xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision 367e5927)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include <asm/switch_to.h>
40 #include <asm/xive.h>
41 #ifdef CONFIG_PPC_PSERIES
42 #include <asm/hvcall.h>
43 #include <asm/plpar_wrappers.h>
44 #endif
45 
46 #include "timing.h"
47 #include "irq.h"
48 #include "../mm/mmu_decl.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include "trace.h"
52 
53 struct kvmppc_ops *kvmppc_hv_ops;
54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
55 struct kvmppc_ops *kvmppc_pr_ops;
56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
57 
58 
59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
60 {
61 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 }
63 
64 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
65 {
66 	return false;
67 }
68 
69 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
70 {
71 	return 1;
72 }
73 
74 /*
75  * Common checks before entering the guest world.  Call with interrupts
76  * disabled.
77  *
78  * returns:
79  *
80  * == 1 if we're ready to go into guest state
81  * <= 0 if we need to go back to the host with return value
82  */
83 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
84 {
85 	int r;
86 
87 	WARN_ON(irqs_disabled());
88 	hard_irq_disable();
89 
90 	while (true) {
91 		if (need_resched()) {
92 			local_irq_enable();
93 			cond_resched();
94 			hard_irq_disable();
95 			continue;
96 		}
97 
98 		if (signal_pending(current)) {
99 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
100 			vcpu->run->exit_reason = KVM_EXIT_INTR;
101 			r = -EINTR;
102 			break;
103 		}
104 
105 		vcpu->mode = IN_GUEST_MODE;
106 
107 		/*
108 		 * Reading vcpu->requests must happen after setting vcpu->mode,
109 		 * so we don't miss a request because the requester sees
110 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
111 		 * before next entering the guest (and thus doesn't IPI).
112 		 * This also orders the write to mode from any reads
113 		 * to the page tables done while the VCPU is running.
114 		 * Please see the comment in kvm_flush_remote_tlbs.
115 		 */
116 		smp_mb();
117 
118 		if (kvm_request_pending(vcpu)) {
119 			/* Make sure we process requests preemptable */
120 			local_irq_enable();
121 			trace_kvm_check_requests(vcpu);
122 			r = kvmppc_core_check_requests(vcpu);
123 			hard_irq_disable();
124 			if (r > 0)
125 				continue;
126 			break;
127 		}
128 
129 		if (kvmppc_core_prepare_to_enter(vcpu)) {
130 			/* interrupts got enabled in between, so we
131 			   are back at square 1 */
132 			continue;
133 		}
134 
135 		guest_enter_irqoff();
136 		return 1;
137 	}
138 
139 	/* return to host */
140 	local_irq_enable();
141 	return r;
142 }
143 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144 
145 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
146 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
147 {
148 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
149 	int i;
150 
151 	shared->sprg0 = swab64(shared->sprg0);
152 	shared->sprg1 = swab64(shared->sprg1);
153 	shared->sprg2 = swab64(shared->sprg2);
154 	shared->sprg3 = swab64(shared->sprg3);
155 	shared->srr0 = swab64(shared->srr0);
156 	shared->srr1 = swab64(shared->srr1);
157 	shared->dar = swab64(shared->dar);
158 	shared->msr = swab64(shared->msr);
159 	shared->dsisr = swab32(shared->dsisr);
160 	shared->int_pending = swab32(shared->int_pending);
161 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
162 		shared->sr[i] = swab32(shared->sr[i]);
163 }
164 #endif
165 
166 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
167 {
168 	int nr = kvmppc_get_gpr(vcpu, 11);
169 	int r;
170 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
171 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
172 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
173 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
174 	unsigned long r2 = 0;
175 
176 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177 		/* 32 bit mode */
178 		param1 &= 0xffffffff;
179 		param2 &= 0xffffffff;
180 		param3 &= 0xffffffff;
181 		param4 &= 0xffffffff;
182 	}
183 
184 	switch (nr) {
185 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186 	{
187 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
188 		/* Book3S can be little endian, find it out here */
189 		int shared_big_endian = true;
190 		if (vcpu->arch.intr_msr & MSR_LE)
191 			shared_big_endian = false;
192 		if (shared_big_endian != vcpu->arch.shared_big_endian)
193 			kvmppc_swab_shared(vcpu);
194 		vcpu->arch.shared_big_endian = shared_big_endian;
195 #endif
196 
197 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
198 			/*
199 			 * Older versions of the Linux magic page code had
200 			 * a bug where they would map their trampoline code
201 			 * NX. If that's the case, remove !PR NX capability.
202 			 */
203 			vcpu->arch.disable_kernel_nx = true;
204 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
205 		}
206 
207 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
208 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209 
210 #ifdef CONFIG_PPC_64K_PAGES
211 		/*
212 		 * Make sure our 4k magic page is in the same window of a 64k
213 		 * page within the guest and within the host's page.
214 		 */
215 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
216 		    ((ulong)vcpu->arch.shared & 0xf000)) {
217 			void *old_shared = vcpu->arch.shared;
218 			ulong shared = (ulong)vcpu->arch.shared;
219 			void *new_shared;
220 
221 			shared &= PAGE_MASK;
222 			shared |= vcpu->arch.magic_page_pa & 0xf000;
223 			new_shared = (void*)shared;
224 			memcpy(new_shared, old_shared, 0x1000);
225 			vcpu->arch.shared = new_shared;
226 		}
227 #endif
228 
229 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230 
231 		r = EV_SUCCESS;
232 		break;
233 	}
234 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
235 		r = EV_SUCCESS;
236 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
238 #endif
239 
240 		/* Second return value is in r4 */
241 		break;
242 	case EV_HCALL_TOKEN(EV_IDLE):
243 		r = EV_SUCCESS;
244 		kvm_vcpu_block(vcpu);
245 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246 		break;
247 	default:
248 		r = EV_UNIMPLEMENTED;
249 		break;
250 	}
251 
252 	kvmppc_set_gpr(vcpu, 4, r2);
253 
254 	return r;
255 }
256 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257 
258 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
259 {
260 	int r = false;
261 
262 	/* We have to know what CPU to virtualize */
263 	if (!vcpu->arch.pvr)
264 		goto out;
265 
266 	/* PAPR only works with book3s_64 */
267 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
268 		goto out;
269 
270 	/* HV KVM can only do PAPR mode for now */
271 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272 		goto out;
273 
274 #ifdef CONFIG_KVM_BOOKE_HV
275 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
276 		goto out;
277 #endif
278 
279 	r = true;
280 
281 out:
282 	vcpu->arch.sane = r;
283 	return r ? 0 : -EINVAL;
284 }
285 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286 
287 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
288 {
289 	enum emulation_result er;
290 	int r;
291 
292 	er = kvmppc_emulate_loadstore(vcpu);
293 	switch (er) {
294 	case EMULATE_DONE:
295 		/* Future optimization: only reload non-volatiles if they were
296 		 * actually modified. */
297 		r = RESUME_GUEST_NV;
298 		break;
299 	case EMULATE_AGAIN:
300 		r = RESUME_GUEST;
301 		break;
302 	case EMULATE_DO_MMIO:
303 		run->exit_reason = KVM_EXIT_MMIO;
304 		/* We must reload nonvolatiles because "update" load/store
305 		 * instructions modify register state. */
306 		/* Future optimization: only reload non-volatiles if they were
307 		 * actually modified. */
308 		r = RESUME_HOST_NV;
309 		break;
310 	case EMULATE_FAIL:
311 	{
312 		u32 last_inst;
313 
314 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315 		/* XXX Deliver Program interrupt to guest. */
316 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317 		r = RESUME_HOST;
318 		break;
319 	}
320 	default:
321 		WARN_ON(1);
322 		r = RESUME_GUEST;
323 	}
324 
325 	return r;
326 }
