xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision 2985bed6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9 
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35 #include <asm/kvm_host.h>
36 
37 #include "timing.h"
38 #include "irq.h"
39 #include "../mm/mmu_decl.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43 
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48 
49 
50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53 }
54 
55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56 {
57 	return kvm_arch_vcpu_runnable(vcpu);
58 }
59 
60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61 {
62 	return false;
63 }
64 
65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66 {
67 	return 1;
68 }
69 
70 /*
71  * Common checks before entering the guest world.  Call with interrupts
72  * disabled.
73  *
74  * returns:
75  *
76  * == 1 if we're ready to go into guest state
77  * <= 0 if we need to go back to the host with return value
78  */
79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80 {
81 	int r;
82 
83 	WARN_ON(irqs_disabled());
84 	hard_irq_disable();
85 
86 	while (true) {
87 		if (need_resched()) {
88 			local_irq_enable();
89 			cond_resched();
90 			hard_irq_disable();
91 			continue;
92 		}
93 
94 		if (signal_pending(current)) {
95 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96 			vcpu->run->exit_reason = KVM_EXIT_INTR;
97 			r = -EINTR;
98 			break;
99 		}
100 
101 		vcpu->mode = IN_GUEST_MODE;
102 
103 		/*
104 		 * Reading vcpu->requests must happen after setting vcpu->mode,
105 		 * so we don't miss a request because the requester sees
106 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107 		 * before next entering the guest (and thus doesn't IPI).
108 		 * This also orders the write to mode from any reads
109 		 * to the page tables done while the VCPU is running.
110 		 * Please see the comment in kvm_flush_remote_tlbs.
111 		 */
112 		smp_mb();
113 
114 		if (kvm_request_pending(vcpu)) {
115 			/* Make sure we process requests preemptable */
116 			local_irq_enable();
117 			trace_kvm_check_requests(vcpu);
118 			r = kvmppc_core_check_requests(vcpu);
119 			hard_irq_disable();
120 			if (r > 0)
121 				continue;
122 			break;
123 		}
124 
125 		if (kvmppc_core_prepare_to_enter(vcpu)) {
126 			/* interrupts got enabled in between, so we
127 			   are back at square 1 */
128 			continue;
129 		}
130 
131 		guest_enter_irqoff();
132 		return 1;
133 	}
134 
135 	/* return to host */
136 	local_irq_enable();
137 	return r;
138 }
139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140 
141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143 {
144 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145 	int i;
146 
147 	shared->sprg0 = swab64(shared->sprg0);
148 	shared->sprg1 = swab64(shared->sprg1);
149 	shared->sprg2 = swab64(shared->sprg2);
150 	shared->sprg3 = swab64(shared->sprg3);
151 	shared->srr0 = swab64(shared->srr0);
152 	shared->srr1 = swab64(shared->srr1);
153 	shared->dar = swab64(shared->dar);
154 	shared->msr = swab64(shared->msr);
155 	shared->dsisr = swab32(shared->dsisr);
156 	shared->int_pending = swab32(shared->int_pending);
157 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158 		shared->sr[i] = swab32(shared->sr[i]);
159 }
160 #endif
161 
162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163 {
164 	int nr = kvmppc_get_gpr(vcpu, 11);
165 	int r;
166 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170 	unsigned long r2 = 0;
171 
172 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173 		/* 32 bit mode */
174 		param1 &= 0xffffffff;
175 		param2 &= 0xffffffff;
176 		param3 &= 0xffffffff;
177 		param4 &= 0xffffffff;
178 	}
179 
180 	switch (nr) {
181 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182 	{
183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184 		/* Book3S can be little endian, find it out here */
185 		int shared_big_endian = true;
186 		if (vcpu->arch.intr_msr & MSR_LE)
187 			shared_big_endian = false;
188 		if (shared_big_endian != vcpu->arch.shared_big_endian)
189 			kvmppc_swab_shared(vcpu);
190 		vcpu->arch.shared_big_endian = shared_big_endian;
191 #endif
192 
193 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194 			/*
195 			 * Older versions of the Linux magic page code had
196 			 * a bug where they would map their trampoline code
197 			 * NX. If that's the case, remove !PR NX capability.
198 			 */
199 			vcpu->arch.disable_kernel_nx = true;
200 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201 		}
202 
203 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205 
206 #ifdef CONFIG_PPC_64K_PAGES
207 		/*
208 		 * Make sure our 4k magic page is in the same window of a 64k
209 		 * page within the guest and within the host's page.
210 		 */
211 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
212 		    ((ulong)vcpu->arch.shared & 0xf000)) {
213 			void *old_shared = vcpu->arch.shared;
214 			ulong shared = (ulong)vcpu->arch.shared;
215 			void *new_shared;
216 
217 			shared &= PAGE_MASK;
218 			shared |= vcpu->arch.magic_page_pa & 0xf000;
219 			new_shared = (void*)shared;
220 			memcpy(new_shared, old_shared, 0x1000);
221 			vcpu->arch.shared = new_shared;
222 		}
223 #endif
224 
225 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226 
227 		r = EV_SUCCESS;
228 		break;
229 	}
230 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231 		r = EV_SUCCESS;
232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234 #endif
235 
236 		/* Second return value is in r4 */
237 		break;
238 	case EV_HCALL_TOKEN(EV_IDLE):
239 		r = EV_SUCCESS;
240 		kvm_vcpu_block(vcpu);
241 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
242 		break;
243 	default:
244 		r = EV_UNIMPLEMENTED;
245 		break;
246 	}
247 
248 	kvmppc_set_gpr(vcpu, 4, r2);
249 
250 	return r;
251 }
252 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
253 
254 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
255 {
256 	int r = false;
257 
258 	/* We have to know what CPU to virtualize */
259 	if (!vcpu->arch.pvr)
260 		goto out;
261 
262 	/* PAPR only works with book3s_64 */
263 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
264 		goto out;
265 
266 	/* HV KVM can only do PAPR mode for now */
267 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
268 		goto out;
269 
270 #ifdef CONFIG_KVM_BOOKE_HV
271 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
272 		goto out;
273 #endif
274 
275 	r = true;
276 
277 out:
278 	vcpu->arch.sane = r;
279 	return r ? 0 : -EINVAL;
280 }
281 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
282 
283 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
284 {
285 	enum emulation_result er;
286 	int r;
287 
288 	er = kvmppc_emulate_loadstore(vcpu);
289 	switch (er) {
290 	case EMULATE_DONE:
291 		/* Future optimization: only reload non-volatiles if they were
292 		 * actually modified. */
293 		r = RESUME_GUEST_NV;
294 		break;
295 	case EMULATE_AGAIN:
296 		r = RESUME_GUEST;
297 		break;
298 	case EMULATE_DO_MMIO:
299 		run->exit_reason = KVM_EXIT_MMIO;
300 		/* We must reload nonvolatiles because "update" load/store
301 		 * instructions modify register state. */
302 		/* Future optimization: only reload non-volatiles if they were
303 		 * actually modified. */
304 		r = RESUME_HOST_NV;
305 		break;
306 	case EMULATE_FAIL:
307 	{
308 		u32 last_inst;
309 
310 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
311 		/* XXX Deliver Program interrupt to guest. */
312 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
313 		r = RESUME_HOST;
314 		break;
315 	}
316 	default:
317 		WARN_ON(1);
318 		r = RESUME_GUEST;
319 	}
320 
321 	return r;
322 }
323 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
324 
325 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
326 	      bool data)
327 {
328 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
329 	struct kvmppc_pte pte;
330 	int r = -EINVAL;
331 
332 	vcpu->stat.st++;
333 
334 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
