1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <asm/cputable.h> 23 #include <linux/uaccess.h> 24 #include <asm/kvm_ppc.h> 25 #include <asm/cputhreads.h> 26 #include <asm/irqflags.h> 27 #include <asm/iommu.h> 28 #include <asm/switch_to.h> 29 #include <asm/xive.h> 30 #ifdef CONFIG_PPC_PSERIES 31 #include <asm/hvcall.h> 32 #include <asm/plpar_wrappers.h> 33 #endif 34 #include <asm/ultravisor.h> 35 36 #include "timing.h" 37 #include "irq.h" 38 #include "../mm/mmu_decl.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "trace.h" 42 43 struct kvmppc_ops *kvmppc_hv_ops; 44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 45 struct kvmppc_ops *kvmppc_pr_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 47 48 49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 50 { 51 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 52 } 53 54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 55 { 56 return kvm_arch_vcpu_runnable(vcpu); 57 } 58 59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 60 { 61 return false; 62 } 63 64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 65 { 66 return 1; 67 } 68 69 /* 70 * Common checks before entering the guest world. Call with interrupts 71 * disabled. 72 * 73 * returns: 74 * 75 * == 1 if we're ready to go into guest state 76 * <= 0 if we need to go back to the host with return value 77 */ 78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 79 { 80 int r; 81 82 WARN_ON(irqs_disabled()); 83 hard_irq_disable(); 84 85 while (true) { 86 if (need_resched()) { 87 local_irq_enable(); 88 cond_resched(); 89 hard_irq_disable(); 90 continue; 91 } 92 93 if (signal_pending(current)) { 94 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 95 vcpu->run->exit_reason = KVM_EXIT_INTR; 96 r = -EINTR; 97 break; 98 } 99 100 vcpu->mode = IN_GUEST_MODE; 101 102 /* 103 * Reading vcpu->requests must happen after setting vcpu->mode, 104 * so we don't miss a request because the requester sees 105 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 106 * before next entering the guest (and thus doesn't IPI). 107 * This also orders the write to mode from any reads 108 * to the page tables done while the VCPU is running. 109 * Please see the comment in kvm_flush_remote_tlbs. 110 */ 111 smp_mb(); 112 113 if (kvm_request_pending(vcpu)) { 114 /* Make sure we process requests preemptable */ 115 local_irq_enable(); 116 trace_kvm_check_requests(vcpu); 117 r = kvmppc_core_check_requests(vcpu); 118 hard_irq_disable(); 119 if (r > 0) 120 continue; 121 break; 122 } 123 124 if (kvmppc_core_prepare_to_enter(vcpu)) { 125 /* interrupts got enabled in between, so we 126 are back at square 1 */ 127 continue; 128 } 129 130 guest_enter_irqoff(); 131 return 1; 132 } 133 134 /* return to host */ 135 local_irq_enable(); 136 return r; 137 } 138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 139 140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 142 { 143 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 144 int i; 145 146 shared->sprg0 = swab64(shared->sprg0); 147 shared->sprg1 = swab64(shared->sprg1); 148 shared->sprg2 = swab64(shared->sprg2); 149 shared->sprg3 = swab64(shared->sprg3); 150 shared->srr0 = swab64(shared->srr0); 151 shared->srr1 = swab64(shared->srr1); 152 shared->dar = swab64(shared->dar); 153 shared->msr = swab64(shared->msr); 154 shared->dsisr = swab32(shared->dsisr); 155 shared->int_pending = swab32(shared->int_pending); 156 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 157 shared->sr[i] = swab32(shared->sr[i]); 158 } 159 #endif 160 161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 162 { 163 int nr = kvmppc_get_gpr(vcpu, 11); 164 int r; 165 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 166 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 167 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 168 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 169 unsigned long r2 = 0; 170 171 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 172 /* 32 bit mode */ 173 param1 &= 0xffffffff; 174 param2 &= 0xffffffff; 175 param3 &= 0xffffffff; 176 param4 &= 0xffffffff; 177 } 178 179 switch (nr) { 180 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 181 { 182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 183 /* Book3S can be little endian, find it out here */ 184 int shared_big_endian = true; 185 if (vcpu->arch.intr_msr & MSR_LE) 186 shared_big_endian = false; 187 if (shared_big_endian != vcpu->arch.shared_big_endian) 188 kvmppc_swab_shared(vcpu); 189 vcpu->arch.shared_big_endian = shared_big_endian; 190 #endif 191 192 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 193 /* 194 * Older versions of the Linux magic page code had 195 * a bug where they would map their trampoline code 196 * NX. If that's the case, remove !PR NX capability. 197 */ 198 vcpu->arch.disable_kernel_nx = true; 199 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 200 } 201 202 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 203 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 204 205 #ifdef CONFIG_PPC_64K_PAGES 206 /* 207 * Make sure our 4k magic page is in the same window of a 64k 208 * page within the guest and within the host's page. 209 */ 210 if ((vcpu->arch.magic_page_pa & 0xf000) != 211 ((ulong)vcpu->arch.shared & 0xf000)) { 212 void *old_shared = vcpu->arch.shared; 213 ulong shared = (ulong)vcpu->arch.shared; 214 void *new_shared; 215 216 shared &= PAGE_MASK; 217 shared |= vcpu->arch.magic_page_pa & 0xf000; 218 new_shared = (void*)shared; 219 memcpy(new_shared, old_shared, 0x1000); 220 vcpu->arch.shared = new_shared; 221 } 222 #endif 223 224 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 225 226 r = EV_SUCCESS; 227 break; 228 } 229 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 230 r = EV_SUCCESS; 231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 232 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 233 #endif 234 235 /* Second return value is in r4 */ 236 break; 237 case EV_HCALL_TOKEN(EV_IDLE): 238 r = EV_SUCCESS; 239 kvm_vcpu_block(vcpu); 240 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 241 break; 242 default: 243 r = EV_UNIMPLEMENTED; 244 break; 245 } 246 247 kvmppc_set_gpr(vcpu, 4, r2); 248 249 return r; 250 } 251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 252 253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 254 { 255 int r = false; 256 257 /* We have to know what CPU to virtualize */ 258 if (!vcpu->arch.pvr) 259 goto out; 260 261 /* PAPR only works with book3s_64 */ 262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 263 goto out; 264 265 /* HV KVM can only do PAPR mode for now */ 266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 267 goto out; 268 269 #ifdef CONFIG_KVM_BOOKE_HV 270 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 271 goto out; 272 #endif 273 274 r = true; 275 276 out: 277 vcpu->arch.sane = r; 278 return r ? 0 : -EINVAL; 279 } 280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 281 282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 283 { 284 enum emulation_result er; 285 int r; 286 287 er = kvmppc_emulate_loadstore(vcpu); 288 switch (er) { 289 case EMULATE_DONE: 290 /* Future optimization: only reload non-volatiles if they were 291 * actually modified. */ 292 r = RESUME_GUEST_NV; 293 break; 294 case EMULATE_AGAIN: 295 r = RESUME_GUEST; 296 break; 297 case EMULATE_DO_MMIO: 298 vcpu->run->exit_reason = KVM_EXIT_MMIO; 299 /* We must reload nonvolatiles because "update" load/store 300 * instructions modify register state. */ 301 /* Future optimization: only reload non-volatiles if they were 302 * actually modified. */ 303 r = RESUME_HOST_NV; 304 break; 305 case EMULATE_FAIL: 306 { 307 u32 last_inst; 308 309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 310 /* XXX Deliver Program interrupt to guest. */ 311 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 312 r = RESUME_HOST; 313 break; 314 } 315 default: 316 WARN_ON(1); 317 r = RESUME_GUEST; 318 } 319 320 return r; 321 } 322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 323 324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 325 bool data) 326 { 327 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 