1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <asm/cputable.h> 23 #include <linux/uaccess.h> 24 #include <asm/kvm_ppc.h> 25 #include <asm/cputhreads.h> 26 #include <asm/irqflags.h> 27 #include <asm/iommu.h> 28 #include <asm/switch_to.h> 29 #include <asm/xive.h> 30 #ifdef CONFIG_PPC_PSERIES 31 #include <asm/hvcall.h> 32 #include <asm/plpar_wrappers.h> 33 #endif 34 #include <asm/ultravisor.h> 35 36 #include "timing.h" 37 #include "irq.h" 38 #include "../mm/mmu_decl.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "trace.h" 42 43 struct kvmppc_ops *kvmppc_hv_ops; 44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 45 struct kvmppc_ops *kvmppc_pr_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 47 48 49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 50 { 51 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 52 } 53 54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 55 { 56 return kvm_arch_vcpu_runnable(vcpu); 57 } 58 59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 60 { 61 return false; 62 } 63 64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 65 { 66 return 1; 67 } 68 69 /* 70 * Common checks before entering the guest world. Call with interrupts 71 * disabled. 72 * 73 * returns: 74 * 75 * == 1 if we're ready to go into guest state 76 * <= 0 if we need to go back to the host with return value 77 */ 78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 79 { 80 int r; 81 82 WARN_ON(irqs_disabled()); 83 hard_irq_disable(); 84 85 while (true) { 86 if (need_resched()) { 87 local_irq_enable(); 88 cond_resched(); 89 hard_irq_disable(); 90 continue; 91 } 92 93 if (signal_pending(current)) { 94 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 95 vcpu->run->exit_reason = KVM_EXIT_INTR; 96 r = -EINTR; 97 break; 98 } 99 100 vcpu->mode = IN_GUEST_MODE; 101 102 /* 103 * Reading vcpu->requests must happen after setting vcpu->mode, 104 * so we don't miss a request because the requester sees 105 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 106 * before next entering the guest (and thus doesn't IPI). 107 * This also orders the write to mode from any reads 108 * to the page tables done while the VCPU is running. 109 * Please see the comment in kvm_flush_remote_tlbs. 110 */ 111 smp_mb(); 112 113 if (kvm_request_pending(vcpu)) { 114 /* Make sure we process requests preemptable */ 115 local_irq_enable(); 116 trace_kvm_check_requests(vcpu); 117 r = kvmppc_core_check_requests(vcpu); 118 hard_irq_disable(); 119 if (r > 0) 120 continue; 121 break; 122 } 123 124 if (kvmppc_core_prepare_to_enter(vcpu)) { 125 /* interrupts got enabled in between, so we 126 are back at square 1 */ 127 continue; 128 } 129 130 guest_enter_irqoff(); 131 return 1; 132 } 133 134 /* return to host */ 135 local_irq_enable(); 136 return r; 137 } 138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 139 140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 142 { 143 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 144 int i; 145 146 shared->sprg0 = swab64(shared->sprg0); 147 shared->sprg1 = swab64(shared->sprg1); 148 shared->sprg2 = swab64(shared->sprg2); 149 shared->sprg3 = swab64(shared->sprg3); 150 shared->srr0 = swab64(shared->srr0); 151 shared->srr1 = swab64(shared->srr1); 152 shared->dar = swab64(shared->dar); 153 shared->msr = swab64(shared->msr); 154 shared->dsisr = swab32(shared->dsisr); 155 shared->int_pending = swab32(shared->int_pending); 156 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 157 shared->sr[i] = swab32(shared->sr[i]); 158 } 159 #endif 160 161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 162 { 163 int nr = kvmppc_get_gpr(vcpu, 11); 164 int r; 165 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 166 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 167 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 168 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 169 unsigned long r2 = 0; 170 171 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 172 /* 32 bit mode */ 173 param1 &= 0xffffffff; 174 param2 &= 0xffffffff; 175 param3 &= 0xffffffff; 176 param4 &= 0xffffffff; 177 } 178 179 switch (nr) { 180 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 181 { 182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 183 /* Book3S can be little endian, find it out here */ 184 int shared_big_endian = true; 185 if (vcpu->arch.intr_msr & MSR_LE) 186 shared_big_endian = false; 187 if (shared_big_endian != vcpu->arch.shared_big_endian) 188 kvmppc_swab_shared(vcpu); 189 vcpu->arch.shared_big_endian = shared_big_endian; 190 #endif 191 192 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 193 /* 194 * Older versions of the Linux magic page code had 195 * a bug where they would map their trampoline code 196 * NX. If that's the case, remove !PR NX capability. 197 */ 198 vcpu->arch.disable_kernel_nx = true; 199 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 200 } 201 202 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 203 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 204 205 #ifdef CONFIG_PPC_64K_PAGES 206 /* 207 * Make sure our 4k magic page is in the same window of a 64k 208 * page within the guest and within the host's page. 209 */ 210 if ((vcpu->arch.magic_page_pa & 0xf000) != 211 ((ulong)vcpu->arch.shared & 0xf000)) { 212 void *old_shared = vcpu->arch.shared; 213 ulong shared = (ulong)vcpu->arch.shared; 214 void *new_shared; 215 216 shared &= PAGE_MASK; 217 shared |= vcpu->arch.magic_page_pa & 0xf000; 218 new_shared = (void*)shared; 219 memcpy(new_shared, old_shared, 0x1000); 220 vcpu->arch.shared = new_shared; 221 } 222 #endif 223 224 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 225 226 r = EV_SUCCESS; 227 break; 228 } 229 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 230 r = EV_SUCCESS; 231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 232 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 233 #endif 234 235 /* Second return value is in r4 */ 236 break; 237 case EV_HCALL_TOKEN(EV_IDLE): 238 r = EV_SUCCESS; 239 kvm_vcpu_block(vcpu); 240 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 241 break; 242 default: 243 r = EV_UNIMPLEMENTED; 244 break; 245 } 246 247 kvmppc_set_gpr(vcpu, 4, r2); 248 249 return r; 250 } 251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 252 253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 254 { 255 int r = false; 256 257 /* We have to know what CPU to virtualize */ 258 if (!vcpu->arch.pvr) 259 goto out; 260 261 /* PAPR only works with book3s_64 */ 262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 263 goto out; 264 265 /* HV KVM can only do PAPR mode for now */ 266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 267 goto out; 268 269 #ifdef CONFIG_KVM_BOOKE_HV 270 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 271 goto out; 272 #endif 273 274 r = true; 275 276 out: 277 vcpu->arch.sane = r; 278 return r ? 0 : -EINVAL; 279 } 280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 281 282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 283 { 284 enum emulation_result er; 285 int r; 286 287 er = kvmppc_emulate_loadstore(vcpu); 288 switch (er) { 289 case EMULATE_DONE: 290 /* Future optimization: only reload non-volatiles if they were 291 * actually modified. */ 292 r = RESUME_GUEST_NV; 293 break; 294 case EMULATE_AGAIN: 295 r = RESUME_GUEST; 296 break; 297 case EMULATE_DO_MMIO: 298 vcpu->run->exit_reason = KVM_EXIT_MMIO; 299 /* We must reload nonvolatiles because "update" load/store 300 * instructions modify register state. */ 301 /* Future optimization: only reload non-volatiles if they were 302 * actually modified. */ 303 r = RESUME_HOST_NV; 304 break; 305 case EMULATE_FAIL: 306 { 307 u32 last_inst; 308 309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 310 /* XXX Deliver Program interrupt to guest. */ 311 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 312 r = RESUME_HOST; 313 break; 314 } 315 default: 316 WARN_ON(1); 317 r = RESUME_GUEST; 318 } 319 320 return r; 321 } 322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 323 324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 325 bool data) 326 { 327 