1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <linux/of.h> 23 #include <asm/cputable.h> 24 #include <linux/uaccess.h> 25 #include <asm/kvm_ppc.h> 26 #include <asm/cputhreads.h> 27 #include <asm/irqflags.h> 28 #include <asm/iommu.h> 29 #include <asm/switch_to.h> 30 #include <asm/xive.h> 31 #ifdef CONFIG_PPC_PSERIES 32 #include <asm/hvcall.h> 33 #include <asm/plpar_wrappers.h> 34 #endif 35 #include <asm/ultravisor.h> 36 37 #include "timing.h" 38 #include "irq.h" 39 #include "../mm/mmu_decl.h" 40 41 #define CREATE_TRACE_POINTS 42 #include "trace.h" 43 44 struct kvmppc_ops *kvmppc_hv_ops; 45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 46 struct kvmppc_ops *kvmppc_pr_ops; 47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 48 49 50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 51 { 52 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 53 } 54 55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 56 { 57 return kvm_arch_vcpu_runnable(vcpu); 58 } 59 60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 61 { 62 return false; 63 } 64 65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 66 { 67 return 1; 68 } 69 70 /* 71 * Common checks before entering the guest world. Call with interrupts 72 * disabled. 73 * 74 * returns: 75 * 76 * == 1 if we're ready to go into guest state 77 * <= 0 if we need to go back to the host with return value 78 */ 79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 80 { 81 int r; 82 83 WARN_ON(irqs_disabled()); 84 hard_irq_disable(); 85 86 while (true) { 87 if (need_resched()) { 88 local_irq_enable(); 89 cond_resched(); 90 hard_irq_disable(); 91 continue; 92 } 93 94 if (signal_pending(current)) { 95 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 96 vcpu->run->exit_reason = KVM_EXIT_INTR; 97 r = -EINTR; 98 break; 99 } 100 101 vcpu->mode = IN_GUEST_MODE; 102 103 /* 104 * Reading vcpu->requests must happen after setting vcpu->mode, 105 * so we don't miss a request because the requester sees 106 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 107 * before next entering the guest (and thus doesn't IPI). 108 * This also orders the write to mode from any reads 109 * to the page tables done while the VCPU is running. 110 * Please see the comment in kvm_flush_remote_tlbs. 111 */ 112 smp_mb(); 113 114 if (kvm_request_pending(vcpu)) { 115 /* Make sure we process requests preemptable */ 116 local_irq_enable(); 117 trace_kvm_check_requests(vcpu); 118 r = kvmppc_core_check_requests(vcpu); 119 hard_irq_disable(); 120 if (r > 0) 121 continue; 122 break; 123 } 124 125 if (kvmppc_core_prepare_to_enter(vcpu)) { 126 /* interrupts got enabled in between, so we 127 are back at square 1 */ 128 continue; 129 } 130 131 guest_enter_irqoff(); 132 return 1; 133 } 134 135 /* return to host */ 136 local_irq_enable(); 137 return r; 138 } 139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 140 141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 143 { 144 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 145 int i; 146 147 shared->sprg0 = swab64(shared->sprg0); 148 shared->sprg1 = swab64(shared->sprg1); 149 shared->sprg2 = swab64(shared->sprg2); 150 shared->sprg3 = swab64(shared->sprg3); 151 shared->srr0 = swab64(shared->srr0); 152 shared->srr1 = swab64(shared->srr1); 153 shared->dar = swab64(shared->dar); 154 shared->msr = swab64(shared->msr); 155 shared->dsisr = swab32(shared->dsisr); 156 shared->int_pending = swab32(shared->int_pending); 157 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 158 shared->sr[i] = swab32(shared->sr[i]); 159 } 160 #endif 161 162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 163 { 164 int nr = kvmppc_get_gpr(vcpu, 11); 165 int r; 166 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 167 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 168 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 169 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 170 unsigned long r2 = 0; 171 172 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 173 /* 32 bit mode */ 174 param1 &= 0xffffffff; 175 param2 &= 0xffffffff; 176 param3 &= 0xffffffff; 177 param4 &= 0xffffffff; 178 } 179 180 switch (nr) { 181 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 182 { 183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 184 /* Book3S can be little endian, find it out here */ 185 int shared_big_endian = true; 186 if (vcpu->arch.intr_msr & MSR_LE) 187 shared_big_endian = false; 188 if (shared_big_endian != vcpu->arch.shared_big_endian) 189 kvmppc_swab_shared(vcpu); 190 vcpu->arch.shared_big_endian = shared_big_endian; 191 #endif 192 193 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 194 /* 195 * Older versions of the Linux magic page code had 196 * a bug where they would map their trampoline code 197 * NX. If that's the case, remove !PR NX capability. 198 */ 199 vcpu->arch.disable_kernel_nx = true; 200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 201 } 202 203 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 204 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 205 206 #ifdef CONFIG_PPC_64K_PAGES 207 /* 208 * Make sure our 4k magic page is in the same window of a 64k 209 * page within the guest and within the host's page. 210 */ 211 if ((vcpu->arch.magic_page_pa & 0xf000) != 212 ((ulong)vcpu->arch.shared & 0xf000)) { 213 void *old_shared = vcpu->arch.shared; 214 ulong shared = (ulong)vcpu->arch.shared; 215 void *new_shared; 216 217 shared &= PAGE_MASK; 218 shared |= vcpu->arch.magic_page_pa & 0xf000; 219 new_shared = (void*)shared; 220 memcpy(new_shared, old_shared, 0x1000); 221 vcpu->arch.shared = new_shared; 222 } 223 #endif 224 225 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 226 227 r = EV_SUCCESS; 228 break; 229 } 230 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 231 r = EV_SUCCESS; 232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 233 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 234 #endif 235 236 /* Second return value is in r4 */ 237 break; 238 case EV_HCALL_TOKEN(EV_IDLE): 239 r = EV_SUCCESS; 240 kvm_vcpu_halt(vcpu); 241 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 242 break; 243 default: 244 r = EV_UNIMPLEMENTED; 245 break; 246 } 247 248 kvmppc_set_gpr(vcpu, 4, r2); 249 250 return r; 251 } 252 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 253 254 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 255 { 256 int r = false; 257 258 /* We have to know what CPU to virtualize */ 259 if (!vcpu->arch.pvr) 260 goto out; 261 262 /* PAPR only works with book3s_64 */ 263 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 264 goto out; 265 266 /* HV KVM can only do PAPR mode for now */ 267 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 268 goto out; 269 270 #ifdef CONFIG_KVM_BOOKE_HV 271 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 272 goto out; 273 #endif 274 275 r = true; 276 277 out: 278 vcpu->arch.sane = r; 279 return r ? 0 : -EINVAL; 280 } 281 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 282 283 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 284 { 285 enum emulation_result er; 286 int r; 287 288 er = kvmppc_emulate_loadstore(vcpu); 289 switch (er) { 290 case EMULATE_DONE: 291 /* Future optimization: only reload non-volatiles if they were 292 * actually modified. */ 293 r = RESUME_GUEST_NV; 294 break; 295 case EMULATE_AGAIN: 296 r = RESUME_GUEST; 297 break; 298 case EMULATE_DO_MMIO: 299 vcpu->run->exit_reason = KVM_EXIT_MMIO; 300 /* We must reload nonvolatiles because "update" load/store 301 * instructions modify register state. */ 302 /* Future optimization: only reload non-volatiles if they were 303 * actually modified. */ 304 r = RESUME_HOST_NV; 305 break; 306 case EMULATE_FAIL: 307 { 308 u32 last_inst; 309 310 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 311 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n", 312 last_inst); 313 314 /* 315 * Injecting a Data Storage here is a bit more 316 * accurate since the instruction that caused the 317 * access could still be a valid one. 318 */ 319 if (!IS_ENABLED(CONFIG_BOOKE)) { 320 ulong dsisr = DSISR_BADACCESS; 321 322 if (vcpu->mmio_is_write) 323 dsisr |= DSISR_ISSTORE; 324 325 kvmppc_core_queue_data_storage(vcpu, vcpu->arch.vaddr_accessed, dsisr); 326 } else { 327 /* 328 * BookE does not send a SIGBUS on a bad 329 * fault, so use a Program interrupt instead 330 * to avoid a fault loop. 331 */ 332 kvmppc_core_queue_program(vcpu, 0); 333 } 334 335 r = RESUME_GUEST; 336 break; 337 } 338 default: 339 WARN_ON(1); 340 r = RESUME_GUEST; 341 } 342 343 return r; 344 } 345 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 346 347 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 348 bool data) 349 { 350 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 351 struct kvmppc_pte pte; 352 int r = -EINVAL; 353 354 vcpu->stat.st++; 355 356 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 357 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 358 size); 359 360 if ((!r) || (r == -EAGAIN)) 361 return r; 362 363 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 364 XLATE_WRITE, &pte); 365 if (r < 0) 366 return r; 367 368 *eaddr = pte.raddr; 369 370 if (!pte.may_write) 371 return -EPERM; 372 373 /* Magic page override */ 374 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 375 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 376 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 377 void *magic = vcpu->arch.shared; 378 magic += pte.eaddr & 0xfff; 379 memcpy(magic, ptr, size); 380 return EMULATE_DONE; 381 } 382 383 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 384 return EMULATE_DO_MMIO; 385 386 return EMULATE_DONE; 387 } 388 EXPORT_SYMBOL_GPL(kvmppc_st); 389 390 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 391 bool data) 392 { 393 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 394 struct kvmppc_pte pte; 395 int rc = -EINVAL; 396 397 vcpu->stat.ld++; 398 399 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 400 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 401 size); 402 403 if ((!rc) || (rc == -EAGAIN)) 404 return rc; 405 406 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 407 XLATE_READ, &pte); 408 if (rc) 409 return rc; 410 411 *eaddr = pte.raddr; 412 413 if (!pte.may_read) 414 return -EPERM; 415 416 if (!data && !pte.may_execute) 417 return -ENOEXEC; 418 419 /* Magic page override */ 420 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 421 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 422 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 423 void *magic = vcpu->arch.shared; 424 magic += pte.eaddr & 0xfff; 425 memcpy(ptr, magic, size); 426 return EMULATE_DONE; 427 } 428 429 kvm_vcpu_srcu_read_lock(vcpu); 430 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); 431 kvm_vcpu_srcu_read_unlock(vcpu); 432 if (rc) 433 return EMULATE_DO_MMIO; 434 435 return EMULATE_DONE; 436 } 437 EXPORT_SYMBOL_GPL(kvmppc_ld); 438 439 int kvm_arch_hardware_enable(void) 440 { 441 return 0; 442 } 443 444 int kvm_arch_hardware_setup(void *opaque) 445 { 446 return 0; 447 } 448 449 int kvm_arch_check_processor_compat(void *opaque) 450 { 451 return kvmppc_core_check_processor_compat(); 452 } 453 454 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 455 { 456 struct kvmppc_ops *kvm_ops = NULL; 457 int r; 458 459 /* 460 * if we have both HV and PR enabled, default is HV 461 */ 462 if (type == 0) { 463 if (kvmppc_hv_ops) 464 kvm_ops = kvmppc_hv_ops; 465 else 466 kvm_ops = kvmppc_pr_ops; 467 if (!kvm_ops) 468 goto err_out; 469 } else if (type == KVM_VM_PPC_HV) { 470 if (!kvmppc_hv_ops) 471 goto err_out; 472 kvm_ops = kvmppc_hv_ops; 473 } else if (type == KVM_VM_PPC_PR) { 474 if (!kvmppc_pr_ops) 475 goto err_out; 476 kvm_ops = kvmppc_pr_ops; 477 } else 478 goto err_out; 479 480 if (!try_module_get(kvm_ops->owner)) 481 return -ENOENT; 482 483 kvm->arch.kvm_ops = kvm_ops; 484 r = kvmppc_core_init_vm(kvm); 485 if (r) 486 module_put(kvm_ops->owner); 487 return r; 488 err_out: 489 return -EINVAL; 490 } 491 492 void kvm_arch_destroy_vm(struct kvm *kvm) 493 { 494 #ifdef CONFIG_KVM_XICS 495 /* 496 * We call kick_all_cpus_sync() to ensure that all 497 * CPUs have executed any pending IPIs before we 498 * continue and free VCPUs structures below. 499 */ 500 if (is_kvmppc_hv_enabled(kvm)) 501 kick_all_cpus_sync(); 502 #endif 503 504 kvm_destroy_vcpus(kvm); 505 506 mutex_lock(&kvm->lock); 507 508 kvmppc_core_destroy_vm(kvm); 509 510 mutex_unlock(&kvm->lock); 511 512 /* drop the module reference */ 513 module_put(kvm->arch.kvm_ops->owner); 514 } 515 516 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 517 { 518 int r; 519 /* Assume we're using HV mode when the HV module is loaded */ 520 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 521 522 if (kvm) { 523 /* 524 * Hooray - we know which VM type we're running on. Depend on 525 * that rather than the guess above. 526 */ 527 hv_enabled = is_kvmppc_hv_enabled(kvm); 528 } 529 530 switch (ext) { 531 #ifdef CONFIG_BOOKE 532 case KVM_CAP_PPC_BOOKE_SREGS: 533 case KVM_CAP_PPC_BOOKE_WATCHDOG: 534 case KVM_CAP_PPC_EPR: 535 #else 536 case KVM_CAP_PPC_SEGSTATE: 537 case KVM_CAP_PPC_HIOR: 538 case KVM_CAP_PPC_PAPR: 539 #endif 540 case KVM_CAP_PPC_UNSET_IRQ: 541 case KVM_CAP_PPC_IRQ_LEVEL: 542 case KVM_CAP_ENABLE_CAP: 543 case KVM_CAP_ONE_REG: 544 case KVM_CAP_IOEVENTFD: 545 case KVM_CAP_DEVICE_CTRL: 546 case KVM_CAP_IMMEDIATE_EXIT: 547 case KVM_CAP_SET_GUEST_DEBUG: 548 r = 1; 549 break; 550 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 551 case KVM_CAP_PPC_PAIRED_SINGLES: 552 case KVM_CAP_PPC_OSI: 553 case KVM_CAP_PPC_GET_PVINFO: 554 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 555 case KVM_CAP_SW_TLB: 556 #endif 557 /* We support this only for PR */ 558 r = !hv_enabled; 559 break; 560 #ifdef CONFIG_KVM_MPIC 561 case KVM_CAP_IRQ_MPIC: 562 r = 1; 563 break; 564 #endif 565 566 #ifdef CONFIG_PPC_BOOK3S_64 567 case KVM_CAP_SPAPR_TCE: 568 case KVM_CAP_SPAPR_TCE_64: 569 r = 1; 570 break; 571 case KVM_CAP_SPAPR_TCE_VFIO: 572 r = !!cpu_has_feature(CPU_FTR_HVMODE); 573 break; 574 case KVM_CAP_PPC_RTAS: 575 case KVM_CAP_PPC_FIXUP_HCALL: 576 case KVM_CAP_PPC_ENABLE_HCALL: 577 #ifdef CONFIG_KVM_XICS 578 case KVM_CAP_IRQ_XICS: 579 #endif 580 case KVM_CAP_PPC_GET_CPU_CHAR: 581 r = 1; 582 break; 583 #ifdef CONFIG_KVM_XIVE 584 case KVM_CAP_PPC_IRQ_XIVE: 585 /* 586 * We need XIVE to be enabled on the platform (implies 587 * a POWER9 processor) and the PowerNV platform, as 588 * nested is not yet supported. 589 */ 590 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 591 kvmppc_xive_native_supported(); 592 break; 593 #endif 594 595 case KVM_CAP_PPC_ALLOC_HTAB: 596 r = hv_enabled; 597 break; 598 #endif /* CONFIG_PPC_BOOK3S_64 */ 599 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 600 case KVM_CAP_PPC_SMT: 601 r = 0; 602 if (kvm) { 603 if (kvm->arch.emul_smt_mode > 1) 604 r = kvm->arch.emul_smt_mode; 605 else 606 r = kvm->arch.smt_mode; 607 } else if (hv_enabled) { 608 if (cpu_has_feature(CPU_FTR_ARCH_300)) 609 r = 1; 610 else 611 r = threads_per_subcore; 612 } 613 break; 614 case KVM_CAP_PPC_SMT_POSSIBLE: 615 r = 1; 616 if (hv_enabled) { 617 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 618 r = ((threads_per_subcore << 1) - 1); 619 else 620 /* P9 can emulate dbells, so allow any mode */ 621 r = 8 | 4 | 2 | 1; 622 } 623 break; 624 case KVM_CAP_PPC_RMA: 625 r = 0; 626 break; 627 case KVM_CAP_PPC_HWRNG: 628 r = kvmppc_hwrng_present(); 629 break; 630 case KVM_CAP_PPC_MMU_RADIX: 631 r = !!