328 struct kvmppc_pte pte; 329 int r = -EINVAL; 330 331 vcpu->stat.st++; 332 333 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 334 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 335 size); 336 337 if ((!r) || (r == -EAGAIN)) 338 return r; 339 340 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 341 XLATE_WRITE, &pte); 342 if (r < 0) 343 return r; 344 345 *eaddr = pte.raddr; 346 347 if (!pte.may_write) 348 return -EPERM; 349 350 /* Magic page override */ 351 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 352 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 353 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 354 void *magic = vcpu->arch.shared; 355 magic += pte.eaddr & 0xfff; 356 memcpy(magic, ptr, size); 357 return EMULATE_DONE; 358 } 359 360 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 361 return EMULATE_DO_MMIO; 362 363 return EMULATE_DONE; 364 } 365 EXPORT_SYMBOL_GPL(kvmppc_st); 366 367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 368 bool data) 369 { 370 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 371 struct kvmppc_pte pte; 372 int rc = -EINVAL; 373 374 vcpu->stat.ld++; 375 376 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 377 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 378 size); 379 380 if ((!rc) || (rc == -EAGAIN)) 381 return rc; 382 383 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 384 XLATE_READ, &pte); 385 if (rc) 386 return rc; 387 388 *eaddr = pte.raddr; 389 390 if (!pte.may_read) 391 return -EPERM; 392 393 if (!data && !pte.may_execute) 394 return -ENOEXEC; 395 396 /* Magic page override */ 397 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 398 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 399 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 400 void *magic = vcpu->arch.shared; 401 magic += pte.eaddr & 0xfff; 402 memcpy(ptr, magic, size); 403 return EMULATE_DONE; 404 } 405 406 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 407 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); 408 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 409 if (rc) 410 return EMULATE_DO_MMIO; 411 412 return EMULATE_DONE; 413 } 414 EXPORT_SYMBOL_GPL(kvmppc_ld); 415 416 int kvm_arch_hardware_enable(void) 417 { 418 return 0; 419 } 420 421 int kvm_arch_hardware_setup(void *opaque) 422 { 423 return 0; 424 } 425 426 int kvm_arch_check_processor_compat(void *opaque) 427 { 428 return kvmppc_core_check_processor_compat(); 429 } 430 431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 432 { 433 struct kvmppc_ops *kvm_ops = NULL; 434 /* 435 * if we have both HV and PR enabled, default is HV 436 */ 437 if (type == 0) { 438 if (kvmppc_hv_ops) 439 kvm_ops = kvmppc_hv_ops; 440 else 441 kvm_ops = kvmppc_pr_ops; 442 if (!kvm_ops) 443 goto err_out; 444 } else if (type == KVM_VM_PPC_HV) { 445 if (!kvmppc_hv_ops) 446 goto err_out; 447 kvm_ops = kvmppc_hv_ops; 448 } else if (type == KVM_VM_PPC_PR) { 449 if (!kvmppc_pr_ops) 450 goto err_out; 451 kvm_ops = kvmppc_pr_ops; 452 } else 453 goto err_out; 454 455 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 456 return -ENOENT; 457 458 kvm->arch.kvm_ops = kvm_ops; 459 return kvmppc_core_init_vm(kvm); 460 err_out: 461 return -EINVAL; 462 } 463 464 void kvm_arch_destroy_vm(struct kvm *kvm) 465 { 466 unsigned int i; 467 struct kvm_vcpu *vcpu; 468 469 #ifdef CONFIG_KVM_XICS 470 /* 471 * We call kick_all_cpus_sync() to ensure that all 472 * CPUs have executed any pending IPIs before we 473 * continue and free VCPUs structures below. 474 */ 475 if (is_kvmppc_hv_enabled(kvm)) 476 kick_all_cpus_sync(); 477 #endif 478 479 kvm_for_each_vcpu(i, vcpu, kvm) 480 kvm_vcpu_destroy(vcpu); 481 482 mutex_lock(&kvm->lock); 483 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 484 kvm->vcpus[i] = NULL; 485 486 atomic_set(&kvm->online_vcpus, 0); 487 488 kvmppc_core_destroy_vm(kvm); 489 490 mutex_unlock(&kvm->lock); 491 492 /* drop the module reference */ 493 module_put(kvm->arch.kvm_ops->owner); 494 } 495 496 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 497 { 498 int r; 499 /* Assume we're using HV mode when the HV module is loaded */ 500 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 501 502 if (kvm) { 503 /* 504 * Hooray - we know which VM type we're running on. Depend on 505 * that rather than the guess above. 506 */ 507 hv_enabled = is_kvmppc_hv_enabled(kvm); 508 } 509 510 switch (ext) { 511 #ifdef CONFIG_BOOKE 512 case KVM_CAP_PPC_BOOKE_SREGS: 513 case KVM_CAP_PPC_BOOKE_WATCHDOG: 514 case KVM_CAP_PPC_EPR: 515 #else 516 case KVM_CAP_PPC_SEGSTATE: 517 case KVM_CAP_PPC_HIOR: 518 case KVM_CAP_PPC_PAPR: 519 #endif 520 case KVM_CAP_PPC_UNSET_IRQ: 521 case KVM_CAP_PPC_IRQ_LEVEL: 522 case KVM_CAP_ENABLE_CAP: 523 case KVM_CAP_ONE_REG: 524 case KVM_CAP_IOEVENTFD: 525 case KVM_CAP_DEVICE_CTRL: 526 case KVM_CAP_IMMEDIATE_EXIT: 527 case KVM_CAP_SET_GUEST_DEBUG: 528 r = 1; 529 break; 530 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 531 case KVM_CAP_PPC_PAIRED_SINGLES: 532 case KVM_CAP_PPC_OSI: 533 case KVM_CAP_PPC_GET_PVINFO: 534 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 535 case KVM_CAP_SW_TLB: 536 #endif 537 /* We support this only for PR */ 538 r = !hv_enabled; 539 break; 540 #ifdef CONFIG_KVM_MPIC 541 case KVM_CAP_IRQ_MPIC: 542 r = 1; 543 break; 544 #endif 545 546 #ifdef CONFIG_PPC_BOOK3S_64 547 case KVM_CAP_SPAPR_TCE: 548 case KVM_CAP_SPAPR_TCE_64: 549 r = 1; 550 break; 551 case KVM_CAP_SPAPR_TCE_VFIO: 552 r = !!cpu_has_feature(CPU_FTR_HVMODE); 553 break; 554 case KVM_CAP_PPC_RTAS: 555 case KVM_CAP_PPC_FIXUP_HCALL: 556 case KVM_CAP_PPC_ENABLE_HCALL: 557 #ifdef CONFIG_KVM_XICS 558 case KVM_CAP_IRQ_XICS: 559 #endif 560 case KVM_CAP_PPC_GET_CPU_CHAR: 561 r = 1; 562 break; 563 #ifdef CONFIG_KVM_XIVE 564 case KVM_CAP_PPC_IRQ_XIVE: 565 /* 566 * We need XIVE to be enabled on the platform (implies 567 * a POWER9 processor) and the PowerNV platform, as 568 * nested is not yet supported. 569 */ 570 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 571 kvmppc_xive_native_supported(); 572 break; 573 #endif 574 575 case KVM_CAP_PPC_ALLOC_HTAB: 576 r = hv_enabled; 577 break; 578 #endif /* CONFIG_PPC_BOOK3S_64 */ 579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 580 case KVM_CAP_PPC_SMT: 581 r = 0; 582 if (kvm) { 583 if (kvm->arch.emul_smt_mode > 1) 584 r = kvm->arch.emul_smt_mode; 585 else 586 r = kvm->arch.smt_mode; 587 } else if (hv_enabled) { 588 if (cpu_has_feature(CPU_FTR_ARCH_300)) 589 r = 1; 590 else 591 r = threads_per_subcore; 592 } 593 break; 594 case KVM_CAP_PPC_SMT_POSSIBLE: 595 r = 1; 596 if (hv_enabled) { 597 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 598 r = ((threads_per_subcore << 1) - 1); 599 else 600 /* P9 can emulate dbells, so allow any mode */ 601 r = 8 | 4 | 2 | 1; 602 } 603 break; 604 case KVM_CAP_PPC_RMA: 605 r = 0; 606 break; 607 case KVM_CAP_PPC_HWRNG: 608 r = kvmppc_hwrng_present(); 609 break; 610 case KVM_CAP_PPC_MMU_RADIX: 611 r = !!(hv_enabled && radix_enabled()); 612 break; 613 case KVM_CAP_PPC_MMU_HASH_V3: 614 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible && 615 kvmppc_hv_ops->hash_v3_possible()); 616 break; 617 case KVM_CAP_PPC_NESTED_HV: 618 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 619 !kvmppc_hv_ops->enable_nested(NULL)); 620 break; 621 #endif 622 case KVM_CAP_SYNC_MMU: 623 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 624 r = hv_enabled; 625 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 626 r = 1; 627 #else 628 r = 0; 629 #endif 630 break; 631 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 632 case KVM_CAP_PPC_HTAB_FD: 633 r = hv_enabled; 634 break; 635 #endif 636 case KVM_CAP_NR_VCPUS: 637 /* 638 * Recommending a number of CPUs is somewhat arbitrary; we 639 * return the number of present CPUs for -HV (since a host 640 * will have secondary threads "offline"), and for other KVM 641 * implementations just count online CPUs. 642 */ 643 if (hv_enabled) 644 r = num_present_cpus(); 645 else 646 r = num_online_cpus(); 647 break; 648 case KVM_CAP_MAX_VCPUS: 649 r = KVM_MAX_VCPUS; 650 break; 651 case KVM_CAP_MAX_VCPU_ID: 652 r = KVM_MAX_VCPU_ID; 653 break; 654 #ifdef CONFIG_PPC_BOOK3S_64 655 case