xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 
43 #include "timing.h"
44 #include "irq.h"
45 #include "../mm/mmu_decl.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include "trace.h"
49 
50 struct kvmppc_ops *kvmppc_hv_ops;
51 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
52 struct kvmppc_ops *kvmppc_pr_ops;
53 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
54 
55 
56 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
57 {
58 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
59 }
60 
61 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
62 {
63 	return false;
64 }
65 
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68 	return 1;
69 }
70 
71 /*
72  * Common checks before entering the guest world.  Call with interrupts
73  * disabled.
74  *
75  * returns:
76  *
77  * == 1 if we're ready to go into guest state
78  * <= 0 if we need to go back to the host with return value
79  */
80 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
81 {
82 	int r;
83 
84 	WARN_ON(irqs_disabled());
85 	hard_irq_disable();
86 
87 	while (true) {
88 		if (need_resched()) {
89 			local_irq_enable();
90 			cond_resched();
91 			hard_irq_disable();
92 			continue;
93 		}
94 
95 		if (signal_pending(current)) {
96 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
97 			vcpu->run->exit_reason = KVM_EXIT_INTR;
98 			r = -EINTR;
99 			break;
100 		}
101 
102 		vcpu->mode = IN_GUEST_MODE;
103 
104 		/*
105 		 * Reading vcpu->requests must happen after setting vcpu->mode,
106 		 * so we don't miss a request because the requester sees
107 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
108 		 * before next entering the guest (and thus doesn't IPI).
109 		 * This also orders the write to mode from any reads
110 		 * to the page tables done while the VCPU is running.
111 		 * Please see the comment in kvm_flush_remote_tlbs.
112 		 */
113 		smp_mb();
114 
115 		if (kvm_request_pending(vcpu)) {
116 			/* Make sure we process requests preemptable */
117 			local_irq_enable();
118 			trace_kvm_check_requests(vcpu);
119 			r = kvmppc_core_check_requests(vcpu);
120 			hard_irq_disable();
121 			if (r > 0)
122 				continue;
123 			break;
124 		}
125 
126 		if (kvmppc_core_prepare_to_enter(vcpu)) {
127 			/* interrupts got enabled in between, so we
128 			   are back at square 1 */
129 			continue;
130 		}
131 
132 		guest_enter_irqoff();
133 		return 1;
134 	}
135 
136 	/* return to host */
137 	local_irq_enable();
138 	return r;
139 }
140 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
141 
142 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
143 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
144 {
145 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
146 	int i;
147 
148 	shared->sprg0 = swab64(shared->sprg0);
149 	shared->sprg1 = swab64(shared->sprg1);
150 	shared->sprg2 = swab64(shared->sprg2);
151 	shared->sprg3 = swab64(shared->sprg3);
152 	shared->srr0 = swab64(shared->srr0);
153 	shared->srr1 = swab64(shared->srr1);
154 	shared->dar = swab64(shared->dar);
155 	shared->msr = swab64(shared->msr);
156 	shared->dsisr = swab32(shared->dsisr);
157 	shared->int_pending = swab32(shared->int_pending);
158 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
159 		shared->sr[i] = swab32(shared->sr[i]);
160 }
161 #endif
162 
163 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
164 {
165 	int nr = kvmppc_get_gpr(vcpu, 11);
166 	int r;
167 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
168 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
169 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
170 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
171 	unsigned long r2 = 0;
172 
173 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
174 		/* 32 bit mode */
175 		param1 &= 0xffffffff;
176 		param2 &= 0xffffffff;
177 		param3 &= 0xffffffff;
178 		param4 &= 0xffffffff;
179 	}
180 
181 	switch (nr) {
182 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
183 	{
184 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
185 		/* Book3S can be little endian, find it out here */
186 		int shared_big_endian = true;
187 		if (vcpu->arch.intr_msr & MSR_LE)
188 			shared_big_endian = false;
189 		if (shared_big_endian != vcpu->arch.shared_big_endian)
190 			kvmppc_swab_shared(vcpu);
191 		vcpu->arch.shared_big_endian = shared_big_endian;
192 #endif
193 
194 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
195 			/*
196 			 * Older versions of the Linux magic page code had
197 			 * a bug where they would map their trampoline code
198 			 * NX. If that's the case, remove !PR NX capability.
199 			 */
200 			vcpu->arch.disable_kernel_nx = true;
201 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
202 		}
203 
204 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
205 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
206 
207 #ifdef CONFIG_PPC_64K_PAGES
208 		/*
209 		 * Make sure our 4k magic page is in the same window of a 64k
210 		 * page within the guest and within the host's page.
211 		 */
212 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
213 		    ((ulong)vcpu->arch.shared & 0xf000)) {
214 			void *old_shared = vcpu->arch.shared;
215 			ulong shared = (ulong)vcpu->arch.shared;
216 			void *new_shared;
217 
218 			shared &= PAGE_MASK;
219 			shared |= vcpu->arch.magic_page_pa & 0xf000;
220 			new_shared = (void*)shared;
221 			memcpy(new_shared, old_shared, 0x1000);
222 			vcpu->arch.shared = new_shared;
223 		}
224 #endif
225 
226 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
227 
228 		r = EV_SUCCESS;
229 		break;
230 	}
231 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
232 		r = EV_SUCCESS;
233 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
234 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
235 #endif
236 
237 		/* Second return value is in r4 */
238 		break;
239 	case EV_HCALL_TOKEN(EV_IDLE):
240 		r = EV_SUCCESS;
241 		kvm_vcpu_block(vcpu);
242 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
243 		break;
244 	default:
245 		r = EV_UNIMPLEMENTED;
246 		break;
247 	}
248 
249 	kvmppc_set_gpr(vcpu, 4, r2);
250 
251 	return r;
252 }
253 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