(hv_enabled && radix_enabled()); 632 break; 633 case KVM_CAP_PPC_MMU_HASH_V3: 634 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible && 635 kvmppc_hv_ops->hash_v3_possible()); 636 break; 637 case KVM_CAP_PPC_NESTED_HV: 638 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 639 !kvmppc_hv_ops->enable_nested(NULL)); 640 break; 641 #endif 642 case KVM_CAP_SYNC_MMU: 643 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 644 r = hv_enabled; 645 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 646 r = 1; 647 #else 648 r = 0; 649 #endif 650 break; 651 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 652 case KVM_CAP_PPC_HTAB_FD: 653 r = hv_enabled; 654 break; 655 #endif 656 case KVM_CAP_NR_VCPUS: 657 /* 658 * Recommending a number of CPUs is somewhat arbitrary; we 659 * return the number of present CPUs for -HV (since a host 660 * will have secondary threads "offline"), and for other KVM 661 * implementations just count online CPUs. 662 */ 663 if (hv_enabled) 664 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS); 665 else 666 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 667 break; 668 case KVM_CAP_MAX_VCPUS: 669 r = KVM_MAX_VCPUS; 670 break; 671 case KVM_CAP_MAX_VCPU_ID: 672 r = KVM_MAX_VCPU_IDS; 673 break; 674 #ifdef CONFIG_PPC_BOOK3S_64 675 case KVM_CAP_PPC_GET_SMMU_INFO: 676 r = 1; 677 break; 678 case KVM_CAP_SPAPR_MULTITCE: 679 r = 1; 680 break; 681 case KVM_CAP_SPAPR_RESIZE_HPT: 682 r = !!hv_enabled; 683 break; 684 #endif 685 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 686 case KVM_CAP_PPC_FWNMI: 687 r = hv_enabled; 688 break; 689 #endif 690 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 691 case KVM_CAP_PPC_HTM: 692 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 693 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 694 break; 695 #endif 696 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 697 case KVM_CAP_PPC_SECURE_GUEST: 698 r = hv_enabled && kvmppc_hv_ops->enable_svm && 699 !kvmppc_hv_ops->enable_svm(NULL); 700 break; 701 case KVM_CAP_PPC_DAWR1: 702 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 && 703 !kvmppc_hv_ops->enable_dawr1(NULL)); 704 break; 705 case KVM_CAP_PPC_RPT_INVALIDATE: 706 r = 1; 707 break; 708 #endif 709 case KVM_CAP_PPC_AIL_MODE_3: 710 r = 0; 711 /* 712 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode. 713 * The POWER9s can support it if the guest runs in hash mode, 714 * but QEMU doesn't necessarily query the capability in time. 715 */ 716 if (hv_enabled) { 717 if (kvmhv_on_pseries()) { 718 if (pseries_reloc_on_exception()) 719 r = 1; 720 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) && 721 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { 722 r = 1; 723 } 724 } 725 break; 726 default: 727 r = 0; 728 break; 729 } 730 return r; 731 732 } 733 734 long kvm_arch_dev_ioctl(struct file *filp, 735 unsigned int ioctl, unsigned long arg) 736 { 737 return -EINVAL; 738 } 739 740 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 741 { 742 kvmppc_core_free_memslot(kvm, slot); 743 } 744 745 int kvm_arch_prepare_memory_region(struct kvm *kvm, 746 const struct kvm_memory_slot *old, 747 struct kvm_memory_slot *new, 748 enum kvm_mr_change change) 749 { 750 return kvmppc_core_prepare_memory_region(kvm, old, new, change); 751 } 752 753 void kvm_arch_commit_memory_region(struct kvm *kvm, 754 struct kvm_memory_slot *old, 755 const struct kvm_memory_slot *new, 756 enum kvm_mr_change change) 757 { 758 kvmppc_core_commit_memory_region(kvm, old, new, change); 759 } 760 761 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 762 struct kvm_memory_slot *slot) 763 { 764 kvmppc_core_flush_memslot(kvm, slot); 765 } 766 767 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 768 { 769 return 0; 770 } 771 772 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 773 { 774 struct kvm_vcpu *vcpu; 775 776 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 777 kvmppc_decrementer_func(vcpu); 778 779 return HRTIMER_NORESTART; 780 } 781 782 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 783 { 784 int err; 785 786 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 787 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 788 vcpu->arch.dec_expires = get_tb(); 789 790 #ifdef CONFIG_KVM_EXIT_TIMING 791 mutex_init(&vcpu->arch.exit_timing_lock); 792 #endif 793 err = kvmppc_subarch_vcpu_init(vcpu); 794 if (err) 795 return err; 796 797 err = kvmppc_core_vcpu_create(vcpu); 798 if (err) 799 goto out_vcpu_uninit; 800 801 rcuwait_init(&vcpu->arch.wait); 802 vcpu->arch.waitp = &vcpu->arch.wait; 803 return 0; 804 805 out_vcpu_uninit: 806 kvmppc_subarch_vcpu_uninit(vcpu); 807 return err; 808 } 809 810 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 811 { 812 } 813 814 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 815 { 816 /* Make sure we're not using the vcpu anymore */ 817 hrtimer_cancel(&vcpu->arch.dec_timer); 818 819 switch (vcpu->arch.irq_type) { 820 case KVMPPC_IRQ_MPIC: 821 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 822 break; 823 case KVMPPC_IRQ_XICS: 824 if (xics_on_xive()) 825 kvmppc_xive_cleanup_vcpu(vcpu); 826 else 827 kvmppc_xics_free_icp(vcpu); 828 break; 829 case KVMPPC_IRQ_XIVE: 830 kvmppc_xive_native_cleanup_vcpu(vcpu); 831 break; 832 } 833 834 kvmppc_core_vcpu_free(vcpu); 835 836 kvmppc_subarch_vcpu_uninit(vcpu); 837 } 838 839 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 840 { 841 return kvmppc_core_pending_dec(vcpu); 842 } 843 844 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 845 { 846 #ifdef CONFIG_BOOKE 847 /* 848 * vrsave (formerly usprg0) isn't used by Linux, but may 849 * be used by the guest. 850 * 851 * On non-booke this is associated with Altivec and 852 * is handled by code in book3s.c. 853 */ 854 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 855 #endif 856 kvmppc_core_vcpu_load(vcpu, cpu); 857 } 858 859 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 860 { 861 kvmppc_core_vcpu_put(vcpu); 862 #ifdef CONFIG_BOOKE 863 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 864 #endif 865 } 866 867 /* 868 * irq_bypass_add_producer and irq_bypass_del_producer are only 869 * useful if the architecture supports PCI passthrough. 870 * irq_bypass_stop and irq_bypass_start are not needed and so 871 * kvm_ops are not defined for them. 872 */ 873 bool kvm_arch_has_irq_bypass(void) 874 { 875 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 876 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 877 } 878 879 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 880 struct irq_bypass_producer *prod) 881 { 882 struct kvm_kernel_irqfd *irqfd = 883 container_of(cons, struct kvm_kernel_irqfd, consumer); 884 struct kvm *kvm = irqfd->kvm; 885 886 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 887 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 888 889 return 0; 890 } 891 892 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 893 struct irq_bypass_producer *prod) 894 { 895 struct kvm_kernel_irqfd *irqfd = 896 container_of(cons, struct kvm_kernel_irqfd, consumer); 897 struct kvm *kvm = irqfd->kvm; 898 899 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 900 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 901 } 902 903 #ifdef CONFIG_VSX 904 static inline int kvmppc_get_vsr_dword_offset(int index) 905 { 906 int offset; 907 908 if ((index != 0) && (index != 1)) 909 return -1; 910 911 #ifdef __BIG_ENDIAN 912 offset = index; 913 #else 914 offset = 1 - index; 915 #endif 916 917 return offset; 918 } 919 920 static inline int kvmppc_get_vsr_word_offset(int index) 921 { 922 int offset; 923 924 if ((index > 3) || (index < 0)) 925 return -1; 926 927 #ifdef __BIG_ENDIAN 928 offset = index; 929 #else 930 offset = 3 - index; 931 #endif 932 return offset; 933 } 934 935 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 936 u64 gpr) 937 { 938 union kvmppc_one_reg val; 939 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 940 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 941 942 if (offset == -1) 943 return; 944 945 if (index >= 32) { 946 val.vval = VCPU_VSX_VR(vcpu, index - 32); 947 val.vsxval[offset] = gpr; 948 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 949 } else { 950 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 951 } 952 } 953 954 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 955 u64 gpr) 956 { 957 union kvmppc_one_reg val; 958 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 959 960 if (index >= 32) { 961 val.vval = VCPU_VSX_VR(vcpu, index - 32); 962 val.vsxval[0] = gpr; 963 val.vsxval[1] = gpr; 964 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 965 } else { 966 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 967 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 968 } 969 } 970 971 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 972 u32 gpr) 973 { 974 union kvmppc_one_reg val; 975 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 976 977 if (index >= 32) { 978 val.vsx32val[0] = gpr; 979 val.vsx32val[1] = gpr; 980 val.vsx32val[2] = gpr; 981 val.vsx32val[3] = gpr; 982 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 983 } else { 984 val.vsx32val[0] = gpr; 985 val.vsx32val[1] = gpr; 986 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 987 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 988 } 989 } 990 991 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 992 u32 gpr32) 993 { 994 union kvmppc_one_reg val; 995 