327 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328 
329 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
330 	      bool data)
331 {
332 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333 	struct kvmppc_pte pte;
334 	int r = -EINVAL;
335 
336 	vcpu->stat.st++;
337 
338 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
339 		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
340 							    size);
341 
342 	if ((!r) || (r == -EAGAIN))
343 		return r;
344 
345 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
346 			 XLATE_WRITE, &pte);
347 	if (r < 0)
348 		return r;
349 
350 	*eaddr = pte.raddr;
351 
352 	if (!pte.may_write)
353 		return -EPERM;
354 
355 	/* Magic page override */
356 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
357 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
358 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
359 		void *magic = vcpu->arch.shared;
360 		magic += pte.eaddr & 0xfff;
361 		memcpy(magic, ptr, size);
362 		return EMULATE_DONE;
363 	}
364 
365 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
366 		return EMULATE_DO_MMIO;
367 
368 	return EMULATE_DONE;
369 }
370 EXPORT_SYMBOL_GPL(kvmppc_st);
371 
372 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
373 		      bool data)
374 {
375 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
376 	struct kvmppc_pte pte;
377 	int rc = -EINVAL;
378 
379 	vcpu->stat.ld++;
380 
381 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
382 		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
383 							      size);
384 
385 	if ((!rc) || (rc == -EAGAIN))
386 		return rc;
387 
388 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
389 			  XLATE_READ, &pte);
390 	if (rc)
391 		return rc;
392 
393 	*eaddr = pte.raddr;
394 
395 	if (!pte.may_read)
396 		return -EPERM;
397 
398 	if (!data && !pte.may_execute)
399 		return -ENOEXEC;
400 
401 	/* Magic page override */
402 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
403 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
404 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
405 		void *magic = vcpu->arch.shared;
406 		magic += pte.eaddr & 0xfff;
407 		memcpy(ptr, magic, size);
408 		return EMULATE_DONE;
409 	}
410 
411 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
412 		return EMULATE_DO_MMIO;
413 
414 	return EMULATE_DONE;
415 }
416 EXPORT_SYMBOL_GPL(kvmppc_ld);
417 
418 int kvm_arch_hardware_enable(void)
419 {
420 	return 0;
421 }
422 
423 int kvm_arch_hardware_setup(void)
424 {
425 	return 0;
426 }
427 
428 void kvm_arch_check_processor_compat(void *rtn)
429 {
430 	*(int *)rtn = kvmppc_core_check_processor_compat();
431 }
432 
433 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
434 {
435 	struct kvmppc_ops *kvm_ops = NULL;
436 	/*
437 	 * if we have both HV and PR enabled, default is HV
438 	 */
439 	if (type == 0) {
440 		if (kvmppc_hv_ops)
441 			kvm_ops = kvmppc_hv_ops;
442 		else
443 			kvm_ops = kvmppc_pr_ops;
444 		if (!kvm_ops)
445 			goto err_out;
446 	} else	if (type == KVM_VM_PPC_HV) {
447 		if (!kvmppc_hv_ops)
448 			goto err_out;
449 		kvm_ops = kvmppc_hv_ops;
450 	} else if (type == KVM_VM_PPC_PR) {
451 		if (!kvmppc_pr_ops)
452 			goto err_out;
453 		kvm_ops = kvmppc_pr_ops;
454 	} else
455 		goto err_out;
456 
457 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
458 		return -ENOENT;
459 
460 	kvm->arch.kvm_ops = kvm_ops;
461 	return kvmppc_core_init_vm(kvm);
462 err_out:
463 	return -EINVAL;
464 }
465 
466 bool kvm_arch_has_vcpu_debugfs(void)
467 {
468 	return false;
469 }
470 
471 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
472 {
473 	return 0;
474 }
475 
476 void kvm_arch_destroy_vm(struct kvm *kvm)
477 {
478 	unsigned int i;
479 	struct kvm_vcpu *vcpu;
480 
481 #ifdef CONFIG_KVM_XICS
482 	/*
483 	 * We call kick_all_cpus_sync() to ensure that all
484 	 * CPUs have executed any pending IPIs before we
485 	 * continue and free VCPUs structures below.
486 	 */
487 	if (is_kvmppc_hv_enabled(kvm))
488 		kick_all_cpus_sync();
489 #endif
490 
491 	kvm_for_each_vcpu(i, vcpu, kvm)
492 		kvm_arch_vcpu_free(vcpu);
493 
494 	mutex_lock(&kvm->lock);
495 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
496 		kvm->vcpus[i] = NULL;
497 
498 	atomic_set(&kvm->online_vcpus, 0);
499 
500 	kvmppc_core_destroy_vm(kvm);
501 
502 	mutex_unlock(&kvm->lock);
503 
504 	/* drop the module reference */
505 	module_put(kvm->arch.kvm_ops->owner);
506 }
507 
508 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
509 {
510 	int r;
511 	/* Assume we're using HV mode when the HV module is loaded */
512 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
513 
514 	if (kvm) {
515 		/*
516 		 * Hooray - we know which VM type we're running on. Depend on
517 		 * that rather than the guess above.
518 		 */
519 		hv_enabled = is_kvmppc_hv_enabled(kvm);
520 	}
521 
522 	switch (ext) {
523 #ifdef CONFIG_BOOKE
524 	case KVM_CAP_PPC_BOOKE_SREGS:
525 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
526 	case KVM_CAP_PPC_EPR:
527 #else
528 	case KVM_CAP_PPC_SEGSTATE:
529 	case KVM_CAP_PPC_HIOR:
530 	case KVM_CAP_PPC_PAPR:
531 #endif
532 	case KVM_CAP_PPC_UNSET_IRQ:
533 	case KVM_CAP_PPC_IRQ_LEVEL:
534 	case KVM_CAP_ENABLE_CAP:
535 	case KVM_CAP_ONE_REG:
536 	case KVM_CAP_IOEVENTFD:
537 	case KVM_CAP_DEVICE_CTRL:
538 	case KVM_CAP_IMMEDIATE_EXIT:
539 		r = 1;
540 		break;
541 	case KVM_CAP_PPC_PAIRED_SINGLES:
542 	case KVM_CAP_PPC_OSI:
543 	case KVM_CAP_PPC_GET_PVINFO:
544 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
545 	case KVM_CAP_SW_TLB:
546 #endif
547 		/* We support this only for PR */
548 		r = !hv_enabled;
549 		break;
550 #ifdef CONFIG_KVM_MPIC
551 	case KVM_CAP_IRQ_MPIC:
552 		r = 1;
553 		break;
554 #endif
555 
556 #ifdef CONFIG_PPC_BOOK3S_64
557 	case KVM_CAP_SPAPR_TCE:
558 	case KVM_CAP_SPAPR_TCE_64:
559 		r = 1;
560 		break;
561 	case KVM_CAP_SPAPR_TCE_VFIO:
562 		r = !!cpu_has_feature(CPU_FTR_HVMODE);
563 		break;
564 	case KVM_CAP_PPC_RTAS:
565 	case KVM_CAP_PPC_FIXUP_HCALL:
566 	case KVM_CAP_PPC_ENABLE_HCALL:
567 #ifdef CONFIG_KVM_XICS
568 	case KVM_CAP_IRQ_XICS:
569 #endif
570 	case KVM_CAP_PPC_GET_CPU_CHAR:
571 		r = 1;
572 		break;
573 
574 	case KVM_CAP_PPC_ALLOC_HTAB:
575 		r = hv_enabled;
576 		break;
577 #endif /* CONFIG_PPC_BOOK3S_64 */
578 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
579 	case KVM_CAP_PPC_SMT:
580 		r = 0;
581 		if (kvm) {
582 			if (kvm->arch.emul_smt_mode > 1)
583 				r = kvm->arch.emul_smt_mode;
584 			else
585 				r = kvm->arch.smt_mode;
586 		} else if (hv_enabled) {
587 			if (cpu_has_feature(CPU_FTR_ARCH_300))
588 				r = 1;
589 			else
590 				r = threads_per_subcore;
591 		}
592 		break;
593 	case KVM_CAP_PPC_SMT_POSSIBLE:
594 		r = 1;
595 		if (hv_enabled) {
596 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
597 				r = ((threads_per_subcore << 1) - 1);
598 			else
599 				/* P9 can emulate dbells, so allow any mode */
600 				r = 8 | 4 | 2 | 1;
601 		}
602 		break;
603 	case KVM_CAP_PPC_RMA:
604 		r = 0;
605 		break;
606 	case KVM_CAP_PPC_HWRNG:
607 		r = kvmppc_hwrng_present();
608 		break;
609 	case KVM_CAP_PPC_MMU_RADIX:
610 		r = !!(hv_enabled && radix_enabled());
611 		break;
612 	case KVM_CAP_PPC_MMU_HASH_V3:
613 		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
614 		       cpu_has_feature(CPU_FTR_HVMODE));
615 		break;
616 	case KVM_CAP_PPC_NESTED_HV:
617 		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
618 		       !kvmppc_hv_ops->enable_nested(NULL));
619 		break;
620 #endif
621 	case KVM_CAP_SYNC_MMU:
622 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
623 		r = hv_enabled;
624 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
625 		r = 1;
626 #else
627 		r = 0;
628 #endif
629 		break;
630 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
631 	case KVM_CAP_PPC_HTAB_FD:
632 		r = hv_enabled;
633 		break;
634 #endif
635 	case KVM_CAP_NR_VCPUS:
636 		/*
637 		 * Recommending a number of CPUs is somewhat arbitrary; we
638 		 * return the number of present CPUs for -HV (since a host
639 		 * will have secondary threads "offline"), and for other KVM
640 		 * implementations just count online CPUs.