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 328 struct kvmppc_pte pte; 329 int r = -EINVAL; 330 331 vcpu->stat.st++; 332 333 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 334 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 335 size); 336 337 if ((!r) || (r == -EAGAIN)) 338 return r; 339 340 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 341 XLATE_WRITE, &pte); 342 if (r < 0) 343 return r; 344 345 *eaddr = pte.raddr; 346 347 if (!pte.may_write) 348 return -EPERM; 349 350 /* Magic page override */ 351 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 352 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 353 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 354 void *magic = vcpu->arch.shared; 355 magic += pte.eaddr & 0xfff; 356 memcpy(magic, ptr, size); 357 return EMULATE_DONE; 358 } 359 360 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 361 return EMULATE_DO_MMIO; 362 363 return EMULATE_DONE; 364 } 365 EXPORT_SYMBOL_GPL(kvmppc_st); 366 367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 368 bool data) 369 { 370 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 371 struct kvmppc_pte pte; 372 int rc = -EINVAL; 373 374 vcpu->stat.ld++; 375 376 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 377 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 378 size); 379 380 if ((!rc) || (rc == -EAGAIN)) 381 return rc; 382 383 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 384 XLATE_READ, &pte); 385 if (rc) 386 return rc; 387 388 *eaddr = pte.raddr; 389 390 if (!pte.may_read) 391 return -EPERM; 392 393 if (!data && !pte.may_execute) 394 return -ENOEXEC; 395 396 /* Magic page override */ 397 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 398 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 399 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 400 void *magic = vcpu->arch.shared; 401 magic += pte.eaddr & 0xfff; 402 memcpy(ptr, magic, size); 403 return EMULATE_DONE; 404 } 405 406 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 407 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); 408 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 409 if (rc) 410 return EMULATE_DO_MMIO; 411 412 return EMULATE_DONE; 413 } 414 EXPORT_SYMBOL_GPL(kvmppc_ld); 415 416 int kvm_arch_hardware_enable(void) 417 { 418 return 0; 419 } 420 421 int kvm_arch_hardware_setup(void *opaque) 422 { 423 return 0; 424 } 425 426 int kvm_arch_check_processor_compat(void *opaque) 427 { 428 return kvmppc_core_check_processor_compat(); 429 } 430 431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 432 { 433 struct kvmppc_ops *kvm_ops = NULL; 434 /* 435 * if we have both HV and PR enabled, default is HV 436 */ 437 if (type == 0) { 438 if (kvmppc_hv_ops) 439 kvm_ops = kvmppc_hv_ops; 440 else 441 kvm_ops = kvmppc_pr_ops; 442 if (!kvm_ops) 443 goto err_out; 444 } else if (type == KVM_VM_PPC_HV) { 445 if (!kvmppc_hv_ops) 446 goto err_out; 447 kvm_ops = kvmppc_hv_ops; 448 } else if (type == KVM_VM_PPC_PR) { 449 if (!kvmppc_pr_ops) 450 goto err_out; 451 kvm_ops = kvmppc_pr_ops; 452 } else 453 goto err_out; 454 455 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 456 return -ENOENT; 457 458 kvm->arch.kvm_ops = kvm_ops; 459 return kvmppc_core_init_vm(kvm); 460 err_out: 461 return -EINVAL; 462 } 463 464 void kvm_arch_destroy_vm(struct kvm *kvm) 465 { 466 unsigned int i; 467 struct kvm_vcpu *vcpu; 468 469 #ifdef CONFIG_KVM_XICS 470 /* 471 * We call kick_all_cpus_sync() to ensure that all 472 * CPUs have executed any pending IPIs before we 473 * continue and free VCPUs structures below. 474 */ 475 if (is_kvmppc_hv_enabled(kvm)) 476 kick_all_cpus_sync(); 477 #endif 478 479 kvm_for_each_vcpu(i, vcpu, kvm) 480 kvm_vcpu_destroy(vcpu); 481 482 mutex_lock(&kvm->lock); 483 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 484 kvm->vcpus[i] = NULL; 485 486 atomic_set(&kvm->online_vcpus, 0); 487 488 kvmppc_core_destroy_vm(kvm); 489 490 mutex_unlock(&kvm->lock); 491 492 /* drop the module reference */ 493 module_put(kvm->arch.kvm_ops->owner); 494 } 495 496 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 497 { 498 int r; 499 /* Assume we're using HV mode when the HV module is loaded */ 500 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 501 502 if (kvm) { 503 /* 504 * Hooray - we know which VM type we're running on. Depend on 505 * that rather than the guess above. 506 */ 507 hv_enabled = is_kvmppc_hv_enabled(kvm); 508 } 509 510 switch (ext) { 511 #ifdef CONFIG_BOOKE 512 case KVM_CAP_PPC_BOOKE_SREGS: 513 case KVM_CAP_PPC_BOOKE_WATCHDOG: 514 case KVM_CAP_PPC_EPR: 515 #else 516 case KVM_CAP_PPC_SEGSTATE: 517 case KVM_CAP_PPC_HIOR: 518 case KVM_CAP_PPC_PAPR: 519 #endif 520 case KVM_CAP_PPC_UNSET_IRQ: 521 case KVM_CAP_PPC_IRQ_LEVEL: 522 case KVM_CAP_ENABLE_CAP: 523 case KVM_CAP_ONE_REG: 524 case KVM_CAP_IOEVENTFD: 525 case KVM_CAP_DEVICE_CTRL: 526 case KVM_CAP_IMMEDIATE_EXIT: 527 case KVM_CAP_SET_GUEST_DEBUG: 528 r = 1; 529 break; 530 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 531 case KVM_CAP_PPC_PAIRED_SINGLES: 532 case KVM_CAP_PPC_OSI: 533 case KVM_CAP_PPC_GET_PVINFO: 534 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 535 case KVM_CAP_SW_TLB: 536 #endif 537 /* We support this only for PR */ 538 r = !hv_enabled; 539 break; 540 #ifdef CONFIG_KVM_MPIC 541 case KVM_CAP_IRQ_MPIC: 542 r = 1; 543 break; 544 #endif 545 546 #ifdef CONFIG_PPC_BOOK3S_64 547 case KVM_CAP_SPAPR_TCE: 548 case KVM_CAP_SPAPR_TCE_64: 549 r = 1; 550 break; 551 case KVM_CAP_SPAPR_TCE_VFIO: 552 r = !!cpu_has_feature(CPU_FTR_HVMODE); 553 break; 554 case KVM_CAP_PPC_RTAS: 555 case KVM_CAP_PPC_FIXUP_HCALL: 556 case KVM_CAP_PPC_ENABLE_HCALL: 557 #ifdef CONFIG_KVM_XICS 558 case KVM_CAP_IRQ_XICS: 559 #endif 560 case KVM_CAP_PPC_GET_CPU_CHAR: 561 r = 1; 562 break; 563 #ifdef CONFIG_KVM_XIVE 564 case KVM_CAP_PPC_IRQ_XIVE: 565 /* 566 * We need XIVE to be enabled on the platform (implies 567 * a POWER9 processor) and the PowerNV platform, as 568 * nested is not yet supported. 569 */ 570 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 571 kvmppc_xive_native_supported(); 572 break; 573 #endif 574 575 case KVM_CAP_PPC_ALLOC_HTAB: 576 r = hv_enabled; 577 break; 578 #endif /* CONFIG_PPC_BOOK3S_64 */ 579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 580 case KVM_CAP_PPC_SMT: 581 r = 0; 582 if (kvm) { 583 if (kvm->arch.emul_smt_mode > 1) 584 r = kvm->arch.emul_smt_mode; 585 else 586 r = kvm->arch.smt_mode; 587 } else if (hv_enabled) { 588 if (cpu_has_feature(CPU_FTR_ARCH_300)) 589 r = 1; 590 else 591 r = threads_per_subcore; 592 } 593 break; 594 case KVM_CAP_PPC_SMT_POSSIBLE: 595 r = 1; 596 if (hv_enabled) { 597 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 598 r = ((threads_per_subcore << 1) - 1); 599 else 600 /* P9 can emulate dbells, so allow any mode */ 601 r = 8 | 4 | 2 | 1; 602 } 603 break; 604 case KVM_CAP_PPC_RMA: 605 r = 0; 606 break; 607 case KVM_CAP_PPC_HWRNG: 608 r = kvmppc_hwrng_present(); 609 break; 610 case KVM_CAP_PPC_MMU_RADIX: 611 r = !!