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 996 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 997 int dword_offset, word_offset; 998 999 if (offset == -1) 1000 return; 1001 1002 if (index >= 32) { 1003 val.vval = VCPU_VSX_VR(vcpu, index - 32); 1004 val.vsx32val[offset] = gpr32; 1005 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 1006 } else { 1007 dword_offset = offset / 2; 1008 word_offset = offset % 2; 1009 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 1010 val.vsx32val[word_offset] = gpr32; 1011 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 1012 } 1013 } 1014 #endif /* CONFIG_VSX */ 1015 1016 #ifdef CONFIG_ALTIVEC 1017 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 1018 int index, int element_size) 1019 { 1020 int offset; 1021 int elts = sizeof(vector128)/element_size; 1022 1023 if ((index < 0) || (index >= elts)) 1024 return -1; 1025 1026 if (kvmppc_need_byteswap(vcpu)) 1027 offset = elts - index - 1; 1028 else 1029 offset = index; 1030 1031 return offset; 1032 } 1033 1034 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 1035 int index) 1036 { 1037 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 1038 } 1039 1040 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1041 int index) 1042 { 1043 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1044 } 1045 1046 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1047 int index) 1048 { 1049 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1050 } 1051 1052 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1053 int index) 1054 { 1055 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1056 } 1057 1058 1059 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1060 u64 gpr) 1061 { 1062 union kvmppc_one_reg val; 1063 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1064 vcpu->arch.mmio_vmx_offset); 1065 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1066 1067 if (offset == -1) 1068 return; 1069 1070 val.vval = VCPU_VSX_VR(vcpu, index); 1071 val.vsxval[offset] = gpr; 1072 VCPU_VSX_VR(vcpu, index) = val.vval; 1073 } 1074 1075 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1076 u32 gpr32) 1077 { 1078 union kvmppc_one_reg val; 1079 int offset = kvmppc_get_vmx_word_offset(vcpu, 1080 vcpu->arch.mmio_vmx_offset); 1081 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1082 1083 if (offset == -1) 1084 return; 1085 1086 val.vval = VCPU_VSX_VR(vcpu, index); 1087 val.vsx32val[offset] = gpr32; 1088 VCPU_VSX_VR(vcpu, index) = val.vval; 1089 } 1090 1091 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1092 u16 gpr16) 1093 { 1094 union kvmppc_one_reg val; 1095 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1096 vcpu->arch.mmio_vmx_offset); 1097 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1098 1099 if (offset == -1) 1100 return; 1101 1102 val.vval = VCPU_VSX_VR(vcpu, index); 1103 val.vsx16val[offset] = gpr16; 1104 VCPU_VSX_VR(vcpu, index) = val.vval; 1105 } 1106 1107 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1108 u8 gpr8) 1109 { 1110 union kvmppc_one_reg val; 1111 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1112 vcpu->arch.mmio_vmx_offset); 1113 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1114 1115 if (offset == -1) 1116 return; 1117 1118 val.vval = VCPU_VSX_VR(vcpu, index); 1119 val.vsx8val[offset] = gpr8; 1120 VCPU_VSX_VR(vcpu, index) = val.vval; 1121 } 1122 #endif /* CONFIG_ALTIVEC */ 1123 1124 #ifdef CONFIG_PPC_FPU 1125 static inline u64 sp_to_dp(u32 fprs) 1126 { 1127 u64 fprd; 1128 1129 preempt_disable(); 1130 enable_kernel_fp(); 1131 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs) 1132 : "fr0"); 1133 preempt_enable(); 1134 return fprd; 1135 } 1136 1137 static inline u32 dp_to_sp(u64 fprd) 1138 { 1139 u32 fprs; 1140 1141 preempt_disable(); 1142 enable_kernel_fp(); 1143 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd) 1144 : "fr0"); 1145 preempt_enable(); 1146 return fprs; 1147 } 1148 1149 #else 1150 #define sp_to_dp(x) (x) 1151 #define dp_to_sp(x) (x) 1152 #endif /* CONFIG_PPC_FPU */ 1153 1154 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1155 { 1156 struct kvm_run *run = vcpu->run; 1157 u64 gpr; 1158 1159 if (run->mmio.len > sizeof(gpr)) 1160 return; 1161 1162 if (!vcpu->arch.mmio_host_swabbed) { 1163 switch (run->mmio.len) { 1164 case 8: gpr = *(u64 *)run->mmio.data; break; 1165 case 4: gpr = *(u32 *)run->mmio.data; break; 1166 case 2: gpr = *(u16 *)run->mmio.data; break; 1167 case 1: gpr = *(u8 *)run->mmio.data; break; 1168 } 1169 } else { 1170 switch (run->mmio.len) { 1171 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1172 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1173 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1174 case 1: gpr = *(u8 *)run->mmio.data; break; 1175 } 1176 } 1177 1178 /* conversion between single and double precision */ 1179 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1180 gpr = sp_to_dp(gpr); 1181 1182 if (vcpu->arch.mmio_sign_extend) { 1183 switch (run->mmio.len) { 1184 #ifdef CONFIG_PPC64 1185 case 4: 1186 gpr = (s64)(s32)gpr; 1187 break; 1188 #endif 1189 case 2: 1190 gpr = (s64)(s16)gpr; 1191 break; 1192 case 1: 1193 gpr = (s64)(s8)gpr; 1194 break; 1195 } 1196 } 1197 1198 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1199 case KVM_MMIO_REG_GPR: 1200 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1201 break; 1202 case KVM_MMIO_REG_FPR: 1203 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1204 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1205 1206 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1207 break; 1208 #ifdef CONFIG_PPC_BOOK3S 1209 case KVM_MMIO_REG_QPR: 1210 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1211 break; 1212 case KVM_MMIO_REG_FQPR: 1213 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1214 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1215 break; 1216 #endif 1217 #ifdef CONFIG_VSX 1218 case KVM_MMIO_REG_VSX: 1219 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1220 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1221 1222 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1223 kvmppc_set_vsr_dword(vcpu, gpr); 1224 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1225 kvmppc_set_vsr_word(vcpu, gpr); 1226 else if (vcpu->arch.mmio_copy_type == 1227 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1228 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1229 else if (vcpu->arch.mmio_copy_type == 1230 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1231 kvmppc_set_vsr_word_dump(vcpu, gpr); 1232 break; 1233 #endif 1234 #ifdef CONFIG_ALTIVEC 1235 case KVM_MMIO_REG_VMX: 1236 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1237 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1238 1239 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1240 kvmppc_set_vmx_dword(vcpu, gpr); 1241 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1242 kvmppc_set_vmx_word(vcpu, gpr); 1243 else if (vcpu->arch.mmio_copy_type == 1244 KVMPPC_VMX_COPY_HWORD) 1245 kvmppc_set_vmx_hword(vcpu, gpr); 1246 else if (vcpu->arch.mmio_copy_type == 1247 KVMPPC_VMX_COPY_BYTE) 1248 kvmppc_set_vmx_byte(vcpu, gpr); 1249 break; 1250 #endif 1251 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1252 case KVM_MMIO_REG_NESTED_GPR: 1253 if (kvmppc_need_byteswap(vcpu)) 1254 gpr = swab64(gpr); 1255 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1256 sizeof(gpr)); 1257 break; 1258 #endif 1259 default: 1260 BUG(); 1261 } 1262 } 1263 1264 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1265 unsigned int rt, unsigned int bytes, 1266 int is_default_endian, int sign_extend) 1267 { 1268 struct kvm_run *run = vcpu->run; 1269 int idx, ret; 1270 bool host_swabbed; 1271 1272 /* Pity C doesn't have a logical XOR operator */ 1273 if (kvmppc_need_byteswap(vcpu)) { 1274 host_swabbed = is_default_endian; 1275 } else { 1276 host_swabbed = !is_default_endian; 1277 } 1278 1279 if (bytes > sizeof(run->mmio.data)) 1280 return EMULATE_FAIL; 1281 1282 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1283 run->mmio.len = bytes; 1284 run->mmio.is_write = 0; 1285 1286 vcpu->arch.io_gpr = rt; 1287 vcpu->arch.mmio_host_swabbed = host_swabbed; 1288 vcpu->mmio_needed = 1; 1289 vcpu->mmio_is_write = 0; 1290 vcpu->arch.mmio_sign_extend = sign_extend; 1291 1292 idx = srcu_read_lock(&vcpu->kvm->srcu); 