335 		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
336 							    size);
337 
338 	if ((!r) || (r == -EAGAIN))
339 		return r;
340 
341 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
342 			 XLATE_WRITE, &pte);
343 	if (r < 0)
344 		return r;
345 
346 	*eaddr = pte.raddr;
347 
348 	if (!pte.may_write)
349 		return -EPERM;
350 
351 	/* Magic page override */
352 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
353 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
354 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
355 		void *magic = vcpu->arch.shared;
356 		magic += pte.eaddr & 0xfff;
357 		memcpy(magic, ptr, size);
358 		return EMULATE_DONE;
359 	}
360 
361 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
362 		return EMULATE_DO_MMIO;
363 
364 	return EMULATE_DONE;
365 }
366 EXPORT_SYMBOL_GPL(kvmppc_st);
367 
368 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
369 		      bool data)
370 {
371 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
372 	struct kvmppc_pte pte;
373 	int rc = -EINVAL;
374 
375 	vcpu->stat.ld++;
376 
377 	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
378 		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
379 							      size);
380 
381 	if ((!rc) || (rc == -EAGAIN))
382 		return rc;
383 
384 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
385 			  XLATE_READ, &pte);
386 	if (rc)
387 		return rc;
388 
389 	*eaddr = pte.raddr;
390 
391 	if (!pte.may_read)
392 		return -EPERM;
393 
394 	if (!data && !pte.may_execute)
395 		return -ENOEXEC;
396 
397 	/* Magic page override */
398 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
399 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
400 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
401 		void *magic = vcpu->arch.shared;
402 		magic += pte.eaddr & 0xfff;
403 		memcpy(ptr, magic, size);
404 		return EMULATE_DONE;
405 	}
406 
407 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
408 		return EMULATE_DO_MMIO;
409 
410 	return EMULATE_DONE;
411 }
412 EXPORT_SYMBOL_GPL(kvmppc_ld);
413 
414 int kvm_arch_hardware_enable(void)
415 {
416 	return 0;
417 }
418 
419 int kvm_arch_hardware_setup(void)
420 {
421 	return 0;
422 }
423 
424 int kvm_arch_check_processor_compat(void)
425 {
426 	return kvmppc_core_check_processor_compat();
427 }
428 
429 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
430 {
431 	struct kvmppc_ops *kvm_ops = NULL;
432 	/*
433 	 * if we have both HV and PR enabled, default is HV
434 	 */
435 	if (type == 0) {
436 		if (kvmppc_hv_ops)
437 			kvm_ops = kvmppc_hv_ops;
438 		else
439 			kvm_ops = kvmppc_pr_ops;
440 		if (!kvm_ops)
441 			goto err_out;
442 	} else	if (type == KVM_VM_PPC_HV) {
443 		if (!kvmppc_hv_ops)
444 			goto err_out;
445 		kvm_ops = kvmppc_hv_ops;
446 	} else if (type == KVM_VM_PPC_PR) {
447 		if (!kvmppc_pr_ops)
448 			goto err_out;
449 		kvm_ops = kvmppc_pr_ops;
450 	} else
451 		goto err_out;
452 
453 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
454 		return -ENOENT;
455 
456 	kvm->arch.kvm_ops = kvm_ops;
457 	return kvmppc_core_init_vm(kvm);
458 err_out:
459 	return -EINVAL;
460 }
461 
462 void kvm_arch_destroy_vm(struct kvm *kvm)
463 {
464 	unsigned int i;
465 	struct kvm_vcpu *vcpu;
466 
467 #ifdef CONFIG_KVM_XICS
468 	/*
469 	 * We call kick_all_cpus_sync() to ensure that all
470 	 * CPUs have executed any pending IPIs before we
471 	 * continue and free VCPUs structures below.
472 	 */
473 	if (is_kvmppc_hv_enabled(kvm))
474 		kick_all_cpus_sync();
475 #endif
476 
477 	kvm_for_each_vcpu(i, vcpu, kvm)
478 		kvm_vcpu_destroy(vcpu);
479 
480 	mutex_lock(&kvm->lock);
481 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
482 		kvm->vcpus[i] = NULL;
483 
484 	atomic_set(&kvm->online_vcpus, 0);
485 
486 	kvmppc_core_destroy_vm(kvm);
487 
488 	mutex_unlock(&kvm->lock);
489 
490 	/* drop the module reference */
491 	module_put(kvm->arch.kvm_ops->owner);
492 }
493 
494 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
495 {
496 	int r;
497 	/* Assume we're using HV mode when the HV module is loaded */
498 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
499 
500 	if (kvm) {
501 		/*
502 		 * Hooray - we know which VM type we're running on. Depend on
503 		 * that rather than the guess above.
504 		 */
505 		hv_enabled = is_kvmppc_hv_enabled(kvm);
506 	}
507 
508 	switch (ext) {
509 #ifdef CONFIG_BOOKE
510 	case KVM_CAP_PPC_BOOKE_SREGS:
511 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
512 	case KVM_CAP_PPC_EPR:
513 #else
514 	case KVM_CAP_PPC_SEGSTATE:
515 	case KVM_CAP_PPC_HIOR:
516 	case KVM_CAP_PPC_PAPR:
517 #endif
518 	case KVM_CAP_PPC_UNSET_IRQ:
519 	case KVM_CAP_PPC_IRQ_LEVEL:
520 	case KVM_CAP_ENABLE_CAP:
521 	case KVM_CAP_ONE_REG:
522 	case KVM_CAP_IOEVENTFD:
523 	case KVM_CAP_DEVICE_CTRL:
524 	case KVM_CAP_IMMEDIATE_EXIT:
525 		r = 1;
526 		break;
527 	case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
528 		/* fall through */
529 	case KVM_CAP_PPC_PAIRED_SINGLES:
530 	case KVM_CAP_PPC_OSI:
531 	case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533 	case KVM_CAP_SW_TLB:
534 #endif
535 		/* We support this only for PR */
536 		r = !hv_enabled;
537 		break;
538 #ifdef CONFIG_KVM_MPIC
539 	case KVM_CAP_IRQ_MPIC:
540 		r = 1;
541 		break;
542 #endif
543 
544 #ifdef CONFIG_PPC_BOOK3S_64
545 	case KVM_CAP_SPAPR_TCE:
546 	case KVM_CAP_SPAPR_TCE_64:
547 		r = 1;
548 		break;
549 	case KVM_CAP_SPAPR_TCE_VFIO:
550 		r = !!cpu_has_feature(CPU_FTR_HVMODE);
551 		break;
552 	case KVM_CAP_PPC_RTAS:
553 	case KVM_CAP_PPC_FIXUP_HCALL:
554 	case KVM_CAP_PPC_ENABLE_HCALL:
555 #ifdef CONFIG_KVM_XICS
556 	case KVM_CAP_IRQ_XICS:
557 #endif
558 	case KVM_CAP_PPC_GET_CPU_CHAR:
559 		r = 1;
560 		break;
561 #ifdef CONFIG_KVM_XIVE
562 	case KVM_CAP_PPC_IRQ_XIVE:
563 		/*
564 		 * We need XIVE to be enabled on the platform (implies
565 		 * a POWER9 processor) and the PowerNV platform, as
566 		 * nested is not yet supported.
567 		 */
568 		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
569 			kvmppc_xive_native_supported();
570 		break;
571 #endif
572 
573 	case KVM_CAP_PPC_ALLOC_HTAB:
574 		r = hv_enabled;
575 		break;
576 #endif /* CONFIG_PPC_BOOK3S_64 */
577 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
578 	case KVM_CAP_PPC_SMT:
579 		r = 0;
580 		if (kvm) {
581 			if (kvm->arch.emul_smt_mode > 1)
582 				r = kvm->arch.emul_smt_mode;
583 			else
584 				r = kvm->arch.smt_mode;
585 		} else if (hv_enabled) {
586 			if (cpu_has_feature(CPU_FTR_ARCH_300))
587 				r = 1;
588 			else
589 				r = threads_per_subcore;
590 		}
591 		break;
592 	case KVM_CAP_PPC_SMT_POSSIBLE:
593 		r = 1;
594 		if (hv_enabled) {
595 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
596 				r = ((threads_per_subcore << 1) - 1);
597 			else
598 				/* P9 can emulate dbells, so allow any mode */
599 				r = 8 | 4 | 2 | 1;
600 		}
601 		break;
602 	case KVM_CAP_PPC_RMA:
603 		r = 0;
604 		break;
605 	case KVM_CAP_PPC_HWRNG:
606 		r = kvmppc_hwrng_present();
607 		break;
608 	case KVM_CAP_PPC_MMU_RADIX:
609 		r = !!(hv_enabled && radix_enabled());
610 		break;
611 	case KVM_CAP_PPC_MMU_HASH_V3:
612 		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
613 		       cpu_has_feature(CPU_FTR_HVMODE));
614 		break;
615 	case KVM_CAP_PPC_NESTED_HV:
616 		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
617 		       !kvmppc_hv_ops->enable_nested(NULL));
618 		break;
619 #endif
620 	case KVM_CAP_SYNC_MMU:
621 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
622 		r = hv_enabled;
623 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
624 		r = 1;
625 #else
626 		r = 0;
627 #endif
628 		break;
629 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
630 	case KVM_CAP_PPC_HTAB_FD:
631 		r = hv_enabled;
632 		break;
633 #endif
634 	case KVM_CAP_NR_VCPUS:
635 		/*
636 		 * Recommending a number of CPUs is somewhat arbitrary; we
637 		 * return the number of present CPUs for -HV (since a host
638 		 * will have secondary threads "offline"), and for other KVM
639 		 * implementations just count online CPUs.
