983 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1984 else 1985 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1986 } 1987 1988 fdput(f); 1989 break; 1990 } 1991 #endif /* CONFIG_KVM_XICS */ 1992 #ifdef CONFIG_KVM_XIVE 1993 case KVM_CAP_PPC_IRQ_XIVE: { 1994 struct fd f; 1995 struct kvm_device *dev; 1996 1997 r = -EBADF; 1998 f = fdget(cap->args[0]); 1999 if (!f.file) 2000 break; 2001 2002 r = -ENXIO; 2003 if (!xive_enabled()) 2004 break; 2005 2006 r = -EPERM; 2007 dev = kvm_device_from_filp(f.file); 2008 if (dev) 2009 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 2010 cap->args[1]); 2011 2012 fdput(f); 2013 break; 2014 } 2015 #endif /* CONFIG_KVM_XIVE */ 2016 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 2017 case KVM_CAP_PPC_FWNMI: 2018 r = -EINVAL; 2019 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 2020 break; 2021 r = 0; 2022 vcpu->kvm->arch.fwnmi_enabled = true; 2023 break; 2024 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 2025 default: 2026 r = -EINVAL; 2027 break; 2028 } 2029 2030 if (!r) 2031 r = kvmppc_sanity_check(vcpu); 2032 2033 return r; 2034 } 2035 2036 bool kvm_arch_intc_initialized(struct kvm *kvm) 2037 { 2038 #ifdef CONFIG_KVM_MPIC 2039 if (kvm->arch.mpic) 2040 return true; 2041 #endif 2042 #ifdef CONFIG_KVM_XICS 2043 if (kvm->arch.xics || kvm->arch.xive) 2044 return true; 2045 #endif 2046 return false; 2047 } 2048 2049 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2050 struct kvm_mp_state *mp_state) 2051 { 2052 return -EINVAL; 2053 } 2054 2055 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2056 struct kvm_mp_state *mp_state) 2057 { 2058 return -EINVAL; 2059 } 2060 2061 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2062 unsigned int ioctl, unsigned long arg) 2063 { 2064 struct kvm_vcpu *vcpu = filp->private_data; 2065 void __user *argp = (void __user *)arg; 2066 2067 if (ioctl == KVM_INTERRUPT) { 2068 struct kvm_interrupt irq; 2069 if (copy_from_user(&irq, argp, sizeof(irq))) 2070 return -EFAULT; 2071 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2072 } 2073 return -ENOIOCTLCMD; 2074 } 2075 2076 long kvm_arch_vcpu_ioctl(struct file *filp, 2077 unsigned int ioctl, unsigned long arg) 2078 { 2079 struct kvm_vcpu *vcpu = filp->private_data; 2080 void __user *argp = (void __user *)arg; 2081 long r; 2082 2083 switch (ioctl) { 2084 case KVM_ENABLE_CAP: 2085 { 2086 struct kvm_enable_cap cap; 2087 r = -EFAULT; 2088 if (copy_from_user(&cap, argp, sizeof(cap))) 2089 goto out; 2090 vcpu_load(vcpu); 2091 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2092 vcpu_put(vcpu); 2093 break; 2094 } 2095 2096 case KVM_SET_ONE_REG: 2097 case KVM_GET_ONE_REG: 2098 { 2099 struct kvm_one_reg reg; 2100 r = -EFAULT; 2101 if (copy_from_user(®, argp, sizeof(reg))) 2102 goto out; 2103 if (ioctl == KVM_SET_ONE_REG) 2104 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2105 else 2106 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2107 break; 2108 } 2109 2110 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2111 case KVM_DIRTY_TLB: { 2112 struct kvm_dirty_tlb dirty; 2113 r = -EFAULT; 2114 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2115 goto out; 2116 vcpu_load(vcpu); 2117 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2118 vcpu_put(vcpu); 2119 break; 2120 } 2121 #endif 2122 default: 2123 r = -EINVAL; 2124 } 2125 2126 out: 2127 return r; 2128 } 2129 2130 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2131 { 2132 return VM_FAULT_SIGBUS; 2133 } 2134 2135 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2136 { 2137 u32 inst_nop = 0x60000000; 2138 #ifdef CONFIG_KVM_BOOKE_HV 2139 u32 inst_sc1 = 0x44000022; 2140 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2141 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2142 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2143 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2144 #else 2145 u32 inst_lis = 0x3c000000; 2146 u32 inst_ori = 0x60000000; 2147 u32 inst_sc = 0x44000002; 2148 u32 