KVM_CAP_PPC_GET_SMMU_INFO: 656 r = 1; 657 break; 658 case KVM_CAP_SPAPR_MULTITCE: 659 r = 1; 660 break; 661 case KVM_CAP_SPAPR_RESIZE_HPT: 662 r = !!hv_enabled; 663 break; 664 #endif 665 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 666 case KVM_CAP_PPC_FWNMI: 667 r = hv_enabled; 668 break; 669 #endif 670 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 671 case KVM_CAP_PPC_HTM: 672 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 673 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 674 break; 675 #endif 676 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 677 case KVM_CAP_PPC_SECURE_GUEST: 678 r = hv_enabled && kvmppc_hv_ops->enable_svm && 679 !kvmppc_hv_ops->enable_svm(NULL); 680 break; 681 case KVM_CAP_PPC_DAWR1: 682 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 && 683 !kvmppc_hv_ops->enable_dawr1(NULL)); 684 break; 685 #endif 686 default: 687 r = 0; 688 break; 689 } 690 return r; 691 692 } 693 694 long kvm_arch_dev_ioctl(struct file *filp, 695 unsigned int ioctl, unsigned long arg) 696 { 697 return -EINVAL; 698 } 699 700 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 701 { 702 kvmppc_core_free_memslot(kvm, slot); 703 } 704 705 int kvm_arch_prepare_memory_region(struct kvm *kvm, 706 struct kvm_memory_slot *memslot, 707 const struct kvm_userspace_memory_region *mem, 708 enum kvm_mr_change change) 709 { 710 return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change); 711 } 712 713 void kvm_arch_commit_memory_region(struct kvm *kvm, 714 const struct kvm_userspace_memory_region *mem, 715 struct kvm_memory_slot *old, 716 const struct kvm_memory_slot *new, 717 enum kvm_mr_change change) 718 { 719 kvmppc_core_commit_memory_region(kvm, mem, old, new, change); 720 } 721 722 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 723 struct kvm_memory_slot *slot) 724 { 725 kvmppc_core_flush_memslot(kvm, slot); 726 } 727 728 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 729 { 730 return 0; 731 } 732 733 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 734 { 735 struct kvm_vcpu *vcpu; 736 737 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 738 kvmppc_decrementer_func(vcpu); 739 740 return HRTIMER_NORESTART; 741 } 742 743 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 744 { 745 int err; 746 747 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 748 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 749 vcpu->arch.dec_expires = get_tb(); 750 751 #ifdef CONFIG_KVM_EXIT_TIMING 752 mutex_init(&vcpu->arch.exit_timing_lock); 753 #endif 754 err = kvmppc_subarch_vcpu_init(vcpu); 755 if (err) 756 return err; 757 758 err = kvmppc_core_vcpu_create(vcpu); 759 if (err) 760 goto out_vcpu_uninit; 761 762 vcpu->arch.waitp = &vcpu->wait; 763 kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id); 764 return 0; 765 766 out_vcpu_uninit: 767 kvmppc_subarch_vcpu_uninit(vcpu); 768 return err; 769 } 770 771 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 772 { 773 } 774 775 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 776 { 777 /* Make sure we're not using the vcpu anymore */ 778 hrtimer_cancel(&vcpu->arch.dec_timer); 779 780 kvmppc_remove_vcpu_debugfs(vcpu); 781 782 switch (vcpu->arch.irq_type) { 783 case KVMPPC_IRQ_MPIC: 784 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 785 break; 786 case KVMPPC_IRQ_XICS: 787 if (xics_on_xive()) 788 kvmppc_xive_cleanup_vcpu(vcpu); 789 else 790 kvmppc_xics_free_icp(vcpu); 791 break; 792 case KVMPPC_IRQ_XIVE: 793 kvmppc_xive_native_cleanup_vcpu(vcpu); 794 break; 795 } 796 797 kvmppc_core_vcpu_free(vcpu); 798 799 kvmppc_subarch_vcpu_uninit(vcpu); 800 } 801 802 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 803 { 804 return kvmppc_core_pending_dec(vcpu); 805 } 806 807 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 808 { 809 #ifdef CONFIG_BOOKE 810 /* 811 * vrsave (formerly usprg0) isn't used by Linux, but may 812 * be used by the guest. 813 * 814 * On non-booke this is associated with Altivec and 815 * is handled by code in book3s.c. 816 */ 817 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 818 #endif 819 kvmppc_core_vcpu_load(vcpu, cpu); 820 } 821 822 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 823 { 824 kvmppc_core_vcpu_put(vcpu); 825 #ifdef CONFIG_BOOKE 826 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 827 #endif 828 } 829 830 /* 831 * irq_bypass_add_producer and irq_bypass_del_producer are only 832 * useful if the architecture supports PCI passthrough. 833 * irq_bypass_stop and irq_bypass_start are not needed and so 834 * kvm_ops are not defined for them. 835 */ 836 bool kvm_arch_has_irq_bypass(void) 837 { 838 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 839 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 840 } 841 842 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 843 struct irq_bypass_producer *prod) 844 { 845 struct kvm_kernel_irqfd *irqfd = 846 container_of(cons, struct kvm_kernel_irqfd, consumer); 847 struct kvm *kvm = irqfd->kvm; 848 849 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 850 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 851 852 return 0; 853 } 854 855 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 856 struct irq_bypass_producer *prod) 857 { 858 struct kvm_kernel_irqfd *irqfd = 859 container_of(cons, struct kvm_kernel_irqfd, consumer); 860 struct kvm *kvm = irqfd->kvm; 861 862 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 863 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 864 } 865 866 #ifdef CONFIG_VSX 867 static inline int kvmppc_get_vsr_dword_offset(int index) 868 { 869 int offset; 870 871 if ((index != 0) && (index != 1)) 872 return -1; 873 874 #ifdef __BIG_ENDIAN 875 offset = index; 876 #else 877 offset = 1 - index; 878 #endif 879 880 return offset; 881 } 882 883 static inline int kvmppc_get_vsr_word_offset(int index) 884 { 885 int offset; 886 887 if ((index > 3) || (index < 0)) 888 return -1; 889 890 #ifdef __BIG_ENDIAN 891 offset = index; 892 #else 893 offset = 3 - index; 894 #endif 895 return offset; 896 } 897 898 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 899 u64 gpr) 900 { 901 union kvmppc_one_reg val; 902 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 903 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 904 905 if (offset == -1) 906 return; 907 908 if (index >= 32) { 909 val.vval = VCPU_VSX_VR(vcpu, index - 32); 910 val.vsxval[offset] = gpr; 911 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 912 } else { 913 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 914 } 915 } 916 917 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 918 u64 gpr) 919 { 920 union kvmppc_one_reg val; 921 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 922 923 if (index >= 32) { 924 val.vval = VCPU_VSX_VR(vcpu, index - 32); 925 val.vsxval[0] = gpr; 926 val.vsxval[1] = gpr; 927 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 928 } else { 929 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 930 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 931 } 932 } 933 934 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 935 u32 gpr) 936 { 937 union kvmppc_one_reg val; 938 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 939 940 if (index >= 32) { 941 val.vsx32val[0] = gpr; 942 val.vsx32val[1] = gpr; 943 val.vsx32val[2] = gpr; 944 val.vsx32val[3] = gpr; 945 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 946 } else { 947 val.vsx32val[0] = gpr; 948 val.vsx32val[1] = gpr; 949 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 950 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 951 } 952 } 953 954 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 955 u32 gpr32) 956 { 957 union kvmppc_one_reg val; 958 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 959 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 960 int dword_offset, word_offset; 961 962 if (offset == -1) 963 return; 964 965 if (index >= 32) { 966 val.vval = VCPU_VSX_VR(vcpu, index - 32); 967 val.vsx32val[offset] = gpr32; 968 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 969 } else { 970 dword_offset = offset / 2; 971 word_offset = offset % 2; 972 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 