(hv_enabled && radix_enabled()); 612 break; 613 case KVM_CAP_PPC_MMU_HASH_V3: 614 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) && 615 cpu_has_feature(CPU_FTR_HVMODE)); 616 break; 617 case KVM_CAP_PPC_NESTED_HV: 618 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 619 !kvmppc_hv_ops->enable_nested(NULL)); 620 break; 621 #endif 622 case KVM_CAP_SYNC_MMU: 623 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 624 r = hv_enabled; 625 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 626 r = 1; 627 #else 628 r = 0; 629 #endif 630 break; 631 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 632 case KVM_CAP_PPC_HTAB_FD: 633 r = hv_enabled; 634 break; 635 #endif 636 case KVM_CAP_NR_VCPUS: 637 /* 638 * Recommending a number of CPUs is somewhat arbitrary; we 639 * return the number of present CPUs for -HV (since a host 640 * will have secondary threads "offline"), and for other KVM 641 * implementations just count online CPUs. 642 */ 643 if (hv_enabled) 644 r = num_present_cpus(); 645 else 646 r = num_online_cpus(); 647 break; 648 case KVM_CAP_MAX_VCPUS: 649 r = KVM_MAX_VCPUS; 650 break; 651 case KVM_CAP_MAX_VCPU_ID: 652 r = KVM_MAX_VCPU_ID; 653 break; 654 #ifdef CONFIG_PPC_BOOK3S_64 655 case KVM_CAP_PPC_GET_SMMU_INFO: 656 r = 1; 657 break; 658 case KVM_CAP_SPAPR_MULTITCE: 659 r = 1; 660 break; 661 case KVM_CAP_SPAPR_RESIZE_HPT: 662 r = !!hv_enabled; 663 break; 664 #endif 665 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 666 case KVM_CAP_PPC_FWNMI: 667 r = hv_enabled; 668 break; 669 #endif 670 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 671 case KVM_CAP_PPC_HTM: 672 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 673 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 674 break; 675 #endif 676 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 677 case KVM_CAP_PPC_SECURE_GUEST: 678 r = hv_enabled && kvmppc_hv_ops->enable_svm && 679 !kvmppc_hv_ops->enable_svm(NULL); 680 break; 681 #endif 682 default: 683 r = 0; 684 break; 685 } 686 return r; 687 688 } 689 690 long kvm_arch_dev_ioctl(struct file *filp, 691 unsigned int ioctl, unsigned long arg) 692 { 693 return -EINVAL; 694 } 695 696 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 697 { 698 kvmppc_core_free_memslot(kvm, slot); 699 } 700 701 int kvm_arch_prepare_memory_region(struct kvm *kvm, 702 struct kvm_memory_slot *memslot, 703 const struct kvm_userspace_memory_region *mem, 704 enum kvm_mr_change change) 705 { 706 return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change); 707 } 708 709 void kvm_arch_commit_memory_region(struct kvm *kvm, 710 const struct kvm_userspace_memory_region *mem, 711 struct kvm_memory_slot *old, 712 const struct kvm_memory_slot *new, 713 enum kvm_mr_change change) 714 { 715 kvmppc_core_commit_memory_region(kvm, mem, old, new, change); 716 } 717 718 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 719 struct kvm_memory_slot *slot) 720 { 721 kvmppc_core_flush_memslot(kvm, slot); 722 } 723 724 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 725 { 726 return 0; 727 } 728 729 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 730 { 731 struct kvm_vcpu *vcpu; 732 733 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 734 kvmppc_decrementer_func(vcpu); 735 736 return HRTIMER_NORESTART; 737 } 738 739 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 740 { 741 int err; 742 743 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 744 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 745 vcpu->arch.dec_expires = get_tb(); 746 747 #ifdef CONFIG_KVM_EXIT_TIMING 748 mutex_init(&vcpu->arch.exit_timing_lock); 749 #endif 750 err = kvmppc_subarch_vcpu_init(vcpu); 751 if (err) 752 return err; 753 754 err = kvmppc_core_vcpu_create(vcpu); 755 if (err) 756 goto out_vcpu_uninit; 757 758 vcpu->arch.waitp = &vcpu->wait; 759 kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id); 760 return 0; 761 762 out_vcpu_uninit: 763 kvmppc_subarch_vcpu_uninit(vcpu); 764 return err; 765 } 766 767 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 768 { 769 } 770 771 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 772 { 773 /* Make sure we're not using the vcpu anymore */ 774 hrtimer_cancel(&vcpu->arch.dec_timer); 775 776 kvmppc_remove_vcpu_debugfs(vcpu); 777 778 switch (vcpu->arch.irq_type) { 779 case KVMPPC_IRQ_MPIC: 780 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 781 break; 782 case KVMPPC_IRQ_XICS: 783 if (xics_on_xive()) 784 kvmppc_xive_cleanup_vcpu(vcpu); 785 else 786 kvmppc_xics_free_icp(vcpu); 787 break; 788 case KVMPPC_IRQ_XIVE: 789 kvmppc_xive_native_cleanup_vcpu(vcpu); 790 break; 791 } 792 793 kvmppc_core_vcpu_free(vcpu); 794 795 kvmppc_subarch_vcpu_uninit(vcpu); 796 } 797 798 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 799 { 800 return kvmppc_core_pending_dec(vcpu); 801 } 802 803 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 804 { 805 #ifdef CONFIG_BOOKE 806 /* 807 * vrsave (formerly usprg0) isn't used by Linux, but may 808 * be used by the guest. 809 * 810 * On non-booke this is associated with Altivec and 811 * is handled by code in book3s.c. 812 */ 813 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 814 #endif 815 kvmppc_core_vcpu_load(vcpu, cpu); 816 } 817 818 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 819 { 820 kvmppc_core_vcpu_put(vcpu); 821 #ifdef CONFIG_BOOKE 822 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 823 #endif 824 } 825 826 /* 827 * irq_bypass_add_producer and irq_bypass_del_producer are only 828 * useful if the architecture supports PCI passthrough. 829 * irq_bypass_stop and irq_bypass_start are not needed and so 830 * kvm_ops are not defined for them. 831 */ 832 bool kvm_arch_has_irq_bypass(void) 833 { 834 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 835 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 836 } 837 838 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 839 struct irq_bypass_producer *prod) 840 { 841 struct kvm_kernel_irqfd *irqfd = 842 container_of(cons, struct kvm_kernel_irqfd, consumer); 843 struct kvm *kvm = irqfd->kvm; 844 845 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 846 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 847 848 return 0; 849 } 850 851 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 852 struct irq_bypass_producer *prod) 853 { 854 struct kvm_kernel_irqfd *irqfd = 855 container_of(cons, struct kvm_kernel_irqfd, consumer); 856 struct kvm *kvm = irqfd->kvm; 857 858 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 859 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 860 } 861 862 #ifdef CONFIG_VSX 863 static inline int kvmppc_get_vsr_dword_offset(int index) 864 { 865 int offset; 866 867 if ((index != 0) && (index != 1)) 868 return -1; 869 870 #ifdef __BIG_ENDIAN 871 offset = index; 872 #else 873 offset = 1 - index; 874 #endif 875 876 return offset; 877 } 878 879 static inline int kvmppc_get_vsr_word_offset(int index) 880 { 881 int offset; 882 883 if ((index > 3) || (index < 0)) 884 return -1; 885 886 #ifdef __BIG_ENDIAN 887 offset = index; 888 #else 889 offset = 3 - index; 890 #endif 891 return offset; 892 } 893 894 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 895 u64 gpr) 896 { 897 union kvmppc_one_reg val; 898 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 899 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 900 901 if (offset == -1) 902 return; 903 904 if (index >= 32) { 905 val.vval = VCPU_VSX_VR(vcpu, index - 32); 906 val.vsxval[offset] = gpr; 907 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 908 } else { 909 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 910 } 911 } 912 913 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 914 u64 gpr) 915 { 916 union kvmppc_one_reg val; 917 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 918 919 if (index >= 32) { 920 val.vval = VCPU_VSX_VR(vcpu, index - 32); 921 val.vsxval[0] = gpr; 922 val.vsxval[1] = gpr; 923 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 924 } else { 925 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 926 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 927 } 928 } 929 930 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 931 u32 gpr) 932 { 933 union kvmppc_one_reg val; 934 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 935 936 if (index >= 32) { 937 val.vsx32val[0] = gpr; 938 val.vsx32val[1] = gpr; 939 val.vsx32val[2] = gpr; 940 val.vsx32val[3] = gpr; 941 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 942 } else { 943 val.vsx32val[0] = gpr; 944 val.vsx32val[1] = gpr; 945 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 946 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 947 } 948 } 949 950 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 951 u32 gpr32) 952 { 953 union kvmppc_one_reg val; 954 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 955 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 956 int dword_offset, word_offset; 957 958 if (offset == -1) 959 return; 960 961 if (index >= 32) { 962 val.vval = VCPU_VSX_VR(vcpu, index - 32); 963 val.vsx32val[offset] = gpr32; 964 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 965 } else { 966 dword_offset = offset / 2; 967 word_offset = offset % 2; 968 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 