641 		 */
642 		if (hv_enabled)
643 			r = num_present_cpus();
644 		else
645 			r = num_online_cpus();
646 		break;
647 	case KVM_CAP_NR_MEMSLOTS:
648 		r = KVM_USER_MEM_SLOTS;
649 		break;
650 	case KVM_CAP_MAX_VCPUS:
651 		r = KVM_MAX_VCPUS;
652 		break;
653 #ifdef CONFIG_PPC_BOOK3S_64
654 	case KVM_CAP_PPC_GET_SMMU_INFO:
655 		r = 1;
656 		break;
657 	case KVM_CAP_SPAPR_MULTITCE:
658 		r = 1;
659 		break;
660 	case KVM_CAP_SPAPR_RESIZE_HPT:
661 		r = !!hv_enabled;
662 		break;
663 #endif
664 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
665 	case KVM_CAP_PPC_FWNMI:
666 		r = hv_enabled;
667 		break;
668 #endif
669 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
670 	case KVM_CAP_PPC_HTM:
671 		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
672 		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
673 		break;
674 #endif
675 	default:
676 		r = 0;
677 		break;
678 	}
679 	return r;
680 
681 }
682 
683 long kvm_arch_dev_ioctl(struct file *filp,
684                         unsigned int ioctl, unsigned long arg)
685 {
686 	return -EINVAL;
687 }
688 
689 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
690 			   struct kvm_memory_slot *dont)
691 {
692 	kvmppc_core_free_memslot(kvm, free, dont);
693 }
694 
695 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
696 			    unsigned long npages)
697 {
698 	return kvmppc_core_create_memslot(kvm, slot, npages);
699 }
700 
701 int kvm_arch_prepare_memory_region(struct kvm *kvm,
702 				   struct kvm_memory_slot *memslot,
703 				   const struct kvm_userspace_memory_region *mem,
704 				   enum kvm_mr_change change)
705 {
706 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
707 }
708 
709 void kvm_arch_commit_memory_region(struct kvm *kvm,
710 				   const struct kvm_userspace_memory_region *mem,
711 				   const struct kvm_memory_slot *old,
712 				   const struct kvm_memory_slot *new,
713 				   enum kvm_mr_change change)
714 {
715 	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
716 }
717 
718 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
719 				   struct kvm_memory_slot *slot)
720 {
721 	kvmppc_core_flush_memslot(kvm, slot);
722 }
723 
724 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
725 {
726 	struct kvm_vcpu *vcpu;
727 	vcpu = kvmppc_core_vcpu_create(kvm, id);
728 	if (!IS_ERR(vcpu)) {
729 		vcpu->arch.wqp = &vcpu->wq;
730 		kvmppc_create_vcpu_debugfs(vcpu, id);
731 	}
732 	return vcpu;
733 }
734 
735 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
736 {
737 }
738 
739 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
740 {
741 	/* Make sure we're not using the vcpu anymore */
742 	hrtimer_cancel(&vcpu->arch.dec_timer);
743 
744 	kvmppc_remove_vcpu_debugfs(vcpu);
745 
746 	switch (vcpu->arch.irq_type) {
747 	case KVMPPC_IRQ_MPIC:
748 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
749 		break;
750 	case KVMPPC_IRQ_XICS:
751 		if (xics_on_xive())
752 			kvmppc_xive_cleanup_vcpu(vcpu);
753 		else
754 			kvmppc_xics_free_icp(vcpu);
755 		break;
756 	}
757 
758 	kvmppc_core_vcpu_free(vcpu);
759 }
760 
761 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
762 {
763 	kvm_arch_vcpu_free(vcpu);
764 }
765 
766 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
767 {
768 	return kvmppc_core_pending_dec(vcpu);
769 }
770 
771 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
772 {
773 	struct kvm_vcpu *vcpu;
774 
775 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
776 	kvmppc_decrementer_func(vcpu);
777 
778 	return HRTIMER_NORESTART;
779 }
780 
781 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
782 {
783 	int ret;
784 
785 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
786 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
787 	vcpu->arch.dec_expires = get_tb();
788 
789 #ifdef CONFIG_KVM_EXIT_TIMING
790 	mutex_init(&vcpu->arch.exit_timing_lock);
791 #endif
792 	ret = kvmppc_subarch_vcpu_init(vcpu);
793 	return ret;
794 }
795 
796 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
797 {
798 	kvmppc_mmu_destroy(vcpu);
799 	kvmppc_subarch_vcpu_uninit(vcpu);
800 }
801 
802 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
803 {
804 #ifdef CONFIG_BOOKE
805 	/*
806 	 * vrsave (formerly usprg0) isn't used by Linux, but may
807 	 * be used by the guest.
808 	 *
809 	 * On non-booke this is associated with Altivec and
810 	 * is handled by code in book3s.c.
811 	 */
812 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
813 #endif
814 	kvmppc_core_vcpu_load(vcpu, cpu);
815 }
816 
817 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
818 {
819 	kvmppc_core_vcpu_put(vcpu);
820 #ifdef CONFIG_BOOKE
821 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
822 #endif
823 }
824 
825 /*
826  * irq_bypass_add_producer and irq_bypass_del_producer are only
827  * useful if the architecture supports PCI passthrough.
828  * irq_bypass_stop and irq_bypass_start are not needed and so
829  * kvm_ops are not defined for them.
830  */
831 bool kvm_arch_has_irq_bypass(void)
832 {
833 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
834 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
835 }
836 
837 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
838 				     struct irq_bypass_producer *prod)
839 {
840 	struct kvm_kernel_irqfd *irqfd =
841 		container_of(cons, struct kvm_kernel_irqfd, consumer);
842 	struct kvm *kvm = irqfd->kvm;
843 
844 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
845 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
846 
847 	return 0;
848 }
849 
850 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
851 				      struct irq_bypass_producer *prod)
852 {
853 	struct kvm_kernel_irqfd *irqfd =
854 		container_of(cons, struct kvm_kernel_irqfd, consumer);
855 	struct kvm *kvm = irqfd->kvm;
856 
857 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
858 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
859 }
860 
861 #ifdef CONFIG_VSX
862 static inline int kvmppc_get_vsr_dword_offset(int index)
863 {
864 	int offset;
865 
866 	if ((index != 0) && (index != 1))
867 		return -1;
868 
869 #ifdef __BIG_ENDIAN
870 	offset =  index;
871 #else
872 	offset = 1 - index;
873 #endif
874 
875 	return offset;
876 }
877 
878 static inline int kvmppc_get_vsr_word_offset(int index)
879 {
880 	int offset;
881 
882 	if ((index > 3) || (index < 0))
883 		return -1;
884 
885 #ifdef __BIG_ENDIAN
886 	offset = index;
887 #else
888 	offset = 3 - index;
889 #endif
890 	return offset;
891 }
892 
893 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
894 	u64 gpr)
895 {
896 	union kvmppc_one_reg val;
897 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
898 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
899 
900 	if (offset == -1)
901 		return;
902 
903 	if (index >= 32) {
904 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
905 		val.vsxval[offset] = gpr;
906 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
907 	} else {
908 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
909 	}
910 }
911 
912 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
913 	u64 gpr)
914 {
915 	union kvmppc_one_reg val;
916 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
917 
918 	if (index >= 32) {
919 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
920 		val.vsxval[0] = gpr;
921 		val.vsxval[1] = gpr;
922 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
923 	} else {
924 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
925 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
926 	}
927 }
928 
929 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
930 	u32 gpr)
931 {
932 	union kvmppc_one_reg val;
933 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
934 
935 	if (index >= 32) {
936 		val.vsx32val[0] = gpr;
937 		val.vsx32val[1] = gpr;
938 		val.vsx32val[2] = gpr;
939 		val.vsx32val[3] = gpr;
940 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
941 	} else {
942 		val.vsx32val[0] = gpr;
943 		val.vsx32val[1] = gpr;
944 		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
945 		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
946 	}
947 }
948 
949 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
950 	u32 gpr32)
951 {
952 	union kvmppc_one_reg val;
953 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
954 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