640 		 */
641 		if (hv_enabled)
642 			r = num_present_cpus();
643 		else
644 			r = num_online_cpus();
645 		break;
646 	case KVM_CAP_MAX_VCPUS:
647 		r = KVM_MAX_VCPUS;
648 		break;
649 	case KVM_CAP_MAX_VCPU_ID:
650 		r = KVM_MAX_VCPU_ID;
651 		break;
652 #ifdef CONFIG_PPC_BOOK3S_64
653 	case KVM_CAP_PPC_GET_SMMU_INFO:
654 		r = 1;
655 		break;
656 	case KVM_CAP_SPAPR_MULTITCE:
657 		r = 1;
658 		break;
659 	case KVM_CAP_SPAPR_RESIZE_HPT:
660 		r = !!hv_enabled;
661 		break;
662 #endif
663 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
664 	case KVM_CAP_PPC_FWNMI:
665 		r = hv_enabled;
666 		break;
667 #endif
668 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
669 	case KVM_CAP_PPC_HTM:
670 		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
671 		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
672 		break;
673 #endif
674 	default:
675 		r = 0;
676 		break;
677 	}
678 	return r;
679 
680 }
681 
682 long kvm_arch_dev_ioctl(struct file *filp,
683                         unsigned int ioctl, unsigned long arg)
684 {
685 	return -EINVAL;
686 }
687 
688 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
689 			   struct kvm_memory_slot *dont)
690 {
691 	kvmppc_core_free_memslot(kvm, free, dont);
692 }
693 
694 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
695 			    unsigned long npages)
696 {
697 	return kvmppc_core_create_memslot(kvm, slot, npages);
698 }
699 
700 int kvm_arch_prepare_memory_region(struct kvm *kvm,
701 				   struct kvm_memory_slot *memslot,
702 				   const struct kvm_userspace_memory_region *mem,
703 				   enum kvm_mr_change change)
704 {
705 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
706 }
707 
708 void kvm_arch_commit_memory_region(struct kvm *kvm,
709 				   const struct kvm_userspace_memory_region *mem,
710 				   const struct kvm_memory_slot *old,
711 				   const struct kvm_memory_slot *new,
712 				   enum kvm_mr_change change)
713 {
714 	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
715 }
716 
717 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
718 				   struct kvm_memory_slot *slot)
719 {
720 	kvmppc_core_flush_memslot(kvm, slot);
721 }
722 
723 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
724 {
725 	return 0;
726 }
727 
728 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
729 {
730 	struct kvm_vcpu *vcpu;
731 
732 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
733 	kvmppc_decrementer_func(vcpu);
734 
735 	return HRTIMER_NORESTART;
736 }
737 
738 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
739 {
740 	int err;
741 
742 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
743 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
744 	vcpu->arch.dec_expires = get_tb();
745 
746 #ifdef CONFIG_KVM_EXIT_TIMING
747 	mutex_init(&vcpu->arch.exit_timing_lock);
748 #endif
749 	err = kvmppc_subarch_vcpu_init(vcpu);
750 	if (err)
751 		return err;
752 
753 	err = kvmppc_core_vcpu_create(vcpu);
754 	if (err)
755 		goto out_vcpu_uninit;
756 
757 	vcpu->arch.wqp = &vcpu->wq;
758 	kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
759 	return 0;
760 
761 out_vcpu_uninit:
762 	kvmppc_subarch_vcpu_uninit(vcpu);
763 	return err;
764 }
765 
766 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
767 {
768 }
769 
770 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
771 {
772 	/* Make sure we're not using the vcpu anymore */
773 	hrtimer_cancel(&vcpu->arch.dec_timer);
774 
775 	kvmppc_remove_vcpu_debugfs(vcpu);
776 
777 	switch (vcpu->arch.irq_type) {
778 	case KVMPPC_IRQ_MPIC:
779 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
780 		break;
781 	case KVMPPC_IRQ_XICS:
782 		if (xics_on_xive())
783 			kvmppc_xive_cleanup_vcpu(vcpu);
784 		else
785 			kvmppc_xics_free_icp(vcpu);
786 		break;
787 	case KVMPPC_IRQ_XIVE:
788 		kvmppc_xive_native_cleanup_vcpu(vcpu);
789 		break;
790 	}
791 
792 	kvmppc_core_vcpu_free(vcpu);
793 
794 	kvmppc_subarch_vcpu_uninit(vcpu);
795 }
796 
797 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
798 {
799 	return kvmppc_core_pending_dec(vcpu);
800 }
801 
802 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
803 {
804 #ifdef CONFIG_BOOKE
805 	/*
806 	 * vrsave (formerly usprg0) isn't used by Linux, but may
807 	 * be used by the guest.
808 	 *
809 	 * On non-booke this is associated with Altivec and
810 	 * is handled by code in book3s.c.
811 	 */
812 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
813 #endif
814 	kvmppc_core_vcpu_load(vcpu, cpu);
815 }
816 
817 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
818 {
819 	kvmppc_core_vcpu_put(vcpu);
820 #ifdef CONFIG_BOOKE
821 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
822 #endif
823 }
824 
825 /*
826  * irq_bypass_add_producer and irq_bypass_del_producer are only
827  * useful if the architecture supports PCI passthrough.
828  * irq_bypass_stop and irq_bypass_start are not needed and so
829  * kvm_ops are not defined for them.
830  */
831 bool kvm_arch_has_irq_bypass(void)
832 {
833 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
834 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
835 }
836 
837 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
838 				     struct irq_bypass_producer *prod)
839 {
840 	struct kvm_kernel_irqfd *irqfd =
841 		container_of(cons, struct kvm_kernel_irqfd, consumer);
842 	struct kvm *kvm = irqfd->kvm;
843 
844 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
845 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
846 
847 	return 0;
848 }
849 
850 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
851 				      struct irq_bypass_producer *prod)
852 {
853 	struct kvm_kernel_irqfd *irqfd =
854 		container_of(cons, struct kvm_kernel_irqfd, consumer);
855 	struct kvm *kvm = irqfd->kvm;
856 
857 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
858 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
859 }
860 
861 #ifdef CONFIG_VSX
862 static inline int kvmppc_get_vsr_dword_offset(int index)
863 {
864 	int offset;
865 
866 	if ((index != 0) && (index != 1))
867 		return -1;
868 
869 #ifdef __BIG_ENDIAN
870 	offset =  index;
871 #else
872 	offset = 1 - index;
873 #endif
874 
875 	return offset;
876 }
877 
878 static inline int kvmppc_get_vsr_word_offset(int index)
879 {
880 	int offset;
881 
882 	if ((index > 3) || (index < 0))
883 		return -1;
884 
885 #ifdef __BIG_ENDIAN
886 	offset = index;
887 #else
888 	offset = 3 - index;
889 #endif
890 	return offset;
891 }
892 
893 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
894 	u64 gpr)
895 {
896 	union kvmppc_one_reg val;
897 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
898 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
899 
900 	if (offset == -1)
901 		return;
902 
903 	if (index >= 32) {
904 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
905 		val.vsxval[offset] = gpr;
906 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
907 	} else {
908 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
909 	}
910 }
911 
912 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
913 	u64 gpr)
914 {
915 	union kvmppc_one_reg val;
916 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
917 
918 	if (index >= 32) {
919 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
920 		val.vsxval[0] = gpr;
921 		val.vsxval[1] = gpr;
922 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
923 	} else {
924 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
925 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
926 	}
927 }
928 
929 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
930 	u32 gpr)
931 {
932 	union kvmppc_one_reg val;
933 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
934 
935 	if (index >= 32) {
936 		val.vsx32val[0] = gpr;
937 		val.vsx32val[1] = gpr;
938 		val.vsx32val[2] = gpr;
939 		val.vsx32val[3] = gpr;
940 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
941 	} else {
942 		val.vsx32val[0] = gpr;
943 		val.vsx32val[1] = gpr;
944 		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
945 		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
946 	}
947 }
948 
949 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
950 	u32 gpr32)
951 {
952 	union kvmppc_one_reg val;
953 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
954 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
955 	int dword_offset, word_offset;
956 
957 	if (offset == -1)
958 		return;
959 
