1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <asm/cputable.h> 23 #include <linux/uaccess.h> 24 #include <asm/kvm_ppc.h> 25 #include <asm/cputhreads.h> 26 #include <asm/irqflags.h> 27 #include <asm/iommu.h> 28 #include <asm/switch_to.h> 29 #include <asm/xive.h> 30 #ifdef CONFIG_PPC_PSERIES 31 #include <asm/hvcall.h> 32 #include <asm/plpar_wrappers.h> 33 #endif 34 #include <asm/ultravisor.h> 35 36 #include "timing.h" 37 #include "irq.h" 38 #include "../mm/mmu_decl.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "trace.h" 42 43 struct kvmppc_ops *kvmppc_hv_ops; 44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 45 struct kvmppc_ops *kvmppc_pr_ops; 46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 47 48 49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 50 { 51 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 52 } 53 54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 55 { 56 return kvm_arch_vcpu_runnable(vcpu); 57 } 58 59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 60 { 61 return false; 62 } 63 64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 65 { 66 return 1; 67 } 68 69 /* 70 * Common checks before entering the guest world. Call with interrupts 71 * disabled. 72 * 73 * returns: 74 * 75 * == 1 if we're ready to go into guest state 76 * <= 0 if we need to go back to the host with return value 77 */ 78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 79 { 80 int r; 81 82 WARN_ON(irqs_disabled()); 83 hard_irq_disable(); 84 85 while (true) { 86 if (need_resched()) { 87 local_irq_enable(); 88 cond_resched(); 89 hard_irq_disable(); 90 continue; 91 } 92 93 if (signal_pending(current)) { 94 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 95 vcpu->run->exit_reason = KVM_EXIT_INTR; 96 r = -EINTR; 97 break; 98 } 99 100 vcpu->mode = IN_GUEST_MODE; 101 102 /* 103 * Reading vcpu->requests must happen after setting vcpu->mode, 104 * so we don't miss a request because the requester sees 105 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 106 * before next entering the guest (and thus doesn't IPI). 107 * This also orders the write to mode from any reads 108 * to the page tables done while the VCPU is running. 109 * Please see the comment in kvm_flush_remote_tlbs. 110 */ 111 smp_mb(); 112 113 if (kvm_request_pending(vcpu)) { 114 /* Make sure we process requests preemptable */ 115 local_irq_enable(); 116 trace_kvm_check_requests(vcpu); 117 r = kvmppc_core_check_requests(vcpu); 118 hard_irq_disable(); 119 if (r > 0) 120 continue; 121 break; 122 } 123 124 if (kvmppc_core_prepare_to_enter(vcpu)) { 125 /* interrupts got enabled in between, so we 126 are back at square 1 */ 127 continue; 128 } 129 130 guest_enter_irqoff(); 131 return 1; 132 } 133 134 /* return to host */ 135 local_irq_enable(); 136 return r; 137 } 138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 139 140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 142 { 143 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 144 int i; 145 146 shared->sprg0 = swab64(shared->sprg0); 147 shared->sprg1 = swab64(shared->sprg1); 148 shared->sprg2 = swab64(shared->sprg2); 149 shared->sprg3 = swab64(shared->sprg3); 150 shared->srr0 = swab64(shared->srr0); 151 shared->srr1 = swab64(shared->srr1); 152 shared->dar = swab64(shared->dar); 153 shared->msr = swab64(shared->msr); 154 shared->dsisr = swab32(shared->dsisr); 155 shared->int_pending = swab32(shared->int_pending); 156 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 157 shared->sr[i] = swab32(shared->sr[i]); 158 } 159 #endif 160 161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 162 { 163 int nr = kvmppc_get_gpr(vcpu, 11); 164 int r; 165 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 166 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 167 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 168 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 169 unsigned long r2 = 0; 170 171 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 172 /* 32 bit mode */ 173 param1 &= 0xffffffff; 174 param2 &= 0xffffffff; 175 param3 &= 0xffffffff; 176 param4 &= 0xffffffff; 177 } 178 179 switch (nr) { 180 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 181 { 182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 183 /* Book3S can be little endian, find it out here */ 184 int shared_big_endian = true; 185 if (vcpu->arch.intr_msr & MSR_LE) 186 shared_big_endian = false; 187 if (shared_big_endian != vcpu->arch.shared_big_endian) 188 kvmppc_swab_shared(vcpu); 189 vcpu->arch.shared_big_endian = shared_big_endian; 190 #endif 191 192 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 193 /* 194 * Older versions of the Linux magic page code had 195 * a bug where they would map their trampoline code 196 * NX. If that's the case, remove !PR NX capability. 197 */ 198 vcpu->arch.disable_kernel_nx = true; 199 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 200 } 201 202 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 203 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 204 205 #ifdef CONFIG_PPC_64K_PAGES 206 /* 207 * Make sure our 4k magic page is in the same window of a 64k 208 * page within the guest and within the host's page. 209 */ 210 if ((vcpu->arch.magic_page_pa & 0xf000) != 211 ((ulong)vcpu->arch.shared & 0xf000)) { 212 void *old_shared = vcpu->arch.shared; 213 ulong shared = (ulong)vcpu->arch.shared; 214 void *new_shared; 215 216 shared &= PAGE_MASK; 217 shared |= vcpu->arch.magic_page_pa & 0xf000; 218 new_shared = (void*)shared; 219 memcpy(new_shared, old_shared, 0x1000); 220 vcpu->arch.shared = new_shared; 221 } 222 #endif 223 224 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 225 226 r = EV_SUCCESS; 227 break; 228 } 229 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 230 r = EV_SUCCESS; 231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 232 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 233 #endif 234 235 /* Second return value is in r4 */ 236 break; 237 case EV_HCALL_TOKEN(EV_IDLE): 238 r = EV_SUCCESS; 239 kvm_vcpu_halt(vcpu); 240 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 241 break; 242 default: 243 r = EV_UNIMPLEMENTED; 244 break; 245 } 246 247 kvmppc_set_gpr(vcpu, 4, r2); 248 249 return r; 250 } 251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 252 253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 254 { 255 int r = false; 256 257 /* We have to know what CPU to virtualize */ 258 if (!vcpu->arch.pvr) 259 goto out; 260 261 /* PAPR only works with book3s_64 */ 262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 263 goto out; 264 265 /* HV KVM can only do PAPR mode for now */ 266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 267 goto out; 268 269 #ifdef CONFIG_KVM_BOOKE_HV 270 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 271 goto out; 272 #endif 273 274 r = true; 275 276 out: 277 vcpu->arch.sane = r; 278 return r ? 0 : -EINVAL; 279 } 280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 281 282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) 283 { 284 enum emulation_result er; 285 int r; 286 287 er = kvmppc_emulate_loadstore(vcpu); 288 switch (er) { 289 case EMULATE_DONE: 290 /* Future optimization: only reload non-volatiles if they were 291 * actually modified. */ 292 r = RESUME_GUEST_NV; 293 break; 294 case EMULATE_AGAIN: 295 r = RESUME_GUEST; 296 break; 297 case EMULATE_DO_MMIO: 298 vcpu->run->exit_reason = KVM_EXIT_MMIO; 299 /* We must reload nonvolatiles because "update" load/store 300 * instructions modify register state. */ 301 /* Future optimization: only reload non-volatiles if they were 302 * actually modified. */ 303 r = RESUME_HOST_NV; 304 break; 305 case EMULATE_FAIL: 306 { 307 u32 last_inst; 308 309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 310 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n", 311 last_inst); 312 313 /* 314 * Injecting a Data Storage here is a bit more 315 * accurate since the instruction that caused the 316 * access could still be a valid one. 317 */ 318 if (!IS_ENABLED(CONFIG_BOOKE)) { 319 ulong dsisr = DSISR_BADACCESS; 320 321 if (vcpu->mmio_is_write) 322 dsisr |= DSISR_ISSTORE; 323 324 kvmppc_core_queue_data_storage(vcpu, vcpu->arch.vaddr_accessed, dsisr); 325 } else { 326 /* 327 * BookE does not send