254 
255 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
256 {
257 	int r = false;
258 
259 	/* We have to know what CPU to virtualize */
260 	if (!vcpu->arch.pvr)
261 		goto out;
262 
263 	/* PAPR only works with book3s_64 */
264 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
265 		goto out;
266 
267 	/* HV KVM can only do PAPR mode for now */
268 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
269 		goto out;
270 
271 #ifdef CONFIG_KVM_BOOKE_HV
272 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
273 		goto out;
274 #endif
275 
276 	r = true;
277 
278 out:
279 	vcpu->arch.sane = r;
280 	return r ? 0 : -EINVAL;
281 }
282 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
283 
284 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
285 {
286 	enum emulation_result er;
287 	int r;
288 
289 	er = kvmppc_emulate_loadstore(vcpu);
290 	switch (er) {
291 	case EMULATE_DONE:
292 		/* Future optimization: only reload non-volatiles if they were
293 		 * actually modified. */
294 		r = RESUME_GUEST_NV;
295 		break;
296 	case EMULATE_AGAIN:
297 		r = RESUME_GUEST;
298 		break;
299 	case EMULATE_DO_MMIO:
300 		run->exit_reason = KVM_EXIT_MMIO;
301 		/* We must reload nonvolatiles because "update" load/store
302 		 * instructions modify register state. */
303 		/* Future optimization: only reload non-volatiles if they were
304 		 * actually modified. */
305 		r = RESUME_HOST_NV;
306 		break;
307 	case EMULATE_FAIL:
308 	{
309 		u32 last_inst;
310 
311 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
312 		/* XXX Deliver Program interrupt to guest. */
313 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
314 		r = RESUME_HOST;
315 		break;
316 	}
317 	default:
318 		WARN_ON(1);
319 		r = RESUME_GUEST;
320 	}
321 
322 	return r;
323 }
324 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
325 
326 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
327 	      bool data)
328 {
329 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
330 	struct kvmppc_pte pte;
331 	int r;
332 
333 	vcpu->stat.st++;
334 
335 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
336 			 XLATE_WRITE, &pte);
337 	if (r < 0)
338 		return r;
339 
340 	*eaddr = pte.raddr;
341 
342 	if (!pte.may_write)
343 		return -EPERM;
344 
345 	/* Magic page override */
346 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
347 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
348 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
349 		void *magic = vcpu->arch.shared;
350 		magic += pte.eaddr & 0xfff;
351 		memcpy(magic, ptr, size);
352 		return EMULATE_DONE;
353 	}
354 
355 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
356 		return EMULATE_DO_MMIO;
357 
358 	return EMULATE_DONE;
359 }
360 EXPORT_SYMBOL_GPL(kvmppc_st);
361 
362 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
363 		      bool data)
364 {
365 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
366 	struct kvmppc_pte pte;
367 	int rc;
368 
369 	vcpu->stat.ld++;
370 
371 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
372 			  XLATE_READ, &pte);
373 	if (rc)
374 		return rc;
375 
376 	*eaddr = pte.raddr;
377 
378 	if (!pte.may_read)
379 		return -EPERM;
380 
381 	if (!data && !pte.may_execute)
382 		return -ENOEXEC;
383 
384 	/* Magic page override */
385 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
386 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
387 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
388 		void *magic = vcpu->arch.shared;
389 		magic += pte.eaddr & 0xfff;
390 		memcpy(ptr, magic, size);
391 		return EMULATE_DONE;
392 	}
393 
394 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
395 		return EMULATE_DO_MMIO;
396 
397 	return EMULATE_DONE;
398 }
399 EXPORT_SYMBOL_GPL(kvmppc_ld);
400 
401 int kvm_arch_hardware_enable(void)
402 {
403 	return 0;
404 }
405 
406 int kvm_arch_hardware_setup(void)
407 {
408 	return 0;
409 }
410 
411 void kvm_arch_check_processor_compat(void *rtn)
412 {
413 	*(int *)rtn = kvmppc_core_check_processor_compat();
414 }
415 
416 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
417 {
418 	struct kvmppc_ops *kvm_ops = NULL;
419 	/*
420 	 * if we have both HV and PR enabled, default is HV
421 	 */
422 	if (type == 0) {
423 		if (kvmppc_hv_ops)
424 			kvm_ops = kvmppc_hv_ops;
425 		else
426 			kvm_ops = kvmppc_pr_ops;
427 		if (!kvm_ops)
428 			goto err_out;
429 	} else	if (type == KVM_VM_PPC_HV) {
430 		if (!kvmppc_hv_ops)
431 			goto err_out;
432 		kvm_ops = kvmppc_hv_ops;
433 	} else if (type == KVM_VM_PPC_PR) {
434 		if (!kvmppc_pr_ops)
435 			goto err_out;
436 		kvm_ops = kvmppc_pr_ops;
437 	} else
438 		goto err_out;
439 
440 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
441 		return -ENOENT;
442 
443 	kvm->arch.kvm_ops = kvm_ops;
444 	return kvmppc_core_init_vm(kvm);
445 err_out:
446 	return -EINVAL;
447 }
448 
449 bool kvm_arch_has_vcpu_debugfs(void)
450 {
451 	return false;
452 }
453 
454 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
455 {
456 	return 0;
457 }
458 
459 void kvm_arch_destroy_vm(struct kvm *kvm)
460 {
461 	unsigned int i;
462 	struct kvm_vcpu *vcpu;
463 
464 #ifdef CONFIG_KVM_XICS
465 	/*
466 	 * We call kick_all_cpus_sync() to ensure that all
467 	 * CPUs have executed any pending IPIs before we
468 	 * continue and free VCPUs structures below.
469 	 */
470 	if (is_kvmppc_hv_enabled(kvm))
471 		kick_all_cpus_sync();
472 #endif
473 
474 	kvm_for_each_vcpu(i, vcpu, kvm)
475 		kvm_arch_vcpu_free(vcpu);
476 
477 	mutex_lock(&kvm->lock);
478 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
479 		kvm->vcpus[i] = NULL;
480 
481 	atomic_set(&kvm->online_vcpus, 0);
482 
483 	kvmppc_core_destroy_vm(kvm);
484 
485 	mutex_unlock(&kvm->lock);
486 
487 	/* drop the module reference */
488 	module_put(kvm->arch.kvm_ops->owner);
489 }
490 
491 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
492 {
493 	int r;
494 	/* Assume we're using HV mode when the HV module is loaded */
495 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
496 
497 	if (kvm) {
498 		/*
499 		 * Hooray - we know which VM type we're running on. Depend on
500 		 * that rather than the guess above.