969 val.vsx32val[word_offset] = gpr32; 970 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 971 } 972 } 973 #endif /* CONFIG_VSX */ 974 975 #ifdef CONFIG_ALTIVEC 976 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 977 int index, int element_size) 978 { 979 int offset; 980 int elts = sizeof(vector128)/element_size; 981 982 if ((index < 0) || (index >= elts)) 983 return -1; 984 985 if (kvmppc_need_byteswap(vcpu)) 986 offset = elts - index - 1; 987 else 988 offset = index; 989 990 return offset; 991 } 992 993 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 994 int index) 995 { 996 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 997 } 998 999 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1000 int index) 1001 { 1002 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1003 } 1004 1005 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1006 int index) 1007 { 1008 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1009 } 1010 1011 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1012 int index) 1013 { 1014 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1015 } 1016 1017 1018 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1019 u64 gpr) 1020 { 1021 union kvmppc_one_reg val; 1022 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1023 vcpu->arch.mmio_vmx_offset); 1024 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1025 1026 if (offset == -1) 1027 return; 1028 1029 val.vval = VCPU_VSX_VR(vcpu, index); 1030 val.vsxval[offset] = gpr; 1031 VCPU_VSX_VR(vcpu, index) = val.vval; 1032 } 1033 1034 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1035 u32 gpr32) 1036 { 1037 union kvmppc_one_reg val; 1038 int offset = kvmppc_get_vmx_word_offset(vcpu, 1039 vcpu->arch.mmio_vmx_offset); 1040 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1041 1042 if (offset == -1) 1043 return; 1044 1045 val.vval = VCPU_VSX_VR(vcpu, index); 1046 val.vsx32val[offset] = gpr32; 1047 VCPU_VSX_VR(vcpu, index) = val.vval; 1048 } 1049 1050 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1051 u16 gpr16) 1052 { 1053 union kvmppc_one_reg val; 1054 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1055 vcpu->arch.mmio_vmx_offset); 1056 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1057 1058 if (offset == -1) 1059 return; 1060 1061 val.vval = VCPU_VSX_VR(vcpu, index); 1062 val.vsx16val[offset] = gpr16; 1063 VCPU_VSX_VR(vcpu, index) = val.vval; 1064 } 1065 1066 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1067 u8 gpr8) 1068 { 1069 union kvmppc_one_reg val; 1070 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1071 vcpu->arch.mmio_vmx_offset); 1072 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1073 1074 if (offset == -1) 1075 return; 1076 1077 val.vval = VCPU_VSX_VR(vcpu, index); 1078 val.vsx8val[offset] = gpr8; 1079 VCPU_VSX_VR(vcpu, index) = val.vval; 1080 } 1081 #endif /* CONFIG_ALTIVEC */ 1082 1083 #ifdef CONFIG_PPC_FPU 1084 static inline u64 sp_to_dp(u32 fprs) 1085 { 1086 u64 fprd; 1087 1088 preempt_disable(); 1089 enable_kernel_fp(); 1090 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 1091 : "fr0"); 1092 preempt_enable(); 1093 return fprd; 1094 } 1095 1096 static inline u32 dp_to_sp(u64 fprd) 1097 { 1098 u32 fprs; 1099 1100 preempt_disable(); 1101 enable_kernel_fp(); 1102 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 1103 : "fr0"); 1104 preempt_enable(); 1105 return fprs; 1106 } 1107 1108 #else 1109 #define sp_to_dp(x) (x) 1110 #define dp_to_sp(x) (x) 1111 #endif /* CONFIG_PPC_FPU */ 1112 1113 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1114 { 1115 struct kvm_run *run = vcpu->run; 1116 u64 gpr; 1117 1118 if (run->mmio.len > sizeof(gpr)) { 1119 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1120 return; 1121 } 1122 1123 if (!vcpu->arch.mmio_host_swabbed) { 1124 switch (run->mmio.len) { 1125 case 8: gpr = *(u64 *)run->mmio.data; break; 1126 case 4: gpr = *(u32 *)run->mmio.data; break; 1127 case 2: gpr = *(u16 *)run->mmio.data; break; 1128 case 1: gpr = *(u8 *)run->mmio.data; break; 1129 } 1130 } else { 1131 switch (run->mmio.len) { 1132 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1133 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1134 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1135 case 1: gpr = *(u8 *)run->mmio.data; break; 1136 } 1137 } 1138 1139 /* conversion between single and double precision */ 1140 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1141 gpr = sp_to_dp(gpr); 1142 1143 if (vcpu->arch.mmio_sign_extend) { 1144 switch (run->mmio.len) { 1145 #ifdef CONFIG_PPC64 1146 case 4: 1147 gpr = (s64)(s32)gpr; 1148 break; 1149 #endif 1150 case 2: 1151 gpr = (s64)(s16)gpr; 1152 break; 1153 case 1: 1154 gpr = (s64)(s8)gpr; 1155 break; 1156 } 1157 } 1158 1159 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1160 case KVM_MMIO_REG_GPR: 1161 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1162 break; 1163 case KVM_MMIO_REG_FPR: 1164 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1165 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1166 1167 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1168 break; 1169 #ifdef CONFIG_PPC_BOOK3S 1170 case KVM_MMIO_REG_QPR: 1171 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1172 break; 1173 case KVM_MMIO_REG_FQPR: 1174 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1175 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1176 break; 1177 #endif 1178 #ifdef CONFIG_VSX 1179 case KVM_MMIO_REG_VSX: 1180 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1181 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1182 1183 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1184 kvmppc_set_vsr_dword(vcpu, gpr); 1185 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1186 kvmppc_set_vsr_word(vcpu, gpr); 1187 else if (vcpu->arch.mmio_copy_type == 1188 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1189 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1190 else if (vcpu->arch.mmio_copy_type == 1191 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1192 kvmppc_set_vsr_word_dump(vcpu, gpr); 1193 break; 1194 #endif 1195 #ifdef CONFIG_ALTIVEC 1196 case KVM_MMIO_REG_VMX: 1197 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1198 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1199 1200 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1201 kvmppc_set_vmx_dword(vcpu, gpr); 1202 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1203 kvmppc_set_vmx_word(vcpu, gpr); 1204 else if (vcpu->arch.mmio_copy_type == 1205 KVMPPC_VMX_COPY_HWORD) 1206 kvmppc_set_vmx_hword(vcpu, gpr); 1207 else if (vcpu->arch.mmio_copy_type == 1208 KVMPPC_VMX_COPY_BYTE) 1209 kvmppc_set_vmx_byte(vcpu, gpr); 1210 break; 1211 #endif 1212 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1213 case KVM_MMIO_REG_NESTED_GPR: 1214 if (kvmppc_need_byteswap(vcpu)) 1215 gpr = swab64(gpr); 1216 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1217 sizeof(gpr)); 1218 break; 1219 #endif 1220 default: 1221 BUG(); 1222 } 1223 } 1224 1225 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1226 unsigned int rt, unsigned int bytes, 1227 int is_default_endian, int sign_extend) 1228 { 1229 struct kvm_run *run = vcpu->run; 1230 int idx, ret; 1231 bool host_swabbed; 1232 1233 /* Pity C doesn't have a logical XOR operator */ 1234 if (kvmppc_need_byteswap(vcpu)) { 1235 host_swabbed = is_default_endian; 1236 } else { 1237 host_swabbed = !is_default_endian; 1238 } 1239 1240 if (bytes > sizeof(run->mmio.data)) { 1241 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1242 run->mmio.len); 1243 } 1244 1245 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1246 run->mmio.len = bytes; 1247 run->mmio.is_write = 0; 1248 1249 vcpu->arch.io_gpr = rt; 1250 vcpu->arch.mmio_host_swabbed = host_swabbed; 1251 vcpu->mmio_needed = 1; 1252 vcpu->mmio_is_write = 0; 1253 vcpu->arch.mmio_sign_extend = sign_extend; 1254 1255 idx = srcu_read_lock(&vcpu->kvm->srcu); 1256 1257 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1258 bytes, &run->mmio.data); 1259 1260 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1261 1262 if (!ret) { 1263 