a SIGBUS on a bad 328 * fault, so use a Program interrupt instead 329 * to avoid a fault loop. 330 */ 331 kvmppc_core_queue_program(vcpu, 0); 332 } 333 334 r = RESUME_GUEST; 335 break; 336 } 337 default: 338 WARN_ON(1); 339 r = RESUME_GUEST; 340 } 341 342 return r; 343 } 344 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 345 346 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 347 bool data) 348 { 349 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 350 struct kvmppc_pte pte; 351 int r = -EINVAL; 352 353 vcpu->stat.st++; 354 355 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 356 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 357 size); 358 359 if ((!r) || (r == -EAGAIN)) 360 return r; 361 362 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 363 XLATE_WRITE, &pte); 364 if (r < 0) 365 return r; 366 367 *eaddr = pte.raddr; 368 369 if (!pte.may_write) 370 return -EPERM; 371 372 /* Magic page override */ 373 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 374 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 375 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 376 void *magic = vcpu->arch.shared; 377 magic += pte.eaddr & 0xfff; 378 memcpy(magic, ptr, size); 379 return EMULATE_DONE; 380 } 381 382 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 383 return EMULATE_DO_MMIO; 384 385 return EMULATE_DONE; 386 } 387 EXPORT_SYMBOL_GPL(kvmppc_st); 388 389 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 390 bool data) 391 { 392 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 393 struct kvmppc_pte pte; 394 int rc = -EINVAL; 395 396 vcpu->stat.ld++; 397 398 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 399 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 400 size); 401 402 if ((!rc) || (rc == -EAGAIN)) 403 return rc; 404 405 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 406 XLATE_READ, &pte); 407 if (rc) 408 return rc; 409 410 *eaddr = pte.raddr; 411 412 if (!pte.may_read) 413 return -EPERM; 414 415 if (!data && !pte.may_execute) 416 return -ENOEXEC; 417 418 /* Magic page override */ 419 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 420 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 421 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 422 void *magic = vcpu->arch.shared; 423 magic += pte.eaddr & 0xfff; 424 memcpy(ptr, magic, size); 425 return EMULATE_DONE; 426 } 427 428 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 429 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); 430 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 431 if (rc) 432 return EMULATE_DO_MMIO; 433 434 return EMULATE_DONE; 435 } 436 EXPORT_SYMBOL_GPL(kvmppc_ld); 437 438 int kvm_arch_hardware_enable(void) 439 { 440 return 0; 441 } 442 443 int kvm_arch_hardware_setup(void *opaque) 444 { 445 return 0; 446 } 447 448 int kvm_arch_check_processor_compat(void *opaque) 449 { 450 return kvmppc_core_check_processor_compat(); 451 } 452 453 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 454 { 455 struct kvmppc_ops *kvm_ops = NULL; 456 int r; 457 458 /* 459 * if we have both HV and PR enabled, default is HV 460 */ 461 if (type == 0) { 462 if (kvmppc_hv_ops) 463 kvm_ops = kvmppc_hv_ops; 464 else 465 kvm_ops = kvmppc_pr_ops; 466 if (!kvm_ops) 467 goto err_out; 468 } else if (type == KVM_VM_PPC_HV) { 469 if (!kvmppc_hv_ops) 470 goto err_out; 471 kvm_ops = kvmppc_hv_ops; 472 } else if (type == KVM_VM_PPC_PR) { 473 if (!kvmppc_pr_ops) 474 goto err_out; 475 kvm_ops = kvmppc_pr_ops; 476 } else 477 goto err_out; 478 479 if (!try_module_get(kvm_ops->owner)) 480 return -ENOENT; 481 482 kvm->arch.kvm_ops = kvm_ops; 483 r = kvmppc_core_init_vm(kvm); 484 if (r) 485 module_put(kvm_ops->owner); 486 return r; 487 err_out: 488 return -EINVAL; 489 } 490 491 void kvm_arch_destroy_vm(struct kvm *kvm) 492 { 493 #ifdef CONFIG_KVM_XICS 494 /* 495 * We call kick_all_cpus_sync() to ensure that all 496 * CPUs have executed any pending IPIs before we 497 * continue and free VCPUs structures below. 498 */ 499 if (is_kvmppc_hv_enabled(kvm)) 500 kick_all_cpus_sync(); 501 #endif 502 503 kvm_destroy_vcpus(kvm); 504 505 mutex_lock(&kvm->lock); 506 507 kvmppc_core_destroy_vm(kvm); 508 509 mutex_unlock(&kvm->lock); 510 511 /* drop the module reference */ 512 module_put(kvm->arch.kvm_ops->owner); 513 } 514 515 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 516 { 517 int r; 518 /* Assume we're using HV mode when the HV module is loaded */ 519 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 520 521 if (kvm) { 522 /* 523 * Hooray - we know which VM type we're running on. Depend on 524 * that rather than the guess above. 525 */ 526 hv_enabled = is_kvmppc_hv_enabled(kvm); 527 } 528 529 switch (ext) { 530 #ifdef CONFIG_BOOKE 531 case KVM_CAP_PPC_BOOKE_SREGS: 532 case KVM_CAP_PPC_BOOKE_WATCHDOG: 533 case KVM_CAP_PPC_EPR: 534 #else 535 case KVM_CAP_PPC_SEGSTATE: 536 case KVM_CAP_PPC_HIOR: 537 case KVM_CAP_PPC_PAPR: 538 #endif 539 case KVM_CAP_PPC_UNSET_IRQ: 540 case KVM_CAP_PPC_IRQ_LEVEL: 541 case KVM_CAP_ENABLE_CAP: 542 case KVM_CAP_ONE_REG: 543 case KVM_CAP_IOEVENTFD: 544 case KVM_CAP_DEVICE_CTRL: 545 case KVM_CAP_IMMEDIATE_EXIT: 546 case KVM_CAP_SET_GUEST_DEBUG: 547 r = 1; 548 break; 549 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: 550 case KVM_CAP_PPC_PAIRED_SINGLES: 551 case KVM_CAP_PPC_OSI: 552 case KVM_CAP_PPC_GET_PVINFO: 553 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 554 case KVM_CAP_SW_TLB: 555 #endif 556 /* We support this only for PR */ 557 r = !hv_enabled; 558 break; 559 #ifdef CONFIG_KVM_MPIC 560 case KVM_CAP_IRQ_MPIC: 561 r = 1; 562 break; 563 #endif 564 565 #ifdef CONFIG_PPC_BOOK3S_64 566 case KVM_CAP_SPAPR_TCE: 567 case KVM_CAP_SPAPR_TCE_64: 568 r = 1; 569 break; 570 case KVM_CAP_SPAPR_TCE_VFIO: 571 r = !!cpu_has_feature(CPU_FTR_HVMODE); 572 break; 573 case KVM_CAP_PPC_RTAS: 574 case KVM_CAP_PPC_FIXUP_HCALL: 575 case KVM_CAP_PPC_ENABLE_HCALL: 576 #ifdef CONFIG_KVM_XICS 577 case KVM_CAP_IRQ_XICS: 578 #endif 579 case KVM_CAP_PPC_GET_CPU_CHAR: 580 r = 1; 581 break; 582 #ifdef CONFIG_KVM_XIVE 583 case KVM_CAP_PPC_IRQ_XIVE: 584 /* 585 * We need XIVE to be enabled on the platform (implies 586 * a POWER9 processor) and the PowerNV platform, as 587 * nested is not yet supported. 588 */ 589 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && 590 kvmppc_xive_native_supported(); 591 break; 592 #endif 593 594 case KVM_CAP_PPC_ALLOC_HTAB: 595 r = hv_enabled; 596 break; 597 #endif /* CONFIG_PPC_BOOK3S_64 */ 598 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 599 case KVM_CAP_PPC_SMT: 600 r = 0; 601 if (kvm) { 602 if (kvm->arch.emul_smt_mode > 1) 603 r = kvm->arch.emul_smt_mode; 604 else 605 r = kvm->arch.smt_mode; 606 } else if (hv_enabled) { 607 if (cpu_has_feature(CPU_FTR_ARCH_300)) 608 r = 1; 609 else 610 r = threads_per_subcore; 611 } 612 break; 613 case KVM_CAP_PPC_SMT_POSSIBLE: 614 r = 1; 615 if (hv_enabled) { 616 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 617 r = ((threads_per_subcore << 1) - 1); 618 else 619 /* P9 can emulate dbells, so allow any mode */ 620 r = 8 | 4 | 2 | 1; 621 } 622 break; 623 case KVM_CAP_PPC_RMA: 624 r = 0; 625 break; 626 case KVM_CAP_PPC_HWRNG: 627 r = kvmppc_hwrng_present(); 628 break; 629 case KVM_CAP_PPC_MMU_RADIX: 630 r = !!