501 		 */
502 		hv_enabled = is_kvmppc_hv_enabled(kvm);
503 	}
504 
505 	switch (ext) {
506 #ifdef CONFIG_BOOKE
507 	case KVM_CAP_PPC_BOOKE_SREGS:
508 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
509 	case KVM_CAP_PPC_EPR:
510 #else
511 	case KVM_CAP_PPC_SEGSTATE:
512 	case KVM_CAP_PPC_HIOR:
513 	case KVM_CAP_PPC_PAPR:
514 #endif
515 	case KVM_CAP_PPC_UNSET_IRQ:
516 	case KVM_CAP_PPC_IRQ_LEVEL:
517 	case KVM_CAP_ENABLE_CAP:
518 	case KVM_CAP_ENABLE_CAP_VM:
519 	case KVM_CAP_ONE_REG:
520 	case KVM_CAP_IOEVENTFD:
521 	case KVM_CAP_DEVICE_CTRL:
522 	case KVM_CAP_IMMEDIATE_EXIT:
523 		r = 1;
524 		break;
525 	case KVM_CAP_PPC_PAIRED_SINGLES:
526 	case KVM_CAP_PPC_OSI:
527 	case KVM_CAP_PPC_GET_PVINFO:
528 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
529 	case KVM_CAP_SW_TLB:
530 #endif
531 		/* We support this only for PR */
532 		r = !hv_enabled;
533 		break;
534 #ifdef CONFIG_KVM_MPIC
535 	case KVM_CAP_IRQ_MPIC:
536 		r = 1;
537 		break;
538 #endif
539 
540 #ifdef CONFIG_PPC_BOOK3S_64
541 	case KVM_CAP_SPAPR_TCE:
542 	case KVM_CAP_SPAPR_TCE_64:
543 		/* fallthrough */
544 	case KVM_CAP_SPAPR_TCE_VFIO:
545 	case KVM_CAP_PPC_RTAS:
546 	case KVM_CAP_PPC_FIXUP_HCALL:
547 	case KVM_CAP_PPC_ENABLE_HCALL:
548 #ifdef CONFIG_KVM_XICS
549 	case KVM_CAP_IRQ_XICS:
550 #endif
551 		r = 1;
552 		break;
553 
554 	case KVM_CAP_PPC_ALLOC_HTAB:
555 		r = hv_enabled;
556 		break;
557 #endif /* CONFIG_PPC_BOOK3S_64 */
558 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
559 	case KVM_CAP_PPC_SMT:
560 		r = 0;
561 		if (kvm) {
562 			if (kvm->arch.emul_smt_mode > 1)
563 				r = kvm->arch.emul_smt_mode;
564 			else
565 				r = kvm->arch.smt_mode;
566 		} else if (hv_enabled) {
567 			if (cpu_has_feature(CPU_FTR_ARCH_300))
568 				r = 1;
569 			else
570 				r = threads_per_subcore;
571 		}
572 		break;
573 	case KVM_CAP_PPC_SMT_POSSIBLE:
574 		r = 1;
575 		if (hv_enabled) {
576 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
577 				r = ((threads_per_subcore << 1) - 1);
578 			else
579 				/* P9 can emulate dbells, so allow any mode */
580 				r = 8 | 4 | 2 | 1;
581 		}
582 		break;
583 	case KVM_CAP_PPC_RMA:
584 		r = 0;
585 		break;
586 	case KVM_CAP_PPC_HWRNG:
587 		r = kvmppc_hwrng_present();
588 		break;
589 	case KVM_CAP_PPC_MMU_RADIX:
590 		r = !!(hv_enabled && radix_enabled());
591 		break;
592 	case KVM_CAP_PPC_MMU_HASH_V3:
593 		r = !!(hv_enabled && !radix_enabled() &&
594 		       cpu_has_feature(CPU_FTR_ARCH_300));
595 		break;
596 #endif
597 	case KVM_CAP_SYNC_MMU:
598 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
599 		r = hv_enabled;
600 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
601 		r = 1;
602 #else
603 		r = 0;
604 #endif
605 		break;
606 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
607 	case KVM_CAP_PPC_HTAB_FD:
608 		r = hv_enabled;
609 		break;
610 #endif
611 	case KVM_CAP_NR_VCPUS:
612 		/*
613 		 * Recommending a number of CPUs is somewhat arbitrary; we
614 		 * return the number of present CPUs for -HV (since a host
615 		 * will have secondary threads "offline"), and for other KVM
616 		 * implementations just count online CPUs.
617 		 */
618 		if (hv_enabled)
619 			r = num_present_cpus();
620 		else
621 			r = num_online_cpus();
622 		break;
623 	case KVM_CAP_NR_MEMSLOTS:
624 		r = KVM_USER_MEM_SLOTS;
625 		break;
626 	case KVM_CAP_MAX_VCPUS:
627 		r = KVM_MAX_VCPUS;
628 		break;
629 #ifdef CONFIG_PPC_BOOK3S_64
630 	case KVM_CAP_PPC_GET_SMMU_INFO:
631 		r = 1;
632 		break;
633 	case KVM_CAP_SPAPR_MULTITCE:
634 		r = 1;
635 		break;
636 	case KVM_CAP_SPAPR_RESIZE_HPT:
637 		/* Disable this on POWER9 until code handles new HPTE format */
638 		r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
639 		break;
640 #endif
641 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
642 	case KVM_CAP_PPC_FWNMI:
643 		r = hv_enabled;
644 		break;
645 #endif
646 	case KVM_CAP_PPC_HTM:
647 		r = cpu_has_feature(CPU_FTR_TM_COMP) &&
648 		    is_kvmppc_hv_enabled(kvm);
649 		break;
650 	default:
651 		r = 0;
652 		break;
653 	}
654 	return r;
655 
656 }
657 
658 long kvm_arch_dev_ioctl(struct file *filp,
659                         unsigned int ioctl, unsigned long arg)
660 {
661 	return -EINVAL;
662 }
663 
664 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
665 			   struct kvm_memory_slot *dont)
666 {
667 	kvmppc_core_free_memslot(kvm, free, dont);
668 }
669 
670 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
671 			    unsigned long npages)
672 {
673 	return kvmppc_core_create_memslot(kvm, slot, npages);
674 }
675 
676 int kvm_arch_prepare_memory_region(struct kvm *kvm,
677 				   struct kvm_memory_slot *memslot,
678 				   const struct kvm_userspace_memory_region *mem,
679 				   enum kvm_mr_change change)
680 {
681 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
682 }
683 
684 void kvm_arch_commit_memory_region(struct kvm *kvm,
685 				   const struct kvm_userspace_memory_region *mem,
686 				   const struct kvm_memory_slot *old,
687 				   const struct kvm_memory_slot *new,
688 				   enum kvm_mr_change change)
689 {
690 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
691 }
692 
693 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
694 				   struct kvm_memory_slot *slot)
695 {
696 	kvmppc_core_flush_memslot(kvm, slot);
697 }
698 
699 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
700 {
701 	struct kvm_vcpu *vcpu;
702 	vcpu = kvmppc_core_vcpu_create(kvm, id);
703 	if (!IS_ERR(vcpu)) {
704 		vcpu->arch.wqp = &vcpu->wq;
705 		kvmppc_create_vcpu_debugfs(vcpu, id);
706 	}
707 	return vcpu;
708 }
709 
710 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
711 {
712 }
713 
714 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
715 {
716 	/* Make sure we're not using the vcpu anymore */
717 	hrtimer_cancel(&vcpu->arch.dec_timer);
718 
719 	kvmppc_remove_vcpu_debugfs(vcpu);
720 
721 	switch (vcpu->arch.irq_type) {
722 	case KVMPPC_IRQ_MPIC:
723 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
724 		break;
725 	case KVMPPC_IRQ_XICS:
726 		if (xive_enabled())
727 			kvmppc_xive_cleanup_vcpu(vcpu);
728 		else
729 			kvmppc_xics_free_icp(vcpu);
730 		break;
731 	}
732 
733 	kvmppc_core_vcpu_free(vcpu);
734 }
735 
736 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
737 {
738 	kvm_arch_vcpu_free(vcpu);
739 }
740 
741 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
742 {
743 	return kvmppc_core_pending_dec(vcpu);
744 }
745 
746 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
747 {
748 	struct kvm_vcpu *vcpu;
749 
750 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
751 	kvmppc_decrementer_func(vcpu);
752 
753 	return HRTIMER_NORESTART;
754 }
755 
756 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
757 {
758 	int ret;
759 
760 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
761 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
762 	vcpu->arch.dec_expires = ~(u64)0;
763 
764 #ifdef CONFIG_KVM_EXIT_TIMING
765 	mutex_init(&vcpu->arch.exit_timing_lock);
766 #endif
767 	ret = kvmppc_subarch_vcpu_init(vcpu);
768 	return ret;
769 }
770 
771 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
772 {
773 	kvmppc_mmu_destroy(vcpu);
774 	kvmppc_subarch_vcpu_uninit(vcpu);
775 }
776 
777 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
778 {
779 #ifdef CONFIG_BOOKE
780 	/*
781 	 * vrsave (formerly usprg0) isn't used by Linux, but may
782 	 * be used by the guest.