955 	int dword_offset, word_offset;
956 
957 	if (offset == -1)
958 		return;
959 
960 	if (index >= 32) {
961 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
962 		val.vsx32val[offset] = gpr32;
963 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
964 	} else {
965 		dword_offset = offset / 2;
966 		word_offset = offset % 2;
967 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
968 		val.vsx32val[word_offset] = gpr32;
969 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
970 	}
971 }
972 #endif /* CONFIG_VSX */
973 
974 #ifdef CONFIG_ALTIVEC
975 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
976 		int index, int element_size)
977 {
978 	int offset;
979 	int elts = sizeof(vector128)/element_size;
980 
981 	if ((index < 0) || (index >= elts))
982 		return -1;
983 
984 	if (kvmppc_need_byteswap(vcpu))
985 		offset = elts - index - 1;
986 	else
987 		offset = index;
988 
989 	return offset;
990 }
991 
992 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
993 		int index)
994 {
995 	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
996 }
997 
998 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
999 		int index)
1000 {
1001 	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1002 }
1003 
1004 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1005 		int index)
1006 {
1007 	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1008 }
1009 
1010 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1011 		int index)
1012 {
1013 	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1014 }
1015 
1016 
1017 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1018 	u64 gpr)
1019 {
1020 	union kvmppc_one_reg val;
1021 	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1022 			vcpu->arch.mmio_vmx_offset);
1023 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1024 
1025 	if (offset == -1)
1026 		return;
1027 
1028 	val.vval = VCPU_VSX_VR(vcpu, index);
1029 	val.vsxval[offset] = gpr;
1030 	VCPU_VSX_VR(vcpu, index) = val.vval;
1031 }
1032 
1033 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1034 	u32 gpr32)
1035 {
1036 	union kvmppc_one_reg val;
1037 	int offset = kvmppc_get_vmx_word_offset(vcpu,
1038 			vcpu->arch.mmio_vmx_offset);
1039 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1040 
1041 	if (offset == -1)
1042 		return;
1043 
1044 	val.vval = VCPU_VSX_VR(vcpu, index);
1045 	val.vsx32val[offset] = gpr32;
1046 	VCPU_VSX_VR(vcpu, index) = val.vval;
1047 }
1048 
1049 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1050 	u16 gpr16)
1051 {
1052 	union kvmppc_one_reg val;
1053 	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1054 			vcpu->arch.mmio_vmx_offset);
1055 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1056 
1057 	if (offset == -1)
1058 		return;
1059 
1060 	val.vval = VCPU_VSX_VR(vcpu, index);
1061 	val.vsx16val[offset] = gpr16;
1062 	VCPU_VSX_VR(vcpu, index) = val.vval;
1063 }
1064 
1065 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1066 	u8 gpr8)
1067 {
1068 	union kvmppc_one_reg val;
1069 	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1070 			vcpu->arch.mmio_vmx_offset);
1071 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1072 
1073 	if (offset == -1)
1074 		return;
1075 
1076 	val.vval = VCPU_VSX_VR(vcpu, index);
1077 	val.vsx8val[offset] = gpr8;
1078 	VCPU_VSX_VR(vcpu, index) = val.vval;
1079 }
1080 #endif /* CONFIG_ALTIVEC */
1081 
1082 #ifdef CONFIG_PPC_FPU
1083 static inline u64 sp_to_dp(u32 fprs)
1084 {
1085 	u64 fprd;
1086 
1087 	preempt_disable();
1088 	enable_kernel_fp();
1089 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1090 	     : "fr0");
1091 	preempt_enable();
1092 	return fprd;
1093 }
1094 
1095 static inline u32 dp_to_sp(u64 fprd)
1096 {
1097 	u32 fprs;
1098 
1099 	preempt_disable();
1100 	enable_kernel_fp();
1101 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1102 	     : "fr0");
1103 	preempt_enable();
1104 	return fprs;
1105 }
1106 
1107 #else
1108 #define sp_to_dp(x)	(x)
1109 #define dp_to_sp(x)	(x)
1110 #endif /* CONFIG_PPC_FPU */
1111 
1112 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1113                                       struct kvm_run *run)
1114 {
1115 	u64 uninitialized_var(gpr);
1116 
1117 	if (run->mmio.len > sizeof(gpr)) {
1118 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1119 		return;
1120 	}
1121 
1122 	if (!vcpu->arch.mmio_host_swabbed) {
1123 		switch (run->mmio.len) {
1124 		case 8: gpr = *(u64 *)run->mmio.data; break;
1125 		case 4: gpr = *(u32 *)run->mmio.data; break;
1126 		case 2: gpr = *(u16 *)run->mmio.data; break;
1127 		case 1: gpr = *(u8 *)run->mmio.data; break;
1128 		}
1129 	} else {
1130 		switch (run->mmio.len) {
1131 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1132 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1133 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1134 		case 1: gpr = *(u8 *)run->mmio.data; break;
1135 		}
1136 	}
1137 
1138 	/* conversion between single and double precision */
1139 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1140 		gpr = sp_to_dp(gpr);
1141 
1142 	if (vcpu->arch.mmio_sign_extend) {
1143 		switch (run->mmio.len) {
1144 #ifdef CONFIG_PPC64
1145 		case 4:
1146 			gpr = (s64)(s32)gpr;
1147 			break;
1148 #endif
1149 		case 2:
1150 			gpr = (s64)(s16)gpr;
1151 			break;
1152 		case 1:
1153 			gpr = (s64)(s8)gpr;
1154 			break;
1155 		}
1156 	}
1157 
1158 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1159 	case KVM_MMIO_REG_GPR:
1160 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1161 		break;
1162 	case KVM_MMIO_REG_FPR:
1163 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1164 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1165 
1166 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1167 		break;
1168 #ifdef CONFIG_PPC_BOOK3S
1169 	case KVM_MMIO_REG_QPR:
1170 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1171 		break;
1172 	case KVM_MMIO_REG_FQPR:
1173 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1174 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1175 		break;
1176 #endif
1177 #ifdef CONFIG_VSX
1178 	case KVM_MMIO_REG_VSX:
1179 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1180 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1181 
1182 		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1183 			kvmppc_set_vsr_dword(vcpu, gpr);
1184 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1185 			kvmppc_set_vsr_word(vcpu, gpr);
1186 		else if (vcpu->arch.mmio_copy_type ==
1187 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1188 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1189 		else if (vcpu->arch.mmio_copy_type ==
1190 				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1191 			kvmppc_set_vsr_word_dump(vcpu, gpr);
1192 		break;
1193 #endif
1194 #ifdef CONFIG_ALTIVEC
1195 	case KVM_MMIO_REG_VMX:
1196 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1197 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1198 
1199 		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1200 			kvmppc_set_vmx_dword(vcpu, gpr);
1201 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1202 			kvmppc_set_vmx_word(vcpu, gpr);
1203 		else if (vcpu->arch.mmio_copy_type ==
1204 				KVMPPC_VMX_COPY_HWORD)
1205 			kvmppc_set_vmx_hword(vcpu, gpr);
1206 		else if (vcpu->arch.mmio_copy_type ==
1207 				KVMPPC_VMX_COPY_BYTE)
1208 			kvmppc_set_vmx_byte(vcpu, gpr);
1209 		break;
1210 #endif
1211 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1212 	case KVM_MMIO_REG_NESTED_GPR:
1213 		if (kvmppc_need_byteswap(vcpu))
1214 			gpr = swab64(gpr);
1215 		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1216 				     sizeof(gpr));
1217 		break;
1218 #endif
1219 	default:
1220 		BUG();
1221 	}
1222 }
1223 
1224 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1225 				unsigned int rt, unsigned int bytes,
1226 				int is_default_endian, int sign_extend)
1227 {
1228 	int idx, ret;
1229 	bool host_swabbed;
1230 
1231 	/* Pity C doesn't have a logical XOR operator */
1232 	if (kvmppc_need_byteswap(vcpu)) {
1233 		host_swabbed = is_default_endian;
1234 	} else {
1235 		host_swabbed = !is_default_endian;
1236 	}
1237 
1238 	if (bytes > sizeof(run->mmio.data)) {
1239 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1240 		       run->mmio.len);