inst_imm_mask = 0xffff; 2149 2150 /* 2151 * The hypercall to get into KVM from within guest context is as 2152 * follows: 2153 * 2154 * lis r0, r0, KVM_SC_MAGIC_R0@h 2155 * ori r0, KVM_SC_MAGIC_R0@l 2156 * sc 2157 * nop 2158 */ 2159 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2160 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2161 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2162 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2163 #endif 2164 2165 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2166 2167 return 0; 2168 } 2169 2170 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2171 bool line_status) 2172 { 2173 if (!irqchip_in_kernel(kvm)) 2174 return -ENXIO; 2175 2176 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2177 irq_event->irq, irq_event->level, 2178 line_status); 2179 return 0; 2180 } 2181 2182 2183 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2184 struct kvm_enable_cap *cap) 2185 { 2186 int r; 2187 2188 if (cap->flags) 2189 return -EINVAL; 2190 2191 switch (cap->cap) { 2192 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2193 case KVM_CAP_PPC_ENABLE_HCALL: { 2194 unsigned long hcall = cap->args[0]; 2195 2196 r = -EINVAL; 2197 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2198 cap->args[1] > 1) 2199 break; 2200 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2201 break; 2202 if (cap->args[1]) 2203 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2204 else 2205 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2206 r = 0; 2207 break; 2208 } 2209 case KVM_CAP_PPC_SMT: { 2210 unsigned long mode = cap->args[0]; 2211 unsigned long flags = cap->args[1]; 2212 2213 r = -EINVAL; 2214 if (kvm->arch.kvm_ops->set_smt_mode) 2215 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2216 break; 2217 } 2218 2219 case KVM_CAP_PPC_NESTED_HV: 2220 r = -EINVAL; 2221 if (!is_kvmppc_hv_enabled(kvm) || 2222 !kvm->arch.kvm_ops->enable_nested) 2223 break; 2224 r = kvm->arch.kvm_ops->enable_nested(kvm); 2225 break; 2226 #endif 2227 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2228 case KVM_CAP_PPC_SECURE_GUEST: 2229 r = -EINVAL; 2230 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2231 break; 2232 r = kvm->arch.kvm_ops->enable_svm(kvm); 2233 break; 2234 case KVM_CAP_PPC_DAWR1: 2235 r = -EINVAL; 2236 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1) 2237 break; 2238 r = kvm->arch.kvm_ops->enable_dawr1(kvm); 2239 break; 2240 #endif 2241 default: 2242 r = -EINVAL; 2243 break; 2244 } 2245 2246 return r; 2247 } 2248 2249 #ifdef CONFIG_PPC_BOOK3S_64 2250 /* 2251 * These functions check whether the underlying hardware is safe 2252 * against attacks based on observing the effects of speculatively 2253 * executed instructions, and whether it supplies instructions for 2254 * use in workarounds. The information comes from firmware, either 2255 * via the device tree on powernv platforms or from an hcall on 2256 * pseries platforms. 2257 */ 2258 #ifdef CONFIG_PPC_PSERIES 2259 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2260 { 2261 struct h_cpu_char_result c; 2262 unsigned long rc; 2263 2264 if (!machine_is(pseries)) 2265 return -ENOTTY; 2266 2267 rc = plpar_get_cpu_characteristics(&c); 2268 if (rc == H_SUCCESS) { 2269 cp->character = c.character; 2270 cp->behaviour = c.behaviour; 2271 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2272 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2273 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2274 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2275 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2276 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2277 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2278 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2279 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2280 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2281 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2282 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2283 