783 	 *
784 	 * On non-booke this is associated with Altivec and
785 	 * is handled by code in book3s.c.
786 	 */
787 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
788 #endif
789 	kvmppc_core_vcpu_load(vcpu, cpu);
790 }
791 
792 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
793 {
794 	kvmppc_core_vcpu_put(vcpu);
795 #ifdef CONFIG_BOOKE
796 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
797 #endif
798 }
799 
800 /*
801  * irq_bypass_add_producer and irq_bypass_del_producer are only
802  * useful if the architecture supports PCI passthrough.
803  * irq_bypass_stop and irq_bypass_start are not needed and so
804  * kvm_ops are not defined for them.
805  */
806 bool kvm_arch_has_irq_bypass(void)
807 {
808 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
809 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
810 }
811 
812 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
813 				     struct irq_bypass_producer *prod)
814 {
815 	struct kvm_kernel_irqfd *irqfd =
816 		container_of(cons, struct kvm_kernel_irqfd, consumer);
817 	struct kvm *kvm = irqfd->kvm;
818 
819 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
820 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
821 
822 	return 0;
823 }
824 
825 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
826 				      struct irq_bypass_producer *prod)
827 {
828 	struct kvm_kernel_irqfd *irqfd =
829 		container_of(cons, struct kvm_kernel_irqfd, consumer);
830 	struct kvm *kvm = irqfd->kvm;
831 
832 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
833 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
834 }
835 
836 #ifdef CONFIG_VSX
837 static inline int kvmppc_get_vsr_dword_offset(int index)
838 {
839 	int offset;
840 
841 	if ((index != 0) && (index != 1))
842 		return -1;
843 
844 #ifdef __BIG_ENDIAN
845 	offset =  index;
846 #else
847 	offset = 1 - index;
848 #endif
849 
850 	return offset;
851 }
852 
853 static inline int kvmppc_get_vsr_word_offset(int index)
854 {
855 	int offset;
856 
857 	if ((index > 3) || (index < 0))
858 		return -1;
859 
860 #ifdef __BIG_ENDIAN
861 	offset = index;
862 #else
863 	offset = 3 - index;
864 #endif
865 	return offset;
866 }
867 
868 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
869 	u64 gpr)
870 {
871 	union kvmppc_one_reg val;
872 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
873 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
874 
875 	if (offset == -1)
876 		return;
877 
878 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
879 		val.vval = VCPU_VSX_VR(vcpu, index);
880 		val.vsxval[offset] = gpr;
881 		VCPU_VSX_VR(vcpu, index) = val.vval;
882 	} else {
883 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
884 	}
885 }
886 
887 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
888 	u64 gpr)
889 {
890 	union kvmppc_one_reg val;
891 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
892 
893 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
894 		val.vval = VCPU_VSX_VR(vcpu, index);
895 		val.vsxval[0] = gpr;
896 		val.vsxval[1] = gpr;
897 		VCPU_VSX_VR(vcpu, index) = val.vval;
898 	} else {
899 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
900 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
901 	}
902 }
903 
904 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
905 	u32 gpr32)
906 {
907 	union kvmppc_one_reg val;
908 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
909 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
910 	int dword_offset, word_offset;
911 
912 	if (offset == -1)
913 		return;
914 
915 	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
916 		val.vval = VCPU_VSX_VR(vcpu, index);
917 		val.vsx32val[offset] = gpr32;
918 		VCPU_VSX_VR(vcpu, index) = val.vval;
919 	} else {
920 		dword_offset = offset / 2;
921 		word_offset = offset % 2;
922 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
923 		val.vsx32val[word_offset] = gpr32;
924 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
925 	}
926 }
927 #endif /* CONFIG_VSX */
928 
929 #ifdef CONFIG_PPC_FPU
930 static inline u64 sp_to_dp(u32 fprs)
931 {
932 	u64 fprd;
933 
934 	preempt_disable();
935 	enable_kernel_fp();
936 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
937 	     : "fr0");
938 	preempt_enable();
939 	return fprd;
940 }
941 
942 static inline u32 dp_to_sp(u64 fprd)
943 {
944 	u32 fprs;
945 
946 	preempt_disable();
947 	enable_kernel_fp();
948 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
949 	     : "fr0");
950 	preempt_enable();
951 	return fprs;
952 }
953 
954 #else
955 #define sp_to_dp(x)	(x)
956 #define dp_to_sp(x)	(x)
957 #endif /* CONFIG_PPC_FPU */
958 
959 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
960                                       struct kvm_run *run)
961 {
962 	u64 uninitialized_var(gpr);
963 
964 	if (run->mmio.len > sizeof(gpr)) {
965 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
966 		return;
967 	}
968 
969 	if (!vcpu->arch.mmio_host_swabbed) {
970 		switch (run->mmio.len) {
971 		case 8: gpr = *(u64 *)run->mmio.data; break;
972 		case 4: gpr = *(u32 *)run->mmio.data; break;
973 		case 2: gpr = *(u16 *)run->mmio.data; break;
974 		case 1: gpr = *(u8 *)run->mmio.data; break;
975 		}
976 	} else {
977 		switch (run->mmio.len) {
978 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
979 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
980 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
981 		case 1: gpr = *(u8 *)run->mmio.data; break;
982 		}
983 	}
984 
985 	/* conversion between single and double precision */
986 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
987 		gpr = sp_to_dp(gpr);
988 
989 	if (vcpu->arch.mmio_sign_extend) {
990 		switch (run->mmio.len) {
991 #ifdef CONFIG_PPC64
992 		case 4:
993 			gpr = (s64)(s32)gpr;
994 			break;
995 #endif
996 		case 2:
997 			gpr = (s64)(s16)gpr;
998 			break;
999 		case 1:
1000 			gpr = (s64)(s8)gpr;
1001 			break;
1002 		}
1003 	}
1004 
1005 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1006 	case KVM_MMIO_REG_GPR:
1007 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1008 		break;
1009 	case KVM_MMIO_REG_FPR:
1010 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1011 		break;
