1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright IBM Corp. 2007 5 * 6 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 8 */ 9 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/vmalloc.h> 14 #include <linux/hrtimer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/fs.h> 17 #include <linux/slab.h> 18 #include <linux/file.h> 19 #include <linux/module.h> 20 #include <linux/irqbypass.h> 21 #include <linux/kvm_irqfd.h> 22 #include <asm/cputable.h> 23 #include <linux/uaccess.h> 24 #include <asm/kvm_ppc.h> 25 #include <asm/cputhreads.h> 26 #include <asm/irqflags.h> 27 #include <asm/iommu.h> 28 #include <asm/switch_to.h> 29 #include <asm/xive.h> 30 #ifdef CONFIG_PPC_PSERIES 31 #include <asm/hvcall.h> 32 #include <asm/plpar_wrappers.h> 33 #endif 34 35 #include "timing.h" 36 #include "irq.h" 37 #include "../mm/mmu_decl.h" 38 39 #define CREATE_TRACE_POINTS 40 #include "trace.h" 41 42 struct kvmppc_ops *kvmppc_hv_ops; 43 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 44 struct kvmppc_ops *kvmppc_pr_ops; 45 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 46 47 48 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 49 { 50 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 51 } 52 53 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 54 { 55 return kvm_arch_vcpu_runnable(vcpu); 56 } 57 58 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 59 { 60 return false; 61 } 62 63 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 64 { 65 return 1; 66 } 67 68 /* 69 * Common checks before entering the guest world. Call with interrupts 70 * disabled. 71 * 72 * returns: 73 * 74 * == 1 if we're ready to go into guest state 75 * <= 0 if we need to go back to the host with return value 76 */ 77 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 78 { 79 int r; 80 81 WARN_ON(irqs_disabled()); 82 hard_irq_disable(); 83 84 while (true) { 85 if (need_resched()) { 86 local_irq_enable(); 87 cond_resched(); 88 hard_irq_disable(); 89 continue; 90 } 91 92 if (signal_pending(current)) { 93 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 94 vcpu->run->exit_reason = KVM_EXIT_INTR; 95 r = -EINTR; 96 break; 97 } 98 99 vcpu->mode = IN_GUEST_MODE; 100 101 /* 102 * Reading vcpu->requests must happen after setting vcpu->mode, 103 * so we don't miss a request because the requester sees 104 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 105 * before next entering the guest (and thus doesn't IPI). 106 * This also orders the write to mode from any reads 107 * to the page tables done while the VCPU is running. 108 * Please see the comment in kvm_flush_remote_tlbs. 109 */ 110 smp_mb(); 111 112 if (kvm_request_pending(vcpu)) { 113 /* Make sure we process requests preemptable */ 114 local_irq_enable(); 115 trace_kvm_check_requests(vcpu); 116 r = kvmppc_core_check_requests(vcpu); 117 hard_irq_disable(); 118 if (r > 0) 119 continue; 120 break; 121 } 122 123 if (kvmppc_core_prepare_to_enter(vcpu)) { 124 /* interrupts got enabled in between, so we 125 are back at square 1 */ 126 continue; 127 } 128 129 guest_enter_irqoff(); 130 return 1; 131 } 132 133 /* return to host */ 134 local_irq_enable(); 135 return r; 136 } 137 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 138 139 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 140 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 141 { 142 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 143 int i; 144 145 shared->sprg0 = swab64(shared->sprg0); 146 shared->sprg1 = swab64(shared->sprg1); 147 shared->sprg2 = swab64(shared->sprg2); 148 shared->sprg3 = swab64(shared->sprg3); 149 shared->srr0 = swab64(shared->srr0); 150 shared->srr1 = swab64(shared->srr1); 151 shared->dar = swab64(shared->dar); 152 shared->msr = swab64(shared->msr); 153 shared->dsisr = swab32(shared->dsisr); 154 shared->int_pending = swab32(shared->int_pending); 155 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 156 shared->sr[i] = swab32(shared->sr[i]); 157 } 158 #endif 159 160 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 161 { 162 int nr = kvmppc_get_gpr(vcpu, 11); 163 int r; 164 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 165 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 166 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 167 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 