1241 	}
1242 
1243 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1244 	run->mmio.len = bytes;
1245 	run->mmio.is_write = 0;
1246 
1247 	vcpu->arch.io_gpr = rt;
1248 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1249 	vcpu->mmio_needed = 1;
1250 	vcpu->mmio_is_write = 0;
1251 	vcpu->arch.mmio_sign_extend = sign_extend;
1252 
1253 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1254 
1255 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1256 			      bytes, &run->mmio.data);
1257 
1258 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1259 
1260 	if (!ret) {
1261 		kvmppc_complete_mmio_load(vcpu, run);
1262 		vcpu->mmio_needed = 0;
1263 		return EMULATE_DONE;
1264 	}
1265 
1266 	return EMULATE_DO_MMIO;
1267 }
1268 
1269 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1270 		       unsigned int rt, unsigned int bytes,
1271 		       int is_default_endian)
1272 {
1273 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1274 }
1275 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1276 
1277 /* Same as above, but sign extends */
1278 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1279 			unsigned int rt, unsigned int bytes,
1280 			int is_default_endian)
1281 {
1282 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1283 }
1284 
1285 #ifdef CONFIG_VSX
1286 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1287 			unsigned int rt, unsigned int bytes,
1288 			int is_default_endian, int mmio_sign_extend)
1289 {
1290 	enum emulation_result emulated = EMULATE_DONE;
1291 
1292 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1293 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1294 		return EMULATE_FAIL;
1295 
1296 	while (vcpu->arch.mmio_vsx_copy_nums) {
1297 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1298 			is_default_endian, mmio_sign_extend);
1299 
1300 		if (emulated != EMULATE_DONE)
1301 			break;
1302 
1303 		vcpu->arch.paddr_accessed += run->mmio.len;
1304 
1305 		vcpu->arch.mmio_vsx_copy_nums--;
1306 		vcpu->arch.mmio_vsx_offset++;
1307 	}
1308 	return emulated;
1309 }
1310 #endif /* CONFIG_VSX */
1311 
1312 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1313 			u64 val, unsigned int bytes, int is_default_endian)
1314 {
1315 	void *data = run->mmio.data;
1316 	int idx, ret;
1317 	bool host_swabbed;
1318 
1319 	/* Pity C doesn't have a logical XOR operator */
1320 	if (kvmppc_need_byteswap(vcpu)) {
1321 		host_swabbed = is_default_endian;
1322 	} else {
1323 		host_swabbed = !is_default_endian;
1324 	}
1325 
1326 	if (bytes > sizeof(run->mmio.data)) {
1327 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1328 		       run->mmio.len);
1329 	}
1330 
1331 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1332 	run->mmio.len = bytes;
1333 	run->mmio.is_write = 1;
1334 	vcpu->mmio_needed = 1;
1335 	vcpu->mmio_is_write = 1;
1336 
1337 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1338 		val = dp_to_sp(val);
1339 
1340 	/* Store the value at the lowest bytes in 'data'. */
1341 	if (!host_swabbed) {
1342 		switch (bytes) {
1343 		case 8: *(u64 *)data = val; break;
1344 		case 4: *(u32 *)data = val; break;
1345 		case 2: *(u16 *)data = val; break;
1346 		case 1: *(u8  *)data = val; break;
1347 		}
1348 	} else {
1349 		switch (bytes) {
1350 		case 8: *(u64 *)data = swab64(val); break;
1351 		case 4: *(u32 *)data = swab32(val); break;
1352 		case 2: *(u16 *)data = swab16(val); break;
1353 		case 1: *(u8  *)data = val; break;
1354 		}
1355 	}
1356 
1357 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1358 
1359 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1360 			       bytes, &run->mmio.data);
1361 
1362 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1363 
1364 	if (!ret) {
1365 		vcpu->mmio_needed = 0;
1366 		return EMULATE_DONE;
1367 	}
1368 
1369 	return EMULATE_DO_MMIO;
1370 }
1371 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1372 
1373 #ifdef CONFIG_VSX
1374 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1375 {
1376 	u32 dword_offset, word_offset;
1377 	union kvmppc_one_reg reg;
1378 	int vsx_offset = 0;
1379 	int copy_type = vcpu->arch.mmio_copy_type;
1380 	int result = 0;
1381 
1382 	switch (copy_type) {
1383 	case KVMPPC_VSX_COPY_DWORD:
1384 		vsx_offset =
1385 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1386 
1387 		if (vsx_offset == -1) {
1388 			result = -1;
1389 			break;
1390 		}
1391 
1392 		if (rs < 32) {
1393 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1394 		} else {
1395 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1396 			*val = reg.vsxval[vsx_offset];
1397 		}
1398 		break;
1399 
1400 	case KVMPPC_VSX_COPY_WORD:
1401 		vsx_offset =
1402 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1403 
1404 		if (vsx_offset == -1) {
1405 			result = -1;
1406 			break;
1407 		}
1408 
1409 		if (rs < 32) {
1410 			dword_offset = vsx_offset / 2;
1411 			word_offset = vsx_offset % 2;
1412 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1413 			*val = reg.vsx32val[word_offset];
1414 		} else {
1415 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1416 			*val = reg.vsx32val[vsx_offset];
1417 		}
1418 		break;
1419 
1420 	default:
1421 		result = -1;
1422 		break;
1423 	}
1424 
1425 	return result;
1426 }
1427 
1428 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1429 			int rs, unsigned int bytes, int is_default_endian)
1430 {
1431 	u64 val;
1432 	enum emulation_result emulated = EMULATE_DONE;
1433 
1434 	vcpu->arch.io_gpr = rs;
1435 
1436 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1437 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1438 		return EMULATE_FAIL;
1439 
1440 	while (vcpu->arch.mmio_vsx_copy_nums) {
1441 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1442 			return EMULATE_FAIL;
1443 
1444 		emulated = kvmppc_handle_store(run, vcpu,
1445 			 val, bytes, is_default_endian);
1446 
1447 		if (emulated != EMULATE_DONE)
1448 			break;
1449 
1450 		vcpu->arch.paddr_accessed += run->mmio.len;
1451 
1452 		vcpu->arch.mmio_vsx_copy_nums--;
1453 		vcpu->arch.mmio_vsx_offset++;
1454 	}
1455 
1456 	return emulated;
1457 }
1458 
1459 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1460 			struct kvm_run *run)
1461 {
1462 	enum emulation_result emulated = EMULATE_FAIL;
1463 	int r;
1464 
1465 	vcpu->arch.paddr_accessed += run->mmio.len;
1466 
1467 	if (!vcpu->mmio_is_write) {
1468 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1469 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1470 	} else {
1471 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1472 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1473 	}
1474 
1475 	switch (emulated) {
1476 	case EMULATE_DO_MMIO:
1477 		run->exit_reason = KVM_EXIT_MMIO;
1478 		r = RESUME_HOST;
1479 		break;
1480 	case EMULATE_FAIL:
1481 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1482 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1483 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1484 		r = RESUME_HOST;
1485 		break;
1486 	default:
1487 		r = RESUME_GUEST;
1488 		break;
1489 	}
1490 	return r;
1491 }
1492 #endif /* CONFIG_VSX */
1493 
1494 #ifdef CONFIG_ALTIVEC
1495 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1496 		unsigned int rt, unsigned int bytes, int is_default_endian)
1497 {
1498 	enum emulation_result emulated = EMULATE_DONE;
1499 
1500 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1501 		return EMULATE_FAIL;
1502 
1503 	while (vcpu->arch.mmio_vmx_copy_nums) {
1504 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1505 				is_default_endian, 0);
1506 
1507 		if (emulated != EMULATE_DONE)
1508 			break;
1509 
1510 		vcpu->arch.paddr_accessed += run->mmio.len;
1511 		vcpu->arch.mmio_vmx_copy_nums--;
1512 		vcpu->arch.mmio_vmx_offset++;
1513 	}
1514 
1515 	return emulated;
1516 }
1517 
1518 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1519 {
1520 	union kvmppc_one_reg reg;
1521 	int vmx_offset = 0;
1522 	int result = 0;
1523 
1524 	vmx_offset =
1525 		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1526 
1527 	if (vmx_offset == -1)
1528 		return -1;
1529 
1530 	reg.vval = VCPU_VSX_VR(vcpu, index);
1531 	*val = reg.vsxval[vmx_offset];
1532 
1533 	return result;
1534 }
1535 
1536 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1537 {
1538 	union kvmppc_one_reg reg;