kvmppc_complete_mmio_load(vcpu); 1264 vcpu->mmio_needed = 0; 1265 return EMULATE_DONE; 1266 } 1267 1268 return EMULATE_DO_MMIO; 1269 } 1270 1271 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1272 unsigned int rt, unsigned int bytes, 1273 int is_default_endian) 1274 { 1275 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1276 } 1277 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1278 1279 /* Same as above, but sign extends */ 1280 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1281 unsigned int rt, unsigned int bytes, 1282 int is_default_endian) 1283 { 1284 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1285 } 1286 1287 #ifdef CONFIG_VSX 1288 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1289 unsigned int rt, unsigned int bytes, 1290 int is_default_endian, int mmio_sign_extend) 1291 { 1292 enum emulation_result emulated = EMULATE_DONE; 1293 1294 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1295 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1296 return EMULATE_FAIL; 1297 1298 while (vcpu->arch.mmio_vsx_copy_nums) { 1299 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1300 is_default_endian, mmio_sign_extend); 1301 1302 if (emulated != EMULATE_DONE) 1303 break; 1304 1305 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1306 1307 vcpu->arch.mmio_vsx_copy_nums--; 1308 vcpu->arch.mmio_vsx_offset++; 1309 } 1310 return emulated; 1311 } 1312 #endif /* CONFIG_VSX */ 1313 1314 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1315 u64 val, unsigned int bytes, int is_default_endian) 1316 { 1317 struct kvm_run *run = vcpu->run; 1318 void *data = run->mmio.data; 1319 int idx, ret; 1320 bool host_swabbed; 1321 1322 /* Pity C doesn't have a logical XOR operator */ 1323 if (kvmppc_need_byteswap(vcpu)) { 1324 host_swabbed = is_default_endian; 1325 } else { 1326 host_swabbed = !is_default_endian; 1327 } 1328 1329 if (bytes > sizeof(run->mmio.data)) { 1330 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1331 run->mmio.len); 1332 } 1333 1334 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1335 run->mmio.len = bytes; 1336 run->mmio.is_write = 1; 1337 vcpu->mmio_needed = 1; 1338 vcpu->mmio_is_write = 1; 1339 1340 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1341 val = dp_to_sp(val); 1342 1343 /* Store the value at the lowest bytes in 'data'. */ 1344 if (!host_swabbed) { 1345 switch (bytes) { 1346 case 8: *(u64 *)data = val; break; 1347 case 4: *(u32 *)data = val; break; 1348 case 2: *(u16 *)data = val; break; 1349 case 1: *(u8 *)data = val; break; 1350 } 1351 } else { 1352 switch (bytes) { 1353 case 8: *(u64 *)data = swab64(val); break; 1354 case 4: *(u32 *)data = swab32(val); break; 1355 case 2: *(u16 *)data = swab16(val); break; 1356 case 1: *(u8 *)data = val; break; 1357 } 1358 } 1359 1360 idx = srcu_read_lock(&vcpu->kvm->srcu); 1361 1362 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1363 bytes, &run->mmio.data); 1364 1365 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1366 1367 if (!ret) { 1368 vcpu->mmio_needed = 0; 1369 return EMULATE_DONE; 1370 } 1371 1372 return EMULATE_DO_MMIO; 1373 } 1374 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1375 1376 #ifdef CONFIG_VSX 1377 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1378 { 1379 u32 dword_offset, word_offset; 1380 union kvmppc_one_reg reg; 1381 int vsx_offset = 0; 1382 int copy_type = vcpu->arch.mmio_copy_type; 1383 int result = 0; 1384 1385 switch (copy_type) { 1386 case KVMPPC_VSX_COPY_DWORD: 1387 vsx_offset = 1388 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1389 1390 if (vsx_offset == -1) { 1391 result = -1; 1392 break; 1393 } 1394 1395 if (rs < 32) { 1396 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1397 } else { 1398 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1399 *val = reg.vsxval[vsx_offset]; 1400 } 1401 break; 1402 1403 case KVMPPC_VSX_COPY_WORD: 1404 vsx_offset = 1405 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1406 1407 if (vsx_offset == -1) { 1408 result = -1; 1409 break; 1410 } 1411 1412 if (rs < 32) { 1413 dword_offset = vsx_offset / 2; 1414 word_offset = vsx_offset % 2; 1415 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1416 *val = reg.vsx32val[word_offset]; 1417 } else { 1418 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1419 *val = reg.vsx32val[vsx_offset]; 1420 } 1421 break; 1422 1423 default: 1424 result = -1; 1425 break; 1426 } 1427 1428 return result; 1429 } 1430 1431 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1432 int rs, unsigned int bytes, int is_default_endian) 1433 { 1434 u64 val; 1435 enum emulation_result emulated = EMULATE_DONE; 1436 1437 vcpu->arch.io_gpr = rs; 1438 1439 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1440 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1441 return EMULATE_FAIL; 1442 1443 while (vcpu->arch.mmio_vsx_copy_nums) { 1444 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1445 return EMULATE_FAIL; 1446 1447 emulated = kvmppc_handle_store(vcpu, 1448 val, bytes, is_default_endian); 1449 1450 if (emulated != EMULATE_DONE) 1451 break; 1452 1453 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1454 1455 vcpu->arch.mmio_vsx_copy_nums--; 1456 vcpu->arch.mmio_vsx_offset++; 1457 } 1458 1459 return emulated; 1460 } 1461 1462 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1463 { 1464 struct kvm_run *run = vcpu->run; 1465 enum emulation_result emulated = EMULATE_FAIL; 1466 int r; 1467 1468 vcpu->arch.paddr_accessed += run->mmio.len; 1469 1470 if (!vcpu->mmio_is_write) { 1471 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1472 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1473 } else { 1474 emulated = kvmppc_handle_vsx_store(vcpu, 1475 vcpu->arch.io_gpr, run->mmio.len, 1); 1476 } 1477 1478 switch (emulated) { 1479 case EMULATE_DO_MMIO: 1480 run->exit_reason = KVM_EXIT_MMIO; 1481 r = RESUME_HOST; 1482 break; 1483 case EMULATE_FAIL: 1484 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1485 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1486 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1487 r = RESUME_HOST; 1488 break; 1489 default: 1490 r = RESUME_GUEST; 1491 break; 1492 } 1493 return r; 1494 } 1495 #endif /* CONFIG_VSX */ 1496 1497 #ifdef CONFIG_ALTIVEC 1498 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1499 unsigned int rt, unsigned int bytes, int is_default_endian) 1500 { 1501 enum emulation_result emulated = EMULATE_DONE; 1502 1503 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1504 return EMULATE_FAIL; 1505 1506 while (vcpu->arch.mmio_vmx_copy_nums) { 1507 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1508 is_default_endian, 0); 1509 1510 if (emulated != EMULATE_DONE) 1511 break; 1512 1513 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1514 vcpu->arch.mmio_vmx_copy_nums--; 1515 vcpu->arch.mmio_vmx_offset++; 1516 } 1517 1518 return emulated; 1519 } 1520 1521 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1522 { 1523 union kvmppc_one_reg reg; 1524 int vmx_offset = 0; 1525 int result = 0; 1526 1527 vmx_offset = 1528 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1529 1530 if (vmx_offset == -1) 1531 return -1; 1532 1533 reg.vval = VCPU_VSX_VR(vcpu, index); 1534 *val = reg.vsxval[vmx_offset]; 1535 1536 return result; 1537 } 1538 1539 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1540 { 1541 union kvmppc_one_reg reg; 1542 int vmx_offset = 0; 1543 int result = 0; 1544 1545 vmx_offset = 1546 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1547 1548 if (vmx_offset == -1) 1549 return -1; 1550 1551 reg.vval = VCPU_VSX_VR(vcpu, index); 1552 *val = reg.vsx32val[vmx_offset]; 1553 1554 return result; 1555 } 1556 1557 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1558 { 1559 union kvmppc_one_reg reg; 1560 int vmx_offset = 0; 1561 int result = 0; 1562 1563 vmx_offset = 1564 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1565 1566 if (vmx_offset == -1) 1567 return -1; 1568 1569 reg.vval = VCPU_VSX_VR(vcpu, index); 1570 *val = reg.vsx16val[vmx_offset]; 1571 1572 return result; 1573 } 1574 1575 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1576 { 1577 union