1012 #ifdef CONFIG_PPC_BOOK3S
1013 	case KVM_MMIO_REG_QPR:
1014 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1015 		break;
1016 	case KVM_MMIO_REG_FQPR:
1017 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1018 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1019 		break;
1020 #endif
1021 #ifdef CONFIG_VSX
1022 	case KVM_MMIO_REG_VSX:
1023 		if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1024 			kvmppc_set_vsr_dword(vcpu, gpr);
1025 		else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1026 			kvmppc_set_vsr_word(vcpu, gpr);
1027 		else if (vcpu->arch.mmio_vsx_copy_type ==
1028 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1029 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1030 		break;
1031 #endif
1032 	default:
1033 		BUG();
1034 	}
1035 }
1036 
1037 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1038 				unsigned int rt, unsigned int bytes,
1039 				int is_default_endian, int sign_extend)
1040 {
1041 	int idx, ret;
1042 	bool host_swabbed;
1043 
1044 	/* Pity C doesn't have a logical XOR operator */
1045 	if (kvmppc_need_byteswap(vcpu)) {
1046 		host_swabbed = is_default_endian;
1047 	} else {
1048 		host_swabbed = !is_default_endian;
1049 	}
1050 
1051 	if (bytes > sizeof(run->mmio.data)) {
1052 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1053 		       run->mmio.len);
1054 	}
1055 
1056 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1057 	run->mmio.len = bytes;
1058 	run->mmio.is_write = 0;
1059 
1060 	vcpu->arch.io_gpr = rt;
1061 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1062 	vcpu->mmio_needed = 1;
1063 	vcpu->mmio_is_write = 0;
1064 	vcpu->arch.mmio_sign_extend = sign_extend;
1065 
1066 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1067 
1068 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1069 			      bytes, &run->mmio.data);
1070 
1071 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1072 
1073 	if (!ret) {
1074 		kvmppc_complete_mmio_load(vcpu, run);
1075 		vcpu->mmio_needed = 0;
1076 		return EMULATE_DONE;
1077 	}
1078 
1079 	return EMULATE_DO_MMIO;
1080 }
1081 
1082 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1083 		       unsigned int rt, unsigned int bytes,
1084 		       int is_default_endian)
1085 {
1086 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1087 }
1088 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1089 
1090 /* Same as above, but sign extends */
1091 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1092 			unsigned int rt, unsigned int bytes,
1093 			int is_default_endian)
1094 {
1095 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1096 }
1097 
1098 #ifdef CONFIG_VSX
1099 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1100 			unsigned int rt, unsigned int bytes,
1101 			int is_default_endian, int mmio_sign_extend)
1102 {
1103 	enum emulation_result emulated = EMULATE_DONE;
1104 
1105 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1106 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1107 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1108 		return EMULATE_FAIL;
1109 	}
1110 
1111 	while (vcpu->arch.mmio_vsx_copy_nums) {
1112 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1113 			is_default_endian, mmio_sign_extend);
1114 
1115 		if (emulated != EMULATE_DONE)
1116 			break;
1117 
1118 		vcpu->arch.paddr_accessed += run->mmio.len;
1119 
1120 		vcpu->arch.mmio_vsx_copy_nums--;
1121 		vcpu->arch.mmio_vsx_offset++;
1122 	}
1123 	return emulated;
1124 }
1125 #endif /* CONFIG_VSX */
1126 
1127 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1128 			u64 val, unsigned int bytes, int is_default_endian)
1129 {
1130 	void *data = run->mmio.data;
1131 	int idx, ret;
1132 	bool host_swabbed;
1133 
1134 	/* Pity C doesn't have a logical XOR operator */
1135 	if (kvmppc_need_byteswap(vcpu)) {
1136 		host_swabbed = is_default_endian;
1137 	} else {
1138 		host_swabbed = !is_default_endian;
1139 	}
1140 
1141 	if (bytes > sizeof(run->mmio.data)) {
1142 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1143 		       run->mmio.len);
1144 	}
1145 
1146 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1147 	run->mmio.len = bytes;
1148 	run->mmio.is_write = 1;
1149 	vcpu->mmio_needed = 1;
1150 	vcpu->mmio_is_write = 1;
1151 
1152 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1153 		val = dp_to_sp(val);
1154 
1155 	/* Store the value at the lowest bytes in 'data'. */
1156 	if (!host_swabbed) {
1157 		switch (bytes) {
1158 		case 8: *(u64 *)data = val; break;
1159 		case 4: *(u32 *)data = val; break;
1160 		case 2: *(u16 *)data = val; break;
1161 		case 1: *(u8  *)data = val; break;
1162 		}
1163 	} else {
1164 		switch (bytes) {
1165 		case 8: *(u64 *)data = swab64(val); break;
1166 		case 4: *(u32 *)data = swab32(val); break;
1167 		case 2: *(u16 *)data = swab16(val); break;
1168 		case 1: *(u8  *)data = val; break;
1169 		}
1170 	}
1171 
1172 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1173 
1174 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1175 			       bytes, &run->mmio.data);
1176 
1177 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1178 
1179 	if (!ret) {
1180 		vcpu->mmio_needed = 0;
1181 		return EMULATE_DONE;
1182 	}
1183 
1184 	return EMULATE_DO_MMIO;
1185 }
1186 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1187 
1188 #ifdef CONFIG_VSX
1189 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1190 {
1191 	u32 dword_offset, word_offset;
1192 	union kvmppc_one_reg reg;
1193 	int vsx_offset = 0;
1194 	int copy_type = vcpu->arch.mmio_vsx_copy_type;
1195 	int result = 0;
1196 
1197 	switch (copy_type) {
1198 	case KVMPPC_VSX_COPY_DWORD:
1199 		vsx_offset =
1200 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1201 
1202 		if (vsx_offset == -1) {
1203 			result = -1;
1204 			break;
1205 		}
1206 
1207 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1208 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1209 		} else {
1210 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1211 			*val = reg.vsxval[vsx_offset];
1212 		}
1213 		break;
1214 
1215 	case KVMPPC_VSX_COPY_WORD:
1216 		vsx_offset =
1217 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1218 
1219 		if (vsx_offset == -1) {
1220 			result = -1;