973 val.vsx32val[word_offset] = gpr32; 974 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 975 } 976 } 977 #endif /* CONFIG_VSX */ 978 979 #ifdef CONFIG_ALTIVEC 980 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 981 int index, int element_size) 982 { 983 int offset; 984 int elts = sizeof(vector128)/element_size; 985 986 if ((index < 0) || (index >= elts)) 987 return -1; 988 989 if (kvmppc_need_byteswap(vcpu)) 990 offset = elts - index - 1; 991 else 992 offset = index; 993 994 return offset; 995 } 996 997 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 998 int index) 999 { 1000 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 1001 } 1002 1003 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1004 int index) 1005 { 1006 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1007 } 1008 1009 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1010 int index) 1011 { 1012 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1013 } 1014 1015 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1016 int index) 1017 { 1018 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1019 } 1020 1021 1022 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1023 u64 gpr) 1024 { 1025 union kvmppc_one_reg val; 1026 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1027 vcpu->arch.mmio_vmx_offset); 1028 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1029 1030 if (offset == -1) 1031 return; 1032 1033 val.vval = VCPU_VSX_VR(vcpu, index); 1034 val.vsxval[offset] = gpr; 1035 VCPU_VSX_VR(vcpu, index) = val.vval; 1036 } 1037 1038 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1039 u32 gpr32) 1040 { 1041 union kvmppc_one_reg val; 1042 int offset = kvmppc_get_vmx_word_offset(vcpu, 1043 vcpu->arch.mmio_vmx_offset); 1044 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1045 1046 if (offset == -1) 1047 return; 1048 1049 val.vval = VCPU_VSX_VR(vcpu, index); 1050 val.vsx32val[offset] = gpr32; 1051 VCPU_VSX_VR(vcpu, index) = val.vval; 1052 } 1053 1054 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1055 u16 gpr16) 1056 { 1057 union kvmppc_one_reg val; 1058 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1059 vcpu->arch.mmio_vmx_offset); 1060 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1061 1062 if (offset == -1) 1063 return; 1064 1065 val.vval = VCPU_VSX_VR(vcpu, index); 1066 val.vsx16val[offset] = gpr16; 1067 VCPU_VSX_VR(vcpu, index) = val.vval; 1068 } 1069 1070 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1071 u8 gpr8) 1072 { 1073 union kvmppc_one_reg val; 1074 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1075 vcpu->arch.mmio_vmx_offset); 1076 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1077 1078 if (offset == -1) 1079 return; 1080 1081 val.vval = VCPU_VSX_VR(vcpu, index); 1082 val.vsx8val[offset] = gpr8; 1083 VCPU_VSX_VR(vcpu, index) = val.vval; 1084 } 1085 #endif /* CONFIG_ALTIVEC */ 1086 1087 #ifdef CONFIG_PPC_FPU 1088 static inline u64 sp_to_dp(u32 fprs) 1089 { 1090 u64 fprd; 1091 1092 preempt_disable(); 1093 enable_kernel_fp(); 1094 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m"UPD_CONSTR (fprd) : "m"UPD_CONSTR (fprs) 1095 : "fr0"); 1096 preempt_enable(); 1097 return fprd; 1098 } 1099 1100 static inline u32 dp_to_sp(u64 fprd) 1101 { 1102 u32 fprs; 1103 1104 preempt_disable(); 1105 enable_kernel_fp(); 1106 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m"UPD_CONSTR (fprs) : "m"UPD_CONSTR (fprd) 1107 : "fr0"); 1108 preempt_enable(); 1109 return fprs; 1110 } 1111 1112 #else 1113 #define sp_to_dp(x) (x) 1114 #define dp_to_sp(x) (x) 1115 #endif /* CONFIG_PPC_FPU */ 1116 1117 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1118 { 1119 struct kvm_run *run = vcpu->run; 1120 u64 gpr; 1121 1122 if (run->mmio.len > sizeof(gpr)) { 1123 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1124 return; 1125 } 1126 1127 if (!vcpu->arch.mmio_host_swabbed) { 1128 switch (run->mmio.len) { 1129 case 8: gpr = *(u64 *)run->mmio.data; break; 1130 case 4: gpr = *(u32 *)run->mmio.data; break; 1131 case 2: gpr = *(u16 *)run->mmio.data; break; 1132 case 1: gpr = *(u8 *)run->mmio.data; break; 1133 } 1134 } else { 1135 switch (run->mmio.len) { 1136 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1137 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1138 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1139 case 1: gpr = *(u8 *)run->mmio.data; break; 1140 } 1141 } 1142 1143 /* conversion between single and double precision */ 1144 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1145 gpr = sp_to_dp(gpr); 1146 1147 if (vcpu->arch.mmio_sign_extend) { 1148 switch (run->mmio.len) { 1149 #ifdef CONFIG_PPC64 1150 case 4: 1151 gpr = (s64)(s32)gpr; 1152 break; 1153 #endif 1154 case 2: 1155 gpr = (s64)(s16)gpr; 1156 break; 1157 case 1: 1158 gpr = (s64)(s8)gpr; 1159 break; 1160 } 1161 } 1162 1163 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1164 case KVM_MMIO_REG_GPR: 1165 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1166 break; 1167 case KVM_MMIO_REG_FPR: 1168 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1169 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1170 1171 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1172 break; 1173 #ifdef CONFIG_PPC_BOOK3S 1174 case KVM_MMIO_REG_QPR: 1175 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1176 break; 1177 case KVM_MMIO_REG_FQPR: 1178 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1179 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1180 break; 1181 #endif 1182 #ifdef CONFIG_VSX 1183 case KVM_MMIO_REG_VSX: 1184 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1185 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1186 1187 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1188 kvmppc_set_vsr_dword(vcpu, gpr); 1189 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1190 kvmppc_set_vsr_word(vcpu, gpr); 1191 else if (vcpu->arch.mmio_copy_type == 1192 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1193 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1194 else if (vcpu->arch.mmio_copy_type == 1195 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1196 kvmppc_set_vsr_word_dump(vcpu, gpr); 1197 break; 1198 #endif 1199 #ifdef CONFIG_ALTIVEC 1200 case KVM_MMIO_REG_VMX: 1201 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1202 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1203 1204 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1205 kvmppc_set_vmx_dword(vcpu, gpr); 1206 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1207 kvmppc_set_vmx_word(vcpu, gpr); 1208 else if (vcpu->arch.mmio_copy_type == 1209 KVMPPC_VMX_COPY_HWORD) 1210 kvmppc_set_vmx_hword(vcpu, gpr); 1211 else if (vcpu->arch.mmio_copy_type == 1212 KVMPPC_VMX_COPY_BYTE) 1213 kvmppc_set_vmx_byte(vcpu, gpr); 1214 break; 1215 #endif 1216 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1217 case KVM_MMIO_REG_NESTED_GPR: 1218 if (kvmppc_need_byteswap(vcpu)) 1219 gpr = swab64(gpr); 1220 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1221 sizeof(gpr)); 1222 break; 1223 #endif 1224 default: 1225 BUG(); 1226 } 1227 } 1228 1229 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1230 unsigned int rt, unsigned int bytes, 1231 int is_default_endian, int sign_extend) 1232 { 1233 struct kvm_run *run = vcpu->run; 1234 int idx, ret; 1235 bool host_swabbed; 1236 1237 /* Pity C doesn't have a logical XOR operator */ 1238 if (kvmppc_need_byteswap(vcpu)) { 1239 host_swabbed = is_default_endian; 1240 } else { 1241 host_swabbed = !is_default_endian; 1242 } 1243 1244 if (bytes > sizeof(run->mmio.data)) { 1245 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1246 run->mmio.len); 1247 } 1248 1249 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1250 run->mmio.len = bytes; 1251 run->mmio.is_write = 0; 1252 1253 vcpu->arch.io_gpr = rt; 1254 vcpu->arch.mmio_host_swabbed = host_swabbed; 1255 vcpu->mmio_needed = 1; 1256 vcpu->mmio_is_write = 0; 1257 vcpu->arch.mmio_sign_extend = sign_extend; 1258 1259 idx = srcu_read_lock(&vcpu->kvm->srcu); 1260 1261 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1262 bytes, &run->mmio.data); 1263 1264 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1265 1266 if (!ret) { 1267 kvmppc_complete_mmio_load(vcpu); 1268 vcpu->mmio_needed = 0; 1269 return EMULATE_DONE; 1270 } 1271 1272 return EMULATE_DO_MMIO; 1273 } 1274 1275 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1276 unsigned int rt, unsigned int bytes, 1277 int is_default_endian) 1278 { 1279 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1280 } 1281 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1282 1283 /* Same as above, but sign extends */ 1284 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1285 unsigned int rt, unsigned int bytes, 1286 int is_default_endian) 1287 { 1288 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1289 } 1290 1291 #ifdef CONFIG_VSX 1292 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1293 unsigned int rt, unsigned int bytes, 1294 int is_default_endian, int mmio_sign_extend) 1295 { 1296 enum emulation_result emulated = EMULATE_DONE; 1297 1298 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1299 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1300 return EMULATE_FAIL; 1301 1302 while (vcpu->arch.mmio_vsx_copy_nums) { 1303 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1304 is_default_endian, mmio_sign_extend); 1305 1306 if (emulated != EMULATE_DONE) 1307 break; 1308 1309 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1310 1311 vcpu->arch.mmio_vsx_copy_nums--; 1312 vcpu->arch.mmio_vsx_offset++; 1313 } 1314 return emulated; 1315 } 1316 #endif /* CONFIG_VSX */ 1317 1318 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1319 u64 val, unsigned int bytes, int is_default_endian) 1320 { 1321 struct kvm_run *run = vcpu->run; 1322 void *data = run->mmio.data; 1323 int idx, ret; 1324 bool host_swabbed; 1325 1326 /* Pity C doesn't have a logical XOR operator */ 1327 if (kvmppc_need_byteswap(vcpu)) { 1328 host_swabbed = is_default_endian; 1329 } else { 1330 host_swabbed = !is_default_endian; 1331 } 1332 1333 if (bytes > sizeof(run->mmio.data)) { 1334 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1335 run->mmio.len); 1336 } 1337 1338 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1339 run->mmio.len = bytes; 1340 run->mmio.is_write = 1; 1341 vcpu->mmio_needed = 1; 1342 vcpu->mmio_is_write = 1; 1343 1344 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1345 val = dp_to_sp(val); 1346 1347 /* Store the value at the lowest bytes in 'data'. */ 1348 if (!host_swabbed) { 1349 switch (bytes) { 1350 case 8: *(u64 *)data = val; break; 1351 case 4: *(u32 *)data = val; break; 1352 case 2: *(u16 *)data = val; break; 1353 case 1: *(u8 *)data = val; break; 1354 } 1355 } else { 1356 switch (bytes) { 1357 case 8: *(u64 *)data = swab64(val); break; 1358 case 4: *(u32 *)data = swab32(val); break; 1359 case 2: *(u16 *)data = swab16(val); break; 1360 case 1: *(u8 *)data = val; break; 1361 } 1362 } 1363 1364 idx = srcu_read_lock(&vcpu->kvm->srcu); 1365 1366 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1367 bytes, &run->mmio.data); 1368 1369 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1370 1371 if (!ret) { 1372 vcpu->mmio_needed = 0; 1373 return EMULATE_DONE; 1374 } 1375 1376 return EMULATE_DO_MMIO; 1377 } 1378 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1379 1380 #ifdef CONFIG_VSX 1381 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1382 { 1383 u32 dword_offset, word_offset; 1384 union kvmppc_one_reg reg; 1385 int vsx_offset = 0; 1386 int copy_type = vcpu->arch.mmio_copy_type; 1387 int result = 0; 1388 1389 switch (copy_type) { 1390 case KVMPPC_VSX_COPY_DWORD: 1391 vsx_offset = 1392 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1393 1394 if (vsx_offset == -1) { 1395 result = -1; 1396 break; 1397 } 1398 1399 if (rs < 32) { 1400 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1401 } else { 1402 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1403 *val = reg.vsxval[vsx_offset]; 1404 } 1405 break; 1406 1407 case KVMPPC_VSX_COPY_WORD: 1408 vsx_offset = 1409 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1410 1411 if (vsx_offset == -1) { 1412 result = -1; 1413 break; 1414 } 1415 1416 if (rs < 32) { 1417 dword_offset = vsx_offset / 2; 1418 word_offset = vsx_offset % 2; 1419 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1420 *val = reg.vsx32val[word_offset]; 1421 } else { 1422 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1423 *val = reg.vsx32val[vsx_offset]; 1424 } 1425 break; 1426 1427 default: 1428 result = -1; 1429 break; 1430 } 1431 1432 return result; 1433 } 1434 1435 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1436 int rs, unsigned int bytes, int is_default_endian) 1437 { 1438 u64 val; 1439 enum emulation_result emulated = EMULATE_DONE; 1440 1441 vcpu->arch.io_gpr = rs; 1442 1443 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1444 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1445 return EMULATE_FAIL; 1446 1447 while (vcpu->arch.mmio_vsx_copy_nums) { 1448 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1449 return EMULATE_FAIL; 1450 1451 emulated = kvmppc_handle_store(vcpu, 1452 val, bytes, is_default_endian); 1453 1454 if (emulated != EMULATE_DONE) 1455 break; 1456 1457 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1458 1459 vcpu->arch.mmio_vsx_copy_nums--; 1460 vcpu->arch.mmio_vsx_offset++; 1461 } 1462 1463 return emulated; 1464 } 1465 1466 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1467 { 1468 struct kvm_run *run = vcpu->run; 1469 enum emulation_result emulated = EMULATE_FAIL; 1470 int r; 1471 1472 vcpu->arch.paddr_accessed += run->mmio.len; 1473 1474 if (!vcpu->mmio_is_write) { 1475 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1476 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1477 } else { 1478 emulated = kvmppc_handle_vsx_store(vcpu, 1479 vcpu->arch.io_gpr, run->mmio.len, 1); 1480 } 1481 1482 switch (emulated) { 1483 case EMULATE_DO_MMIO: 1484 run->exit_reason = KVM_EXIT_MMIO; 1485 r = RESUME_HOST; 1486 break; 1487 case EMULATE_FAIL: 1488 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1489 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1490 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1491 r = RESUME_HOST; 1492 break; 1493 default: 1494 r = RESUME_GUEST; 1495 break; 1496 } 1497 return r; 1498 } 1499 #endif /* CONFIG_VSX */ 1500 1501 #ifdef CONFIG_ALTIVEC 1502 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1503 unsigned int rt, unsigned int bytes, int is_default_endian) 1504 { 1505 enum emulation_result emulated = EMULATE_DONE; 1506 1507 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1508 return EMULATE_FAIL; 1509 1510 while (vcpu->arch.mmio_vmx_copy_nums) { 1511 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1512 is_default_endian, 0); 1513 1514 if (emulated != EMULATE_DONE) 1515 break; 1516 1517 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1518 vcpu->arch.mmio_vmx_copy_nums--; 1519 vcpu->arch.mmio_vmx_offset++; 1520 } 1521 1522 return emulated; 1523 } 1524 1525 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1526 { 1527 union kvmppc_one_reg reg; 1528 int vmx_offset = 0; 1529 int result = 0; 1530 1531 vmx_offset = 1532 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1533 1534 if (vmx_offset == -1) 1535 return -1; 1536 1537 reg.vval = VCPU_VSX_VR(vcpu, index); 1538 *val = reg.vsxval[vmx_offset]; 1539 1540 return result; 1541 } 1542 1543 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1544 { 1545 union kvmppc_one_reg reg; 1546 int vmx_offset = 0; 1547 int result = 0; 1548 1549 vmx_offset = 1550 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1551 1552 if (vmx_offset == -1) 1553 return -1; 1554 1555 reg.vval = VCPU_VSX_VR(vcpu, index); 1556 *val = reg.vsx32val[vmx_offset]; 1557 1558 return result; 1559 } 1560 1561 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1562 { 1563 union kvmppc_one_reg reg; 1564 int vmx_offset = 0; 1565 int result = 0; 1566 1567 vmx_offset = 1568 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1569 1570 if (vmx_offset == -1) 1571 return -1; 1572 1573 reg.vval = VCPU_VSX_VR(vcpu, index); 1574 *val = reg.vsx16val[vmx_offset]; 1575 1576 return result; 1577 } 1578 1579 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1580 { 1581 union kvmppc_one_reg reg; 1582 int