960 	if (index >= 32) {
961 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
962 		val.vsx32val[offset] = gpr32;
963 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
964 	} else {
965 		dword_offset = offset / 2;
966 		word_offset = offset % 2;
967 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
968 		val.vsx32val[word_offset] = gpr32;
969 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
970 	}
971 }
972 #endif /* CONFIG_VSX */
973 
974 #ifdef CONFIG_ALTIVEC
975 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
976 		int index, int element_size)
977 {
978 	int offset;
979 	int elts = sizeof(vector128)/element_size;
980 
981 	if ((index < 0) || (index >= elts))
982 		return -1;
983 
984 	if (kvmppc_need_byteswap(vcpu))
985 		offset = elts - index - 1;
986 	else
987 		offset = index;
988 
989 	return offset;
990 }
991 
992 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
993 		int index)
994 {
995 	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
996 }
997 
998 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
999 		int index)
1000 {
1001 	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1002 }
1003 
1004 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1005 		int index)
1006 {
1007 	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1008 }
1009 
1010 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1011 		int index)
1012 {
1013 	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1014 }
1015 
1016 
1017 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1018 	u64 gpr)
1019 {
1020 	union kvmppc_one_reg val;
1021 	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1022 			vcpu->arch.mmio_vmx_offset);
1023 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1024 
1025 	if (offset == -1)
1026 		return;
1027 
1028 	val.vval = VCPU_VSX_VR(vcpu, index);
1029 	val.vsxval[offset] = gpr;
1030 	VCPU_VSX_VR(vcpu, index) = val.vval;
1031 }
1032 
1033 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1034 	u32 gpr32)
1035 {
1036 	union kvmppc_one_reg val;
1037 	int offset = kvmppc_get_vmx_word_offset(vcpu,
1038 			vcpu->arch.mmio_vmx_offset);
1039 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1040 
1041 	if (offset == -1)
1042 		return;
1043 
1044 	val.vval = VCPU_VSX_VR(vcpu, index);
1045 	val.vsx32val[offset] = gpr32;
1046 	VCPU_VSX_VR(vcpu, index) = val.vval;
1047 }
1048 
1049 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1050 	u16 gpr16)
1051 {
1052 	union kvmppc_one_reg val;
1053 	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1054 			vcpu->arch.mmio_vmx_offset);
1055 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1056 
1057 	if (offset == -1)
1058 		return;
1059 
1060 	val.vval = VCPU_VSX_VR(vcpu, index);
1061 	val.vsx16val[offset] = gpr16;
1062 	VCPU_VSX_VR(vcpu, index) = val.vval;
1063 }
1064 
1065 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1066 	u8 gpr8)
1067 {
1068 	union kvmppc_one_reg val;
1069 	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1070 			vcpu->arch.mmio_vmx_offset);
1071 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1072 
1073 	if (offset == -1)
1074 		return;
1075 
1076 	val.vval = VCPU_VSX_VR(vcpu, index);
1077 	val.vsx8val[offset] = gpr8;
1078 	VCPU_VSX_VR(vcpu, index) = val.vval;
1079 }
1080 #endif /* CONFIG_ALTIVEC */
1081 
1082 #ifdef CONFIG_PPC_FPU
1083 static inline u64 sp_to_dp(u32 fprs)
1084 {
1085 	u64 fprd;
1086 
1087 	preempt_disable();
1088 	enable_kernel_fp();
1089 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1090 	     : "fr0");
1091 	preempt_enable();
1092 	return fprd;
1093 }
1094 
1095 static inline u32 dp_to_sp(u64 fprd)
1096 {
1097 	u32 fprs;
1098 
1099 	preempt_disable();
1100 	enable_kernel_fp();
1101 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1102 	     : "fr0");
1103 	preempt_enable();
1104 	return fprs;
1105 }
1106 
1107 #else
1108 #define sp_to_dp(x)	(x)
1109 #define dp_to_sp(x)	(x)
1110 #endif /* CONFIG_PPC_FPU */
1111 
1112 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1113                                       struct kvm_run *run)
1114 {
1115 	u64 uninitialized_var(gpr);
1116 
1117 	if (run->mmio.len > sizeof(gpr)) {
1118 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1119 		return;
1120 	}
1121 
1122 	if (!vcpu->arch.mmio_host_swabbed) {
1123 		switch (run->mmio.len) {
1124 		case 8: gpr = *(u64 *)run->mmio.data; break;
1125 		case 4: gpr = *(u32 *)run->mmio.data; break;
1126 		case 2: gpr = *(u16 *)run->mmio.data; break;
1127 		case 1: gpr = *(u8 *)run->mmio.data; break;
1128 		}
1129 	} else {
1130 		switch (run->mmio.len) {
1131 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1132 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1133 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1134 		case 1: gpr = *(u8 *)run->mmio.data; break;
1135 		}
1136 	}
1137 
1138 	/* conversion between single and double precision */
1139 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1140 		gpr = sp_to_dp(gpr);
1141 
1142 	if (vcpu->arch.mmio_sign_extend) {
1143 		switch (run->mmio.len) {
1144 #ifdef CONFIG_PPC64
1145 		case 4:
1146 			gpr = (s64)(s32)gpr;
1147 			break;
1148 #endif
1149 		case 2:
1150 			gpr = (s64)(s16)gpr;
1151 			break;
1152 		case 1:
1153 			gpr = (s64)(s8)gpr;
1154 			break;
1155 		}
1156 	}
1157 
1158 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1159 	case KVM_MMIO_REG_GPR:
1160 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1161 		break;
1162 	case KVM_MMIO_REG_FPR:
1163 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1164 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1165 
1166 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1167 		break;
1168 #ifdef CONFIG_PPC_BOOK3S
1169 	case KVM_MMIO_REG_QPR:
1170 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1171 		break;
1172 	case KVM_MMIO_REG_FQPR:
1173 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1174 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1175 		break;
1176 #endif
1177 #ifdef CONFIG_VSX
1178 	case KVM_MMIO_REG_VSX:
1179 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1180 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1181 
1182 		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1183 			kvmppc_set_vsr_dword(vcpu, gpr);
1184 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1185 			kvmppc_set_vsr_word(vcpu, gpr);
1186 		else if (vcpu->arch.mmio_copy_type ==
1187 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1188 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1189 		else if (vcpu->arch.mmio_copy_type ==
1190 				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1191 			kvmppc_set_vsr_word_dump(vcpu, gpr);
1192 		break;
1193 #endif
1194 #ifdef CONFIG_ALTIVEC
1195 	case KVM_MMIO_REG_VMX:
1196 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1197 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1198 
1199 		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1200 			kvmppc_set_vmx_dword(vcpu, gpr);
1201 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1202 			kvmppc_set_vmx_word(vcpu, gpr);
1203 		else if (vcpu->arch.mmio_copy_type ==
1204 				KVMPPC_VMX_COPY_HWORD)
1205 			kvmppc_set_vmx_hword(vcpu, gpr);
1206 		else if (vcpu->arch.mmio_copy_type ==
1207 				KVMPPC_VMX_COPY_BYTE)
1208 			kvmppc_set_vmx_byte(vcpu, gpr);
1209 		break;
1210 #endif
1211 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1212 	case KVM_MMIO_REG_NESTED_GPR:
1213 		if (kvmppc_need_byteswap(vcpu))
1214 			gpr = swab64(gpr);
1215 		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1216 				     sizeof(gpr));
1217 		break;
1218 #endif
1219 	default:
1220 		BUG();
1221 	}
1222 }
1223 
1224 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1225 				unsigned int rt, unsigned int bytes,
1226 				int is_default_endian, int sign_extend)
1227 {
1228 	int idx, ret;
1229 	bool host_swabbed;
1230 
1231 	/* Pity C doesn't have a logical XOR operator */
1232 	if (kvmppc_need_byteswap(vcpu)) {
1233 		host_swabbed = is_default_endian;
1234 	} else {
1235 		host_swabbed = !is_default_endian;
1236 	}
1237 
1238 	if (bytes > sizeof(run->mmio.data)) {
1239 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1240 		       run->mmio.len);
1241 	}
1242 
1243 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1244 	run->mmio.len = bytes;
1245 	run->mmio.is_write = 0;
1246 
1247 	vcpu->arch.io_gpr = rt;
1248 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1249 	vcpu->mmio_needed = 1;