1293 1294 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1295 bytes, &run->mmio.data); 1296 1297 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1298 1299 if (!ret) { 1300 kvmppc_complete_mmio_load(vcpu); 1301 vcpu->mmio_needed = 0; 1302 return EMULATE_DONE; 1303 } 1304 1305 return EMULATE_DO_MMIO; 1306 } 1307 1308 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1309 unsigned int rt, unsigned int bytes, 1310 int is_default_endian) 1311 { 1312 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1313 } 1314 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1315 1316 /* Same as above, but sign extends */ 1317 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1318 unsigned int rt, unsigned int bytes, 1319 int is_default_endian) 1320 { 1321 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1322 } 1323 1324 #ifdef CONFIG_VSX 1325 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1326 unsigned int rt, unsigned int bytes, 1327 int is_default_endian, int mmio_sign_extend) 1328 { 1329 enum emulation_result emulated = EMULATE_DONE; 1330 1331 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1332 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1333 return EMULATE_FAIL; 1334 1335 while (vcpu->arch.mmio_vsx_copy_nums) { 1336 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1337 is_default_endian, mmio_sign_extend); 1338 1339 if (emulated != EMULATE_DONE) 1340 break; 1341 1342 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1343 1344 vcpu->arch.mmio_vsx_copy_nums--; 1345 vcpu->arch.mmio_vsx_offset++; 1346 } 1347 return emulated; 1348 } 1349 #endif /* CONFIG_VSX */ 1350 1351 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1352 u64 val, unsigned int bytes, int is_default_endian) 1353 { 1354 struct kvm_run *run = vcpu->run; 1355 void *data = run->mmio.data; 1356 int idx, ret; 1357 bool host_swabbed; 1358 1359 /* Pity C doesn't have a logical XOR operator */ 1360 if (kvmppc_need_byteswap(vcpu)) { 1361 host_swabbed = is_default_endian; 1362 } else { 1363 host_swabbed = !is_default_endian; 1364 } 1365 1366 if (bytes > sizeof(run->mmio.data)) 1367 return EMULATE_FAIL; 1368 1369 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1370 run->mmio.len = bytes; 1371 run->mmio.is_write = 1; 1372 vcpu->mmio_needed = 1; 1373 vcpu->mmio_is_write = 1; 1374 1375 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1376 val = dp_to_sp(val); 1377 1378 /* Store the value at the lowest bytes in 'data'. */ 1379 if (!host_swabbed) { 1380 switch (bytes) { 1381 case 8: *(u64 *)data = val; break; 1382 case 4: *(u32 *)data = val; break; 1383 case 2: *(u16 *)data = val; break; 1384 case 1: *(u8 *)data = val; break; 1385 } 1386 } else { 1387 switch (bytes) { 1388 case 8: *(u64 *)data = swab64(val); break; 1389 case 4: *(u32 *)data = swab32(val); break; 1390 case 2: *(u16 *)data = swab16(val); break; 1391 case 1: *(u8 *)data = val; break; 1392 } 1393 } 1394 1395 idx = srcu_read_lock(&vcpu->kvm->srcu); 1396 1397 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1398 bytes, &run->mmio.data); 1399 1400 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1401 1402 if (!ret) { 1403 vcpu->mmio_needed = 0; 1404 return EMULATE_DONE; 1405 } 1406 1407 return EMULATE_DO_MMIO; 1408 } 1409 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1410 1411 #ifdef CONFIG_VSX 1412 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1413 { 1414 u32 dword_offset, word_offset; 1415 union kvmppc_one_reg reg; 1416 int vsx_offset = 0; 1417 int copy_type = vcpu->arch.mmio_copy_type; 1418 int result = 0; 1419 1420 switch (copy_type) { 1421 case KVMPPC_VSX_COPY_DWORD: 1422 vsx_offset = 1423 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1424 1425 if (vsx_offset == -1) { 1426 result = -1; 1427 break; 1428 } 1429 1430 if (rs < 32) { 1431 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1432 } else { 1433 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1434 *val = reg.vsxval[vsx_offset]; 1435 } 1436 break; 1437 1438 case KVMPPC_VSX_COPY_WORD: 1439 vsx_offset = 1440 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1441 1442 if (vsx_offset == -1) { 1443 result = -1; 1444 break; 1445 } 1446 1447 if (rs < 32) { 1448 dword_offset = vsx_offset / 2; 1449 word_offset = vsx_offset % 2; 1450 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1451 *val = reg.vsx32val[word_offset]; 1452 } else { 1453 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1454 *val = reg.vsx32val[vsx_offset]; 1455 } 1456 break; 1457 1458 default: 1459 result = -1; 1460 break; 1461 } 1462 1463 return result; 1464 } 1465 1466 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1467 int rs, unsigned int bytes, int is_default_endian) 1468 { 1469 u64 val; 1470 enum emulation_result emulated = EMULATE_DONE; 1471 1472 vcpu->arch.io_gpr = rs; 1473 1474 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1475 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1476 return EMULATE_FAIL; 1477 1478 while (vcpu->arch.mmio_vsx_copy_nums) { 1479 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1480 return EMULATE_FAIL; 1481 1482 emulated = kvmppc_handle_store(vcpu, 1483 val, bytes, is_default_endian); 1484 1485 if (emulated != EMULATE_DONE) 1486 break; 1487 1488 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1489 1490 vcpu->arch.mmio_vsx_copy_nums--; 1491 vcpu->arch.mmio_vsx_offset++; 1492 } 1493 1494 return emulated; 1495 } 1496 1497 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1498 { 1499 struct kvm_run *run = vcpu->run; 1500 enum emulation_result emulated = EMULATE_FAIL; 1501 int r; 1502 1503 vcpu->arch.paddr_accessed += run->mmio.len; 1504 1505 if (!vcpu->mmio_is_write) { 1506 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1507 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1508 } else { 1509 emulated = kvmppc_handle_vsx_store(vcpu, 1510 vcpu->arch.io_gpr, run->mmio.len, 1); 1511 } 1512 1513 switch (emulated) { 1514 case EMULATE_DO_MMIO: 1515 run->exit_reason = KVM_EXIT_MMIO; 1516 r = RESUME_HOST; 1517 break; 1518 case EMULATE_FAIL: 1519 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1520 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1521 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1522 r = RESUME_HOST; 1523 break; 1524 default: 1525 r = RESUME_GUEST; 1526 break; 1527 } 1528 return r; 1529 } 1530 #endif /* CONFIG_VSX */ 1531 1532 #ifdef CONFIG_ALTIVEC 1533 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1534 unsigned int rt, unsigned int bytes, int is_default_endian) 1535 { 1536 enum emulation_result emulated = EMULATE_DONE; 1537 1538 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1539 return EMULATE_FAIL; 1540 1541 while (vcpu->arch.mmio_vmx_copy_nums) { 1542 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1543 is_default_endian, 0); 1544 1545 if (emulated != EMULATE_DONE) 1546 break; 1547 1548 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1549 vcpu->arch.mmio_vmx_copy_nums--; 1550 vcpu->arch.mmio_vmx_offset++; 1551 } 1552 1553 return emulated; 1554 } 1555 1556 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1557 { 1558 union kvmppc_one_reg reg; 1559 int vmx_offset = 0; 1560 int result = 0; 1561 1562 vmx_offset = 1563 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1564 1565 if (vmx_offset == -1) 1566 return -1; 1567 1568 reg.vval = VCPU_VSX_VR(vcpu, index); 1569 *val = reg.vsxval[vmx_offset]; 1570 1571 return result; 1572 } 1573 1574 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1575 { 1576 union kvmppc_one_reg reg; 1577 int vmx_offset = 0; 1578 int result = 0; 1579 1580 vmx_offset = 1581 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1582 1583 if (vmx_offset == -1) 1584 return -1; 1585 1586 reg.vval = VCPU_VSX_VR(vcpu, index); 1587 *val = reg.vsx32val[vmx_offset]; 1588 1589 return result; 1590 } 1591 1592 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1593 { 1594 union kvmppc_one_reg reg; 1595 int vmx_offset = 0; 1596 int result = 0; 1597 1598 vmx_offset = 1599 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1600 1601 if (vmx_offset == -1) 1602 return -1; 1603 1604 reg.vval = VCPU_VSX_VR(vcpu, index); 1605 *val = reg.vsx16val[vmx_offset]; 1606 1607 return result; 1608 } 1609 1610 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1611 { 1612 union kvmppc_one_reg reg; 1613 int vmx_offset = 0; 1614 