(hv_enabled && radix_enabled()); 631 break; 632 case KVM_CAP_PPC_MMU_HASH_V3: 633 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible && 634 kvmppc_hv_ops->hash_v3_possible()); 635 break; 636 case KVM_CAP_PPC_NESTED_HV: 637 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 638 !kvmppc_hv_ops->enable_nested(NULL)); 639 break; 640 #endif 641 case KVM_CAP_SYNC_MMU: 642 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 643 r = hv_enabled; 644 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 645 r = 1; 646 #else 647 r = 0; 648 #endif 649 break; 650 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 651 case KVM_CAP_PPC_HTAB_FD: 652 r = hv_enabled; 653 break; 654 #endif 655 case KVM_CAP_NR_VCPUS: 656 /* 657 * Recommending a number of CPUs is somewhat arbitrary; we 658 * return the number of present CPUs for -HV (since a host 659 * will have secondary threads "offline"), and for other KVM 660 * implementations just count online CPUs. 661 */ 662 if (hv_enabled) 663 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS); 664 else 665 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 666 break; 667 case KVM_CAP_MAX_VCPUS: 668 r = KVM_MAX_VCPUS; 669 break; 670 case KVM_CAP_MAX_VCPU_ID: 671 r = KVM_MAX_VCPU_IDS; 672 break; 673 #ifdef CONFIG_PPC_BOOK3S_64 674 case KVM_CAP_PPC_GET_SMMU_INFO: 675 r = 1; 676 break; 677 case KVM_CAP_SPAPR_MULTITCE: 678 r = 1; 679 break; 680 case KVM_CAP_SPAPR_RESIZE_HPT: 681 r = !!hv_enabled; 682 break; 683 #endif 684 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 685 case KVM_CAP_PPC_FWNMI: 686 r = hv_enabled; 687 break; 688 #endif 689 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 690 case KVM_CAP_PPC_HTM: 691 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 692 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 693 break; 694 #endif 695 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 696 case KVM_CAP_PPC_SECURE_GUEST: 697 r = hv_enabled && kvmppc_hv_ops->enable_svm && 698 !kvmppc_hv_ops->enable_svm(NULL); 699 break; 700 case KVM_CAP_PPC_DAWR1: 701 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 && 702 !kvmppc_hv_ops->enable_dawr1(NULL)); 703 break; 704 case KVM_CAP_PPC_RPT_INVALIDATE: 705 r = 1; 706 break; 707 #endif 708 default: 709 r = 0; 710 break; 711 } 712 return r; 713 714 } 715 716 long kvm_arch_dev_ioctl(struct file *filp, 717 unsigned int ioctl, unsigned long arg) 718 { 719 return -EINVAL; 720 } 721 722 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 723 { 724 kvmppc_core_free_memslot(kvm, slot); 725 } 726 727 int kvm_arch_prepare_memory_region(struct kvm *kvm, 728 const struct kvm_memory_slot *old, 729 struct kvm_memory_slot *new, 730 enum kvm_mr_change change) 731 { 732 return kvmppc_core_prepare_memory_region(kvm, old, new, change); 733 } 734 735 void kvm_arch_commit_memory_region(struct kvm *kvm, 736 struct kvm_memory_slot *old, 737 const struct kvm_memory_slot *new, 738 enum kvm_mr_change change) 739 { 740 kvmppc_core_commit_memory_region(kvm, old, new, change); 741 } 742 743 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 744 struct kvm_memory_slot *slot) 745 { 746 kvmppc_core_flush_memslot(kvm, slot); 747 } 748 749 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 750 { 751 return 0; 752 } 753 754 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 755 { 756 struct kvm_vcpu *vcpu; 757 758 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 759 kvmppc_decrementer_func(vcpu); 760 761 return HRTIMER_NORESTART; 762 } 763 764 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 765 { 766 int err; 767 768 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 769 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 770 vcpu->arch.dec_expires = get_tb(); 771 772 #ifdef CONFIG_KVM_EXIT_TIMING 773 mutex_init(&vcpu->arch.exit_timing_lock); 774 #endif 775 err = kvmppc_subarch_vcpu_init(vcpu); 776 if (err) 777 return err; 778 779 err = kvmppc_core_vcpu_create(vcpu); 780 if (err) 781 goto out_vcpu_uninit; 782 783 rcuwait_init(&vcpu->arch.wait); 784 vcpu->arch.waitp = &vcpu->arch.wait; 785 return 0; 786 787 out_vcpu_uninit: 788 kvmppc_subarch_vcpu_uninit(vcpu); 789 return err; 790 } 791 792 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 793 { 794 } 795 796 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 797 { 798 /* Make sure we're not using the vcpu anymore */ 799 hrtimer_cancel(&vcpu->arch.dec_timer); 800 801 switch (vcpu->arch.irq_type) { 802 case KVMPPC_IRQ_MPIC: 803 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 804 break; 805 case KVMPPC_IRQ_XICS: 806 if (xics_on_xive()) 807 kvmppc_xive_cleanup_vcpu(vcpu); 808 else 809 kvmppc_xics_free_icp(vcpu); 810 break; 811 case KVMPPC_IRQ_XIVE: 812 kvmppc_xive_native_cleanup_vcpu(vcpu); 813 break; 814 } 815 816 kvmppc_core_vcpu_free(vcpu); 817 818 kvmppc_subarch_vcpu_uninit(vcpu); 819 } 820 821 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 822 { 823 return kvmppc_core_pending_dec(vcpu); 824 } 825 826 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 827 { 828 #ifdef CONFIG_BOOKE 829 /* 830 * vrsave (formerly usprg0) isn't used by Linux, but may 831 * be used by the guest. 832 * 833 * On non-booke this is associated with Altivec and 834 * is handled by code in book3s.c. 835 */ 836 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 837 #endif 838 kvmppc_core_vcpu_load(vcpu, cpu); 839 } 840 841 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 842 { 843 kvmppc_core_vcpu_put(vcpu); 844 #ifdef CONFIG_BOOKE 845 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 846 #endif 847 } 848 849 /* 850 * irq_bypass_add_producer and irq_bypass_del_producer are only 851 * useful if the architecture supports PCI passthrough. 852 * irq_bypass_stop and irq_bypass_start are not needed and so 853 * kvm_ops are not defined for them. 854 */ 855 bool kvm_arch_has_irq_bypass(void) 856 { 857 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 858 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 859 } 860 861 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 862 struct irq_bypass_producer *prod) 863 { 864 struct kvm_kernel_irqfd *irqfd = 865 container_of(cons, struct kvm_kernel_irqfd, consumer); 866 struct kvm *kvm = irqfd->kvm; 867 868 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 869 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 870 871 return 0; 872 } 873 874 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 875 struct irq_bypass_producer *prod) 876 { 877 struct kvm_kernel_irqfd *irqfd = 878 container_of(cons, struct kvm_kernel_irqfd, consumer); 879 struct kvm *kvm = irqfd->kvm; 880 881 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 882 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 883 } 884 885 #ifdef CONFIG_VSX 886 static inline int kvmppc_get_vsr_dword_offset(int index) 887 { 888 int offset; 889 890 if ((index != 0) && (index != 1)) 891 return -1; 892 893 #ifdef __BIG_ENDIAN 894 offset = index; 895 #else 896 offset = 1 - index; 897 #endif 898 899 return offset; 900 } 901 902 static inline int kvmppc_get_vsr_word_offset(int index) 903 { 904 int offset; 905 906 if ((index > 3) || (index < 0)) 907 return -1; 908 909 #ifdef __BIG_ENDIAN 910 offset = index; 911 #else 912 offset = 3 - index; 913 #endif 914 return offset; 915 } 916 917 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 918 u64 gpr) 919 { 920 union kvmppc_one_reg val; 921 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 922 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 923 924 if (offset == -1) 925 return; 926 927 if (index >= 32) { 928 val.vval = VCPU_VSX_VR(vcpu, index - 32); 929 val.vsxval[offset] = gpr; 930 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 931 } else { 932 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 933 } 934 } 935 936 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 937 u64 gpr) 938 { 939 union kvmppc_one_reg val; 940 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 941 942 if (index >= 32) { 943 val.vval = VCPU_VSX_VR(vcpu, index - 32); 944 val.vsxval[0] = gpr; 945 val.vsxval[1] = gpr; 946 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 947 } else { 948 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 949 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 950 } 951 } 952 953 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 954 u32 gpr) 955 { 956 union kvmppc_one_reg val; 957 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 958 959 if (index >= 32) { 960 val.vsx32val[0] = gpr; 961 val.vsx32val[1] = gpr; 962 val.vsx32val[2] = gpr; 963 val.vsx32val[3] = gpr; 964 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 965 } else { 966 val.vsx32val[0] = gpr; 967 val.vsx32val[1] = gpr; 968 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 969 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 970 } 971 } 972 973 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 974 u32 gpr32) 975 { 976 union kvmppc_one_reg val; 977 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 978 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 979 int dword_offset, word_offset; 980 981 if (offset == -1) 982 return; 983 984 if (index >= 32) { 985 val.vval = VCPU_VSX_VR(vcpu, index - 32); 986 val.vsx32val[offset] = gpr32; 987 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 