1250 	vcpu->mmio_is_write = 0;
1251 	vcpu->arch.mmio_sign_extend = sign_extend;
1252 
1253 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1254 
1255 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1256 			      bytes, &run->mmio.data);
1257 
1258 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1259 
1260 	if (!ret) {
1261 		kvmppc_complete_mmio_load(vcpu, run);
1262 		vcpu->mmio_needed = 0;
1263 		return EMULATE_DONE;
1264 	}
1265 
1266 	return EMULATE_DO_MMIO;
1267 }
1268 
1269 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1270 		       unsigned int rt, unsigned int bytes,
1271 		       int is_default_endian)
1272 {
1273 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1274 }
1275 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1276 
1277 /* Same as above, but sign extends */
1278 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1279 			unsigned int rt, unsigned int bytes,
1280 			int is_default_endian)
1281 {
1282 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1283 }
1284 
1285 #ifdef CONFIG_VSX
1286 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1287 			unsigned int rt, unsigned int bytes,
1288 			int is_default_endian, int mmio_sign_extend)
1289 {
1290 	enum emulation_result emulated = EMULATE_DONE;
1291 
1292 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1293 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1294 		return EMULATE_FAIL;
1295 
1296 	while (vcpu->arch.mmio_vsx_copy_nums) {
1297 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1298 			is_default_endian, mmio_sign_extend);
1299 
1300 		if (emulated != EMULATE_DONE)
1301 			break;
1302 
1303 		vcpu->arch.paddr_accessed += run->mmio.len;
1304 
1305 		vcpu->arch.mmio_vsx_copy_nums--;
1306 		vcpu->arch.mmio_vsx_offset++;
1307 	}
1308 	return emulated;
1309 }
1310 #endif /* CONFIG_VSX */
1311 
1312 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1313 			u64 val, unsigned int bytes, int is_default_endian)
1314 {
1315 	void *data = run->mmio.data;
1316 	int idx, ret;
1317 	bool host_swabbed;
1318 
1319 	/* Pity C doesn't have a logical XOR operator */
1320 	if (kvmppc_need_byteswap(vcpu)) {
1321 		host_swabbed = is_default_endian;
1322 	} else {
1323 		host_swabbed = !is_default_endian;
1324 	}
1325 
1326 	if (bytes > sizeof(run->mmio.data)) {
1327 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1328 		       run->mmio.len);
1329 	}
1330 
1331 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1332 	run->mmio.len = bytes;
1333 	run->mmio.is_write = 1;
1334 	vcpu->mmio_needed = 1;
1335 	vcpu->mmio_is_write = 1;
1336 
1337 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1338 		val = dp_to_sp(val);
1339 
1340 	/* Store the value at the lowest bytes in 'data'. */
1341 	if (!host_swabbed) {
1342 		switch (bytes) {
1343 		case 8: *(u64 *)data = val; break;
1344 		case 4: *(u32 *)data = val; break;
1345 		case 2: *(u16 *)data = val; break;
1346 		case 1: *(u8  *)data = val; break;
1347 		}
1348 	} else {
1349 		switch (bytes) {
1350 		case 8: *(u64 *)data = swab64(val); break;
1351 		case 4: *(u32 *)data = swab32(val); break;
1352 		case 2: *(u16 *)data = swab16(val); break;
1353 		case 1: *(u8  *)data = val; break;
1354 		}
1355 	}
1356 
1357 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1358 
1359 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1360 			       bytes, &run->mmio.data);
1361 
1362 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1363 
1364 	if (!ret) {
1365 		vcpu->mmio_needed = 0;
1366 		return EMULATE_DONE;
1367 	}
1368 
1369 	return EMULATE_DO_MMIO;
1370 }
1371 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1372 
1373 #ifdef CONFIG_VSX
1374 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1375 {
1376 	u32 dword_offset, word_offset;
1377 	union kvmppc_one_reg reg;
1378 	int vsx_offset = 0;
1379 	int copy_type = vcpu->arch.mmio_copy_type;
1380 	int result = 0;
1381 
1382 	switch (copy_type) {
1383 	case KVMPPC_VSX_COPY_DWORD:
1384 		vsx_offset =
1385 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1386 
1387 		if (vsx_offset == -1) {
1388 			result = -1;
1389 			break;
1390 		}
1391 
1392 		if (rs < 32) {
1393 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1394 		} else {
1395 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1396 			*val = reg.vsxval[vsx_offset];
1397 		}
1398 		break;
1399 
1400 	case KVMPPC_VSX_COPY_WORD:
1401 		vsx_offset =
1402 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1403 
1404 		if (vsx_offset == -1) {
1405 			result = -1;
1406 			break;
1407 		}
1408 
1409 		if (rs < 32) {
1410 			dword_offset = vsx_offset / 2;
1411 			word_offset = vsx_offset % 2;
1412 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1413 			*val = reg.vsx32val[word_offset];
1414 		} else {
1415 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1416 			*val = reg.vsx32val[vsx_offset];
1417 		}
1418 		break;
1419 
1420 	default:
1421 		result = -1;
1422 		break;
1423 	}
1424 
1425 	return result;
1426 }
1427 
1428 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1429 			int rs, unsigned int bytes, int is_default_endian)
1430 {
1431 	u64 val;
1432 	enum emulation_result emulated = EMULATE_DONE;
1433 
1434 	vcpu->arch.io_gpr = rs;
1435 
1436 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1437 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1438 		return EMULATE_FAIL;
1439 
1440 	while (vcpu->arch.mmio_vsx_copy_nums) {
1441 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1442 			return EMULATE_FAIL;
1443 
1444 		emulated = kvmppc_handle_store(run, vcpu,
1445 			 val, bytes, is_default_endian);
1446 
1447 		if (emulated != EMULATE_DONE)
1448 			break;
1449 
1450 		vcpu->arch.paddr_accessed += run->mmio.len;
1451 
1452 		vcpu->arch.mmio_vsx_copy_nums--;
1453 		vcpu->arch.mmio_vsx_offset++;
1454 	}
1455 
1456 	return emulated;
1457 }
1458 
1459 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1460 			struct kvm_run *run)
1461 {
1462 	enum emulation_result emulated = EMULATE_FAIL;
1463 	int r;
1464 
1465 	vcpu->arch.paddr_accessed += run->mmio.len;
1466 
1467 	if (!vcpu->mmio_is_write) {
1468 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1469 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1470 	} else {
1471 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1472 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1473 	}
1474 
1475 	switch (emulated) {
1476 	case EMULATE_DO_MMIO:
1477 		run->exit_reason = KVM_EXIT_MMIO;
1478 		r = RESUME_HOST;
1479 		break;
1480 	case EMULATE_FAIL:
1481 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1482 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1483 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1484 		r = RESUME_HOST;
1485 		break;
1486 	default:
1487 		r = RESUME_GUEST;
1488 		break;
1489 	}
1490 	return r;
1491 }
1492 #endif /* CONFIG_VSX */
1493 
1494 #ifdef CONFIG_ALTIVEC
1495 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1496 		unsigned int rt, unsigned int bytes, int is_default_endian)
1497 {
1498 	enum emulation_result emulated = EMULATE_DONE;
1499 
1500 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1501 		return EMULATE_FAIL;
1502 
1503 	while (vcpu->arch.mmio_vmx_copy_nums) {
1504 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1505 				is_default_endian, 0);
1506 
1507 		if (emulated != EMULATE_DONE)
1508 			break;
1509 
1510 		vcpu->arch.paddr_accessed += run->mmio.len;
1511 		vcpu->arch.mmio_vmx_copy_nums--;
1512 		vcpu->arch.mmio_vmx_offset++;
1513 	}
1514 
1515 	return emulated;
1516 }
1517 
1518 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1519 {
1520 	union kvmppc_one_reg reg;
1521 	int vmx_offset = 0;
1522 	int result = 0;
1523 
1524 	vmx_offset =
1525 		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1526 
1527 	if (vmx_offset == -1)
1528 		return -1;
1529 
1530 	reg.vval = VCPU_VSX_VR(vcpu, index);
1531 	*val = reg.vsxval[vmx_offset];
1532 
1533 	return result;
1534 }
1535 
1536 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1537 {
1538 	union kvmppc_one_reg reg;
1539 	int vmx_offset = 0;
1540 	int result = 0;
1541 
1542 	vmx_offset =
1543 		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1544 
1545 	if (vmx_offset == -1)
1546 		return -1;
1547 
1548 	reg.vval = VCPU_VSX_VR(vcpu, index);
1549 	*val = reg.vsx32val[vmx_offset];
1550 
1551 	return result;
1552 }
1553 