vmx_offset = 0; 1583 int result = 0; 1584 1585 vmx_offset = 1586 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1587 1588 if (vmx_offset == -1) 1589 return -1; 1590 1591 reg.vval = VCPU_VSX_VR(vcpu, index); 1592 *val = reg.vsx8val[vmx_offset]; 1593 1594 return result; 1595 } 1596 1597 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1598 unsigned int rs, unsigned int bytes, int is_default_endian) 1599 { 1600 u64 val = 0; 1601 unsigned int index = rs & KVM_MMIO_REG_MASK; 1602 enum emulation_result emulated = EMULATE_DONE; 1603 1604 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1605 return EMULATE_FAIL; 1606 1607 vcpu->arch.io_gpr = rs; 1608 1609 while (vcpu->arch.mmio_vmx_copy_nums) { 1610 switch (vcpu->arch.mmio_copy_type) { 1611 case KVMPPC_VMX_COPY_DWORD: 1612 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1613 return EMULATE_FAIL; 1614 1615 break; 1616 case KVMPPC_VMX_COPY_WORD: 1617 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1618 return EMULATE_FAIL; 1619 break; 1620 case KVMPPC_VMX_COPY_HWORD: 1621 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1622 return EMULATE_FAIL; 1623 break; 1624 case KVMPPC_VMX_COPY_BYTE: 1625 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1626 return EMULATE_FAIL; 1627 break; 1628 default: 1629 return EMULATE_FAIL; 1630 } 1631 1632 emulated = kvmppc_handle_store(vcpu, val, bytes, 1633 is_default_endian); 1634 if (emulated != EMULATE_DONE) 1635 break; 1636 1637 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1638 vcpu->arch.mmio_vmx_copy_nums--; 1639 vcpu->arch.mmio_vmx_offset++; 1640 } 1641 1642 return emulated; 1643 } 1644 1645 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1646 { 1647 struct kvm_run *run = vcpu->run; 1648 enum emulation_result emulated = EMULATE_FAIL; 1649 int r; 1650 1651 vcpu->arch.paddr_accessed += run->mmio.len; 1652 1653 if (!vcpu->mmio_is_write) { 1654 emulated = kvmppc_handle_vmx_load(vcpu, 1655 vcpu->arch.io_gpr, run->mmio.len, 1); 1656 } else { 1657 emulated = kvmppc_handle_vmx_store(vcpu, 1658 vcpu->arch.io_gpr, run->mmio.len, 1); 1659 } 1660 1661 switch (emulated) { 1662 case EMULATE_DO_MMIO: 1663 run->exit_reason = KVM_EXIT_MMIO; 1664 r = RESUME_HOST; 1665 break; 1666 case EMULATE_FAIL: 1667 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1668 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1669 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1670 r = RESUME_HOST; 1671 break; 1672 default: 1673 r = RESUME_GUEST; 1674 break; 1675 } 1676 return r; 1677 } 1678 #endif /* CONFIG_ALTIVEC */ 1679 1680 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1681 { 1682 int r = 0; 1683 union kvmppc_one_reg val; 1684 int size; 1685 1686 size = one_reg_size(reg->id); 1687 if (size > sizeof(val)) 1688 return -EINVAL; 1689 1690 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1691 if (r == -EINVAL) { 1692 r = 0; 1693 switch (reg->id) { 1694 #ifdef CONFIG_ALTIVEC 1695 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1696 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1697 r = -ENXIO; 1698 break; 1699 } 1700 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1701 break; 1702 case KVM_REG_PPC_VSCR: 1703 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1704 r = -ENXIO; 1705 break; 1706 } 1707 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1708 break; 1709 case KVM_REG_PPC_VRSAVE: 1710 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1711 break; 1712 #endif /* CONFIG_ALTIVEC */ 1713 default: 1714 r = -EINVAL; 1715 break; 1716 } 1717 } 1718 1719 if (r) 1720 return r; 1721 1722 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1723 r = -EFAULT; 1724 1725 return r; 1726 } 1727 1728 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1729 { 1730 int r; 1731 union kvmppc_one_reg val; 1732 int size; 1733 1734 size = one_reg_size(reg->id); 1735 if (size > sizeof(val)) 1736 return -EINVAL; 1737 1738 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1739 return -EFAULT; 1740 1741 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1742 if (r == -EINVAL) { 1743 r = 0; 1744 switch (reg->id) { 1745 #ifdef CONFIG_ALTIVEC 1746 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1747 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1748 r = -ENXIO; 1749 break; 1750 } 1751 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1752 break; 1753 case KVM_REG_PPC_VSCR: 1754 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1755 r = -ENXIO; 1756 break; 1757 } 1758 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1759 break; 1760 case KVM_REG_PPC_VRSAVE: 1761 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1762 r = -ENXIO; 1763 break; 1764 } 1765 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1766 break; 1767 #endif /* CONFIG_ALTIVEC */ 1768 default: 1769 r = -EINVAL; 1770 break; 1771 } 1772 } 1773 1774 return r; 1775 } 1776 1777 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1778 { 1779 struct kvm_run *run = vcpu->run; 1780 int r; 1781 1782 vcpu_load(vcpu); 1783 1784 if (vcpu->mmio_needed) { 1785 vcpu->mmio_needed = 0; 1786 if (!vcpu->mmio_is_write) 1787 kvmppc_complete_mmio_load(vcpu); 1788 #ifdef CONFIG_VSX 1789 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1790 vcpu->arch.mmio_vsx_copy_nums--; 1791 vcpu->arch.mmio_vsx_offset++; 1792 } 1793 1794 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1795 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1796 if (r == RESUME_HOST) { 1797 vcpu->mmio_needed = 1; 1798 goto out; 1799 } 1800 } 1801 #endif 1802 #ifdef CONFIG_ALTIVEC 1803 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1804 vcpu->arch.mmio_vmx_copy_nums--; 1805 vcpu->arch.mmio_vmx_offset++; 1806 } 1807 1808 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1809 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1810 if (r == RESUME_HOST) { 1811 vcpu->mmio_needed = 1; 1812 goto out; 1813 } 1814 } 1815 #endif 1816 } else if (vcpu->arch.osi_needed) { 1817 u64 *gprs = run->osi.gprs; 1818 int i; 1819 1820 for (i = 0; i < 32; i++) 1821 kvmppc_set_gpr(vcpu, i, gprs[i]); 1822 vcpu->arch.osi_needed = 0; 1823 } else if (vcpu->arch.hcall_needed) { 1824 int i; 1825 1826 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1827 for (i = 0; i < 9; ++i) 1828 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1829 vcpu->arch.hcall_needed = 0; 1830 #ifdef CONFIG_BOOKE 1831 } else if (vcpu->arch.epr_needed) { 1832 kvmppc_set_epr(vcpu, run->epr.epr); 1833 vcpu->arch.epr_needed = 0; 1834 #endif 1835 } 1836 1837 kvm_sigset_activate(vcpu); 1838 1839 if (run->immediate_exit) 1840 r = -EINTR; 1841 else 1842 r = kvmppc_vcpu_run(vcpu); 1843 1844 kvm_sigset_deactivate(vcpu); 1845 1846 #ifdef CONFIG_ALTIVEC 1847 out: 1848 #endif 1849 vcpu_put(vcpu); 1850 return r; 1851 } 1852 1853 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1854 { 1855 if (irq->irq == KVM_INTERRUPT_UNSET) { 1856 kvmppc_core_dequeue_external(vcpu); 1857 return 0; 1858 } 1859 1860 kvmppc_core_queue_external(vcpu, irq); 1861 1862 kvm_vcpu_kick(vcpu); 1863 1864 return 0; 1865 } 1866 1867 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1868 struct kvm_enable_cap *cap) 1869 { 1870 int r; 1871 1872 if (cap->flags) 1873 return -EINVAL; 1874 1875 switch (cap->cap) { 1876 case KVM_CAP_PPC_OSI: 1877 r = 0; 1878 vcpu->arch.osi_enabled = true; 1879 break; 1880 case KVM_CAP_PPC_PAPR: 1881 r = 0; 1882 vcpu->arch.papr_enabled = true; 1883 break; 1884 case KVM_CAP_PPC_EPR: 1885 r = 0; 1886 if (cap->args[0]) 1887 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1888 else 1889 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1890 break; 1891 #ifdef CONFIG_BOOKE 1892 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1893 r = 0; 1894 vcpu->arch.watchdog_enabled = true; 1895 break; 1896 #endif 1897 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1898 case KVM_CAP_SW_TLB: { 1899 struct kvm_config_tlb cfg; 1900 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1901 1902 r = -EFAULT; 1903 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1904 break; 1905 1906 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1907 break; 1908 } 1909 #endif 1910 #ifdef CONFIG_KVM_MPIC 1911 case KVM_CAP_IRQ_MPIC: { 1912 struct fd