988 } else { 989 dword_offset = offset / 2; 990 word_offset = offset % 2; 991 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 992 val.vsx32val[word_offset] = gpr32; 993 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 994 } 995 } 996 #endif /* CONFIG_VSX */ 997 998 #ifdef CONFIG_ALTIVEC 999 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 1000 int index, int element_size) 1001 { 1002 int offset; 1003 int elts = sizeof(vector128)/element_size; 1004 1005 if ((index < 0) || (index >= elts)) 1006 return -1; 1007 1008 if (kvmppc_need_byteswap(vcpu)) 1009 offset = elts - index - 1; 1010 else 1011 offset = index; 1012 1013 return offset; 1014 } 1015 1016 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 1017 int index) 1018 { 1019 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 1020 } 1021 1022 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1023 int index) 1024 { 1025 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1026 } 1027 1028 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1029 int index) 1030 { 1031 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1032 } 1033 1034 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1035 int index) 1036 { 1037 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1038 } 1039 1040 1041 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1042 u64 gpr) 1043 { 1044 union kvmppc_one_reg val; 1045 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1046 vcpu->arch.mmio_vmx_offset); 1047 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1048 1049 if (offset == -1) 1050 return; 1051 1052 val.vval = VCPU_VSX_VR(vcpu, index); 1053 val.vsxval[offset] = gpr; 1054 VCPU_VSX_VR(vcpu, index) = val.vval; 1055 } 1056 1057 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1058 u32 gpr32) 1059 { 1060 union kvmppc_one_reg val; 1061 int offset = kvmppc_get_vmx_word_offset(vcpu, 1062 vcpu->arch.mmio_vmx_offset); 1063 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1064 1065 if (offset == -1) 1066 return; 1067 1068 val.vval = VCPU_VSX_VR(vcpu, index); 1069 val.vsx32val[offset] = gpr32; 1070 VCPU_VSX_VR(vcpu, index) = val.vval; 1071 } 1072 1073 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1074 u16 gpr16) 1075 { 1076 union kvmppc_one_reg val; 1077 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1078 vcpu->arch.mmio_vmx_offset); 1079 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1080 1081 if (offset == -1) 1082 return; 1083 1084 val.vval = VCPU_VSX_VR(vcpu, index); 1085 val.vsx16val[offset] = gpr16; 1086 VCPU_VSX_VR(vcpu, index) = val.vval; 1087 } 1088 1089 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1090 u8 gpr8) 1091 { 1092 union kvmppc_one_reg val; 1093 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1094 vcpu->arch.mmio_vmx_offset); 1095 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1096 1097 if (offset == -1) 1098 return; 1099 1100 val.vval = VCPU_VSX_VR(vcpu, index); 1101 val.vsx8val[offset] = gpr8; 1102 VCPU_VSX_VR(vcpu, index) = val.vval; 1103 } 1104 #endif /* CONFIG_ALTIVEC */ 1105 1106 #ifdef CONFIG_PPC_FPU 1107 static inline u64 sp_to_dp(u32 fprs) 1108 { 1109 u64 fprd; 1110 1111 preempt_disable(); 1112 enable_kernel_fp(); 1113 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs) 1114 : "fr0"); 1115 preempt_enable(); 1116 return fprd; 1117 } 1118 1119 static inline u32 dp_to_sp(u64 fprd) 1120 { 1121 u32 fprs; 1122 1123 preempt_disable(); 1124 enable_kernel_fp(); 1125 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd) 1126 : "fr0"); 1127 preempt_enable(); 1128 return fprs; 1129 } 1130 1131 #else 1132 #define sp_to_dp(x) (x) 1133 #define dp_to_sp(x) (x) 1134 #endif /* CONFIG_PPC_FPU */ 1135 1136 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) 1137 { 1138 struct kvm_run *run = vcpu->run; 1139 u64 gpr; 1140 1141 if (run->mmio.len > sizeof(gpr)) 1142 return; 1143 1144 if (!vcpu->arch.mmio_host_swabbed) { 1145 switch (run->mmio.len) { 1146 case 8: gpr = *(u64 *)run->mmio.data; break; 1147 case 4: gpr = *(u32 *)run->mmio.data; break; 1148 case 2: gpr = *(u16 *)run->mmio.data; break; 1149 case 1: gpr = *(u8 *)run->mmio.data; break; 1150 } 1151 } else { 1152 switch (run->mmio.len) { 1153 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1154 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1155 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1156 case 1: gpr = *(u8 *)run->mmio.data; break; 1157 } 1158 } 1159 1160 /* conversion between single and double precision */ 1161 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1162 gpr = sp_to_dp(gpr); 1163 1164 if (vcpu->arch.mmio_sign_extend) { 1165 switch (run->mmio.len) { 1166 #ifdef CONFIG_PPC64 1167 case 4: 1168 gpr = (s64)(s32)gpr; 1169 break; 1170 #endif 1171 case 2: 1172 gpr = (s64)(s16)gpr; 1173 break; 1174 case 1: 1175 gpr = (s64)(s8)gpr; 1176 break; 1177 } 1178 } 1179 1180 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1181 case KVM_MMIO_REG_GPR: 1182 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1183 break; 1184 case KVM_MMIO_REG_FPR: 1185 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1186 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1187 1188 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1189 break; 1190 #ifdef CONFIG_PPC_BOOK3S 1191 case KVM_MMIO_REG_QPR: 1192 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1193 break; 1194 case KVM_MMIO_REG_FQPR: 1195 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1196 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1197 break; 1198 #endif 1199 #ifdef CONFIG_VSX 1200 case KVM_MMIO_REG_VSX: 1201 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1202 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1203 1204 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1205 kvmppc_set_vsr_dword(vcpu, gpr); 1206 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1207 kvmppc_set_vsr_word(vcpu, gpr); 1208 else if (vcpu->arch.mmio_copy_type == 1209 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1210 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1211 else if (vcpu->arch.mmio_copy_type == 1212 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1213 kvmppc_set_vsr_word_dump(vcpu, gpr); 1214 break; 1215 #endif 1216 #ifdef CONFIG_ALTIVEC 1217 case KVM_MMIO_REG_VMX: 1218 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1219 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1220 1221 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1222 kvmppc_set_vmx_dword(vcpu, gpr); 1223 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1224 kvmppc_set_vmx_word(vcpu, gpr); 1225 else if (vcpu->arch.mmio_copy_type == 1226 KVMPPC_VMX_COPY_HWORD) 1227 kvmppc_set_vmx_hword(vcpu, gpr); 1228 else if (vcpu->arch.mmio_copy_type == 1229 KVMPPC_VMX_COPY_BYTE) 1230 kvmppc_set_vmx_byte(vcpu, gpr); 1231 break; 1232 #endif 1233 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1234 case KVM_MMIO_REG_NESTED_GPR: 1235 if (kvmppc_need_byteswap(vcpu)) 1236 gpr = swab64(gpr); 1237 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1238 sizeof(gpr)); 1239 break; 1240 #endif 1241 default: 1242 BUG(); 1243 } 1244 } 1245 1246 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, 1247 unsigned int rt, unsigned int bytes, 1248 int is_default_endian, int sign_extend) 1249 { 1250 struct kvm_run *run = vcpu->run; 1251 int idx, ret; 1252 bool host_swabbed; 1253 1254 /* Pity C doesn't have a logical XOR operator */ 1255 if (kvmppc_need_byteswap(vcpu)) { 1256 host_swabbed = is_default_endian; 1257 } else { 1258 host_swabbed = !is_default_endian; 1259 } 1260 1261 if (bytes > sizeof(run->mmio.data)) 1262 return EMULATE_FAIL; 1263 1264 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1265 run->mmio.len = bytes; 1266 run->mmio.is_write = 0; 1267 1268 vcpu->arch.io_gpr = rt; 1269 vcpu->arch.mmio_host_swabbed = host_swabbed; 1270 vcpu->mmio_needed = 1; 1271 vcpu->mmio_is_write = 0; 1272 vcpu->arch.mmio_sign_extend = sign_extend; 1273 1274 idx = srcu_read_lock(&vcpu->kvm->srcu); 1275 1276 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1277 bytes, &run->mmio.data); 1278 1279 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1280 1281 if (!ret) { 1282 kvmppc_complete_mmio_load(vcpu); 1283 vcpu->mmio_needed = 0; 1284 return EMULATE_DONE; 1285 } 1286 1287 return