1554 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1555 {
1556 	union kvmppc_one_reg reg;
1557 	int vmx_offset = 0;
1558 	int result = 0;
1559 
1560 	vmx_offset =
1561 		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1562 
1563 	if (vmx_offset == -1)
1564 		return -1;
1565 
1566 	reg.vval = VCPU_VSX_VR(vcpu, index);
1567 	*val = reg.vsx16val[vmx_offset];
1568 
1569 	return result;
1570 }
1571 
1572 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1573 {
1574 	union kvmppc_one_reg reg;
1575 	int vmx_offset = 0;
1576 	int result = 0;
1577 
1578 	vmx_offset =
1579 		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1580 
1581 	if (vmx_offset == -1)
1582 		return -1;
1583 
1584 	reg.vval = VCPU_VSX_VR(vcpu, index);
1585 	*val = reg.vsx8val[vmx_offset];
1586 
1587 	return result;
1588 }
1589 
1590 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1591 		unsigned int rs, unsigned int bytes, int is_default_endian)
1592 {
1593 	u64 val = 0;
1594 	unsigned int index = rs & KVM_MMIO_REG_MASK;
1595 	enum emulation_result emulated = EMULATE_DONE;
1596 
1597 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1598 		return EMULATE_FAIL;
1599 
1600 	vcpu->arch.io_gpr = rs;
1601 
1602 	while (vcpu->arch.mmio_vmx_copy_nums) {
1603 		switch (vcpu->arch.mmio_copy_type) {
1604 		case KVMPPC_VMX_COPY_DWORD:
1605 			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1606 				return EMULATE_FAIL;
1607 
1608 			break;
1609 		case KVMPPC_VMX_COPY_WORD:
1610 			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1611 				return EMULATE_FAIL;
1612 			break;
1613 		case KVMPPC_VMX_COPY_HWORD:
1614 			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1615 				return EMULATE_FAIL;
1616 			break;
1617 		case KVMPPC_VMX_COPY_BYTE:
1618 			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1619 				return EMULATE_FAIL;
1620 			break;
1621 		default:
1622 			return EMULATE_FAIL;
1623 		}
1624 
1625 		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1626 				is_default_endian);
1627 		if (emulated != EMULATE_DONE)
1628 			break;
1629 
1630 		vcpu->arch.paddr_accessed += run->mmio.len;
1631 		vcpu->arch.mmio_vmx_copy_nums--;
1632 		vcpu->arch.mmio_vmx_offset++;
1633 	}
1634 
1635 	return emulated;
1636 }
1637 
1638 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1639 		struct kvm_run *run)
1640 {
1641 	enum emulation_result emulated = EMULATE_FAIL;
1642 	int r;
1643 
1644 	vcpu->arch.paddr_accessed += run->mmio.len;
1645 
1646 	if (!vcpu->mmio_is_write) {
1647 		emulated = kvmppc_handle_vmx_load(run, vcpu,
1648 				vcpu->arch.io_gpr, run->mmio.len, 1);
1649 	} else {
1650 		emulated = kvmppc_handle_vmx_store(run, vcpu,
1651 				vcpu->arch.io_gpr, run->mmio.len, 1);
1652 	}
1653 
1654 	switch (emulated) {
1655 	case EMULATE_DO_MMIO:
1656 		run->exit_reason = KVM_EXIT_MMIO;
1657 		r = RESUME_HOST;
1658 		break;
1659 	case EMULATE_FAIL:
1660 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1661 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1662 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1663 		r = RESUME_HOST;
1664 		break;
1665 	default:
1666 		r = RESUME_GUEST;
1667 		break;
1668 	}
1669 	return r;
1670 }
1671 #endif /* CONFIG_ALTIVEC */
1672 
1673 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1674 {
1675 	int r = 0;
1676 	union kvmppc_one_reg val;
1677 	int size;
1678 
1679 	size = one_reg_size(reg->id);
1680 	if (size > sizeof(val))
1681 		return -EINVAL;
1682 
1683 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1684 	if (r == -EINVAL) {
1685 		r = 0;
1686 		switch (reg->id) {
1687 #ifdef CONFIG_ALTIVEC
1688 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1689 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1690 				r = -ENXIO;
1691 				break;
1692 			}
1693 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1694 			break;
1695 		case KVM_REG_PPC_VSCR:
1696 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1697 				r = -ENXIO;
1698 				break;
1699 			}
1700 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1701 			break;
1702 		case KVM_REG_PPC_VRSAVE:
1703 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1704 			break;
1705 #endif /* CONFIG_ALTIVEC */
1706 		default:
1707 			r = -EINVAL;
1708 			break;
1709 		}
1710 	}
1711 
1712 	if (r)
1713 		return r;
1714 
1715 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1716 		r = -EFAULT;
1717 
1718 	return r;
1719 }
1720 
1721 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1722 {
1723 	int r;
1724 	union kvmppc_one_reg val;
1725 	int size;
1726 
1727 	size = one_reg_size(reg->id);
1728 	if (size > sizeof(val))
1729 		return -EINVAL;
1730 
1731 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1732 		return -EFAULT;
1733 
1734 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1735 	if (r == -EINVAL) {
1736 		r = 0;
1737 		switch (reg->id) {
1738 #ifdef CONFIG_ALTIVEC
1739 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1740 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1741 				r = -ENXIO;
1742 				break;
1743 			}
1744 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1745 			break;
1746 		case KVM_REG_PPC_VSCR:
1747 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1748 				r = -ENXIO;
1749 				break;
1750 			}
1751 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1752 			break;
1753 		case KVM_REG_PPC_VRSAVE:
1754 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1755 				r = -ENXIO;
1756 				break;
1757 			}
1758 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1759 			break;
1760 #endif /* CONFIG_ALTIVEC */
1761 		default:
1762 			r = -EINVAL;
1763 			break;
1764 		}
1765 	}
1766 
1767 	return r;
1768 }
1769 
1770 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1771 {
1772 	int r;
1773 
1774 	vcpu_load(vcpu);
1775 
1776 	if (vcpu->mmio_needed) {
1777 		vcpu->mmio_needed = 0;
1778 		if (!vcpu->mmio_is_write)
1779 			kvmppc_complete_mmio_load(vcpu, run);
1780 #ifdef CONFIG_VSX
1781 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1782 			vcpu->arch.mmio_vsx_copy_nums--;
1783 			vcpu->arch.mmio_vsx_offset++;
1784 		}
1785 
1786 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1787 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1788 			if (r == RESUME_HOST) {
1789 				vcpu->mmio_needed = 1;
1790 				goto out;
1791 			}
1792 		}
1793 #endif
1794 #ifdef CONFIG_ALTIVEC
1795 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1796 			vcpu->arch.mmio_vmx_copy_nums--;
1797 			vcpu->arch.mmio_vmx_offset++;
1798 		}
1799 
1800 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1801 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1802 			if (r == RESUME_HOST) {
1803 				vcpu->mmio_needed = 1;
1804 				goto out;
1805 			}
1806 		}
1807 #endif
1808 	} else if (vcpu->arch.osi_needed) {
1809 		u64 *gprs = run->osi.gprs;
1810 		int i;
1811 
1812 		for (i = 0; i < 32; i++)
1813 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1814 		vcpu->arch.osi_needed = 0;
1815 	} else if (vcpu->arch.hcall_needed) {
1816 		int i;
1817 
1818 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1819 		for (i = 0; i < 9; ++i)
1820 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1821 		vcpu->arch.hcall_needed = 0;
1822 #ifdef CONFIG_BOOKE
1823 	} else if (vcpu->arch.epr_needed) {
1824 		kvmppc_set_epr(vcpu, run->epr.epr);
1825 		vcpu->arch.epr_needed = 0;
1826 #endif
1827 	}
1828 
1829 	kvm_sigset_activate(vcpu);
1830 
1831 	if (run->immediate_exit)
1832 		r = -EINTR;
1833 	else
1834 		r = kvmppc_vcpu_run(run, vcpu);
1835 
1836 	kvm_sigset_deactivate(vcpu);
1837 
1838 #ifdef CONFIG_ALTIVEC
1839 out:
1840 #endif
1841 	vcpu_put(vcpu);
1842 	return r;
1843 }
1844 
1845 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1846 {
1847 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1848 		kvmppc_core_dequeue_external(vcpu);
1849 		return 0;
1850 	}
1851 
1852 	kvmppc_core_queue_external(vcpu, irq);
1853 
1854 	kvm_vcpu_kick(vcpu);
1855 
1856 	return 0;
1857 }
1858 
1859 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1860 				     struct kvm_enable_cap *cap)
1861 {
1862 	int r;
1863 
1864 	if (cap->flags)
1865 		return -EINVAL;
1866 
1867 	switch (cap->cap) {
1868 	case KVM_CAP_PPC_OSI:
1869 		r = 0;
1870 		vcpu->arch.osi_enabled = true;
1871 		break;
1872 	case KVM_CAP_PPC_PAPR:
1873 		r = 0;
1874 		vcpu->arch.papr_enabled = true;
1875 		break;
1876 	case KVM_CAP_PPC_EPR:
1877 		r = 0;