1539 	int vmx_offset = 0;
1540 	int result = 0;
1541 
1542 	vmx_offset =
1543 		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1544 
1545 	if (vmx_offset == -1)
1546 		return -1;
1547 
1548 	reg.vval = VCPU_VSX_VR(vcpu, index);
1549 	*val = reg.vsx32val[vmx_offset];
1550 
1551 	return result;
1552 }
1553 
1554 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1555 {
1556 	union kvmppc_one_reg reg;
1557 	int vmx_offset = 0;
1558 	int result = 0;
1559 
1560 	vmx_offset =
1561 		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1562 
1563 	if (vmx_offset == -1)
1564 		return -1;
1565 
1566 	reg.vval = VCPU_VSX_VR(vcpu, index);
1567 	*val = reg.vsx16val[vmx_offset];
1568 
1569 	return result;
1570 }
1571 
1572 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1573 {
1574 	union kvmppc_one_reg reg;
1575 	int vmx_offset = 0;
1576 	int result = 0;
1577 
1578 	vmx_offset =
1579 		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1580 
1581 	if (vmx_offset == -1)
1582 		return -1;
1583 
1584 	reg.vval = VCPU_VSX_VR(vcpu, index);
1585 	*val = reg.vsx8val[vmx_offset];
1586 
1587 	return result;
1588 }
1589 
1590 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1591 		unsigned int rs, unsigned int bytes, int is_default_endian)
1592 {
1593 	u64 val = 0;
1594 	unsigned int index = rs & KVM_MMIO_REG_MASK;
1595 	enum emulation_result emulated = EMULATE_DONE;
1596 
1597 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1598 		return EMULATE_FAIL;
1599 
1600 	vcpu->arch.io_gpr = rs;
1601 
1602 	while (vcpu->arch.mmio_vmx_copy_nums) {
1603 		switch (vcpu->arch.mmio_copy_type) {
1604 		case KVMPPC_VMX_COPY_DWORD:
1605 			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1606 				return EMULATE_FAIL;
1607 
1608 			break;
1609 		case KVMPPC_VMX_COPY_WORD:
1610 			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1611 				return EMULATE_FAIL;
1612 			break;
1613 		case KVMPPC_VMX_COPY_HWORD:
1614 			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1615 				return EMULATE_FAIL;
1616 			break;
1617 		case KVMPPC_VMX_COPY_BYTE:
1618 			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1619 				return EMULATE_FAIL;
1620 			break;
1621 		default:
1622 			return EMULATE_FAIL;
1623 		}
1624 
1625 		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1626 				is_default_endian);
1627 		if (emulated != EMULATE_DONE)
1628 			break;
1629 
1630 		vcpu->arch.paddr_accessed += run->mmio.len;
1631 		vcpu->arch.mmio_vmx_copy_nums--;
1632 		vcpu->arch.mmio_vmx_offset++;
1633 	}
1634 
1635 	return emulated;
1636 }
1637 
1638 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1639 		struct kvm_run *run)
1640 {
1641 	enum emulation_result emulated = EMULATE_FAIL;
1642 	int r;
1643 
1644 	vcpu->arch.paddr_accessed += run->mmio.len;
1645 
1646 	if (!vcpu->mmio_is_write) {
1647 		emulated = kvmppc_handle_vmx_load(run, vcpu,
1648 				vcpu->arch.io_gpr, run->mmio.len, 1);
1649 	} else {
1650 		emulated = kvmppc_handle_vmx_store(run, vcpu,
1651 				vcpu->arch.io_gpr, run->mmio.len, 1);
1652 	}
1653 
1654 	switch (emulated) {
1655 	case EMULATE_DO_MMIO:
1656 		run->exit_reason = KVM_EXIT_MMIO;
1657 		r = RESUME_HOST;
1658 		break;
1659 	case EMULATE_FAIL:
1660 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1661 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1662 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1663 		r = RESUME_HOST;
1664 		break;
1665 	default:
1666 		r = RESUME_GUEST;
1667 		break;
1668 	}
1669 	return r;
1670 }
1671 #endif /* CONFIG_ALTIVEC */
1672 
1673 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1674 {
1675 	int r = 0;
1676 	union kvmppc_one_reg val;
1677 	int size;
1678 
1679 	size = one_reg_size(reg->id);
1680 	if (size > sizeof(val))
1681 		return -EINVAL;
1682 
1683 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1684 	if (r == -EINVAL) {
1685 		r = 0;
1686 		switch (reg->id) {
1687 #ifdef CONFIG_ALTIVEC
1688 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1689 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1690 				r = -ENXIO;
1691 				break;
1692 			}
1693 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1694 			break;
1695 		case KVM_REG_PPC_VSCR:
1696 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1697 				r = -ENXIO;
1698 				break;
1699 			}
1700 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1701 			break;
1702 		case KVM_REG_PPC_VRSAVE:
1703 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1704 			break;
1705 #endif /* CONFIG_ALTIVEC */
1706 		default:
1707 			r = -EINVAL;
1708 			break;
1709 		}
1710 	}
1711 
1712 	if (r)
1713 		return r;
1714 
1715 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1716 		r = -EFAULT;
1717 
1718 	return r;
1719 }
1720 
1721 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1722 {
1723 	int r;
1724 	union kvmppc_one_reg val;
1725 	int size;
1726 
1727 	size = one_reg_size(reg->id);
1728 	if (size > sizeof(val))
1729 		return -EINVAL;
1730 
1731 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1732 		return -EFAULT;
1733 
1734 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1735 	if (r == -EINVAL) {
1736 		r = 0;
1737 		switch (reg->id) {
1738 #ifdef CONFIG_ALTIVEC
1739 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1740 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1741 				r = -ENXIO;
1742 				break;
1743 			}
1744 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1745 			break;
1746 		case KVM_REG_PPC_VSCR:
1747 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1748 				r = -ENXIO;
1749 				break;
1750 			}
1751 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1752 			break;
1753 		case KVM_REG_PPC_VRSAVE:
1754 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1755 				r = -ENXIO;
1756 				break;
1757 			}
1758 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1759 			break;
1760 #endif /* CONFIG_ALTIVEC */
1761 		default:
1762 			r = -EINVAL;
1763 			break;
1764 		}
1765 	}
1766 
1767 	return r;
1768 }
1769 
1770 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1771 {
1772 	int r;
1773 
1774 	vcpu_load(vcpu);
1775 
1776 	if (vcpu->mmio_needed) {
1777 		vcpu->mmio_needed = 0;
1778 		if (!vcpu->mmio_is_write)
1779 			kvmppc_complete_mmio_load(vcpu, run);
1780 #ifdef CONFIG_VSX
1781 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1782 			vcpu->arch.mmio_vsx_copy_nums--;
1783 			vcpu->arch.mmio_vsx_offset++;
1784 		}
1785 
1786 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1787 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1788 			if (r == RESUME_HOST) {
1789 				vcpu->mmio_needed = 1;
1790 				goto out;
1791 			}
1792 		}
1793 #endif
1794 #ifdef CONFIG_ALTIVEC
1795 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1796 			vcpu->arch.mmio_vmx_copy_nums--;
1797 			vcpu->arch.mmio_vmx_offset++;
1798 		}
1799 
1800 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1801 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1802 			if (r == RESUME_HOST) {
1803 				vcpu->mmio_needed = 1;
1804 				goto out;
1805 			}
1806 		}
1807 #endif
1808 	} else if (vcpu->arch.osi_needed) {
1809 		u64 *gprs = run->osi.gprs;
1810 		int i;
1811 
1812 		for (i = 0; i < 32; i++)
1813 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1814 		vcpu->arch.osi_needed = 0;
1815 	} else if (vcpu->arch.hcall_needed) {
1816 		int i;
1817 
1818 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1819 		for (i = 0; i < 9; ++i)
1820 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1821 		vcpu->arch.hcall_needed = 0;
1822 #ifdef CONFIG_BOOKE
1823 	} else if (vcpu->arch.epr_needed) {
1824 		kvmppc_set_epr(vcpu, run->epr.epr);
1825 		vcpu->arch.epr_needed = 0;
1826 #endif
1827 	}
1828 
1829 	kvm_sigset_activate(vcpu);
1830 
1831 	if (run->immediate_exit)
1832 		r = -EINTR;
1833 	else
1834 		r = kvmppc_vcpu_run(run, vcpu);
1835 
1836 	kvm_sigset_deactivate(vcpu);
1837 
1838 #ifdef CONFIG_ALTIVEC
1839 out:
1840 #endif
1841 	vcpu_put(vcpu);
1842 	return r;
1843 }
1844 
1845 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1846 {
1847 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1848 		kvmppc_core_dequeue_external(vcpu);
1849 		return 0;
1850 	}
1851 
1852 	kvmppc_core_queue_external(vcpu, irq);
1853 
1854 	kvm_vcpu_kick(vcpu);
1855 
1856 	return 0;
1857 }
1858 