EMULATE_DO_MMIO; 1288 } 1289 1290 int kvmppc_handle_load(struct kvm_vcpu *vcpu, 1291 unsigned int rt, unsigned int bytes, 1292 int is_default_endian) 1293 { 1294 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); 1295 } 1296 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1297 1298 /* Same as above, but sign extends */ 1299 int kvmppc_handle_loads(struct kvm_vcpu *vcpu, 1300 unsigned int rt, unsigned int bytes, 1301 int is_default_endian) 1302 { 1303 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); 1304 } 1305 1306 #ifdef CONFIG_VSX 1307 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, 1308 unsigned int rt, unsigned int bytes, 1309 int is_default_endian, int mmio_sign_extend) 1310 { 1311 enum emulation_result emulated = EMULATE_DONE; 1312 1313 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1314 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1315 return EMULATE_FAIL; 1316 1317 while (vcpu->arch.mmio_vsx_copy_nums) { 1318 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1319 is_default_endian, mmio_sign_extend); 1320 1321 if (emulated != EMULATE_DONE) 1322 break; 1323 1324 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1325 1326 vcpu->arch.mmio_vsx_copy_nums--; 1327 vcpu->arch.mmio_vsx_offset++; 1328 } 1329 return emulated; 1330 } 1331 #endif /* CONFIG_VSX */ 1332 1333 int kvmppc_handle_store(struct kvm_vcpu *vcpu, 1334 u64 val, unsigned int bytes, int is_default_endian) 1335 { 1336 struct kvm_run *run = vcpu->run; 1337 void *data = run->mmio.data; 1338 int idx, ret; 1339 bool host_swabbed; 1340 1341 /* Pity C doesn't have a logical XOR operator */ 1342 if (kvmppc_need_byteswap(vcpu)) { 1343 host_swabbed = is_default_endian; 1344 } else { 1345 host_swabbed = !is_default_endian; 1346 } 1347 1348 if (bytes > sizeof(run->mmio.data)) 1349 return EMULATE_FAIL; 1350 1351 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1352 run->mmio.len = bytes; 1353 run->mmio.is_write = 1; 1354 vcpu->mmio_needed = 1; 1355 vcpu->mmio_is_write = 1; 1356 1357 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1358 val = dp_to_sp(val); 1359 1360 /* Store the value at the lowest bytes in 'data'. */ 1361 if (!host_swabbed) { 1362 switch (bytes) { 1363 case 8: *(u64 *)data = val; break; 1364 case 4: *(u32 *)data = val; break; 1365 case 2: *(u16 *)data = val; break; 1366 case 1: *(u8 *)data = val; break; 1367 } 1368 } else { 1369 switch (bytes) { 1370 case 8: *(u64 *)data = swab64(val); break; 1371 case 4: *(u32 *)data = swab32(val); break; 1372 case 2: *(u16 *)data = swab16(val); break; 1373 case 1: *(u8 *)data = val; break; 1374 } 1375 } 1376 1377 idx = srcu_read_lock(&vcpu->kvm->srcu); 1378 1379 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1380 bytes, &run->mmio.data); 1381 1382 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1383 1384 if (!ret) { 1385 vcpu->mmio_needed = 0; 1386 return EMULATE_DONE; 1387 } 1388 1389 return EMULATE_DO_MMIO; 1390 } 1391 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1392 1393 #ifdef CONFIG_VSX 1394 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1395 { 1396 u32 dword_offset, word_offset; 1397 union kvmppc_one_reg reg; 1398 int vsx_offset = 0; 1399 int copy_type = vcpu->arch.mmio_copy_type; 1400 int result = 0; 1401 1402 switch (copy_type) { 1403 case KVMPPC_VSX_COPY_DWORD: 1404 vsx_offset = 1405 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1406 1407 if (vsx_offset == -1) { 1408 result = -1; 1409 break; 1410 } 1411 1412 if (rs < 32) { 1413 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1414 } else { 1415 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1416 *val = reg.vsxval[vsx_offset]; 1417 } 1418 break; 1419 1420 case KVMPPC_VSX_COPY_WORD: 1421 vsx_offset = 1422 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1423 1424 if (vsx_offset == -1) { 1425 result = -1; 1426 break; 1427 } 1428 1429 if (rs < 32) { 1430 dword_offset = vsx_offset / 2; 1431 word_offset = vsx_offset % 2; 1432 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1433 *val = reg.vsx32val[word_offset]; 1434 } else { 1435 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1436 *val = reg.vsx32val[vsx_offset]; 1437 } 1438 break; 1439 1440 default: 1441 result = -1; 1442 break; 1443 } 1444 1445 return result; 1446 } 1447 1448 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, 1449 int rs, unsigned int bytes, int is_default_endian) 1450 { 1451 u64 val; 1452 enum emulation_result emulated = EMULATE_DONE; 1453 1454 vcpu->arch.io_gpr = rs; 1455 1456 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1457 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1458 return EMULATE_FAIL; 1459 1460 while (vcpu->arch.mmio_vsx_copy_nums) { 1461 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1462 return EMULATE_FAIL; 1463 1464 emulated = kvmppc_handle_store(vcpu, 1465 val, bytes, is_default_endian); 1466 1467 if (emulated != EMULATE_DONE) 1468 break; 1469 1470 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1471 1472 vcpu->arch.mmio_vsx_copy_nums--; 1473 vcpu->arch.mmio_vsx_offset++; 1474 } 1475 1476 return emulated; 1477 } 1478 1479 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) 1480 { 1481 struct kvm_run *run = vcpu->run; 1482 enum emulation_result emulated = EMULATE_FAIL; 1483 int r; 1484 1485 vcpu->arch.paddr_accessed += run->mmio.len; 1486 1487 if (!vcpu->mmio_is_write) { 1488 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, 1489 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1490 } else { 1491 emulated = kvmppc_handle_vsx_store(vcpu, 1492 vcpu->arch.io_gpr, run->mmio.len, 1); 1493 } 1494 1495 switch (emulated) { 1496 case EMULATE_DO_MMIO: 1497 run->exit_reason = KVM_EXIT_MMIO; 1498 r = RESUME_HOST; 1499 break; 1500 case EMULATE_FAIL: 1501 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1502 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1503 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1504 r = RESUME_HOST; 1505 break; 1506 default: 1507 r = RESUME_GUEST; 1508 break; 1509 } 1510 return r; 1511 } 1512 #endif /* CONFIG_VSX */ 1513 1514 #ifdef CONFIG_ALTIVEC 1515 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, 1516 unsigned int rt, unsigned int bytes, int is_default_endian) 1517 { 1518 enum emulation_result emulated = EMULATE_DONE; 1519 1520 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1521 return EMULATE_FAIL; 1522 1523 while (vcpu->arch.mmio_vmx_copy_nums) { 1524 emulated = __kvmppc_handle_load(vcpu, rt, bytes, 1525 is_default_endian, 0); 1526 1527 if (emulated != EMULATE_DONE) 1528 break; 1529 1530 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1531 vcpu->arch.mmio_vmx_copy_nums--; 1532 vcpu->arch.mmio_vmx_offset++; 1533 } 1534 1535 return emulated; 1536 } 1537 1538 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1539 { 1540 union kvmppc_one_reg reg; 1541 int vmx_offset = 0; 1542 int result = 0; 1543 1544 vmx_offset = 1545 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1546 1547 if (vmx_offset == -1) 1548 return -1; 1549 1550 reg.vval = VCPU_VSX_VR(vcpu, index); 1551 *val = reg.vsxval[vmx_offset]; 1552 1553 return result; 1554 } 1555 1556 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1557 { 1558 union kvmppc_one_reg reg; 1559 int vmx_offset = 0; 1560 int result = 0; 1561 1562 vmx_offset = 1563 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1564 1565 if (vmx_offset == -1) 1566 return -1; 1567 1568 reg.vval = VCPU_VSX_VR(vcpu, index); 1569 *val = reg.vsx32val[vmx_offset]; 1570 1571 return result; 1572 } 1573 1574 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1575 { 1576 union kvmppc_one_reg reg; 1577 int vmx_offset = 0; 1578 int result = 0; 1579 1580 vmx_offset = 1581 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1582 1583 if (vmx_offset == -1) 1584 return -1; 1585 1586 reg.vval = VCPU_VSX_VR(vcpu, index); 1587 *val = reg.vsx16val[vmx_offset]; 1588 1589 return result; 1590 } 1591 1592 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1593 { 1594 union kvmppc_one_reg reg; 1595 int vmx_offset = 0; 1596 int result = 0; 1597 1598 vmx_offset = 1599 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1600 1601 if (vmx_offset == -1) 1602 return -1; 1603 1604 reg.vval = VCPU_VSX_VR(vcpu, index); 1605 *val = reg.vsx8val[vmx_offset]; 1606 1607 return result; 1608 } 1609 