1878 		if (cap->args[0])
1879 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1880 		else
1881 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1882 		break;
1883 #ifdef CONFIG_BOOKE
1884 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1885 		r = 0;
1886 		vcpu->arch.watchdog_enabled = true;
1887 		break;
1888 #endif
1889 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1890 	case KVM_CAP_SW_TLB: {
1891 		struct kvm_config_tlb cfg;
1892 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1893 
1894 		r = -EFAULT;
1895 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1896 			break;
1897 
1898 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1899 		break;
1900 	}
1901 #endif
1902 #ifdef CONFIG_KVM_MPIC
1903 	case KVM_CAP_IRQ_MPIC: {
1904 		struct fd f;
1905 		struct kvm_device *dev;
1906 
1907 		r = -EBADF;
1908 		f = fdget(cap->args[0]);
1909 		if (!f.file)
1910 			break;
1911 
1912 		r = -EPERM;
1913 		dev = kvm_device_from_filp(f.file);
1914 		if (dev)
1915 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1916 
1917 		fdput(f);
1918 		break;
1919 	}
1920 #endif
1921 #ifdef CONFIG_KVM_XICS
1922 	case KVM_CAP_IRQ_XICS: {
1923 		struct fd f;
1924 		struct kvm_device *dev;
1925 
1926 		r = -EBADF;
1927 		f = fdget(cap->args[0]);
1928 		if (!f.file)
1929 			break;
1930 
1931 		r = -EPERM;
1932 		dev = kvm_device_from_filp(f.file);
1933 		if (dev) {
1934 			if (xics_on_xive())
1935 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1936 			else
1937 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1938 		}
1939 
1940 		fdput(f);
1941 		break;
1942 	}
1943 #endif /* CONFIG_KVM_XICS */
1944 #ifdef CONFIG_KVM_XIVE
1945 	case KVM_CAP_PPC_IRQ_XIVE: {
1946 		struct fd f;
1947 		struct kvm_device *dev;
1948 
1949 		r = -EBADF;
1950 		f = fdget(cap->args[0]);
1951 		if (!f.file)
1952 			break;
1953 
1954 		r = -ENXIO;
1955 		if (!xive_enabled())
1956 			break;
1957 
1958 		r = -EPERM;
1959 		dev = kvm_device_from_filp(f.file);
1960 		if (dev)
1961 			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1962 							    cap->args[1]);
1963 
1964 		fdput(f);
1965 		break;
1966 	}
1967 #endif /* CONFIG_KVM_XIVE */
1968 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1969 	case KVM_CAP_PPC_FWNMI:
1970 		r = -EINVAL;
1971 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1972 			break;
1973 		r = 0;
1974 		vcpu->kvm->arch.fwnmi_enabled = true;
1975 		break;
1976 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1977 	default:
1978 		r = -EINVAL;
1979 		break;
1980 	}
1981 
1982 	if (!r)
1983 		r = kvmppc_sanity_check(vcpu);
1984 
1985 	return r;
1986 }
1987 
1988 bool kvm_arch_intc_initialized(struct kvm *kvm)
1989 {
1990 #ifdef CONFIG_KVM_MPIC
1991 	if (kvm->arch.mpic)
1992 		return true;
1993 #endif
1994 #ifdef CONFIG_KVM_XICS
1995 	if (kvm->arch.xics || kvm->arch.xive)
1996 		return true;
1997 #endif
1998 	return false;
1999 }
2000 
2001 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2002                                     struct kvm_mp_state *mp_state)
2003 {
2004 	return -EINVAL;
2005 }
2006 
2007 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2008                                     struct kvm_mp_state *mp_state)
2009 {
2010 	return -EINVAL;
2011 }
2012 
2013 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2014 			       unsigned int ioctl, unsigned long arg)
2015 {
2016 	struct kvm_vcpu *vcpu = filp->private_data;
2017 	void __user *argp = (void __user *)arg;
2018 
2019 	if (ioctl == KVM_INTERRUPT) {
2020 		struct kvm_interrupt irq;
2021 		if (copy_from_user(&irq, argp, sizeof(irq)))
2022 			return -EFAULT;
2023 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2024 	}
2025 	return -ENOIOCTLCMD;
2026 }
2027 
2028 long kvm_arch_vcpu_ioctl(struct file *filp,
2029                          unsigned int ioctl, unsigned long arg)
2030 {
2031 	struct kvm_vcpu *vcpu = filp->private_data;
2032 	void __user *argp = (void __user *)arg;
2033 	long r;
2034 
2035 	switch (ioctl) {
2036 	case KVM_ENABLE_CAP:
2037 	{
2038 		struct kvm_enable_cap cap;
2039 		r = -EFAULT;
2040 		vcpu_load(vcpu);
2041 		if (copy_from_user(&cap, argp, sizeof(cap)))
2042 			goto out;
2043 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2044 		vcpu_put(vcpu);
2045 		break;
2046 	}
2047 
2048 	case KVM_SET_ONE_REG:
2049 	case KVM_GET_ONE_REG:
2050 	{
2051 		struct kvm_one_reg reg;
2052 		r = -EFAULT;
2053 		if (copy_from_user(&reg, argp, sizeof(reg)))
2054 			goto out;
2055 		if (ioctl == KVM_SET_ONE_REG)
2056 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2057 		else
2058 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2059 		break;
2060 	}
2061 
2062 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2063 	case KVM_DIRTY_TLB: {
2064 		struct kvm_dirty_tlb dirty;
2065 		r = -EFAULT;
2066 		vcpu_load(vcpu);
2067 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2068 			goto out;
2069 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2070 		vcpu_put(vcpu);
2071 		break;
2072 	}
2073 #endif
2074 	default:
2075 		r = -EINVAL;
2076 	}
2077 
2078 out:
2079 	return r;
2080 }
2081 
2082 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2083 {
2084 	return VM_FAULT_SIGBUS;
2085 }
2086 
2087 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2088 {
2089 	u32 inst_nop = 0x60000000;
2090 #ifdef CONFIG_KVM_BOOKE_HV
2091 	u32 inst_sc1 = 0x44000022;
2092 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2093 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2094 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2095 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2096 #else
2097 	u32 inst_lis = 0x3c000000;
2098 	u32 inst_ori = 0x60000000;
2099 	u32 inst_sc = 0x44000002;
2100 	u32 inst_imm_mask = 0xffff;
2101 
2102 	/*
2103 	 * The hypercall to get into KVM from within guest context is as
2104 	 * follows:
2105 	 *
2106 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2107 	 *    ori r0, KVM_SC_MAGIC_R0@l
2108 	 *    sc
2109 	 *    nop
2110 	 */
2111 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2112 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2113 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2114 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2115 #endif
2116 
2117 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2118 
2119 	return 0;
2120 }
2121 
2122 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2123 			  bool line_status)
2124 {
2125 	if (!irqchip_in_kernel(kvm))
2126 		return -ENXIO;
2127 
2128 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2129 					irq_event->irq, irq_event->level,
2130 					line_status);
2131 	return 0;
2132 }
2133 
2134 
2135 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2136 			    struct kvm_enable_cap *cap)
2137 {
2138 	int r;
2139 
2140 	if (cap->flags)
2141 		return -EINVAL;
2142 
2143 	switch (cap->cap) {
2144 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2145 	case KVM_CAP_PPC_ENABLE_HCALL: {
2146 		unsigned long hcall = cap->args[0];
2147 
2148 		r = -EINVAL;
2149 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2150 		    cap->args[1] > 1)
2151 			break;
2152 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2153 			break;
2154 		if (cap->args[1])
2155 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2156 		else
2157 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2158 		r = 0;
2159 		break;
2160 	}
2161 	case KVM_CAP_PPC_SMT: {
2162 		unsigned long mode = cap->args[0];
2163 		unsigned long flags = cap->args[1];
2164 
2165 		r = -EINVAL;
2166 		if (kvm->arch.kvm_ops->set_smt_mode)
2167 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2168 		break;
2169 	}
2170 
2171 	case KVM_CAP_PPC_NESTED_HV:
2172 		r = -EINVAL;
2173 		if (!is_kvmppc_hv_enabled(kvm) ||
2174 		    !kvm->arch.kvm_ops->enable_nested)
2175 			break;
2176 		r = kvm->arch.kvm_ops->enable_nested(kvm);
2177 		break;
2178 #endif
2179 	default:
2180 		r = -EINVAL;
2181 		break;
2182 	}
2183 
2184 	return r;
2185 }
2186 
2187 #ifdef CONFIG_PPC_BOOK3S_64
2188 /*
2189  * These functions check whether the underlying hardware is safe
2190  * against attacks based on observing the effects of speculatively
2191  * executed instructions, and whether it supplies instructions for
2192  * use in workarounds.  The information comes from firmware, either
2193  * via the device tree on powernv platforms or from an hcall on
2194  * pseries platforms.