int result = 0; 1615 1616 vmx_offset = 1617 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1618 1619 if (vmx_offset == -1) 1620 return -1; 1621 1622 reg.vval = VCPU_VSX_VR(vcpu, index); 1623 *val = reg.vsx8val[vmx_offset]; 1624 1625 return result; 1626 } 1627 1628 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1629 unsigned int rs, unsigned int bytes, int is_default_endian) 1630 { 1631 u64 val = 0; 1632 unsigned int index = rs & KVM_MMIO_REG_MASK; 1633 enum emulation_result emulated = EMULATE_DONE; 1634 1635 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1636 return EMULATE_FAIL; 1637 1638 vcpu->arch.io_gpr = rs; 1639 1640 while (vcpu->arch.mmio_vmx_copy_nums) { 1641 switch (vcpu->arch.mmio_copy_type) { 1642 case KVMPPC_VMX_COPY_DWORD: 1643 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1644 return EMULATE_FAIL; 1645 1646 break; 1647 case KVMPPC_VMX_COPY_WORD: 1648 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1649 return EMULATE_FAIL; 1650 break; 1651 case KVMPPC_VMX_COPY_HWORD: 1652 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1653 return EMULATE_FAIL; 1654 break; 1655 case KVMPPC_VMX_COPY_BYTE: 1656 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1657 return EMULATE_FAIL; 1658 break; 1659 default: 1660 return EMULATE_FAIL; 1661 } 1662 1663 emulated = kvmppc_handle_store(vcpu, val, bytes, 1664 is_default_endian); 1665 if (emulated != EMULATE_DONE) 1666 break; 1667 1668 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1669 vcpu->arch.mmio_vmx_copy_nums--; 1670 vcpu->arch.mmio_vmx_offset++; 1671 } 1672 1673 return emulated; 1674 } 1675 1676 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1677 { 1678 struct kvm_run *run = vcpu->run; 1679 enum emulation_result emulated = EMULATE_FAIL; 1680 int r; 1681 1682 vcpu->arch.paddr_accessed += run->mmio.len; 1683 1684 if (!vcpu->mmio_is_write) { 1685 emulated = kvmppc_handle_vmx_load(vcpu, 1686 vcpu->arch.io_gpr, run->mmio.len, 1); 1687 } else { 1688 emulated = kvmppc_handle_vmx_store(vcpu, 1689 vcpu->arch.io_gpr, run->mmio.len, 1); 1690 } 1691 1692 switch (emulated) { 1693 case EMULATE_DO_MMIO: 1694 run->exit_reason = KVM_EXIT_MMIO; 1695 r = RESUME_HOST; 1696 break; 1697 case EMULATE_FAIL: 1698 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1699 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1700 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1701 r = RESUME_HOST; 1702 break; 1703 default: 1704 r = RESUME_GUEST; 1705 break; 1706 } 1707 return r; 1708 } 1709 #endif /* CONFIG_ALTIVEC */ 1710 1711 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1712 { 1713 int r = 0; 1714 union kvmppc_one_reg val; 1715 int size; 1716 1717 size = one_reg_size(reg->id); 1718 if (size > sizeof(val)) 1719 return -EINVAL; 1720 1721 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1722 if (r == -EINVAL) { 1723 r = 0; 1724 switch (reg->id) { 1725 #ifdef CONFIG_ALTIVEC 1726 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1727 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1728 r = -ENXIO; 1729 break; 1730 } 1731 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1732 break; 1733 case KVM_REG_PPC_VSCR: 1734 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1735 r = -ENXIO; 1736 break; 1737 } 1738 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1739 break; 1740 case KVM_REG_PPC_VRSAVE: 1741 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1742 break; 1743 #endif /* CONFIG_ALTIVEC */ 1744 default: 1745 r = -EINVAL; 1746 break; 1747 } 1748 } 1749 1750 if (r) 1751 return r; 1752 1753 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1754 r = -EFAULT; 1755 1756 return r; 1757 } 1758 1759 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1760 { 1761 int r; 1762 union kvmppc_one_reg val; 1763 int size; 1764 1765 size = one_reg_size(reg->id); 1766 if (size > sizeof(val)) 1767 return -EINVAL; 1768 1769 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1770 return -EFAULT; 1771 1772 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1773 if (r == -EINVAL) { 1774 r = 0; 1775 switch (reg->id) { 1776 #ifdef CONFIG_ALTIVEC 1777 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1778 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1779 r = -ENXIO; 1780 break; 1781 } 1782 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1783 break; 1784 case KVM_REG_PPC_VSCR: 1785 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1786 r = -ENXIO; 1787 break; 1788 } 1789 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1790 break; 1791 case KVM_REG_PPC_VRSAVE: 1792 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1793 r = -ENXIO; 1794 break; 1795 } 1796 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1797 break; 1798 #endif /* CONFIG_ALTIVEC */ 1799 default: 1800 r = -EINVAL; 1801 break; 1802 } 1803 } 1804 1805 return r; 1806 } 1807 1808 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1809 { 1810 struct kvm_run *run = vcpu->run; 1811 int r; 1812 1813 vcpu_load(vcpu); 1814 1815 if (vcpu->mmio_needed) { 1816 vcpu->mmio_needed = 0; 1817 if (!vcpu->mmio_is_write) 1818 kvmppc_complete_mmio_load(vcpu); 1819 #ifdef CONFIG_VSX 1820 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1821 vcpu->arch.mmio_vsx_copy_nums--; 1822 vcpu->arch.mmio_vsx_offset++; 1823 } 1824 1825 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1826 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1827 if (r == RESUME_HOST) { 1828 vcpu->mmio_needed = 1; 1829 goto out; 1830 } 1831 } 1832 #endif 1833 #ifdef CONFIG_ALTIVEC 1834 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1835 vcpu->arch.mmio_vmx_copy_nums--; 1836 vcpu->arch.mmio_vmx_offset++; 1837 } 1838 1839 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1840 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1841 if (r == RESUME_HOST) { 1842 vcpu->mmio_needed = 1; 1843 goto out; 1844 } 1845 } 1846 #endif 1847 } else if (vcpu->arch.osi_needed) { 1848 u64 *gprs = run->osi.gprs; 1849 int i; 1850 1851 for (i = 0; i < 32; i++) 1852 kvmppc_set_gpr(vcpu, i, gprs[i]); 1853 vcpu->arch.osi_needed = 0; 1854 } else if (vcpu->arch.hcall_needed) { 1855 int i; 1856 1857 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1858 for (i = 0; i < 9; ++i) 1859 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1860 vcpu->arch.hcall_needed = 0; 1861 #ifdef CONFIG_BOOKE 1862 } else if (vcpu->arch.epr_needed) { 1863 kvmppc_set_epr(vcpu, run->epr.epr); 1864 vcpu->arch.epr_needed = 0; 1865 #endif 1866 } 1867 1868 kvm_sigset_activate(vcpu); 1869 1870 if (run->immediate_exit) 1871 r = -EINTR; 1872 else 1873 r = kvmppc_vcpu_run(vcpu); 1874 1875 kvm_sigset_deactivate(vcpu); 1876 1877 #ifdef CONFIG_ALTIVEC 1878 out: 1879 #endif 1880 1881 /* 1882 * We're already returning to userspace, don't pass the 1883 * RESUME_HOST flags along. 1884 */ 1885 if (r > 0) 1886 r = 0; 1887 1888 vcpu_put(vcpu); 1889 return r; 1890 } 1891 1892 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1893 { 1894 if (irq->irq == KVM_INTERRUPT_UNSET) { 1895 kvmppc_core_dequeue_external(vcpu); 1896 return 0; 1897 } 1898 1899 kvmppc_core_queue_external(vcpu, irq); 1900 1901 kvm_vcpu_kick(vcpu); 1902 1903 return 0; 1904 } 1905 1906 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1907 struct kvm_enable_cap *cap) 1908 { 1909 int r; 1910 1911 if (cap->flags) 1912 return -EINVAL; 1913 1914 switch (cap->cap) { 1915 case KVM_CAP_PPC_OSI: 1916 r = 0; 1917 vcpu->arch.osi_enabled = true; 1918 break; 1919 case KVM_CAP_PPC_PAPR: 1920 r = 0; 1921 vcpu->arch.papr_enabled = true; 1922 break; 1923 case KVM_CAP_PPC_EPR: 1924 r = 0; 1925 if (cap->args[0]) 1926 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1927 else 1928 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1929 break; 1930 #ifdef CONFIG_BOOKE 1931 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1932 r = 0; 1933 vcpu->arch.watchdog_enabled = true; 1934 break; 1935 #endif 1936 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1937 case KVM_CAP_SW_TLB: { 1938 struct kvm_config_tlb cfg; 1939 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1940 1941 r = -EFAULT; 1942 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1943 break; 1944 1945 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1946 break; 1947 } 1948 #endif 1949 #ifdef CONFIG_KVM_MPIC 1950 case KVM_CAP_IRQ_MPIC: { 1951 struct fd f; 