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2284 } 2285 return 0; 2286 } 2287 #else 2288 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2289 { 2290 return -ENOTTY; 2291 } 2292 #endif 2293 2294 static inline bool have_fw_feat(struct device_node *fw_features, 2295 const char *state, const char *name) 2296 { 2297 struct device_node *np; 2298 bool r = false; 2299 2300 np = of_get_child_by_name(fw_features, name); 2301 if (np) { 2302 r = of_property_read_bool(np, state); 2303 of_node_put(np); 2304 } 2305 return r; 2306 } 2307 2308 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2309 { 2310 struct device_node *np, *fw_features; 2311 int r; 2312 2313 memset(cp, 0, sizeof(*cp)); 2314 r = pseries_get_cpu_char(cp); 2315 if (r != -ENOTTY) 2316 return r; 2317 2318 np = of_find_node_by_name(NULL, "ibm,opal"); 2319 if (np) { 2320 fw_features = of_get_child_by_name(np, "fw-features"); 2321 of_node_put(np); 2322 if (!fw_features) 2323 return 0; 2324 if (have_fw_feat(fw_features, "enabled", 2325 "inst-spec-barrier-ori31,31,0")) 2326 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2327 if (have_fw_feat(fw_features, "enabled", 2328 "fw-bcctrl-serialized")) 2329 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2330 if (have_fw_feat(fw_features, "enabled", 2331 "inst-l1d-flush-ori30,30,0")) 2332 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2333 if (have_fw_feat(fw_features, "enabled", 2334 "inst-l1d-flush-trig2")) 2335 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2336 if (have_fw_feat(fw_features, "enabled", 2337 "fw-l1d-thread-split")) 2338 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2339 if (have_fw_feat(fw_features, "enabled", 2340 "fw-count-cache-disabled")) 2341 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2342 if (have_fw_feat(fw_features, "enabled", 2343 "fw-count-cache-flush-bcctr2,0,0")) 2344 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2345 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2346 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2347 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2348 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2349 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2350 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2351 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2352 2353 if (have_fw_feat(fw_features, "enabled", 2354 "speculation-policy-favor-security")) 2355 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2356 if (!have_fw_feat(fw_features, "disabled", 2357 "needs-l1d-flush-msr-pr-0-to-1")) 2358 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2359 if (!have_fw_feat(fw_features, "disabled", 2360 "needs-spec-barrier-for-bound-checks")) 2361 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2362 if (have_fw_feat(fw_features, "enabled", 2363 "needs-count-cache-flush-on-context-switch")) 2364 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2365 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2366 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2367 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2368 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2369 2370 of_node_put(fw_features); 2371 } 2372 2373 return 0; 2374 } 2375 #endif 2376 2377 long kvm_arch_vm_ioctl(struct file *filp, 2378 unsigned int ioctl, unsigned long arg) 2379 { 2380 struct kvm *kvm __maybe_unused = filp->private_data; 2381 void __user *argp = (void __user *)arg; 2382 long r; 2383 2384 switch (ioctl) { 2385 case KVM_PPC_GET_PVINFO: { 2386 struct kvm_ppc_pvinfo pvinfo; 2387 memset(&pvinfo, 0, sizeof(pvinfo)); 2388 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2389 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2390 r = -EFAULT; 2391 goto out; 2392 } 2393 2394 break; 2395 } 2396 #ifdef CONFIG_SPAPR_TCE_IOMMU 2397 case KVM_CREATE_SPAPR_TCE_64: { 2398 struct kvm_create_spapr_tce_64 create_tce_64; 2399 2400 r = -EFAULT; 2401 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2402 goto out; 2403 if (create_tce_64.flags) { 