1859 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1860 				     struct kvm_enable_cap *cap)
1861 {
1862 	int r;
1863 
1864 	if (cap->flags)
1865 		return -EINVAL;
1866 
1867 	switch (cap->cap) {
1868 	case KVM_CAP_PPC_OSI:
1869 		r = 0;
1870 		vcpu->arch.osi_enabled = true;
1871 		break;
1872 	case KVM_CAP_PPC_PAPR:
1873 		r = 0;
1874 		vcpu->arch.papr_enabled = true;
1875 		break;
1876 	case KVM_CAP_PPC_EPR:
1877 		r = 0;
1878 		if (cap->args[0])
1879 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1880 		else
1881 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1882 		break;
1883 #ifdef CONFIG_BOOKE
1884 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1885 		r = 0;
1886 		vcpu->arch.watchdog_enabled = true;
1887 		break;
1888 #endif
1889 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1890 	case KVM_CAP_SW_TLB: {
1891 		struct kvm_config_tlb cfg;
1892 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1893 
1894 		r = -EFAULT;
1895 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1896 			break;
1897 
1898 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1899 		break;
1900 	}
1901 #endif
1902 #ifdef CONFIG_KVM_MPIC
1903 	case KVM_CAP_IRQ_MPIC: {
1904 		struct fd f;
1905 		struct kvm_device *dev;
1906 
1907 		r = -EBADF;
1908 		f = fdget(cap->args[0]);
1909 		if (!f.file)
1910 			break;
1911 
1912 		r = -EPERM;
1913 		dev = kvm_device_from_filp(f.file);
1914 		if (dev)
1915 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1916 
1917 		fdput(f);
1918 		break;
1919 	}
1920 #endif
1921 #ifdef CONFIG_KVM_XICS
1922 	case KVM_CAP_IRQ_XICS: {
1923 		struct fd f;
1924 		struct kvm_device *dev;
1925 
1926 		r = -EBADF;
1927 		f = fdget(cap->args[0]);
1928 		if (!f.file)
1929 			break;
1930 
1931 		r = -EPERM;
1932 		dev = kvm_device_from_filp(f.file);
1933 		if (dev) {
1934 			if (xics_on_xive())
1935 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1936 			else
1937 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1938 		}
1939 
1940 		fdput(f);
1941 		break;
1942 	}
1943 #endif /* CONFIG_KVM_XICS */
1944 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1945 	case KVM_CAP_PPC_FWNMI:
1946 		r = -EINVAL;
1947 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1948 			break;
1949 		r = 0;
1950 		vcpu->kvm->arch.fwnmi_enabled = true;
1951 		break;
1952 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1953 	default:
1954 		r = -EINVAL;
1955 		break;
1956 	}
1957 
1958 	if (!r)
1959 		r = kvmppc_sanity_check(vcpu);
1960 
1961 	return r;
1962 }
1963 
1964 bool kvm_arch_intc_initialized(struct kvm *kvm)
1965 {
1966 #ifdef CONFIG_KVM_MPIC
1967 	if (kvm->arch.mpic)
1968 		return true;
1969 #endif
1970 #ifdef CONFIG_KVM_XICS
1971 	if (kvm->arch.xics || kvm->arch.xive)
1972 		return true;
1973 #endif
1974 	return false;
1975 }
1976 
1977 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1978                                     struct kvm_mp_state *mp_state)
1979 {
1980 	return -EINVAL;
1981 }
1982 
1983 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1984                                     struct kvm_mp_state *mp_state)
1985 {
1986 	return -EINVAL;
1987 }
1988 
1989 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1990 			       unsigned int ioctl, unsigned long arg)
1991 {
1992 	struct kvm_vcpu *vcpu = filp->private_data;
1993 	void __user *argp = (void __user *)arg;
1994 
1995 	if (ioctl == KVM_INTERRUPT) {
1996 		struct kvm_interrupt irq;
1997 		if (copy_from_user(&irq, argp, sizeof(irq)))
1998 			return -EFAULT;
1999 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2000 	}
2001 	return -ENOIOCTLCMD;
2002 }
2003 
2004 long kvm_arch_vcpu_ioctl(struct file *filp,
2005                          unsigned int ioctl, unsigned long arg)
2006 {
2007 	struct kvm_vcpu *vcpu = filp->private_data;
2008 	void __user *argp = (void __user *)arg;
2009 	long r;
2010 
2011 	switch (ioctl) {
2012 	case KVM_ENABLE_CAP:
2013 	{
2014 		struct kvm_enable_cap cap;
2015 		r = -EFAULT;
2016 		vcpu_load(vcpu);
2017 		if (copy_from_user(&cap, argp, sizeof(cap)))
2018 			goto out;
2019 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2020 		vcpu_put(vcpu);
2021 		break;
2022 	}
2023 
2024 	case KVM_SET_ONE_REG:
2025 	case KVM_GET_ONE_REG:
2026 	{
2027 		struct kvm_one_reg reg;
2028 		r = -EFAULT;
2029 		if (copy_from_user(&reg, argp, sizeof(reg)))
2030 			goto out;
2031 		if (ioctl == KVM_SET_ONE_REG)
2032 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2033 		else
2034 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2035 		break;
2036 	}
2037 
2038 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2039 	case KVM_DIRTY_TLB: {
2040 		struct kvm_dirty_tlb dirty;
2041 		r = -EFAULT;
2042 		vcpu_load(vcpu);
2043 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2044 			goto out;
2045 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2046 		vcpu_put(vcpu);
2047 		break;
2048 	}
2049 #endif
2050 	default:
2051 		r = -EINVAL;
2052 	}
2053 
2054 out:
2055 	return r;
2056 }
2057 
2058 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2059 {
2060 	return VM_FAULT_SIGBUS;
2061 }
2062 
2063 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2064 {
2065 	u32 inst_nop = 0x60000000;
2066 #ifdef CONFIG_KVM_BOOKE_HV
2067 	u32 inst_sc1 = 0x44000022;
2068 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2069 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2070 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2071 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2072 #else
2073 	u32 inst_lis = 0x3c000000;
2074 	u32 inst_ori = 0x60000000;
2075 	u32 inst_sc = 0x44000002;
2076 	u32 inst_imm_mask = 0xffff;
2077 
2078 	/*
2079 	 * The hypercall to get into KVM from within guest context is as
2080 	 * follows:
2081 	 *
2082 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2083 	 *    ori r0, KVM_SC_MAGIC_R0@l
2084 	 *    sc
2085 	 *    nop
2086 	 */
2087 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2088 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2089 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2090 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2091 #endif
2092 
2093 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2094 
2095 	return 0;
2096 }
2097 
2098 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2099 			  bool line_status)
2100 {
2101 	if (!irqchip_in_kernel(kvm))
2102 		return -ENXIO;
2103 
2104 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2105 					irq_event->irq, irq_event->level,
2106 					line_status);
2107 	return 0;
2108 }
2109 
2110 
2111 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2112 			    struct kvm_enable_cap *cap)
2113 {
2114 	int r;
2115 
2116 	if (cap->flags)
2117 		return -EINVAL;
2118 
2119 	switch (cap->cap) {
2120 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2121 	case KVM_CAP_PPC_ENABLE_HCALL: {
2122 		unsigned long hcall = cap->args[0];
2123 
2124 		r = -EINVAL;
2125 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2126 		    cap->args[1] > 1)
2127 			break;
2128 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2129 			break;
2130 		if (cap->args[1])
2131 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2132 		else
2133 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2134 		r = 0;
2135 		break;
2136 	}
2137 	case KVM_CAP_PPC_SMT: {
2138 		unsigned long mode = cap->args[0];
2139 		unsigned long flags = cap->args[1];
2140 
2141 		r = -EINVAL;
2142 		if (kvm->arch.kvm_ops->set_smt_mode)
2143 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2144 		break;
2145 	}
2146 
2147 	case KVM_CAP_PPC_NESTED_HV:
2148 		r = -EINVAL;
2149 		if (!is_kvmppc_hv_enabled(kvm) ||
2150 		    !kvm->arch.kvm_ops->enable_nested)
2151 			break;
2152 		r = kvm->arch.kvm_ops->enable_nested(kvm);
2153 		break;
2154 #endif
2155 	default:
2156 		r = -EINVAL;
2157 		break;
2158 	}
2159 
2160 	return r;
2161 }
2162 
2163 #ifdef CONFIG_PPC_BOOK3S_64
2164 /*
2165  * These functions check whether the underlying hardware is safe
2166  * against attacks based on observing the effects of speculatively
2167  * executed instructions, and whether it supplies instructions for
2168  * use in workarounds.  The information comes from firmware, either
2169  * via the device tree on powernv platforms or from an hcall on
2170  * pseries platforms.