1952 struct kvm_device *dev; 1953 1954 r = -EBADF; 1955 f = fdget(cap->args[0]); 1956 if (!f.file) 1957 break; 1958 1959 r = -EPERM; 1960 dev = kvm_device_from_filp(f.file); 1961 if (dev) 1962 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1963 1964 fdput(f); 1965 break; 1966 } 1967 #endif 1968 #ifdef CONFIG_KVM_XICS 1969 case KVM_CAP_IRQ_XICS: { 1970 struct fd f; 1971 struct kvm_device *dev; 1972 1973 r = -EBADF; 1974 f = fdget(cap->args[0]); 1975 if (!f.file) 1976 break; 1977 1978 r = -EPERM; 1979 dev = kvm_device_from_filp(f.file); 1980 if (dev) { 1981 if (xics_on_xive()) 1982 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1983 else 1984 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1985 } 1986 1987 fdput(f); 1988 break; 1989 } 1990 #endif /* CONFIG_KVM_XICS */ 1991 #ifdef CONFIG_KVM_XIVE 1992 case KVM_CAP_PPC_IRQ_XIVE: { 1993 struct fd f; 1994 struct kvm_device *dev; 1995 1996 r = -EBADF; 1997 f = fdget(cap->args[0]); 1998 if (!f.file) 1999 break; 2000 2001 r = -ENXIO; 2002 if (!xive_enabled()) 2003 break; 2004 2005 r = -EPERM; 2006 dev = kvm_device_from_filp(f.file); 2007 if (dev) 2008 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 2009 cap->args[1]); 2010 2011 fdput(f); 2012 break; 2013 } 2014 #endif /* CONFIG_KVM_XIVE */ 2015 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 2016 case KVM_CAP_PPC_FWNMI: 2017 r = -EINVAL; 2018 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 2019 break; 2020 r = 0; 2021 vcpu->kvm->arch.fwnmi_enabled = true; 2022 break; 2023 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 2024 default: 2025 r = -EINVAL; 2026 break; 2027 } 2028 2029 if (!r) 2030 r = kvmppc_sanity_check(vcpu); 2031 2032 return r; 2033 } 2034 2035 bool kvm_arch_intc_initialized(struct kvm *kvm) 2036 { 2037 #ifdef CONFIG_KVM_MPIC 2038 if (kvm->arch.mpic) 2039 return true; 2040 #endif 2041 #ifdef CONFIG_KVM_XICS 2042 if (kvm->arch.xics || kvm->arch.xive) 2043 return true; 2044 #endif 2045 return false; 2046 } 2047 2048 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2049 struct kvm_mp_state *mp_state) 2050 { 2051 return -EINVAL; 2052 } 2053 2054 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2055 struct kvm_mp_state *mp_state) 2056 { 2057 return -EINVAL; 2058 } 2059 2060 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2061 unsigned int ioctl, unsigned long arg) 2062 { 2063 struct kvm_vcpu *vcpu = filp->private_data; 2064 void __user *argp = (void __user *)arg; 2065 2066 if (ioctl == KVM_INTERRUPT) { 2067 struct kvm_interrupt irq; 2068 if (copy_from_user(&irq, argp, sizeof(irq))) 2069 return -EFAULT; 2070 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2071 } 2072 return -ENOIOCTLCMD; 2073 } 2074 2075 long kvm_arch_vcpu_ioctl(struct file *filp, 2076 unsigned int ioctl, unsigned long arg) 2077 { 2078 struct kvm_vcpu *vcpu = filp->private_data; 2079 void __user *argp = (void __user *)arg; 2080 long r; 2081 2082 switch (ioctl) { 2083 case KVM_ENABLE_CAP: 2084 { 2085 struct kvm_enable_cap cap; 2086 r = -EFAULT; 2087 if (copy_from_user(&cap, argp, sizeof(cap))) 2088 goto out; 2089 vcpu_load(vcpu); 2090 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2091 vcpu_put(vcpu); 2092 break; 2093 } 2094 2095 case KVM_SET_ONE_REG: 2096 case KVM_GET_ONE_REG: 2097 { 2098 struct kvm_one_reg reg; 2099 r = -EFAULT; 2100 if (copy_from_user(®, argp, sizeof(reg))) 2101 goto out; 2102 if (ioctl == KVM_SET_ONE_REG) 2103 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2104 else 2105 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2106 break; 2107 } 2108 2109 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2110 case KVM_DIRTY_TLB: { 2111 struct kvm_dirty_tlb dirty; 2112 r = -EFAULT; 2113 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2114 goto out; 2115 vcpu_load(vcpu); 2116 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2117 vcpu_put(vcpu); 2118 break; 2119 } 2120 #endif 2121 default: 2122 r = -EINVAL; 2123 } 2124 2125 out: 2126 return r; 2127 } 2128 2129 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2130 { 2131 return VM_FAULT_SIGBUS; 2132 } 2133 2134 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2135 { 2136 u32 inst_nop = 0x60000000; 2137 #ifdef CONFIG_KVM_BOOKE_HV 2138 u32 inst_sc1 = 0x44000022; 2139 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2140 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2141 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2142 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2143 #else 2144 u32 inst_lis = 0x3c000000; 2145 u32 inst_ori = 0x60000000; 2146 u32 inst_sc = 0x44000002; 2147 u32 inst_imm_mask = 0xffff; 2148 2149 /* 2150 * The hypercall to get into KVM from within guest context is as 2151 * follows: 2152 * 2153 * lis r0, r0, KVM_SC_MAGIC_R0@h 2154 * ori r0, KVM_SC_MAGIC_R0@l 2155 * sc 2156 * nop 2157 */ 2158 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2159 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2160 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2161 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2162 #endif 2163 2164 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2165 2166 return 0; 2167 } 2168 2169 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2170 bool line_status) 2171 { 2172 if (!irqchip_in_kernel(kvm)) 2173 return -ENXIO; 2174 2175 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2176 irq_event->irq, irq_event->level, 2177 line_status); 2178 return 0; 2179 } 2180 2181 2182 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2183 struct kvm_enable_cap *cap) 2184 { 2185 int r; 2186 2187 if (cap->flags) 2188 return -EINVAL; 2189 2190 switch (cap->cap) { 2191 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2192 case KVM_CAP_PPC_ENABLE_HCALL: { 2193 unsigned long hcall = cap->args[0]; 2194 2195 r = -EINVAL; 2196 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2197 cap->args[1] > 1) 2198 break; 2199 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2200 break; 2201 if (cap->args[1]) 2202 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2203 else 2204 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2205 r = 0; 2206 break; 2207 } 2208 case KVM_CAP_PPC_SMT: { 2209 unsigned long mode = cap->args[0]; 2210 unsigned long flags = cap->args[1]; 2211 2212 r = -EINVAL; 2213 if (kvm->arch.kvm_ops->set_smt_mode) 2214 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2215 break; 2216 } 2217 2218 case KVM_CAP_PPC_NESTED_HV: 2219 r = -EINVAL; 2220 if (!is_kvmppc_hv_enabled(kvm) || 2221 !kvm->arch.kvm_ops->enable_nested) 2222 break; 2223 r = kvm->arch.kvm_ops->enable_nested(kvm); 2224 break; 2225 #endif 2226 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2227 case KVM_CAP_PPC_SECURE_GUEST: 2228 r = -EINVAL; 2229 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2230 break; 2231 r = kvm->arch.kvm_ops->enable_svm(kvm); 2232 break; 2233 case KVM_CAP_PPC_DAWR1: 2234 r = -EINVAL; 2235 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1) 2236 break; 2237 r = kvm->arch.kvm_ops->enable_dawr1(kvm); 2238 break; 2239 #endif 2240 default: 2241 r = -EINVAL; 2242 break; 2243 } 2244 2245 return r; 2246 } 2247 2248 #ifdef CONFIG_PPC_BOOK3S_64 2249 /* 2250 * These functions check whether the underlying hardware is safe 2251 * against attacks based on observing the effects of speculatively 2252 * executed instructions, and whether it supplies instructions for 2253 * use in workarounds. The information comes from firmware, either 2254 * via the device tree on powernv platforms or from an hcall on 2255 * pseries platforms. 