1221 			break;
1222 		}
1223 
1224 		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1225 			dword_offset = vsx_offset / 2;
1226 			word_offset = vsx_offset % 2;
1227 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1228 			*val = reg.vsx32val[word_offset];
1229 		} else {
1230 			reg.vval = VCPU_VSX_VR(vcpu, rs);
1231 			*val = reg.vsx32val[vsx_offset];
1232 		}
1233 		break;
1234 
1235 	default:
1236 		result = -1;
1237 		break;
1238 	}
1239 
1240 	return result;
1241 }
1242 
1243 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1244 			int rs, unsigned int bytes, int is_default_endian)
1245 {
1246 	u64 val;
1247 	enum emulation_result emulated = EMULATE_DONE;
1248 
1249 	vcpu->arch.io_gpr = rs;
1250 
1251 	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1252 	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1253 		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1254 		return EMULATE_FAIL;
1255 	}
1256 
1257 	while (vcpu->arch.mmio_vsx_copy_nums) {
1258 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1259 			return EMULATE_FAIL;
1260 
1261 		emulated = kvmppc_handle_store(run, vcpu,
1262 			 val, bytes, is_default_endian);
1263 
1264 		if (emulated != EMULATE_DONE)
1265 			break;
1266 
1267 		vcpu->arch.paddr_accessed += run->mmio.len;
1268 
1269 		vcpu->arch.mmio_vsx_copy_nums--;
1270 		vcpu->arch.mmio_vsx_offset++;
1271 	}
1272 
1273 	return emulated;
1274 }
1275 
1276 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1277 			struct kvm_run *run)
1278 {
1279 	enum emulation_result emulated = EMULATE_FAIL;
1280 	int r;
1281 
1282 	vcpu->arch.paddr_accessed += run->mmio.len;
1283 
1284 	if (!vcpu->mmio_is_write) {
1285 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1286 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1287 	} else {
1288 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1289 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1290 	}
1291 
1292 	switch (emulated) {
1293 	case EMULATE_DO_MMIO:
1294 		run->exit_reason = KVM_EXIT_MMIO;
1295 		r = RESUME_HOST;
1296 		break;
1297 	case EMULATE_FAIL:
1298 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1299 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1300 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1301 		r = RESUME_HOST;
1302 		break;
1303 	default:
1304 		r = RESUME_GUEST;
1305 		break;
1306 	}
1307 	return r;
1308 }
1309 #endif /* CONFIG_VSX */
1310 
1311 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1312 {
1313 	int r = 0;
1314 	union kvmppc_one_reg val;
1315 	int size;
1316 
1317 	size = one_reg_size(reg->id);
1318 	if (size > sizeof(val))
1319 		return -EINVAL;
1320 
1321 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1322 	if (r == -EINVAL) {
1323 		r = 0;
1324 		switch (reg->id) {
1325 #ifdef CONFIG_ALTIVEC
1326 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1327 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1328 				r = -ENXIO;
1329 				break;
1330 			}
1331 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1332 			break;
1333 		case KVM_REG_PPC_VSCR:
1334 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1335 				r = -ENXIO;
1336 				break;
1337 			}
1338 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1339 			break;
1340 		case KVM_REG_PPC_VRSAVE:
1341 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1342 			break;
1343 #endif /* CONFIG_ALTIVEC */
1344 		default:
1345 			r = -EINVAL;
1346 			break;
1347 		}
1348 	}
1349 
1350 	if (r)
1351 		return r;
1352 
1353 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1354 		r = -EFAULT;
1355 
1356 	return r;
1357 }
1358 
1359 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1360 {
1361 	int r;
1362 	union kvmppc_one_reg val;
1363 	int size;
1364 
1365 	size = one_reg_size(reg->id);
1366 	if (size > sizeof(val))
1367 		return -EINVAL;
1368 
1369 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1370 		return -EFAULT;
1371 
1372 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1373 	if (r == -EINVAL) {
1374 		r = 0;
1375 		switch (reg->id) {
1376 #ifdef CONFIG_ALTIVEC
1377 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1378 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1379 				r = -ENXIO;
1380 				break;
1381 			}
1382 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1383 			break;
1384 		case KVM_REG_PPC_VSCR:
1385 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1386 				r = -ENXIO;
1387 				break;
1388 			}
1389 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1390 			break;
1391 		case KVM_REG_PPC_VRSAVE:
1392 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1393 				r = -ENXIO;
1394 				break;
1395 			}
1396 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1397 			break;
1398 #endif /* CONFIG_ALTIVEC */
1399 		default:
1400 			r = -EINVAL;
1401 			break;
1402 		}
1403 	}
1404 
1405 	return r;
1406 }
1407 
1408 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1409 {
1410 	int r;
1411 	sigset_t sigsaved;
1412 
1413 	if (vcpu->mmio_needed) {
1414 		vcpu->mmio_needed = 0;
1415 		if (!vcpu->mmio_is_write)
1416 			kvmppc_complete_mmio_load(vcpu, run);
1417 #ifdef CONFIG_VSX
1418 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1419 			vcpu->arch.mmio_vsx_copy_nums--;
1420 			vcpu->arch.mmio_vsx_offset++;
1421 		}
1422 
1423 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1424 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1425 			if (r == RESUME_HOST) {
1426 				vcpu->mmio_needed = 1;
1427 				return r;
1428 			}
1429 		}
1430 #endif
1431 	} else if (vcpu->arch.osi_needed) {
1432 		u64 *gprs = run->osi.gprs;
1433 		int i;
1434 
1435 		for (i = 0; i < 32; i++)
1436 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1437 		vcpu->arch.osi_needed = 0;
1438 	} else if (vcpu->arch.hcall_needed) {
1439 		int i;
1440 
1441 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1442 		for (i = 0; i < 9; ++i)
1443 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1444 		vcpu->arch.hcall_needed = 0;
1445 #ifdef CONFIG_BOOKE
1446 	} else if (vcpu->arch.epr_needed) {
1447 		kvmppc_set_epr(vcpu, run->epr.epr);
1448 		vcpu->arch.epr_needed = 0;
1449 #endif
1450 	}
1451 
1452 	if (vcpu->sigset_active)
1453 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1454 