f; 1913 struct kvm_device *dev; 1914 1915 r = -EBADF; 1916 f = fdget(cap->args[0]); 1917 if (!f.file) 1918 break; 1919 1920 r = -EPERM; 1921 dev = kvm_device_from_filp(f.file); 1922 if (dev) 1923 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1924 1925 fdput(f); 1926 break; 1927 } 1928 #endif 1929 #ifdef CONFIG_KVM_XICS 1930 case KVM_CAP_IRQ_XICS: { 1931 struct fd f; 1932 struct kvm_device *dev; 1933 1934 r = -EBADF; 1935 f = fdget(cap->args[0]); 1936 if (!f.file) 1937 break; 1938 1939 r = -EPERM; 1940 dev = kvm_device_from_filp(f.file); 1941 if (dev) { 1942 if (xics_on_xive()) 1943 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1944 else 1945 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1946 } 1947 1948 fdput(f); 1949 break; 1950 } 1951 #endif /* CONFIG_KVM_XICS */ 1952 #ifdef CONFIG_KVM_XIVE 1953 case KVM_CAP_PPC_IRQ_XIVE: { 1954 struct fd f; 1955 struct kvm_device *dev; 1956 1957 r = -EBADF; 1958 f = fdget(cap->args[0]); 1959 if (!f.file) 1960 break; 1961 1962 r = -ENXIO; 1963 if (!xive_enabled()) 1964 break; 1965 1966 r = -EPERM; 1967 dev = kvm_device_from_filp(f.file); 1968 if (dev) 1969 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1970 cap->args[1]); 1971 1972 fdput(f); 1973 break; 1974 } 1975 #endif /* CONFIG_KVM_XIVE */ 1976 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1977 case KVM_CAP_PPC_FWNMI: 1978 r = -EINVAL; 1979 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1980 break; 1981 r = 0; 1982 vcpu->kvm->arch.fwnmi_enabled = true; 1983 break; 1984 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1985 default: 1986 r = -EINVAL; 1987 break; 1988 } 1989 1990 if (!r) 1991 r = kvmppc_sanity_check(vcpu); 1992 1993 return r; 1994 } 1995 1996 bool kvm_arch_intc_initialized(struct kvm *kvm) 1997 { 1998 #ifdef CONFIG_KVM_MPIC 1999 if (kvm->arch.mpic) 2000 return true; 2001 #endif 2002 #ifdef CONFIG_KVM_XICS 2003 if (kvm->arch.xics || kvm->arch.xive) 2004 return true; 2005 #endif 2006 return false; 2007 } 2008 2009 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2010 struct kvm_mp_state *mp_state) 2011 { 2012 return -EINVAL; 2013 } 2014 2015 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2016 struct kvm_mp_state *mp_state) 2017 { 2018 return -EINVAL; 2019 } 2020 2021 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2022 unsigned int ioctl, unsigned long arg) 2023 { 2024 struct kvm_vcpu *vcpu = filp->private_data; 2025 void __user *argp = (void __user *)arg; 2026 2027 if (ioctl == KVM_INTERRUPT) { 2028 struct kvm_interrupt irq; 2029 if (copy_from_user(&irq, argp, sizeof(irq))) 2030 return -EFAULT; 2031 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2032 } 2033 return -ENOIOCTLCMD; 2034 } 2035 2036 long kvm_arch_vcpu_ioctl(struct file *filp, 2037 unsigned int ioctl, unsigned long arg) 2038 { 2039 struct kvm_vcpu *vcpu = filp->private_data; 2040 void __user *argp = (void __user *)arg; 2041 long r; 2042 2043 switch (ioctl) { 2044 case KVM_ENABLE_CAP: 2045 { 2046 struct kvm_enable_cap cap; 2047 r = -EFAULT; 2048 vcpu_load(vcpu); 2049 if (copy_from_user(&cap, argp, sizeof(cap))) 2050 goto out; 2051 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2052 vcpu_put(vcpu); 2053 break; 2054 } 2055 2056 case KVM_SET_ONE_REG: 2057 case KVM_GET_ONE_REG: 2058 { 2059 struct kvm_one_reg reg; 2060 r = -EFAULT; 2061 if (copy_from_user(®, argp, sizeof(reg))) 2062 goto out; 2063 if (ioctl == KVM_SET_ONE_REG) 2064 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2065 else 2066 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2067 break; 2068 } 2069 2070 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2071 case KVM_DIRTY_TLB: { 2072 struct kvm_dirty_tlb dirty; 2073 r = -EFAULT; 2074 vcpu_load(vcpu); 2075 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2076 goto out; 2077 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2078 vcpu_put(vcpu); 2079 break; 2080 } 2081 #endif 2082 default: 2083 r = -EINVAL; 2084 } 2085 2086 out: 2087 return r; 2088 } 2089 2090 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2091 { 2092 return VM_FAULT_SIGBUS; 2093 } 2094 2095 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2096 { 2097 u32 inst_nop = 0x60000000; 2098 #ifdef CONFIG_KVM_BOOKE_HV 2099 u32 inst_sc1 = 0x44000022; 2100 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2101 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2102 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2103 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2104 #else 2105 u32 inst_lis = 0x3c000000; 2106 u32 inst_ori = 0x60000000; 2107 u32 inst_sc = 0x44000002; 2108 u32 inst_imm_mask = 0xffff; 2109 2110 /* 2111 * The hypercall to get into KVM from within guest context is as 2112 * follows: 2113 * 2114 * lis r0, r0, KVM_SC_MAGIC_R0@h 2115 * ori r0, KVM_SC_MAGIC_R0@l 2116 * sc 2117 * nop 2118 */ 2119 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2120 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2121 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2122 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2123 #endif 2124 2125 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2126 2127 return 0; 2128 } 2129 2130 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2131 bool line_status) 2132 { 2133 if (!irqchip_in_kernel(kvm)) 2134 return -ENXIO; 2135 2136 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2137 irq_event->irq, irq_event->level, 2138 line_status); 2139 return 0; 2140 } 2141 2142 2143 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2144 struct kvm_enable_cap *cap) 2145 { 2146 int r; 2147 2148 if (cap->flags) 2149 return -EINVAL; 2150 2151 switch (cap->cap) { 2152 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2153 case KVM_CAP_PPC_ENABLE_HCALL: { 2154 unsigned long hcall = cap->args[0]; 2155 2156 r = -EINVAL; 2157 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2158 cap->args[1] > 1) 2159 break; 2160 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2161 break; 2162 if (cap->args[1]) 2163 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2164 else 2165 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2166 r = 0; 2167 break; 2168 } 2169 case KVM_CAP_PPC_SMT: { 2170 unsigned long mode = cap->args[0]; 2171 unsigned long flags = cap->args[1]; 2172 2173 r = -EINVAL; 2174 if (kvm->arch.kvm_ops->set_smt_mode) 2175 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2176 break; 2177 } 2178 2179 case KVM_CAP_PPC_NESTED_HV: 2180 r = -EINVAL; 2181 if (!is_kvmppc_hv_enabled(kvm) || 2182 !kvm->arch.kvm_ops->enable_nested) 2183 break; 2184 r = kvm->arch.kvm_ops->enable_nested(kvm); 2185 break; 2186 #endif 2187 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2188 case KVM_CAP_PPC_SECURE_GUEST: 2189 r = -EINVAL; 2190 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2191 break; 2192 r = kvm->arch.kvm_ops->enable_svm(kvm); 2193 break; 2194 case KVM_CAP_PPC_DAWR1: 2195 r = -EINVAL; 2196 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1) 2197 break; 2198 r = kvm->arch.kvm_ops->enable_dawr1(kvm); 2199 break; 2200 #endif 2201 default: 2202 r = -EINVAL; 2203 break; 2204 } 2205 2206 return r; 2207 } 2208 2209 #ifdef CONFIG_PPC_BOOK3S_64 2210 /* 2211 * These functions check whether the underlying hardware is safe 2212 * against attacks based on observing the effects of speculatively 2213 * executed instructions, and whether it supplies instructions for 2214 * use in workarounds. The information comes from firmware, either 2215 * via the device tree on powernv platforms or from an hcall on 2216 * pseries platforms. 