2256 */ 2257 #ifdef CONFIG_PPC_PSERIES 2258 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2259 { 2260 struct h_cpu_char_result c; 2261 unsigned long rc; 2262 2263 if (!machine_is(pseries)) 2264 return -ENOTTY; 2265 2266 rc = plpar_get_cpu_characteristics(&c); 2267 if (rc == H_SUCCESS) { 2268 cp->character = c.character; 2269 cp->behaviour = c.behaviour; 2270 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2271 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2272 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2273 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2274 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2275 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2276 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2277 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2278 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2279 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2280 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2281 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2282 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2283 } 2284 return 0; 2285 } 2286 #else 2287 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2288 { 2289 return -ENOTTY; 2290 } 2291 #endif 2292 2293 static inline bool have_fw_feat(struct device_node *fw_features, 2294 const char *state, const char *name) 2295 { 2296 struct device_node *np; 2297 bool r = false; 2298 2299 np = of_get_child_by_name(fw_features, name); 2300 if (np) { 2301 r = of_property_read_bool(np, state); 2302 of_node_put(np); 2303 } 2304 return r; 2305 } 2306 2307 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2308 { 2309 struct device_node *np, *fw_features; 2310 int r; 2311 2312 memset(cp, 0, sizeof(*cp)); 2313 r = pseries_get_cpu_char(cp); 2314 if (r != -ENOTTY) 2315 return r; 2316 2317 np = of_find_node_by_name(NULL, "ibm,opal"); 2318 if (np) { 2319 fw_features = of_get_child_by_name(np, "fw-features"); 2320 of_node_put(np); 2321 if (!fw_features) 2322 return 0; 2323 if (have_fw_feat(fw_features, "enabled", 2324 "inst-spec-barrier-ori31,31,0")) 2325 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2326 if (have_fw_feat(fw_features, "enabled", 2327 "fw-bcctrl-serialized")) 2328 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2329 if (have_fw_feat(fw_features, "enabled", 2330 "inst-l1d-flush-ori30,30,0")) 2331 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2332 if (have_fw_feat(fw_features, "enabled", 2333 "inst-l1d-flush-trig2")) 2334 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2335 if (have_fw_feat(fw_features, "enabled", 2336 "fw-l1d-thread-split")) 2337 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2338 if (have_fw_feat(fw_features, "enabled", 2339 "fw-count-cache-disabled")) 2340 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2341 if (have_fw_feat(fw_features, "enabled", 2342 "fw-count-cache-flush-bcctr2,0,0")) 2343 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2344 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2345 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2346 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2347 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2348 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2349 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2350 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2351 2352 if (have_fw_feat(fw_features, "enabled", 2353 "speculation-policy-favor-security")) 2354 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2355 if (!have_fw_feat(fw_features, "disabled", 2356 "needs-l1d-flush-msr-pr-0-to-1")) 2357 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2358 if (!have_fw_feat(fw_features, "disabled", 2359 "needs-spec-barrier-for-bound-checks")) 2360 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2361 if (have_fw_feat(fw_features, "enabled", 2362 "needs-count-cache-flush-on-context-switch")) 2363 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2364 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2365 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2366 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2367 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2368 2369 of_node_put(fw_features); 2370 } 2371 2372 return 0; 2373 } 2374 #endif 2375 2376 long kvm_arch_vm_ioctl(struct file *filp, 2377 unsigned int ioctl, unsigned long arg) 2378 { 2379 struct kvm *kvm __maybe_unused = filp->private_data; 2380 void __user *argp = (void __user *)arg; 2381 long r; 2382 2383 switch (ioctl) { 2384 case KVM_PPC_GET_PVINFO: { 2385 struct kvm_ppc_pvinfo pvinfo; 2386 memset(&pvinfo, 0, sizeof(pvinfo)); 2387 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2388 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2389 r = -EFAULT; 2390 goto out; 2391 } 2392 2393 break; 2394 } 2395 #ifdef CONFIG_SPAPR_TCE_IOMMU 2396 case KVM_CREATE_SPAPR_TCE_64: { 2397 struct kvm_create_spapr_tce_64 create_tce_64; 2398 2399 r = -EFAULT; 2400 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2401 goto out; 2402 if (create_tce_64.flags) { 2403 r = -EINVAL; 2404 goto out; 2405 } 2406 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2407 goto out; 2408 } 2409 case KVM_CREATE_SPAPR_TCE: { 2410 struct kvm_create_spapr_tce create_tce; 2411 struct kvm_create_spapr_tce_64 create_tce_64; 2412 2413 r = -EFAULT; 2414 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2415 goto out; 2416 2417 create_tce_64.liobn = create_tce.liobn; 2418 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2419 create_tce_64.offset = 0; 2420 create_tce_64.size = create_tce.window_size >> 2421 IOMMU_PAGE_SHIFT_4K; 2422 create_tce_64.flags = 0; 2423 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2424 goto out; 2425 } 2426 #endif 2427 #ifdef CONFIG_PPC_BOOK3S_64 2428 case KVM_PPC_GET_SMMU_INFO: { 2429 struct kvm_ppc_smmu_info info; 2430 struct kvm *kvm = filp->private_data; 2431 2432 memset(&info, 0, sizeof(info)); 2433 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2434 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2435 r = -EFAULT; 2436 break; 2437 } 2438 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2439 struct kvm *kvm = filp->private_data; 2440 2441 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2442 break; 2443 } 2444 case KVM_PPC_CONFIGURE_V3_MMU: { 2445 struct kvm *kvm = filp->private_data; 2446 struct kvm_ppc_mmuv3_cfg cfg; 2447 2448 r = -EINVAL; 2449 if (!kvm->arch.kvm_ops->configure_mmu) 2450 goto out; 2451 r = -EFAULT; 2452 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2453 goto out; 2454 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2455 break; 2456 } 2457 case KVM_PPC_GET_RMMU_INFO: { 2458 struct kvm *kvm = filp->private_data; 2459 struct kvm_ppc_rmmu_info info; 2460 2461 r = -EINVAL; 2462 if (!kvm->arch.kvm_ops->get_rmmu_info) 2463 goto out; 2464 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2465 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2466 r = -EFAULT; 2467 break; 2468 } 2469 case KVM_PPC_GET_CPU_CHAR: { 2470 struct kvm_ppc_cpu_char cpuchar; 2471 2472 r = kvmppc_get_cpu_char(&cpuchar); 2473 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2474 r = -EFAULT; 2475 break; 2476 } 2477 case KVM_PPC_SVM_OFF: { 2478 struct kvm *kvm = filp->private_data; 2479 2480 r = 0; 2481 if (!kvm->arch.kvm_ops->svm_off) 2482 goto out; 2483 2484 r = kvm->arch.kvm_ops->svm_off(kvm); 2485 break; 2486 } 2487 default: { 2488 struct kvm *kvm = filp->private_data; 2489 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2490 } 2491 #else /* CONFIG_PPC_BOOK3S_64 */ 2492 default: 2493 r = -ENOTTY; 2494 #endif 2495 } 2496 out: 2497 return r; 2498 } 2499 2500 static DEFINE_IDA(lpid_inuse); 2501 static unsigned long nr_lpids; 2502 2503 long kvmppc_alloc_lpid(void) 2504 { 2505 int lpid; 2506 2507 /* The host LPID must always be 0 (allocation starts at 1) */ 2508 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL); 2509 if (lpid < 0) { 2510 if (lpid == -ENOMEM) 2511 pr_err("%s: Out of memory\n", __func__); 2512 else 2513 pr_err("%s: No LPIDs free\n", __func__); 2514 return -ENOMEM; 2515 } 2516 2517 return lpid; 2518 } 2519 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2520 2521 void kvmppc_free_lpid(long lpid) 2522 { 2523 ida_free(&lpid_inuse, lpid); 2524 } 2525 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2526 2527 /* nr_lpids_param includes the host LPID */ 2528 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2529 { 2530 nr_lpids = nr_lpids_param; 2531 } 2532 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2533 2534 int kvm_arch_init(void *opaque) 2535 { 2536 return 0; 2537 } 2538 2539 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2540 2541 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2542 { 2543 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs) 2544 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry); 2545 } 2546 2547 int kvm_arch_create_vm_debugfs(struct kvm *kvm) 2548 { 2549 if (kvm->arch.kvm_ops->create_vm_debugfs) 2550 kvm->arch.kvm_ops->create_vm_debugfs(kvm); 2551 return 0; 2552 } 2553