1610 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, 1611 unsigned int rs, unsigned int bytes, int is_default_endian) 1612 { 1613 u64 val = 0; 1614 unsigned int index = rs & KVM_MMIO_REG_MASK; 1615 enum emulation_result emulated = EMULATE_DONE; 1616 1617 if (vcpu->arch.mmio_vmx_copy_nums > 2) 1618 return EMULATE_FAIL; 1619 1620 vcpu->arch.io_gpr = rs; 1621 1622 while (vcpu->arch.mmio_vmx_copy_nums) { 1623 switch (vcpu->arch.mmio_copy_type) { 1624 case KVMPPC_VMX_COPY_DWORD: 1625 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1626 return EMULATE_FAIL; 1627 1628 break; 1629 case KVMPPC_VMX_COPY_WORD: 1630 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1631 return EMULATE_FAIL; 1632 break; 1633 case KVMPPC_VMX_COPY_HWORD: 1634 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1635 return EMULATE_FAIL; 1636 break; 1637 case KVMPPC_VMX_COPY_BYTE: 1638 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1639 return EMULATE_FAIL; 1640 break; 1641 default: 1642 return EMULATE_FAIL; 1643 } 1644 1645 emulated = kvmppc_handle_store(vcpu, val, bytes, 1646 is_default_endian); 1647 if (emulated != EMULATE_DONE) 1648 break; 1649 1650 vcpu->arch.paddr_accessed += vcpu->run->mmio.len; 1651 vcpu->arch.mmio_vmx_copy_nums--; 1652 vcpu->arch.mmio_vmx_offset++; 1653 } 1654 1655 return emulated; 1656 } 1657 1658 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) 1659 { 1660 struct kvm_run *run = vcpu->run; 1661 enum emulation_result emulated = EMULATE_FAIL; 1662 int r; 1663 1664 vcpu->arch.paddr_accessed += run->mmio.len; 1665 1666 if (!vcpu->mmio_is_write) { 1667 emulated = kvmppc_handle_vmx_load(vcpu, 1668 vcpu->arch.io_gpr, run->mmio.len, 1); 1669 } else { 1670 emulated = kvmppc_handle_vmx_store(vcpu, 1671 vcpu->arch.io_gpr, run->mmio.len, 1); 1672 } 1673 1674 switch (emulated) { 1675 case EMULATE_DO_MMIO: 1676 run->exit_reason = KVM_EXIT_MMIO; 1677 r = RESUME_HOST; 1678 break; 1679 case EMULATE_FAIL: 1680 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1681 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1682 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1683 r = RESUME_HOST; 1684 break; 1685 default: 1686 r = RESUME_GUEST; 1687 break; 1688 } 1689 return r; 1690 } 1691 #endif /* CONFIG_ALTIVEC */ 1692 1693 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1694 { 1695 int r = 0; 1696 union kvmppc_one_reg val; 1697 int size; 1698 1699 size = one_reg_size(reg->id); 1700 if (size > sizeof(val)) 1701 return -EINVAL; 1702 1703 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1704 if (r == -EINVAL) { 1705 r = 0; 1706 switch (reg->id) { 1707 #ifdef CONFIG_ALTIVEC 1708 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1709 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1710 r = -ENXIO; 1711 break; 1712 } 1713 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1714 break; 1715 case KVM_REG_PPC_VSCR: 1716 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1717 r = -ENXIO; 1718 break; 1719 } 1720 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1721 break; 1722 case KVM_REG_PPC_VRSAVE: 1723 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1724 break; 1725 #endif /* CONFIG_ALTIVEC */ 1726 default: 1727 r = -EINVAL; 1728 break; 1729 } 1730 } 1731 1732 if (r) 1733 return r; 1734 1735 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1736 r = -EFAULT; 1737 1738 return r; 1739 } 1740 1741 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1742 { 1743 int r; 1744 union kvmppc_one_reg val; 1745 int size; 1746 1747 size = one_reg_size(reg->id); 1748 if (size > sizeof(val)) 1749 return -EINVAL; 1750 1751 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1752 return -EFAULT; 1753 1754 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1755 if (r == -EINVAL) { 1756 r = 0; 1757 switch (reg->id) { 1758 #ifdef CONFIG_ALTIVEC 1759 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1760 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1761 r = -ENXIO; 1762 break; 1763 } 1764 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1765 break; 1766 case KVM_REG_PPC_VSCR: 1767 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1768 r = -ENXIO; 1769 break; 1770 } 1771 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1772 break; 1773 case KVM_REG_PPC_VRSAVE: 1774 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1775 r = -ENXIO; 1776 break; 1777 } 1778 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1779 break; 1780 #endif /* CONFIG_ALTIVEC */ 1781 default: 1782 r = -EINVAL; 1783 break; 1784 } 1785 } 1786 1787 return r; 1788 } 1789 1790 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1791 { 1792 struct kvm_run *run = vcpu->run; 1793 int r; 1794 1795 vcpu_load(vcpu); 1796 1797 if (vcpu->mmio_needed) { 1798 vcpu->mmio_needed = 0; 1799 if (!vcpu->mmio_is_write) 1800 kvmppc_complete_mmio_load(vcpu); 1801 #ifdef CONFIG_VSX 1802 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1803 vcpu->arch.mmio_vsx_copy_nums--; 1804 vcpu->arch.mmio_vsx_offset++; 1805 } 1806 1807 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1808 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); 1809 if (r == RESUME_HOST) { 1810 vcpu->mmio_needed = 1; 1811 goto out; 1812 } 1813 } 1814 #endif 1815 #ifdef CONFIG_ALTIVEC 1816 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1817 vcpu->arch.mmio_vmx_copy_nums--; 1818 vcpu->arch.mmio_vmx_offset++; 1819 } 1820 1821 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1822 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); 1823 if (r == RESUME_HOST) { 1824 vcpu->mmio_needed = 1; 1825 goto out; 1826 } 1827 } 1828 #endif 1829 } else if (vcpu->arch.osi_needed) { 1830 u64 *gprs = run->osi.gprs; 1831 int i; 1832 1833 for (i = 0; i < 32; i++) 1834 kvmppc_set_gpr(vcpu, i, gprs[i]); 1835 vcpu->arch.osi_needed = 0; 1836 } else if (vcpu->arch.hcall_needed) { 1837 int i; 1838 1839 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1840 for (i = 0; i < 9; ++i) 1841 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1842 vcpu->arch.hcall_needed = 0; 1843 #ifdef CONFIG_BOOKE 1844 } else if (vcpu->arch.epr_needed) { 1845 kvmppc_set_epr(vcpu, run->epr.epr); 1846 vcpu->arch.epr_needed = 0; 1847 #endif 1848 } 1849 1850 kvm_sigset_activate(vcpu); 1851 1852 if (run->immediate_exit) 1853 r = -EINTR; 1854 else 1855 r = kvmppc_vcpu_run(vcpu); 1856 1857 kvm_sigset_deactivate(vcpu); 1858 1859 #ifdef CONFIG_ALTIVEC 1860 out: 1861 #endif 1862 1863 /* 1864 * We're already returning to userspace, don't pass the 1865 * RESUME_HOST flags along. 1866 */ 1867 if (r > 0) 1868 r = 0; 1869 1870 vcpu_put(vcpu); 1871 return r; 1872 } 1873 1874 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1875 { 1876 if (irq->irq == KVM_INTERRUPT_UNSET) { 1877 kvmppc_core_dequeue_external(vcpu); 1878 return 0; 1879 } 1880 1881 kvmppc_core_queue_external(vcpu, irq); 1882 1883 kvm_vcpu_kick(vcpu); 1884 1885 return 0; 1886 } 1887 1888 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1889 struct kvm_enable_cap *cap) 1890 { 1891 int r; 1892 1893 if (cap->flags) 1894 return -EINVAL; 1895 1896 switch (cap->cap) { 1897 case KVM_CAP_PPC_OSI: 1898 r = 0; 1899 vcpu->arch.osi_enabled = true; 1900 break; 1901 case KVM_CAP_PPC_PAPR: 1902 r = 0; 1903 vcpu->arch.papr_enabled = true; 1904 break; 1905 case KVM_CAP_PPC_EPR: 1906 r = 0; 1907 if (cap->args[0]) 1908 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1909 else 1910 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1911 break; 1912 #ifdef CONFIG_BOOKE 1913 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1914 r = 0; 1915 vcpu->arch.watchdog_enabled = true; 1916 break; 1917 #endif 1918 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1919 case KVM_CAP_SW_TLB: { 1920 struct kvm_config_tlb cfg; 1921 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1922 1923 r = -EFAULT; 1924 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1925 break; 1926 1927 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1928 break; 1929 } 1930 #endif 1931 #ifdef CONFIG_KVM_MPIC 1932 case KVM_CAP_IRQ_MPIC: { 1933 struct fd f; 1934 struct kvm_device *dev; 1935 1936 r = -EBADF; 1937 f = fdget(cap->args[0]); 1938 if (!f.file) 1939 break; 1940 1941 r = -EPERM; 1942 dev = kvm_device_from_filp(f.file); 1943 if (dev) 1944 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1945 