2217 */ 2218 #ifdef CONFIG_PPC_PSERIES 2219 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2220 { 2221 struct h_cpu_char_result c; 2222 unsigned long rc; 2223 2224 if (!machine_is(pseries)) 2225 return -ENOTTY; 2226 2227 rc = plpar_get_cpu_characteristics(&c); 2228 if (rc == H_SUCCESS) { 2229 cp->character = c.character; 2230 cp->behaviour = c.behaviour; 2231 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2232 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2233 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2234 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2235 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2236 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2237 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2238 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2239 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2240 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2241 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2242 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2243 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2244 } 2245 return 0; 2246 } 2247 #else 2248 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2249 { 2250 return -ENOTTY; 2251 } 2252 #endif 2253 2254 static inline bool have_fw_feat(struct device_node *fw_features, 2255 const char *state, const char *name) 2256 { 2257 struct device_node *np; 2258 bool r = false; 2259 2260 np = of_get_child_by_name(fw_features, name); 2261 if (np) { 2262 r = of_property_read_bool(np, state); 2263 of_node_put(np); 2264 } 2265 return r; 2266 } 2267 2268 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2269 { 2270 struct device_node *np, *fw_features; 2271 int r; 2272 2273 memset(cp, 0, sizeof(*cp)); 2274 r = pseries_get_cpu_char(cp); 2275 if (r != -ENOTTY) 2276 return r; 2277 2278 np = of_find_node_by_name(NULL, "ibm,opal"); 2279 if (np) { 2280 fw_features = of_get_child_by_name(np, "fw-features"); 2281 of_node_put(np); 2282 if (!fw_features) 2283 return 0; 2284 if (have_fw_feat(fw_features, "enabled", 2285 "inst-spec-barrier-ori31,31,0")) 2286 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2287 if (have_fw_feat(fw_features, "enabled", 2288 "fw-bcctrl-serialized")) 2289 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2290 if (have_fw_feat(fw_features, "enabled", 2291 "inst-l1d-flush-ori30,30,0")) 2292 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2293 if (have_fw_feat(fw_features, "enabled", 2294 "inst-l1d-flush-trig2")) 2295 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2296 if (have_fw_feat(fw_features, "enabled", 2297 "fw-l1d-thread-split")) 2298 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2299 if (have_fw_feat(fw_features, "enabled", 2300 "fw-count-cache-disabled")) 2301 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2302 if (have_fw_feat(fw_features, "enabled", 2303 "fw-count-cache-flush-bcctr2,0,0")) 2304 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2305 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2306 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2307 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2308 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2309 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2310 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2311 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2312 2313 if (have_fw_feat(fw_features, "enabled", 2314 "speculation-policy-favor-security")) 2315 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2316 if (!have_fw_feat(fw_features, "disabled", 2317 "needs-l1d-flush-msr-pr-0-to-1")) 2318 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2319 if (!have_fw_feat(fw_features, "disabled", 2320 "needs-spec-barrier-for-bound-checks")) 2321 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2322 if (have_fw_feat(fw_features, "enabled", 2323 "needs-count-cache-flush-on-context-switch")) 2324 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2325 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2326 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2327 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2328 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2329 2330 of_node_put(fw_features); 2331 } 2332 2333 return 0; 2334 } 2335 #endif 2336 2337 long kvm_arch_vm_ioctl(struct file *filp, 2338 unsigned int ioctl, unsigned long arg) 2339 { 2340 struct kvm *kvm __maybe_unused = filp->private_data; 2341 void __user *argp = (void __user *)arg; 2342 long r; 2343 2344 switch (ioctl) { 2345 case KVM_PPC_GET_PVINFO: { 2346 struct kvm_ppc_pvinfo pvinfo; 2347 memset(&pvinfo, 0, sizeof(pvinfo)); 2348 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2349 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2350 r = -EFAULT; 2351 goto out; 2352 } 2353 2354 break; 2355 } 2356 #ifdef CONFIG_SPAPR_TCE_IOMMU 2357 case KVM_CREATE_SPAPR_TCE_64: { 2358 struct kvm_create_spapr_tce_64 create_tce_64; 2359 2360 r = -EFAULT; 2361 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2362 goto out; 2363 if (create_tce_64.flags) { 2364 r = -EINVAL; 2365 goto out; 2366 } 2367 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2368 goto out; 2369 } 2370 case KVM_CREATE_SPAPR_TCE: { 2371 struct kvm_create_spapr_tce create_tce; 2372 struct kvm_create_spapr_tce_64 create_tce_64; 2373 2374 r = -EFAULT; 2375 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2376 goto out; 2377 2378 create_tce_64.liobn = create_tce.liobn; 2379 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2380 create_tce_64.offset = 0; 2381 create_tce_64.size = create_tce.window_size >> 2382 IOMMU_PAGE_SHIFT_4K; 2383 create_tce_64.flags = 0; 2384 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2385 goto out; 2386 } 2387 #endif 2388 #ifdef CONFIG_PPC_BOOK3S_64 2389 case KVM_PPC_GET_SMMU_INFO: { 2390 struct kvm_ppc_smmu_info info; 2391 struct kvm *kvm = filp->private_data; 2392 2393 memset(&info, 0, sizeof(info)); 2394 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2395 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2396 r = -EFAULT; 2397 break; 2398 } 2399 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2400 struct kvm *kvm = filp->private_data; 2401 2402 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2403 break; 2404 } 2405 case KVM_PPC_CONFIGURE_V3_MMU: { 2406 struct kvm *kvm = filp->private_data; 2407 struct kvm_ppc_mmuv3_cfg cfg; 2408 2409 r = -EINVAL; 2410 if (!kvm->arch.kvm_ops->configure_mmu) 2411 goto out; 2412 r = -EFAULT; 2413 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2414 goto out; 2415 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2416 break; 2417 } 2418 case KVM_PPC_GET_RMMU_INFO: { 2419 struct kvm *kvm = filp->private_data; 2420 struct kvm_ppc_rmmu_info info; 2421 2422 r = -EINVAL; 2423 if (!kvm->arch.kvm_ops->get_rmmu_info) 2424 goto out; 2425 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2426 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2427 r = -EFAULT; 2428 break; 2429 } 2430 case KVM_PPC_GET_CPU_CHAR: { 2431 struct kvm_ppc_cpu_char cpuchar; 2432 2433 r = kvmppc_get_cpu_char(&cpuchar); 2434 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2435 r = -EFAULT; 2436 break; 2437 } 2438 case KVM_PPC_SVM_OFF: { 2439 struct kvm *kvm = filp->private_data; 2440 2441 r = 0; 2442 if (!kvm->arch.kvm_ops->svm_off) 2443 goto out; 2444 2445 r = kvm->arch.kvm_ops->svm_off(kvm); 2446 break; 2447 } 2448 default: { 2449 struct kvm *kvm = filp->private_data; 2450 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2451 } 2452 #else /* CONFIG_PPC_BOOK3S_64 */ 2453 default: 2454 r = -ENOTTY; 2455 #endif 2456 } 2457 out: 2458 return r; 2459 } 2460 2461 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2462 static unsigned long nr_lpids; 2463 2464 long kvmppc_alloc_lpid(void) 2465 { 2466 long lpid; 2467 2468 do { 2469 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2470 if (lpid >= nr_lpids) { 2471 pr_err("%s: No LPIDs free\n", __func__); 2472 return -ENOMEM; 2473 } 2474 } while (test_and_set_bit(lpid, lpid_inuse)); 2475 2476 return lpid; 2477 } 2478 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2479 2480 void kvmppc_claim_lpid(long lpid) 2481 { 2482 set_bit(lpid, lpid_inuse); 2483 } 2484 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2485 2486 void kvmppc_free_lpid(long lpid) 2487 { 2488 clear_bit(lpid, lpid_inuse); 2489 } 2490 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2491 2492 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2493 { 2494 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2495 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2496 } 2497 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2498 2499 int kvm_arch_init(void *opaque) 2500 { 2501 return 0; 2502 } 2503 2504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2505