2195  */
2196 #ifdef CONFIG_PPC_PSERIES
2197 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2198 {
2199 	struct h_cpu_char_result c;
2200 	unsigned long rc;
2201 
2202 	if (!machine_is(pseries))
2203 		return -ENOTTY;
2204 
2205 	rc = plpar_get_cpu_characteristics(&c);
2206 	if (rc == H_SUCCESS) {
2207 		cp->character = c.character;
2208 		cp->behaviour = c.behaviour;
2209 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2210 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2211 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2212 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2213 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2214 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2215 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2216 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2217 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2218 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2219 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2220 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2221 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2222 	}
2223 	return 0;
2224 }
2225 #else
2226 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2227 {
2228 	return -ENOTTY;
2229 }
2230 #endif
2231 
2232 static inline bool have_fw_feat(struct device_node *fw_features,
2233 				const char *state, const char *name)
2234 {
2235 	struct device_node *np;
2236 	bool r = false;
2237 
2238 	np = of_get_child_by_name(fw_features, name);
2239 	if (np) {
2240 		r = of_property_read_bool(np, state);
2241 		of_node_put(np);
2242 	}
2243 	return r;
2244 }
2245 
2246 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2247 {
2248 	struct device_node *np, *fw_features;
2249 	int r;
2250 
2251 	memset(cp, 0, sizeof(*cp));
2252 	r = pseries_get_cpu_char(cp);
2253 	if (r != -ENOTTY)
2254 		return r;
2255 
2256 	np = of_find_node_by_name(NULL, "ibm,opal");
2257 	if (np) {
2258 		fw_features = of_get_child_by_name(np, "fw-features");
2259 		of_node_put(np);
2260 		if (!fw_features)
2261 			return 0;
2262 		if (have_fw_feat(fw_features, "enabled",
2263 				 "inst-spec-barrier-ori31,31,0"))
2264 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2265 		if (have_fw_feat(fw_features, "enabled",
2266 				 "fw-bcctrl-serialized"))
2267 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2268 		if (have_fw_feat(fw_features, "enabled",
2269 				 "inst-l1d-flush-ori30,30,0"))
2270 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2271 		if (have_fw_feat(fw_features, "enabled",
2272 				 "inst-l1d-flush-trig2"))
2273 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2274 		if (have_fw_feat(fw_features, "enabled",
2275 				 "fw-l1d-thread-split"))
2276 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2277 		if (have_fw_feat(fw_features, "enabled",
2278 				 "fw-count-cache-disabled"))
2279 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2280 		if (have_fw_feat(fw_features, "enabled",
2281 				 "fw-count-cache-flush-bcctr2,0,0"))
2282 			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2283 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2284 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2285 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2286 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2287 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2288 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2289 			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2290 
2291 		if (have_fw_feat(fw_features, "enabled",
2292 				 "speculation-policy-favor-security"))
2293 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2294 		if (!have_fw_feat(fw_features, "disabled",
2295 				  "needs-l1d-flush-msr-pr-0-to-1"))
2296 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2297 		if (!have_fw_feat(fw_features, "disabled",
2298 				  "needs-spec-barrier-for-bound-checks"))
2299 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2300 		if (have_fw_feat(fw_features, "enabled",
2301 				 "needs-count-cache-flush-on-context-switch"))
2302 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2303 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2304 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2305 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2306 			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2307 
2308 		of_node_put(fw_features);
2309 	}
2310 
2311 	return 0;
2312 }
2313 #endif
2314 
2315 long kvm_arch_vm_ioctl(struct file *filp,
2316                        unsigned int ioctl, unsigned long arg)
2317 {
2318 	struct kvm *kvm __maybe_unused = filp->private_data;
2319 	void __user *argp = (void __user *)arg;
2320 	long r;
2321 
2322 	switch (ioctl) {
2323 	case KVM_PPC_GET_PVINFO: {
2324 		struct kvm_ppc_pvinfo pvinfo;
2325 		memset(&pvinfo, 0, sizeof(pvinfo));
2326 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2327 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2328 			r = -EFAULT;
2329 			goto out;
2330 		}
2331 
2332 		break;
2333 	}
2334 #ifdef CONFIG_SPAPR_TCE_IOMMU
2335 	case KVM_CREATE_SPAPR_TCE_64: {
2336 		struct kvm_create_spapr_tce_64 create_tce_64;
2337 
2338 		r = -EFAULT;
2339 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2340 			goto out;
2341 		if (create_tce_64.flags) {
2342 			r = -EINVAL;
2343 			goto out;
2344 		}
2345 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2346 		goto out;
2347 	}
2348 	case KVM_CREATE_SPAPR_TCE: {
2349 		struct kvm_create_spapr_tce create_tce;
2350 		struct kvm_create_spapr_tce_64 create_tce_64;
2351 
2352 		r = -EFAULT;
2353 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2354 			goto out;
2355 
2356 		create_tce_64.liobn = create_tce.liobn;
2357 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2358 		create_tce_64.offset = 0;
2359 		create_tce_64.size = create_tce.window_size >>
2360 				IOMMU_PAGE_SHIFT_4K;
2361 		create_tce_64.flags = 0;
2362 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2363 		goto out;
2364 	}
2365 #endif
2366 #ifdef CONFIG_PPC_BOOK3S_64
2367 	case KVM_PPC_GET_SMMU_INFO: {
2368 		struct kvm_ppc_smmu_info info;
2369 		struct kvm *kvm = filp->private_data;
2370 
2371 		memset(&info, 0, sizeof(info));
2372 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2373 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2374 			r = -EFAULT;
2375 		break;
2376 	}
2377 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2378 		struct kvm *kvm = filp->private_data;
2379 
2380 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2381 		break;
2382 	}
2383 	case KVM_PPC_CONFIGURE_V3_MMU: {
2384 		struct kvm *kvm = filp->private_data;
2385 		struct kvm_ppc_mmuv3_cfg cfg;
2386 
2387 		r = -EINVAL;
2388 		if (!kvm->arch.kvm_ops->configure_mmu)
2389 			goto out;
2390 		r = -EFAULT;
2391 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2392 			goto out;
2393 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2394 		break;
2395 	}
2396 	case KVM_PPC_GET_RMMU_INFO: {
2397 		struct kvm *kvm = filp->private_data;
2398 		struct kvm_ppc_rmmu_info info;
2399 
2400 		r = -EINVAL;
2401 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2402 			goto out;
2403 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2404 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2405 			r = -EFAULT;
2406 		break;
2407 	}
2408 	case KVM_PPC_GET_CPU_CHAR: {
2409 		struct kvm_ppc_cpu_char cpuchar;
2410 
2411 		r = kvmppc_get_cpu_char(&cpuchar);
2412 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2413 			r = -EFAULT;
2414 		break;
2415 	}
2416 	case KVM_PPC_SVM_OFF: {
2417 		struct kvm *kvm = filp->private_data;
2418 
2419 		r = 0;
2420 		if (!kvm->arch.kvm_ops->svm_off)
2421 			goto out;
2422 
2423 		r = kvm->arch.kvm_ops->svm_off(kvm);
2424 		break;
2425 	}
2426 	default: {
2427 		struct kvm *kvm = filp->private_data;
2428 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2429 	}
2430 #else /* CONFIG_PPC_BOOK3S_64 */
2431 	default:
2432 		r = -ENOTTY;
2433 #endif
2434 	}
2435 out:
2436 	return r;
2437 }
2438 
2439 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2440 static unsigned long nr_lpids;
2441 
2442 long kvmppc_alloc_lpid(void)
2443 {
2444 	long lpid;
2445 
2446 	do {
2447 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2448 		if (lpid >= nr_lpids) {
2449 			pr_err("%s: No LPIDs free\n", __func__);
2450 			return -ENOMEM;
2451 		}
2452 	} while (test_and_set_bit(lpid, lpid_inuse));
2453 
2454 	return lpid;
2455 }
2456 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2457 
2458 void kvmppc_claim_lpid(long lpid)
2459 {
2460 	set_bit(lpid, lpid_inuse);
2461 }
2462 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2463 
2464 void kvmppc_free_lpid(long lpid)
2465 {
2466 	clear_bit(lpid, lpid_inuse);
2467 }
2468 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2469 
2470 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2471 {
2472 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2473 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2474 }
2475 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2476 
2477 int kvm_arch_init(void *opaque)
2478 {
2479 	return 0;
2480 }
2481 
2482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2483