2404 r = -EINVAL; 2405 goto out; 2406 } 2407 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2408 goto out; 2409 } 2410 case KVM_CREATE_SPAPR_TCE: { 2411 struct kvm_create_spapr_tce create_tce; 2412 struct kvm_create_spapr_tce_64 create_tce_64; 2413 2414 r = -EFAULT; 2415 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2416 goto out; 2417 2418 create_tce_64.liobn = create_tce.liobn; 2419 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2420 create_tce_64.offset = 0; 2421 create_tce_64.size = create_tce.window_size >> 2422 IOMMU_PAGE_SHIFT_4K; 2423 create_tce_64.flags = 0; 2424 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2425 goto out; 2426 } 2427 #endif 2428 #ifdef CONFIG_PPC_BOOK3S_64 2429 case KVM_PPC_GET_SMMU_INFO: { 2430 struct kvm_ppc_smmu_info info; 2431 struct kvm *kvm = filp->private_data; 2432 2433 memset(&info, 0, sizeof(info)); 2434 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2435 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2436 r = -EFAULT; 2437 break; 2438 } 2439 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2440 struct kvm *kvm = filp->private_data; 2441 2442 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2443 break; 2444 } 2445 case KVM_PPC_CONFIGURE_V3_MMU: { 2446 struct kvm *kvm = filp->private_data; 2447 struct kvm_ppc_mmuv3_cfg cfg; 2448 2449 r = -EINVAL; 2450 if (!kvm->arch.kvm_ops->configure_mmu) 2451 goto out; 2452 r = -EFAULT; 2453 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2454 goto out; 2455 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2456 break; 2457 } 2458 case KVM_PPC_GET_RMMU_INFO: { 2459 struct kvm *kvm = filp->private_data; 2460 struct kvm_ppc_rmmu_info info; 2461 2462 r = -EINVAL; 2463 if (!kvm->arch.kvm_ops->get_rmmu_info) 2464 goto out; 2465 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2466 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2467 r = -EFAULT; 2468 break; 2469 } 2470 case KVM_PPC_GET_CPU_CHAR: { 2471 struct kvm_ppc_cpu_char cpuchar; 2472 2473 r = kvmppc_get_cpu_char(&cpuchar); 2474 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2475 r = -EFAULT; 2476 break; 2477 } 2478 case KVM_PPC_SVM_OFF: { 2479 struct kvm *kvm = filp->private_data; 2480 2481 r = 0; 2482 if (!kvm->arch.kvm_ops->svm_off) 2483 goto out; 2484 2485 r = kvm->arch.kvm_ops->svm_off(kvm); 2486 break; 2487 } 2488 default: { 2489 struct kvm *kvm = filp->private_data; 2490 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2491 } 2492 #else /* CONFIG_PPC_BOOK3S_64 */ 2493 default: 2494 r = -ENOTTY; 2495 #endif 2496 } 2497 out: 2498 return r; 2499 } 2500 2501 static DEFINE_IDA(lpid_inuse); 2502 static unsigned long nr_lpids; 2503 2504 long kvmppc_alloc_lpid(void) 2505 { 2506 int lpid; 2507 2508 /* The host LPID must always be 0 (allocation starts at 1) */ 2509 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL); 2510 if (lpid < 0) { 2511 if (lpid == -ENOMEM) 2512 pr_err("%s: Out of memory\n", __func__); 2513 else 2514 pr_err("%s: No LPIDs free\n", __func__); 2515 return -ENOMEM; 2516 } 2517 2518 return lpid; 2519 } 2520 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2521 2522 void kvmppc_free_lpid(long lpid) 2523 { 2524 ida_free(&lpid_inuse, lpid); 2525 } 2526 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2527 2528 /* nr_lpids_param includes the host LPID */ 2529 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2530 { 2531 nr_lpids = nr_lpids_param; 2532 } 2533 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2534 2535 int kvm_arch_init(void *opaque) 2536 { 2537 return 0; 2538 } 2539 2540 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2541 2542 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2543 { 2544 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs) 2545 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry); 2546 } 2547 2548 int kvm_arch_create_vm_debugfs(struct kvm *kvm) 2549 { 2550 if (kvm->arch.kvm_ops->create_vm_debugfs) 2551 kvm->arch.kvm_ops->create_vm_debugfs(kvm); 2552 return 0; 2553 } 2554