168 unsigned long r2 = 0; 169 170 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 171 /* 32 bit mode */ 172 param1 &= 0xffffffff; 173 param2 &= 0xffffffff; 174 param3 &= 0xffffffff; 175 param4 &= 0xffffffff; 176 } 177 178 switch (nr) { 179 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 180 { 181 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 182 /* Book3S can be little endian, find it out here */ 183 int shared_big_endian = true; 184 if (vcpu->arch.intr_msr & MSR_LE) 185 shared_big_endian = false; 186 if (shared_big_endian != vcpu->arch.shared_big_endian) 187 kvmppc_swab_shared(vcpu); 188 vcpu->arch.shared_big_endian = shared_big_endian; 189 #endif 190 191 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 192 /* 193 * Older versions of the Linux magic page code had 194 * a bug where they would map their trampoline code 195 * NX. If that's the case, remove !PR NX capability. 196 */ 197 vcpu->arch.disable_kernel_nx = true; 198 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 199 } 200 201 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 202 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 203 204 #ifdef CONFIG_PPC_64K_PAGES 205 /* 206 * Make sure our 4k magic page is in the same window of a 64k 207 * page within the guest and within the host's page. 208 */ 209 if ((vcpu->arch.magic_page_pa & 0xf000) != 210 ((ulong)vcpu->arch.shared & 0xf000)) { 211 void *old_shared = vcpu->arch.shared; 212 ulong shared = (ulong)vcpu->arch.shared; 213 void *new_shared; 214 215 shared &= PAGE_MASK; 216 shared |= vcpu->arch.magic_page_pa & 0xf000; 217 new_shared = (void*)shared; 218 memcpy(new_shared, old_shared, 0x1000); 219 vcpu->arch.shared = new_shared; 220 } 221 #endif 222 223 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 224 225 r = EV_SUCCESS; 226 break; 227 } 228 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 229 r = EV_SUCCESS; 230 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 231 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 232 #endif 233 234 /* Second return value is in r4 */ 235 break; 236 case EV_HCALL_TOKEN(EV_IDLE): 237 r = EV_SUCCESS; 238 kvm_vcpu_block(vcpu); 239 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 240 break; 241 default: 242 r = EV_UNIMPLEMENTED; 243 break; 244 } 245 246 kvmppc_set_gpr(vcpu, 4, r2); 247 248 return r; 249 } 250 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 251 252 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 253 { 254 int r = false; 255 256 /* We have to know what CPU to virtualize */ 257 if (!vcpu->arch.pvr) 258 goto out; 259 260 /* PAPR only works with book3s_64 */ 261 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 262 goto out; 263 264 /* HV KVM can only do PAPR mode for now */ 265 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 266 goto out; 267 268 #ifdef CONFIG_KVM_BOOKE_HV 269 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 270 goto out; 271 #endif 272 273 r = true; 274 275 out: 276 vcpu->arch.sane = r; 277 return r ? 0 : -EINVAL; 278 } 279 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 280 281 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 282 { 283 enum emulation_result er; 284 int r; 285 286 er = kvmppc_emulate_loadstore(vcpu); 287 switch (er) { 288 case EMULATE_DONE: 289 /* Future optimization: only reload non-volatiles if they were 290 * actually modified. */ 291 r = RESUME_GUEST_NV; 292 break; 293 case EMULATE_AGAIN: 294 r = RESUME_GUEST; 295 break; 296 case EMULATE_DO_MMIO: 297 run->exit_reason = KVM_EXIT_MMIO; 298 /* We must reload nonvolatiles because "update" load/store 299 * instructions modify register state. */ 300 /* Future optimization: only reload non-volatiles if they were 301 * actually modified. */ 302 r = RESUME_HOST_NV; 303 break; 304 case EMULATE_FAIL: 305 { 306 u32 last_inst; 307 308 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 309 /* XXX Deliver Program interrupt to guest. */ 310 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 311 r = RESUME_HOST; 312 break; 313 } 314 default: 315 WARN_ON(1); 316 r = RESUME_GUEST; 317 } 318 319 return r; 320 } 321 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 322 323 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 324 bool data) 325 { 326 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 