1455 	if (run->immediate_exit)
1456 		r = -EINTR;
1457 	else
1458 		r = kvmppc_vcpu_run(run, vcpu);
1459 
1460 	if (vcpu->sigset_active)
1461 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1462 
1463 	return r;
1464 }
1465 
1466 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1467 {
1468 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1469 		kvmppc_core_dequeue_external(vcpu);
1470 		return 0;
1471 	}
1472 
1473 	kvmppc_core_queue_external(vcpu, irq);
1474 
1475 	kvm_vcpu_kick(vcpu);
1476 
1477 	return 0;
1478 }
1479 
1480 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1481 				     struct kvm_enable_cap *cap)
1482 {
1483 	int r;
1484 
1485 	if (cap->flags)
1486 		return -EINVAL;
1487 
1488 	switch (cap->cap) {
1489 	case KVM_CAP_PPC_OSI:
1490 		r = 0;
1491 		vcpu->arch.osi_enabled = true;
1492 		break;
1493 	case KVM_CAP_PPC_PAPR:
1494 		r = 0;
1495 		vcpu->arch.papr_enabled = true;
1496 		break;
1497 	case KVM_CAP_PPC_EPR:
1498 		r = 0;
1499 		if (cap->args[0])
1500 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1501 		else
1502 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1503 		break;
1504 #ifdef CONFIG_BOOKE
1505 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1506 		r = 0;
1507 		vcpu->arch.watchdog_enabled = true;
1508 		break;
1509 #endif
1510 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1511 	case KVM_CAP_SW_TLB: {
1512 		struct kvm_config_tlb cfg;
1513 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1514 
1515 		r = -EFAULT;
1516 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1517 			break;
1518 
1519 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1520 		break;
1521 	}
1522 #endif
1523 #ifdef CONFIG_KVM_MPIC
1524 	case KVM_CAP_IRQ_MPIC: {
1525 		struct fd f;
1526 		struct kvm_device *dev;
1527 
1528 		r = -EBADF;
1529 		f = fdget(cap->args[0]);
1530 		if (!f.file)
1531 			break;
1532 
1533 		r = -EPERM;
1534 		dev = kvm_device_from_filp(f.file);
1535 		if (dev)
1536 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1537 
1538 		fdput(f);
1539 		break;
1540 	}
1541 #endif
1542 #ifdef CONFIG_KVM_XICS
1543 	case KVM_CAP_IRQ_XICS: {
1544 		struct fd f;
1545 		struct kvm_device *dev;
1546 
1547 		r = -EBADF;
1548 		f = fdget(cap->args[0]);
1549 		if (!f.file)
1550 			break;
1551 
1552 		r = -EPERM;
1553 		dev = kvm_device_from_filp(f.file);
1554 		if (dev) {
1555 			if (xive_enabled())
1556 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1557 			else
1558 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1559 		}
1560 
1561 		fdput(f);
1562 		break;
1563 	}
1564 #endif /* CONFIG_KVM_XICS */
1565 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1566 	case KVM_CAP_PPC_FWNMI:
1567 		r = -EINVAL;
1568 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1569 			break;
1570 		r = 0;
1571 		vcpu->kvm->arch.fwnmi_enabled = true;
1572 		break;
1573 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1574 	default:
1575 		r = -EINVAL;
1576 		break;
1577 	}
1578 
1579 	if (!r)
1580 		r = kvmppc_sanity_check(vcpu);
1581 
1582 	return r;
1583 }
1584 
1585 bool kvm_arch_intc_initialized(struct kvm *kvm)
1586 {
1587 #ifdef CONFIG_KVM_MPIC
1588 	if (kvm->arch.mpic)
1589 		return true;
1590 #endif
1591 #ifdef CONFIG_KVM_XICS
1592 	if (kvm->arch.xics || kvm->arch.xive)
1593 		return true;
1594 #endif
1595 	return false;
1596 }
1597 
1598 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1599                                     struct kvm_mp_state *mp_state)
1600 {
1601 	return -EINVAL;
1602 }
1603 
1604 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1605                                     struct kvm_mp_state *mp_state)
1606 {
1607 	return -EINVAL;
1608 }
1609 
1610 long kvm_arch_vcpu_ioctl(struct file *filp,
1611                          unsigned int ioctl, unsigned long arg)
1612 {
1613 	struct kvm_vcpu *vcpu = filp->private_data;
1614 	void __user *argp = (void __user *)arg;
1615 	long r;
1616 
1617 	switch (ioctl) {
1618 	case KVM_INTERRUPT: {
1619 		struct kvm_interrupt irq;
1620 		r = -EFAULT;
1621 		if (copy_from_user(&irq, argp, sizeof(irq)))
1622 			goto out;
1623 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1624 		goto out;
1625 	}
1626 
1627 	case KVM_ENABLE_CAP:
1628 	{
1629 		struct kvm_enable_cap cap;
1630 		r = -EFAULT;
1631 		if (copy_from_user(&cap, argp, sizeof(cap)))
1632 			goto out;
1633 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1634 		break;
1635 	}
1636 
1637 	case KVM_SET_ONE_REG:
1638 	case KVM_GET_ONE_REG:
1639 	{
1640 		struct kvm_one_reg reg;
1641 		r = -EFAULT;
1642 		if (copy_from_user(&reg, argp, sizeof(reg)))
1643 			goto out;
1644 		if (ioctl == KVM_SET_ONE_REG)
1645 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1646 		else
1647 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1648 		break;
1649 	}
1650 
1651 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1652 	case KVM_DIRTY_TLB: {
1653 		struct kvm_dirty_tlb dirty;
1654 		r = -EFAULT;
1655 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
1656 			goto out;
1657 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1658 		break;
1659 	}
1660 #endif
1661 	default:
1662 		r = -EINVAL;
1663 	}
1664 
1665 out:
1666 	return r;
1667 }
1668 
1669 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1670 {
1671 	return VM_FAULT_SIGBUS;
1672 }
1673 
1674 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1675 {
1676 	u32 inst_nop = 0x60000000;
1677 #ifdef CONFIG_KVM_BOOKE_HV
1678 	u32 inst_sc1 = 0x44000022;
1679 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1680 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1681 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1682 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1683 #else
1684 	u32 inst_lis = 0x3c000000;
1685 	u32 inst_ori = 0x60000000;
1686 	u32 inst_sc = 0x44000002;
1687 	u32 inst_imm_mask = 0xffff;
1688 
1689 	/*
1690 	 * The hypercall to get into KVM from within guest context is as
1691 	 * follows:
1692 	 *
1693 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
1694 	 *    ori r0, KVM_SC_MAGIC_R0@l
1695 	 *    sc
1696 	 *    nop
1697 	 */