kvmppc_one_reg reg; 1578 int vmx_offset = 0; 1579 int result = 0; 1580 1581 vmx_offset = 1582 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1583 1584 if (vmx_offset == -1) 1585 return -1; 1586 1587 reg.vval = VCPU_VSX_VR(vcpu, index); 1588 *val = reg.vsx8val[vmx_offset]; 1589 1590 return result; 1591 } 1592 1593 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1594 unsigned int rs, unsigned int bytes, int is_default_endian) 1595 { 1596 u64 val = 0; 1597 unsigned int index = rs & KVM_MMIO_REG_MASK; 1598 enum emulation_result emulated = EMULATE_DONE; 1599 1600 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1601 return EMULATE_FAIL; 1602 1603 vcpu->arch.io_gpr = rs; 1604 1605 while (vcpu->arch.mmio_vmx_copy_nums) { 1606 switch (vcpu->arch.mmio_copy_type) { 1607 case KVMPPC_VMX_COPY_DWORD: 1608 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1609 return EMULATE_FAIL; 1610 1611 break; 1612 case KVMPPC_VMX_COPY_WORD: 1613 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1614 return EMULATE_FAIL; 1615 break; 1616 case KVMPPC_VMX_COPY_HWORD: 1617 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1618 return EMULATE_FAIL; 1619 break; 1620 case KVMPPC_VMX_COPY_BYTE: 1621 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1622 return EMULATE_FAIL; 1623 break; 1624 default: 1625 return EMULATE_FAIL; 1626 } 1627 1628 emulated = kvmppc_handle_store(vcpu, val, bytes, 1629 is_default_endian); 1630 if (emulated != EMULATE_DONE) 1631 break; 1632 1633 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1634 vcpu->arch.mmio_vmx_copy_nums--; 1635 vcpu->arch.mmio_vmx_offset++; 1636 } 1637 1638 return emulated; 1639 } 1640 1641 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1642 { 1643 struct kvm_run *run = vcpu->run; 1644 enum emulation_result emulated = EMULATE_FAIL; 1645 int r; 1646 1647 vcpu->arch.paddr_accessed += run->mmio.len; 1648 1649 if (!vcpu->mmio_is_write) { 1650 emulated = kvmppc_handle_vmx_load(vcpu, 1651 vcpu->arch.io_gpr, run->mmio.len, 1); 1652 } else { 1653 emulated = kvmppc_handle_vmx_store(vcpu, 1654 vcpu->arch.io_gpr, run->mmio.len, 1); 1655 } 1656 1657 switch (emulated) { 1658 case EMULATE_DO_MMIO: 1659 run->exit_reason = KVM_EXIT_MMIO; 1660 r = RESUME_HOST; 1661 break; 1662 case EMULATE_FAIL: 1663 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1664 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1665 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1666 r = RESUME_HOST; 1667 break; 1668 default: 1669 r = RESUME_GUEST; 1670 break; 1671 } 1672 return r; 1673 } 1674 #endif /* CONFIG_ALTIVEC */ 1675 1676 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1677 { 1678 int r = 0; 1679 union kvmppc_one_reg val; 1680 int size; 1681 1682 size = one_reg_size(reg->id); 1683 if (size > sizeof(val)) 1684 return -EINVAL; 1685 1686 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1687 if (r == -EINVAL) { 1688 r = 0; 1689 switch (reg->id) { 1690 #ifdef CONFIG_ALTIVEC 1691 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1692 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1693 r = -ENXIO; 1694 break; 1695 } 1696 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1697 break; 1698 case KVM_REG_PPC_VSCR: 1699 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1700 r = -ENXIO; 1701 break; 1702 } 1703 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1704 break; 1705 case KVM_REG_PPC_VRSAVE: 1706 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1707 break; 1708 #endif /* CONFIG_ALTIVEC */ 1709 default: 1710 r = -EINVAL; 1711 break; 1712 } 1713 } 1714 1715 if (r) 1716 return r; 1717 1718 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1719 r = -EFAULT; 1720 1721 return r; 1722 } 1723 1724 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1725 { 1726 int r; 1727 union kvmppc_one_reg val; 1728 int size; 1729 1730 size = one_reg_size(reg->id); 1731 if (size > sizeof(val)) 1732 return -EINVAL; 1733 1734 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1735 return -EFAULT; 1736 1737 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1738 if (r == -EINVAL) { 1739 r = 0; 1740 switch (reg->id) { 1741 #ifdef CONFIG_ALTIVEC 1742 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1743 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1744 r = -ENXIO; 1745 break; 1746 } 1747 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1748 break; 1749 case KVM_REG_PPC_VSCR: 1750 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1751 r = -ENXIO; 1752 break; 1753 } 1754 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1755 break; 1756 case KVM_REG_PPC_VRSAVE: 1757 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1758 r = -ENXIO; 1759 break; 1760 } 1761 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1762 break; 1763 #endif /* CONFIG_ALTIVEC */ 1764 default: 1765 r = -EINVAL; 1766 break; 1767 } 1768 } 1769 1770 return r; 1771 } 1772 1773 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1774 { 1775 struct kvm_run *run = vcpu->run; 1776 int r; 1777 1778 vcpu_load(vcpu); 1779 1780 if (vcpu->mmio_needed) { 1781 vcpu->mmio_needed = 0; 1782 if (!vcpu->mmio_is_write) 1783 kvmppc_complete_mmio_load(vcpu); 1784 #ifdef CONFIG_VSX 1785 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1786 vcpu->arch.mmio_vsx_copy_nums--; 1787 vcpu->arch.mmio_vsx_offset++; 1788 } 1789 1790 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1791 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1792 if (r == RESUME_HOST) { 1793 vcpu->mmio_needed = 1; 1794 goto out; 1795 } 1796 } 1797 #endif 1798 #ifdef CONFIG_ALTIVEC 1799 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1800 vcpu->arch.mmio_vmx_copy_nums--; 1801 vcpu->arch.mmio_vmx_offset++; 1802 } 1803 1804 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1805 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1806 if (r == RESUME_HOST) { 1807 vcpu->mmio_needed = 1; 1808 goto out; 1809 } 1810 } 1811 #endif 1812 } else if (vcpu->arch.osi_needed) { 1813 u64 *gprs = run->osi.gprs; 1814 int i; 1815 1816 for (i = 0; i < 32; i++) 1817 kvmppc_set_gpr(vcpu, i, gprs[i]); 1818 vcpu->arch.osi_needed = 0; 1819 } else if (vcpu->arch.hcall_needed) { 1820 int i; 1821 1822 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1823 for (i = 0; i < 9; ++i) 1824 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1825 vcpu->arch.hcall_needed = 0; 1826 #ifdef CONFIG_BOOKE 1827 } else if (vcpu->arch.epr_needed) { 1828 kvmppc_set_epr(vcpu, run->epr.epr); 1829 vcpu->arch.epr_needed = 0; 1830 #endif 1831 } 1832 1833 kvm_sigset_activate(vcpu); 1834 1835 if (run->immediate_exit) 1836 r = -EINTR; 1837 else 1838 r = kvmppc_vcpu_run(vcpu); 1839 1840 kvm_sigset_deactivate(vcpu); 1841 1842 #ifdef CONFIG_ALTIVEC 1843 out: 1844 #endif 1845 vcpu_put(vcpu); 1846 return r; 1847 } 1848 1849 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1850 { 1851 if (irq->irq == KVM_INTERRUPT_UNSET) { 1852 kvmppc_core_dequeue_external(vcpu); 1853 return 0; 1854 } 1855 1856 kvmppc_core_queue_external(vcpu, irq); 1857 1858 kvm_vcpu_kick(vcpu); 1859 1860 return 0; 1861 } 1862 1863 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1864 struct kvm_enable_cap *cap) 1865 { 1866 int r; 1867 1868 if (cap->flags) 1869 return -EINVAL; 1870 1871 switch (cap->cap) { 1872 case KVM_CAP_PPC_OSI: 1873 r = 0; 1874 vcpu->arch.osi_enabled = true; 1875 break; 1876 case KVM_CAP_PPC_PAPR: 1877 r = 0; 1878 vcpu->arch.papr_enabled = true; 1879 break; 1880 case KVM_CAP_PPC_EPR: 1881 r = 0; 1882 if (cap->args[0]) 1883 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1884 else 1885 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1886 break; 1887 #ifdef CONFIG_BOOKE 1888 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1889 r = 0; 1890 vcpu->arch.watchdog_enabled = true; 1891 break; 1892 #endif 1893 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1894 case KVM_CAP_SW_TLB: { 1895 struct kvm_config_tlb cfg; 1896 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1897 1898 r = -EFAULT; 1899 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1900 break; 1901 1902 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1903 break; 1904 } 1905 #endif 