1946 fdput(f); 1947 break; 1948 } 1949 #endif 1950 #ifdef CONFIG_KVM_XICS 1951 case KVM_CAP_IRQ_XICS: { 1952 struct fd f; 1953 struct kvm_device *dev; 1954 1955 r = -EBADF; 1956 f = fdget(cap->args[0]); 1957 if (!f.file) 1958 break; 1959 1960 r = -EPERM; 1961 dev = kvm_device_from_filp(f.file); 1962 if (dev) { 1963 if (xics_on_xive()) 1964 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1965 else 1966 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1967 } 1968 1969 fdput(f); 1970 break; 1971 } 1972 #endif /* CONFIG_KVM_XICS */ 1973 #ifdef CONFIG_KVM_XIVE 1974 case KVM_CAP_PPC_IRQ_XIVE: { 1975 struct fd f; 1976 struct kvm_device *dev; 1977 1978 r = -EBADF; 1979 f = fdget(cap->args[0]); 1980 if (!f.file) 1981 break; 1982 1983 r = -ENXIO; 1984 if (!xive_enabled()) 1985 break; 1986 1987 r = -EPERM; 1988 dev = kvm_device_from_filp(f.file); 1989 if (dev) 1990 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1991 cap->args[1]); 1992 1993 fdput(f); 1994 break; 1995 } 1996 #endif /* CONFIG_KVM_XIVE */ 1997 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1998 case KVM_CAP_PPC_FWNMI: 1999 r = -EINVAL; 2000 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 2001 break; 2002 r = 0; 2003 vcpu->kvm->arch.fwnmi_enabled = true; 2004 break; 2005 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 2006 default: 2007 r = -EINVAL; 2008 break; 2009 } 2010 2011 if (!r) 2012 r = kvmppc_sanity_check(vcpu); 2013 2014 return r; 2015 } 2016 2017 bool kvm_arch_intc_initialized(struct kvm *kvm) 2018 { 2019 #ifdef CONFIG_KVM_MPIC 2020 if (kvm->arch.mpic) 2021 return true; 2022 #endif 2023 #ifdef CONFIG_KVM_XICS 2024 if (kvm->arch.xics || kvm->arch.xive) 2025 return true; 2026 #endif 2027 return false; 2028 } 2029 2030 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2031 struct kvm_mp_state *mp_state) 2032 { 2033 return -EINVAL; 2034 } 2035 2036 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2037 struct kvm_mp_state *mp_state) 2038 { 2039 return -EINVAL; 2040 } 2041 2042 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2043 unsigned int ioctl, unsigned long arg) 2044 { 2045 struct kvm_vcpu *vcpu = filp->private_data; 2046 void __user *argp = (void __user *)arg; 2047 2048 if (ioctl == KVM_INTERRUPT) { 2049 struct kvm_interrupt irq; 2050 if (copy_from_user(&irq, argp, sizeof(irq))) 2051 return -EFAULT; 2052 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2053 } 2054 return -ENOIOCTLCMD; 2055 } 2056 2057 long kvm_arch_vcpu_ioctl(struct file *filp, 2058 unsigned int ioctl, unsigned long arg) 2059 { 2060 struct kvm_vcpu *vcpu = filp->private_data; 2061 void __user *argp = (void __user *)arg; 2062 long r; 2063 2064 switch (ioctl) { 2065 case KVM_ENABLE_CAP: 2066 { 2067 struct kvm_enable_cap cap; 2068 r = -EFAULT; 2069 if (copy_from_user(&cap, argp, sizeof(cap))) 2070 goto out; 2071 vcpu_load(vcpu); 2072 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2073 vcpu_put(vcpu); 2074 break; 2075 } 2076 2077 case KVM_SET_ONE_REG: 2078 case KVM_GET_ONE_REG: 2079 { 2080 struct kvm_one_reg reg; 2081 r = -EFAULT; 2082 if (copy_from_user(®, argp, sizeof(reg))) 2083 goto out; 2084 if (ioctl == KVM_SET_ONE_REG) 2085 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2086 else 2087 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2088 break; 2089 } 2090 2091 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2092 case KVM_DIRTY_TLB: { 2093 struct kvm_dirty_tlb dirty; 2094 r = -EFAULT; 2095 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2096 goto out; 2097 vcpu_load(vcpu); 2098 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2099 vcpu_put(vcpu); 2100 break; 2101 } 2102 #endif 2103 default: 2104 r = -EINVAL; 2105 } 2106 2107 out: 2108 return r; 2109 } 2110 2111 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2112 { 2113 return VM_FAULT_SIGBUS; 2114 } 2115 2116 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2117 { 2118 u32 inst_nop = 0x60000000; 2119 #ifdef CONFIG_KVM_BOOKE_HV 2120 u32 inst_sc1 = 0x44000022; 2121 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2122 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2123 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2124 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2125 #else 2126 u32 inst_lis = 0x3c000000; 2127 u32 inst_ori = 0x60000000; 2128 u32 inst_sc = 0x44000002; 2129 u32 inst_imm_mask = 0xffff; 2130 2131 /* 2132 * The hypercall to get into KVM from within guest context is as 2133 * follows: 2134 * 2135 * lis r0, r0, KVM_SC_MAGIC_R0@h 2136 * ori r0, KVM_SC_MAGIC_R0@l 2137 * sc 2138 * nop 2139 */ 2140 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2141 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2142 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2143 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2144 #endif 2145 2146 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2147 2148 return 0; 2149 } 2150 2151 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2152 bool line_status) 2153 { 2154 if (!irqchip_in_kernel(kvm)) 2155 return -ENXIO; 2156 2157 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2158 irq_event->irq, irq_event->level, 2159 line_status); 2160 return 0; 2161 } 2162 2163 2164 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2165 struct kvm_enable_cap *cap) 2166 { 2167 int r; 2168 2169 if (cap->flags) 2170 return -EINVAL; 2171 2172 switch (cap->cap) { 2173 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2174 case KVM_CAP_PPC_ENABLE_HCALL: { 2175 unsigned long hcall = cap->args[0]; 2176 2177 r = -EINVAL; 2178 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2179 cap->args[1] > 1) 2180 break; 2181 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2182 break; 2183 if (cap->args[1]) 2184 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2185 else 2186 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2187 r = 0; 2188 break; 2189 } 2190 case KVM_CAP_PPC_SMT: { 2191 unsigned long mode = cap->args[0]; 2192 unsigned long flags = cap->args[1]; 2193 2194 r = -EINVAL; 2195 if (kvm->arch.kvm_ops->set_smt_mode) 2196 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2197 break; 2198 } 2199 2200 case KVM_CAP_PPC_NESTED_HV: 2201 r = -EINVAL; 2202 if (!is_kvmppc_hv_enabled(kvm) || 2203 !kvm->arch.kvm_ops->enable_nested) 2204 break; 2205 r = kvm->arch.kvm_ops->enable_nested(kvm); 2206 break; 2207 #endif 2208 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 2209 case KVM_CAP_PPC_SECURE_GUEST: 2210 r = -EINVAL; 2211 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) 2212 break; 2213 r = kvm->arch.kvm_ops->enable_svm(kvm); 2214 break; 2215 case KVM_CAP_PPC_DAWR1: 2216 r = -EINVAL; 2217 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1) 2218 break; 2219 r = kvm->arch.kvm_ops->enable_dawr1(kvm); 2220 break; 2221 #endif 2222 default: 2223 r = -EINVAL; 2224 break; 2225 } 2226 2227 return r; 2228 } 2229 2230 #ifdef CONFIG_PPC_BOOK3S_64 2231 /* 2232 * These functions check whether the underlying hardware is safe 2233 * against attacks based on observing the effects of speculatively 2234 * executed instructions, and whether it supplies instructions for 2235 * use in workarounds. The information comes from firmware, either 2236 * via the device tree on powernv platforms or from an hcall on 2237 * pseries platforms. 