2171  */
2172 #ifdef CONFIG_PPC_PSERIES
2173 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2174 {
2175 	struct h_cpu_char_result c;
2176 	unsigned long rc;
2177 
2178 	if (!machine_is(pseries))
2179 		return -ENOTTY;
2180 
2181 	rc = plpar_get_cpu_characteristics(&c);
2182 	if (rc == H_SUCCESS) {
2183 		cp->character = c.character;
2184 		cp->behaviour = c.behaviour;
2185 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2186 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2187 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2188 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2189 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2190 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2191 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2192 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2193 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2194 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2195 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2196 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2197 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2198 	}
2199 	return 0;
2200 }
2201 #else
2202 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2203 {
2204 	return -ENOTTY;
2205 }
2206 #endif
2207 
2208 static inline bool have_fw_feat(struct device_node *fw_features,
2209 				const char *state, const char *name)
2210 {
2211 	struct device_node *np;
2212 	bool r = false;
2213 
2214 	np = of_get_child_by_name(fw_features, name);
2215 	if (np) {
2216 		r = of_property_read_bool(np, state);
2217 		of_node_put(np);
2218 	}
2219 	return r;
2220 }
2221 
2222 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2223 {
2224 	struct device_node *np, *fw_features;
2225 	int r;
2226 
2227 	memset(cp, 0, sizeof(*cp));
2228 	r = pseries_get_cpu_char(cp);
2229 	if (r != -ENOTTY)
2230 		return r;
2231 
2232 	np = of_find_node_by_name(NULL, "ibm,opal");
2233 	if (np) {
2234 		fw_features = of_get_child_by_name(np, "fw-features");
2235 		of_node_put(np);
2236 		if (!fw_features)
2237 			return 0;
2238 		if (have_fw_feat(fw_features, "enabled",
2239 				 "inst-spec-barrier-ori31,31,0"))
2240 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2241 		if (have_fw_feat(fw_features, "enabled",
2242 				 "fw-bcctrl-serialized"))
2243 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2244 		if (have_fw_feat(fw_features, "enabled",
2245 				 "inst-l1d-flush-ori30,30,0"))
2246 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2247 		if (have_fw_feat(fw_features, "enabled",
2248 				 "inst-l1d-flush-trig2"))
2249 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2250 		if (have_fw_feat(fw_features, "enabled",
2251 				 "fw-l1d-thread-split"))
2252 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2253 		if (have_fw_feat(fw_features, "enabled",
2254 				 "fw-count-cache-disabled"))
2255 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2256 		if (have_fw_feat(fw_features, "enabled",
2257 				 "fw-count-cache-flush-bcctr2,0,0"))
2258 			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2259 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2260 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2261 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2262 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2263 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2264 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2265 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2266 
2267 		if (have_fw_feat(fw_features, "enabled",
2268 				 "speculation-policy-favor-security"))
2269 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2270 		if (!have_fw_feat(fw_features, "disabled",
2271 				  "needs-l1d-flush-msr-pr-0-to-1"))
2272 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2273 		if (!have_fw_feat(fw_features, "disabled",
2274 				  "needs-spec-barrier-for-bound-checks"))
2275 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2276 		if (have_fw_feat(fw_features, "enabled",
2277 				 "needs-count-cache-flush-on-context-switch"))
2278 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2279 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2280 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2281 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2282 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2283 
2284 		of_node_put(fw_features);
2285 	}
2286 
2287 	return 0;
2288 }
2289 #endif
2290 
2291 long kvm_arch_vm_ioctl(struct file *filp,
2292                        unsigned int ioctl, unsigned long arg)
2293 {
2294 	struct kvm *kvm __maybe_unused = filp->private_data;
2295 	void __user *argp = (void __user *)arg;
2296 	long r;
2297 
2298 	switch (ioctl) {
2299 	case KVM_PPC_GET_PVINFO: {
2300 		struct kvm_ppc_pvinfo pvinfo;
2301 		memset(&pvinfo, 0, sizeof(pvinfo));
2302 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2303 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2304 			r = -EFAULT;
2305 			goto out;
2306 		}
2307 
2308 		break;
2309 	}
2310 #ifdef CONFIG_SPAPR_TCE_IOMMU
2311 	case KVM_CREATE_SPAPR_TCE_64: {
2312 		struct kvm_create_spapr_tce_64 create_tce_64;
2313 
2314 		r = -EFAULT;
2315 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2316 			goto out;
2317 		if (create_tce_64.flags) {
2318 			r = -EINVAL;
2319 			goto out;
2320 		}
2321 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2322 		goto out;
2323 	}
2324 	case KVM_CREATE_SPAPR_TCE: {
2325 		struct kvm_create_spapr_tce create_tce;
2326 		struct kvm_create_spapr_tce_64 create_tce_64;
2327 
2328 		r = -EFAULT;
2329 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2330 			goto out;
2331 
2332 		create_tce_64.liobn = create_tce.liobn;
2333 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2334 		create_tce_64.offset = 0;
2335 		create_tce_64.size = create_tce.window_size >>
2336 				IOMMU_PAGE_SHIFT_4K;
2337 		create_tce_64.flags = 0;
2338 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2339 		goto out;
2340 	}
2341 #endif
2342 #ifdef CONFIG_PPC_BOOK3S_64
2343 	case KVM_PPC_GET_SMMU_INFO: {
2344 		struct kvm_ppc_smmu_info info;
2345 		struct kvm *kvm = filp->private_data;
2346 
2347 		memset(&info, 0, sizeof(info));
2348 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2349 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2350 			r = -EFAULT;
2351 		break;
2352 	}
2353 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2354 		struct kvm *kvm = filp->private_data;
2355 
2356 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2357 		break;
2358 	}
2359 	case KVM_PPC_CONFIGURE_V3_MMU: {
2360 		struct kvm *kvm = filp->private_data;
2361 		struct kvm_ppc_mmuv3_cfg cfg;
2362 
2363 		r = -EINVAL;
2364 		if (!kvm->arch.kvm_ops->configure_mmu)
2365 			goto out;
2366 		r = -EFAULT;
2367 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2368 			goto out;
2369 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2370 		break;
2371 	}
2372 	case KVM_PPC_GET_RMMU_INFO: {
2373 		struct kvm *kvm = filp->private_data;
2374 		struct kvm_ppc_rmmu_info info;
2375 
2376 		r = -EINVAL;
2377 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2378 			goto out;
2379 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2380 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2381 			r = -EFAULT;
2382 		break;
2383 	}
2384 	case KVM_PPC_GET_CPU_CHAR: {
2385 		struct kvm_ppc_cpu_char cpuchar;
2386 
2387 		r = kvmppc_get_cpu_char(&cpuchar);
2388 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2389 			r = -EFAULT;
2390 		break;
2391 	}
2392 	default: {
2393 		struct kvm *kvm = filp->private_data;
2394 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2395 	}
2396 #else /* CONFIG_PPC_BOOK3S_64 */
2397 	default:
2398 		r = -ENOTTY;
2399 #endif
2400 	}
2401 out:
2402 	return r;
2403 }
2404 
2405 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2406 static unsigned long nr_lpids;
2407 
2408 long kvmppc_alloc_lpid(void)
2409 {
2410 	long lpid;
2411 
2412 	do {
2413 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2414 		if (lpid >= nr_lpids) {
2415 			pr_err("%s: No LPIDs free\n", __func__);
2416 			return -ENOMEM;
2417 		}
2418 	} while (test_and_set_bit(lpid, lpid_inuse));
2419 
2420 	return lpid;
2421 }
2422 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2423 
2424 void kvmppc_claim_lpid(long lpid)
2425 {
2426 	set_bit(lpid, lpid_inuse);
2427 }
2428 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2429 
2430 void kvmppc_free_lpid(long lpid)
2431 {
2432 	clear_bit(lpid, lpid_inuse);
2433 }
2434 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2435 
2436 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2437 {
2438 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2439 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2440 }
2441 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2442 
2443 int kvm_arch_init(void *opaque)
2444 {
2445 	return 0;
2446 }
2447 
2448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2449