1906 #ifdef CONFIG_KVM_MPIC 1907 case KVM_CAP_IRQ_MPIC: { 1908 struct fd f; 1909 struct kvm_device *dev; 1910 1911 r = -EBADF; 1912 f = fdget(cap->args[0]); 1913 if (!f.file) 1914 break; 1915 1916 r = -EPERM; 1917 dev = kvm_device_from_filp(f.file); 1918 if (dev) 1919 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1920 1921 fdput(f); 1922 break; 1923 } 1924 #endif 1925 #ifdef CONFIG_KVM_XICS 1926 case KVM_CAP_IRQ_XICS: { 1927 struct fd f; 1928 struct kvm_device *dev; 1929 1930 r = -EBADF; 1931 f = fdget(cap->args[0]); 1932 if (!f.file) 1933 break; 1934 1935 r = -EPERM; 1936 dev = kvm_device_from_filp(f.file); 1937 if (dev) { 1938 if (xics_on_xive()) 1939 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1940 else 1941 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1942 } 1943 1944 fdput(f); 1945 break; 1946 } 1947 #endif /* CONFIG_KVM_XICS */ 1948 #ifdef CONFIG_KVM_XIVE 1949 case KVM_CAP_PPC_IRQ_XIVE: { 1950 struct fd f; 1951 struct kvm_device *dev; 1952 1953 r = -EBADF; 1954 f = fdget(cap->args[0]); 1955 if (!f.file) 1956 break; 1957 1958 r = -ENXIO; 1959 if (!xive_enabled()) 1960 break; 1961 1962 r = -EPERM; 1963 dev = kvm_device_from_filp(f.file); 1964 if (dev) 1965 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1966 cap->args[1]); 1967 1968 fdput(f); 1969 break; 1970 } 1971 #endif /* CONFIG_KVM_XIVE */ 1972 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1973 case KVM_CAP_PPC_FWNMI: 1974 r = -EINVAL; 1975 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1976 break; 1977 r = 0; 1978 vcpu->kvm->arch.fwnmi_enabled = true; 1979 break; 1980 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1981 default: 1982 r = -EINVAL; 1983 break; 1984 } 1985 1986 if (!r) 1987 r = kvmppc_sanity_check(vcpu); 1988 1989 return r; 1990 } 1991 1992 bool kvm_arch_intc_initialized(struct kvm *kvm) 1993 { 1994 #ifdef CONFIG_KVM_MPIC 1995 if (kvm->arch.mpic) 1996 return true; 1997 #endif 1998 #ifdef CONFIG_KVM_XICS 1999 if (kvm->arch.xics || kvm->arch.xive) 2000 return true; 2001 #endif 2002 return false; 2003 } 2004 2005 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2006 struct kvm_mp_state *mp_state) 2007 { 2008 return -EINVAL; 2009 } 2010 2011 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2012 struct kvm_mp_state *mp_state) 2013 { 2014 return -EINVAL; 2015 } 2016 2017 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2018 unsigned int ioctl, unsigned long arg) 2019 { 2020 struct kvm_vcpu *vcpu = filp->private_data; 2021 void __user *argp = (void __user *)arg; 2022 2023 if (ioctl == KVM_INTERRUPT) { 2024 struct kvm_interrupt irq; 2025 if (copy_from_user(&irq, argp, sizeof(irq))) 2026 return -EFAULT; 2027 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2028 } 2029 return -ENOIOCTLCMD; 2030 } 2031 2032 long kvm_arch_vcpu_ioctl(struct file *filp, 2033 unsigned int ioctl, unsigned long arg) 2034 { 2035 struct kvm_vcpu *vcpu = filp->private_data; 2036 void __user *argp = (void __user *)arg; 2037 long r; 2038 2039 switch (ioctl) { 2040 case KVM_ENABLE_CAP: 2041 { 2042 struct kvm_enable_cap cap; 2043 r = -EFAULT; 2044 vcpu_load(vcpu); 2045 if (copy_from_user(&cap, argp, sizeof(cap))) 2046 goto out; 2047 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2048 vcpu_put(vcpu); 2049 break; 2050 } 2051 2052 case KVM_SET_ONE_REG: 2053 case KVM_GET_ONE_REG: 2054 { 2055 struct kvm_one_reg reg; 2056 r = -EFAULT; 2057 if (copy_from_user(®, argp, sizeof(reg))) 2058 goto out; 2059 if (ioctl == KVM_SET_ONE_REG) 2060 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2061 else 2062 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2063 break; 2064 } 2065 2066 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2067 case KVM_DIRTY_TLB: { 2068 struct kvm_dirty_tlb dirty; 2069 r = -EFAULT; 2070 vcpu_load(vcpu); 2071 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2072 goto out; 2073 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2074 vcpu_put(vcpu); 2075 break; 2076 } 2077 #endif 2078 default: 2079 r = -EINVAL; 2080 } 2081 2082 out: 2083 return r; 2084 } 2085 2086 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2087 { 2088 return VM_FAULT_SIGBUS; 2089 } 2090 2091 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2092 { 2093 u32 inst_nop = 0x60000000; 2094 #ifdef CONFIG_KVM_BOOKE_HV 2095 u32 inst_sc1 = 0x44000022; 2096 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2097 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2098 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2099 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2100 #else 2101 u32 inst_lis = 0x3c000000; 2102 u32 inst_ori = 0x60000000; 2103 u32 inst_sc = 0x44000002; 2104 u32 inst_imm_mask = 0xffff; 2105 2106 /* 2107 * The hypercall to get into KVM from within guest context is as 2108 * follows: 2109 * 2110 * lis r0, r0, KVM_SC_MAGIC_R0@h 2111 * ori r0, KVM_SC_MAGIC_R0@l 2112 * sc 2113 * nop 2114 */ 2115 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2116 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2117 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2118 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2119 #endif 2120 2121 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2122 2123 return 0; 2124 } 2125 2126 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2127 bool line_status) 2128 { 2129 if (!irqchip_in_kernel(kvm)) 2130 return -ENXIO; 2131 2132 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2133 irq_event->irq, irq_event->level, 2134 line_status); 2135 return 0; 2136 } 2137 2138 2139 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2140 struct kvm_enable_cap *cap) 2141 { 2142 int r; 2143 2144 if (cap->flags) 2145 return -EINVAL; 2146 2147 switch (cap->cap) { 2148 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2149 case KVM_CAP_PPC_ENABLE_HCALL: { 2150 unsigned long hcall = cap->args[0]; 2151 2152 r = -EINVAL; 2153 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2154 cap->args[1] > 1) 2155 break; 2156 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2157 break; 2158 if (cap->args[1]) 2159 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2160 else 2161 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2162 r = 0; 2163 break; 2164 } 2165 case KVM_CAP_PPC_SMT: { 2166 unsigned long mode = cap->args[0]; 2167 unsigned long flags = cap->args[1]; 2168 2169 r = -EINVAL; 2170 if (kvm->arch.kvm_ops->set_smt_mode) 2171 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2172 break; 2173 } 2174 2175 case KVM_CAP_PPC_NESTED_HV: 2176 r = -EINVAL; 2177 if (!is_kvmppc_hv_enabled(kvm) || 2178 !kvm->arch.kvm_ops->enable_nested) 2179 break; 2180 r = kvm->arch.kvm_ops->enable_nested(kvm); 2181 break; 2182 #endif 2183 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2184 case KVM_CAP_PPC_SECURE_GUEST: 2185 r = -EINVAL; 2186 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2187 break; 2188 r = kvm->arch.kvm_ops->enable_svm(kvm); 2189 break; 2190 #endif 2191 default: 2192 r = -EINVAL; 2193 break; 2194 } 2195 2196 return r; 2197 } 2198 2199 #ifdef CONFIG_PPC_BOOK3S_64 2200 /* 2201 * These functions check whether the underlying hardware is safe 2202 * against attacks based on observing the effects of speculatively 2203 * executed instructions, and whether it supplies instructions for 2204 * use in workarounds. The information comes from firmware, either 2205 * via the device tree on powernv platforms or from an hcall on 2206 * pseries platforms. 