2238 */ 2239 #ifdef CONFIG_PPC_PSERIES 2240 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2241 { 2242 struct h_cpu_char_result c; 2243 unsigned long rc; 2244 2245 if (!machine_is(pseries)) 2246 return -ENOTTY; 2247 2248 rc = plpar_get_cpu_characteristics(&c); 2249 if (rc == H_SUCCESS) { 2250 cp->character = c.character; 2251 cp->behaviour = c.behaviour; 2252 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2253 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2254 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2255 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2256 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2257 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2258 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2259 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2260 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2261 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2262 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2263 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2264 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2265 } 2266 return 0; 2267 } 2268 #else 2269 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2270 { 2271 return -ENOTTY; 2272 } 2273 #endif 2274 2275 static inline bool have_fw_feat(struct device_node *fw_features, 2276 const char *state, const char *name) 2277 { 2278 struct device_node *np; 2279 bool r = false; 2280 2281 np = of_get_child_by_name(fw_features, name); 2282 if (np) { 2283 r = of_property_read_bool(np, state); 2284 of_node_put(np); 2285 } 2286 return r; 2287 } 2288 2289 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2290 { 2291 struct device_node *np, *fw_features; 2292 int r; 2293 2294 memset(cp, 0, sizeof(*cp)); 2295 r = pseries_get_cpu_char(cp); 2296 if (r != -ENOTTY) 2297 return r; 2298 2299 np = of_find_node_by_name(NULL, "ibm,opal"); 2300 if (np) { 2301 fw_features = of_get_child_by_name(np, "fw-features"); 2302 of_node_put(np); 2303 if (!fw_features) 2304 return 0; 2305 if (have_fw_feat(fw_features, "enabled", 2306 "inst-spec-barrier-ori31,31,0")) 2307 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2308 if (have_fw_feat(fw_features, "enabled", 2309 "fw-bcctrl-serialized")) 2310 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2311 if (have_fw_feat(fw_features, "enabled", 2312 "inst-l1d-flush-ori30,30,0")) 2313 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2314 if (have_fw_feat(fw_features, "enabled", 2315 "inst-l1d-flush-trig2")) 2316 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2317 if (have_fw_feat(fw_features, "enabled", 2318 "fw-l1d-thread-split")) 2319 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2320 if (have_fw_feat(fw_features, "enabled", 2321 "fw-count-cache-disabled")) 2322 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2323 if (have_fw_feat(fw_features, "enabled", 2324 "fw-count-cache-flush-bcctr2,0,0")) 2325 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2326 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2327 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2328 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2329 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2330 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2331 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2332 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2333 2334 if (have_fw_feat(fw_features, "enabled", 2335 "speculation-policy-favor-security")) 2336 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2337 if (!have_fw_feat(fw_features, "disabled", 2338 "needs-l1d-flush-msr-pr-0-to-1")) 2339 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2340 if (!have_fw_feat(fw_features, "disabled", 2341 "needs-spec-barrier-for-bound-checks")) 2342 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2343 if (have_fw_feat(fw_features, "enabled", 2344 "needs-count-cache-flush-on-context-switch")) 2345 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2346 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2347 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2348 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2349 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2350 2351 of_node_put(fw_features); 2352 } 2353 2354 return 0; 2355 } 2356 #endif 2357 2358 long kvm_arch_vm_ioctl(struct file *filp, 2359 unsigned int ioctl, unsigned long arg) 2360 { 2361 struct kvm *kvm __maybe_unused = filp->private_data; 2362 void __user *argp = (void __user *)arg; 2363 long r; 2364 2365 switch (ioctl) { 2366 case KVM_PPC_GET_PVINFO: { 2367 struct kvm_ppc_pvinfo pvinfo; 2368 memset(&pvinfo, 0, sizeof(pvinfo)); 2369 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2370 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2371 r = -EFAULT; 2372 goto out; 2373 } 2374 2375 break; 2376 } 2377 #ifdef CONFIG_SPAPR_TCE_IOMMU 2378 case KVM_CREATE_SPAPR_TCE_64: { 2379 struct kvm_create_spapr_tce_64 create_tce_64; 2380 2381 r = -EFAULT; 2382 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2383 goto out; 2384 if (create_tce_64.flags) { 2385 r = -EINVAL; 2386 goto out; 2387 } 2388 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2389 goto out; 2390 } 2391 case KVM_CREATE_SPAPR_TCE: { 2392 struct kvm_create_spapr_tce create_tce; 2393 struct kvm_create_spapr_tce_64 create_tce_64; 2394 2395 r = -EFAULT; 2396 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2397 goto out; 2398 2399 create_tce_64.liobn = create_tce.liobn; 2400 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2401 create_tce_64.offset = 0; 2402 create_tce_64.size = create_tce.window_size >> 2403 IOMMU_PAGE_SHIFT_4K; 2404 create_tce_64.flags = 0; 2405 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2406 goto out; 2407 } 2408 #endif 2409 #ifdef CONFIG_PPC_BOOK3S_64 2410 case KVM_PPC_GET_SMMU_INFO: { 2411 struct kvm_ppc_smmu_info info; 2412 struct kvm *kvm = filp->private_data; 2413 2414 memset(&info, 0, sizeof(info)); 2415 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2416 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2417 r = -EFAULT; 2418 break; 2419 } 2420 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2421 struct kvm *kvm = filp->private_data; 2422 2423 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2424 break; 2425 } 2426 case KVM_PPC_CONFIGURE_V3_MMU: { 2427 struct kvm *kvm = filp->private_data; 2428 struct kvm_ppc_mmuv3_cfg cfg; 2429 2430 r = -EINVAL; 2431 if (!kvm->arch.kvm_ops->configure_mmu) 2432 goto out; 2433 r = -EFAULT; 2434 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2435 goto out; 2436 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2437 break; 2438 } 2439 case KVM_PPC_GET_RMMU_INFO: { 2440 struct kvm *kvm = filp->private_data; 2441 struct kvm_ppc_rmmu_info info; 2442 2443 r = -EINVAL; 2444 if (!kvm->arch.kvm_ops->get_rmmu_info) 2445 goto out; 2446 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2447 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2448 r = -EFAULT; 2449 break; 2450 } 2451 case KVM_PPC_GET_CPU_CHAR: { 2452 struct kvm_ppc_cpu_char cpuchar; 2453 2454 r = kvmppc_get_cpu_char(&cpuchar); 2455 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2456 r = -EFAULT; 2457 break; 2458 } 2459 case KVM_PPC_SVM_OFF: { 2460 struct kvm *kvm = filp->private_data; 2461 2462 r = 0; 2463 if (!kvm->arch.kvm_ops->svm_off) 2464 goto out; 2465 2466 r = kvm->arch.kvm_ops->svm_off(kvm); 2467 break; 2468 } 2469 default: { 2470 struct kvm *kvm = filp->private_data; 2471 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2472 } 2473 #else /* CONFIG_PPC_BOOK3S_64 */ 2474 default: 2475 r = -ENOTTY; 2476 #endif 2477 } 2478 out: 2479 return r; 2480 } 2481 2482 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2483 static unsigned long nr_lpids; 2484 2485 long kvmppc_alloc_lpid(void) 2486 { 2487 long lpid; 2488 2489 do { 2490 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2491 if (lpid >= nr_lpids) { 2492 pr_err("%s: No LPIDs free\n", __func__); 2493 return -ENOMEM; 2494 } 2495 } while (test_and_set_bit(lpid, lpid_inuse)); 2496 2497 return lpid; 2498 } 2499 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2500 2501 void kvmppc_claim_lpid(long lpid) 2502 { 2503 set_bit(lpid, lpid_inuse); 2504 } 2505 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2506 2507 void kvmppc_free_lpid(long lpid) 2508 { 2509 clear_bit(lpid, lpid_inuse); 2510 } 2511 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2512 2513 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2514 { 2515 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2516 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2517 } 2518 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2519 2520 int kvm_arch_init(void *opaque) 2521 { 2522 return 0; 2523 } 2524 2525 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2526 2527 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2528 { 2529 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs) 2530 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry); 2531 } 2532 2533 int kvm_arch_create_vm_debugfs(struct kvm *kvm) 2534 { 2535 if (kvm->arch.kvm_ops->create_vm_debugfs) 2536 kvm->arch.kvm_ops->create_vm_debugfs(kvm); 2537 return 0; 2538 } 2539