1698 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1699 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1700 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1701 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1702 #endif
1703 
1704 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1705 
1706 	return 0;
1707 }
1708 
1709 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1710 			  bool line_status)
1711 {
1712 	if (!irqchip_in_kernel(kvm))
1713 		return -ENXIO;
1714 
1715 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1716 					irq_event->irq, irq_event->level,
1717 					line_status);
1718 	return 0;
1719 }
1720 
1721 
1722 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1723 				   struct kvm_enable_cap *cap)
1724 {
1725 	int r;
1726 
1727 	if (cap->flags)
1728 		return -EINVAL;
1729 
1730 	switch (cap->cap) {
1731 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1732 	case KVM_CAP_PPC_ENABLE_HCALL: {
1733 		unsigned long hcall = cap->args[0];
1734 
1735 		r = -EINVAL;
1736 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1737 		    cap->args[1] > 1)
1738 			break;
1739 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1740 			break;
1741 		if (cap->args[1])
1742 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1743 		else
1744 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1745 		r = 0;
1746 		break;
1747 	}
1748 	case KVM_CAP_PPC_SMT: {
1749 		unsigned long mode = cap->args[0];
1750 		unsigned long flags = cap->args[1];
1751 
1752 		r = -EINVAL;
1753 		if (kvm->arch.kvm_ops->set_smt_mode)
1754 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1755 		break;
1756 	}
1757 #endif
1758 	default:
1759 		r = -EINVAL;
1760 		break;
1761 	}
1762 
1763 	return r;
1764 }
1765 
1766 long kvm_arch_vm_ioctl(struct file *filp,
1767                        unsigned int ioctl, unsigned long arg)
1768 {
1769 	struct kvm *kvm __maybe_unused = filp->private_data;
1770 	void __user *argp = (void __user *)arg;
1771 	long r;
1772 
1773 	switch (ioctl) {
1774 	case KVM_PPC_GET_PVINFO: {
1775 		struct kvm_ppc_pvinfo pvinfo;
1776 		memset(&pvinfo, 0, sizeof(pvinfo));
1777 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1778 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1779 			r = -EFAULT;
1780 			goto out;
1781 		}
1782 
1783 		break;
1784 	}
1785 	case KVM_ENABLE_CAP:
1786 	{
1787 		struct kvm_enable_cap cap;
1788 		r = -EFAULT;
1789 		if (copy_from_user(&cap, argp, sizeof(cap)))
1790 			goto out;
1791 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1792 		break;
1793 	}
1794 #ifdef CONFIG_SPAPR_TCE_IOMMU
1795 	case KVM_CREATE_SPAPR_TCE_64: {
1796 		struct kvm_create_spapr_tce_64 create_tce_64;
1797 
1798 		r = -EFAULT;
1799 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1800 			goto out;
1801 		if (create_tce_64.flags) {
1802 			r = -EINVAL;
1803 			goto out;
1804 		}
1805 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1806 		goto out;
1807 	}
1808 	case KVM_CREATE_SPAPR_TCE: {
1809 		struct kvm_create_spapr_tce create_tce;
1810 		struct kvm_create_spapr_tce_64 create_tce_64;
1811 
1812 		r = -EFAULT;
1813 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1814 			goto out;
1815 
1816 		create_tce_64.liobn = create_tce.liobn;
1817 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1818 		create_tce_64.offset = 0;
1819 		create_tce_64.size = create_tce.window_size >>
1820 				IOMMU_PAGE_SHIFT_4K;
1821 		create_tce_64.flags = 0;
1822 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1823 		goto out;
1824 	}
1825 #endif
1826 #ifdef CONFIG_PPC_BOOK3S_64
1827 	case KVM_PPC_GET_SMMU_INFO: {
1828 		struct kvm_ppc_smmu_info info;
1829 		struct kvm *kvm = filp->private_data;
1830 
1831 		memset(&info, 0, sizeof(info));
1832 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1833 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1834 			r = -EFAULT;
1835 		break;
1836 	}
1837 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
1838 		struct kvm *kvm = filp->private_data;
1839 
1840 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1841 		break;
1842 	}
1843 	case KVM_PPC_CONFIGURE_V3_MMU: {
1844 		struct kvm *kvm = filp->private_data;
1845 		struct kvm_ppc_mmuv3_cfg cfg;
1846 
1847 		r = -EINVAL;
1848 		if (!kvm->arch.kvm_ops->configure_mmu)
1849 			goto out;
1850 		r = -EFAULT;
1851 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
1852 			goto out;
1853 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1854 		break;
1855 	}
1856 	case KVM_PPC_GET_RMMU_INFO: {
1857 		struct kvm *kvm = filp->private_data;
1858 		struct kvm_ppc_rmmu_info info;
1859 
1860 		r = -EINVAL;
1861 		if (!kvm->arch.kvm_ops->get_rmmu_info)
1862 			goto out;
1863 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1864 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1865 			r = -EFAULT;
1866 		break;
1867 	}
1868 	default: {
1869 		struct kvm *kvm = filp->private_data;
1870 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1871 	}
1872 #else /* CONFIG_PPC_BOOK3S_64 */
1873 	default:
1874 		r = -ENOTTY;
1875 #endif
1876 	}
1877 out:
1878 	return r;
1879 }
1880 
1881 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1882 static unsigned long nr_lpids;
1883 
1884 long kvmppc_alloc_lpid(void)
1885 {
1886 	long lpid;
1887 
1888 	do {
1889 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1890 		if (lpid >= nr_lpids) {
1891 			pr_err("%s: No LPIDs free\n", __func__);
1892 			return -ENOMEM;
1893 		}
1894 	} while (test_and_set_bit(lpid, lpid_inuse));
1895 
1896 	return lpid;
1897 }
1898 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1899 
1900 void kvmppc_claim_lpid(long lpid)
1901 {
1902 	set_bit(lpid, lpid_inuse);
1903 }
1904 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1905 
1906 void kvmppc_free_lpid(long lpid)
1907 {
1908 	clear_bit(lpid, lpid_inuse);
1909 }
1910 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1911 
1912 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1913 {
1914 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1915 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
1916 }
1917 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1918 
1919 int kvm_arch_init(void *opaque)
1920 {
1921 	return 0;
1922 }
1923 
1924 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
1925