2207 */ 2208 #ifdef CONFIG_PPC_PSERIES 2209 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2210 { 2211 struct h_cpu_char_result c; 2212 unsigned long rc; 2213 2214 if (!machine_is(pseries)) 2215 return -ENOTTY; 2216 2217 rc = plpar_get_cpu_characteristics(&c); 2218 if (rc == H_SUCCESS) { 2219 cp->character = c.character; 2220 cp->behaviour = c.behaviour; 2221 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2222 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2223 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2224 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2225 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2226 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2227 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2228 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2229 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2230 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2231 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2232 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2233 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2234 } 2235 return 0; 2236 } 2237 #else 2238 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2239 { 2240 return -ENOTTY; 2241 } 2242 #endif 2243 2244 static inline bool have_fw_feat(struct device_node *fw_features, 2245 const char *state, const char *name) 2246 { 2247 struct device_node *np; 2248 bool r = false; 2249 2250 np = of_get_child_by_name(fw_features, name); 2251 if (np) { 2252 r = of_property_read_bool(np, state); 2253 of_node_put(np); 2254 } 2255 return r; 2256 } 2257 2258 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2259 { 2260 struct device_node *np, *fw_features; 2261 int r; 2262 2263 memset(cp, 0, sizeof(*cp)); 2264 r = pseries_get_cpu_char(cp); 2265 if (r != -ENOTTY) 2266 return r; 2267 2268 np = of_find_node_by_name(NULL, "ibm,opal"); 2269 if (np) { 2270 fw_features = of_get_child_by_name(np, "fw-features"); 2271 of_node_put(np); 2272 if (!fw_features) 2273 return 0; 2274 if (have_fw_feat(fw_features, "enabled", 2275 "inst-spec-barrier-ori31,31,0")) 2276 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2277 if (have_fw_feat(fw_features, "enabled", 2278 "fw-bcctrl-serialized")) 2279 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2280 if (have_fw_feat(fw_features, "enabled", 2281 "inst-l1d-flush-ori30,30,0")) 2282 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2283 if (have_fw_feat(fw_features, "enabled", 2284 "inst-l1d-flush-trig2")) 2285 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2286 if (have_fw_feat(fw_features, "enabled", 2287 "fw-l1d-thread-split")) 2288 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2289 if (have_fw_feat(fw_features, "enabled", 2290 "fw-count-cache-disabled")) 2291 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2292 if (have_fw_feat(fw_features, "enabled", 2293 "fw-count-cache-flush-bcctr2,0,0")) 2294 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2295 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2296 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2297 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2298 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2299 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2300 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2301 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2302 2303 if (have_fw_feat(fw_features, "enabled", 2304 "speculation-policy-favor-security")) 2305 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2306 if (!have_fw_feat(fw_features, "disabled", 2307 "needs-l1d-flush-msr-pr-0-to-1")) 2308 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2309 if (!have_fw_feat(fw_features, "disabled", 2310 "needs-spec-barrier-for-bound-checks")) 2311 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2312 if (have_fw_feat(fw_features, "enabled", 2313 "needs-count-cache-flush-on-context-switch")) 2314 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2315 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2316 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2317 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2318 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2319 2320 of_node_put(fw_features); 2321 } 2322 2323 return 0; 2324 } 2325 #endif 2326 2327 long kvm_arch_vm_ioctl(struct file *filp, 2328 unsigned int ioctl, unsigned long arg) 2329 { 2330 struct kvm *kvm __maybe_unused = filp->private_data; 2331 void __user *argp = (void __user *)arg; 2332 long r; 2333 2334 switch (ioctl) { 2335 case KVM_PPC_GET_PVINFO: { 2336 struct kvm_ppc_pvinfo pvinfo; 2337 memset(&pvinfo, 0, sizeof(pvinfo)); 2338 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2339 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2340 r = -EFAULT; 2341 goto out; 2342 } 2343 2344 break; 2345 } 2346 #ifdef CONFIG_SPAPR_TCE_IOMMU 2347 case KVM_CREATE_SPAPR_TCE_64: { 2348 struct kvm_create_spapr_tce_64 create_tce_64; 2349 2350 r = -EFAULT; 2351 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2352 goto out; 2353 if (create_tce_64.flags) { 2354 r = -EINVAL; 2355 goto out; 2356 } 2357 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2358 goto out; 2359 } 2360 case KVM_CREATE_SPAPR_TCE: { 2361 struct kvm_create_spapr_tce create_tce; 2362 struct kvm_create_spapr_tce_64 create_tce_64; 2363 2364 r = -EFAULT; 2365 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2366 goto out; 2367 2368 create_tce_64.liobn = create_tce.liobn; 2369 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2370 create_tce_64.offset = 0; 2371 create_tce_64.size = create_tce.window_size >> 2372 IOMMU_PAGE_SHIFT_4K; 2373 create_tce_64.flags = 0; 2374 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2375 goto out; 2376 } 2377 #endif 2378 #ifdef CONFIG_PPC_BOOK3S_64 2379 case KVM_PPC_GET_SMMU_INFO: { 2380 struct kvm_ppc_smmu_info info; 2381 struct kvm *kvm = filp->private_data; 2382 2383 memset(&info, 0, sizeof(info)); 2384 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2385 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2386 r = -EFAULT; 2387 break; 2388 } 2389 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2390 struct kvm *kvm = filp->private_data; 2391 2392 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2393 break; 2394 } 2395 case KVM_PPC_CONFIGURE_V3_MMU: { 2396 struct kvm *kvm = filp->private_data; 2397 struct kvm_ppc_mmuv3_cfg cfg; 2398 2399 r = -EINVAL; 2400 if (!kvm->arch.kvm_ops->configure_mmu) 2401 goto out; 2402 r = -EFAULT; 2403 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2404 goto out; 2405 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2406 break; 2407 } 2408 case KVM_PPC_GET_RMMU_INFO: { 2409 struct kvm *kvm = filp->private_data; 2410 struct kvm_ppc_rmmu_info info; 2411 2412 r = -EINVAL; 2413 if (!kvm->arch.kvm_ops->get_rmmu_info) 2414 goto out; 2415 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2416 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2417 r = -EFAULT; 2418 break; 2419 } 2420 case KVM_PPC_GET_CPU_CHAR: { 2421 struct kvm_ppc_cpu_char cpuchar; 2422 2423 r = kvmppc_get_cpu_char(&cpuchar); 2424 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2425 r = -EFAULT; 2426 break; 2427 } 2428 case KVM_PPC_SVM_OFF: { 2429 struct kvm *kvm = filp->private_data; 2430 2431 r = 0; 2432 if (!kvm->arch.kvm_ops->svm_off) 2433 goto out; 2434 2435 r = kvm->arch.kvm_ops->svm_off(kvm); 2436 break; 2437 } 2438 default: { 2439 struct kvm *kvm = filp->private_data; 2440 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2441 } 2442 #else /* CONFIG_PPC_BOOK3S_64 */ 2443 default: 2444 r = -ENOTTY; 2445 #endif 2446 } 2447 out: 2448 return r; 2449 } 2450 2451 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2452 static unsigned long nr_lpids; 2453 2454 long kvmppc_alloc_lpid(void) 2455 { 2456 long lpid; 2457 2458 do { 2459 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2460 if (lpid >= nr_lpids) { 2461 pr_err("%s: No LPIDs free\n", __func__); 2462 return -ENOMEM; 2463 } 2464 } while (test_and_set_bit(lpid, lpid_inuse)); 2465 2466 return lpid; 2467 } 2468 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2469 2470 void kvmppc_claim_lpid(long lpid) 2471 { 2472 set_bit(lpid, lpid_inuse); 2473 } 2474 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2475 2476 void kvmppc_free_lpid(long lpid) 2477 { 2478 clear_bit(lpid, lpid_inuse); 2479 } 2480 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2481 2482 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2483 { 2484 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2485 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2486 } 2487 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2488 2489 int kvm_arch_init(void *opaque) 2490 { 2491 return 0; 2492 } 2493 2494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2495