327 struct kvmppc_pte pte; 328 int r = -EINVAL; 329 330 vcpu->stat.st++; 331 332 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 333 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 334 size); 335 336 if ((!r) || (r == -EAGAIN)) 337 return r; 338 339 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 340 XLATE_WRITE, &pte); 341 if (r < 0) 342 return r; 343 344 *eaddr = pte.raddr; 345 346 if (!pte.may_write) 347 return -EPERM; 348 349 /* Magic page override */ 350 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 351 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 352 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 353 void *magic = vcpu->arch.shared; 354 magic += pte.eaddr & 0xfff; 355 memcpy(magic, ptr, size); 356 return EMULATE_DONE; 357 } 358 359 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 360 return EMULATE_DO_MMIO; 361 362 return EMULATE_DONE; 363 } 364 EXPORT_SYMBOL_GPL(kvmppc_st); 365 366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 367 bool data) 368 { 369 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 370 struct kvmppc_pte pte; 371 int rc = -EINVAL; 372 373 vcpu->stat.ld++; 374 375 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 376 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 377 size); 378 379 if ((!rc) || (rc == -EAGAIN)) 380 return rc; 381 382 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 383 XLATE_READ, &pte); 384 if (rc) 385 return rc; 386 387 *eaddr = pte.raddr; 388 389 if (!pte.may_read) 390 return -EPERM; 391 392 if (!data && !pte.may_execute) 393 return -ENOEXEC; 394 395 /* Magic page override */ 396 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 397 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 398 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 399 void *magic = vcpu->arch.shared; 400 magic += pte.eaddr & 0xfff; 401 memcpy(ptr, magic, size); 402 return EMULATE_DONE; 403 } 404 405 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 406 return EMULATE_DO_MMIO; 407 408 return EMULATE_DONE; 409 } 410 EXPORT_SYMBOL_GPL(kvmppc_ld); 411 412 int kvm_arch_hardware_enable(void) 413 { 414 return 0; 415 } 416 417 int kvm_arch_hardware_setup(void) 418 { 419 return 0; 420 } 421 422 int kvm_arch_check_processor_compat(void) 423 { 424 return kvmppc_core_check_processor_compat(); 425 } 426 427 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 428 { 429 struct kvmppc_ops *kvm_ops = NULL; 430 /* 431 * if we have both HV and PR enabled, default is HV 432 */ 433 if (type == 0) { 434 if (kvmppc_hv_ops) 435 kvm_ops = kvmppc_hv_ops; 436 else 437 kvm_ops = kvmppc_pr_ops; 438 if (!kvm_ops) 439 goto err_out; 440 } else if (type == KVM_VM_PPC_HV) { 441 if (!kvmppc_hv_ops) 442 goto err_out; 443 kvm_ops = kvmppc_hv_ops; 444 } else if (type == KVM_VM_PPC_PR) { 445 if (!kvmppc_pr_ops) 446 goto err_out; 447 kvm_ops = kvmppc_pr_ops; 448 } else 449 goto err_out; 450 451 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 452 return -ENOENT; 453 454 kvm->arch.kvm_ops = kvm_ops; 455 return kvmppc_core_init_vm(kvm); 456 err_out: 457 return -EINVAL; 458 } 459 460 void kvm_arch_destroy_vm(struct kvm *kvm) 461 { 462 unsigned int i; 463 struct kvm_vcpu *vcpu; 464 465 #ifdef CONFIG_KVM_XICS 466 /* 467 * We call kick_all_cpus_sync() to ensure that all 468 * CPUs have executed any pending IPIs before we 469 * continue and free VCPUs structures below. 470 */ 471 if (is_kvmppc_hv_enabled(kvm)) 472 kick_all_cpus_sync(); 473 #endif 474 475 kvm_for_each_vcpu(i, vcpu, kvm) 476 kvm_arch_vcpu_free(vcpu); 477 478 mutex_lock(&kvm->lock); 479 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 480 kvm->vcpus[i] = NULL; 481 482 atomic_set(&kvm->online_vcpus, 0); 483 484 kvmppc_core_destroy_vm(kvm); 485 486 mutex_unlock(&kvm->lock); 487 488 /* drop the module reference */ 489 module_put(kvm->arch.kvm_ops->owner); 490 } 491 492 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 493 { 494 int r; 495 /* Assume we're using HV mode when the HV module is loaded */ 496 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 497 498 if (kvm) { 499 /* 500 * Hooray - we know which VM type we're running on. Depend on 501 * that rather than the guess above. 502 */ 503 hv_enabled = is_kvmppc_hv_enabled(kvm); 504 } 505 506 switch (ext) { 507 #ifdef CONFIG_BOOKE 508 case KVM_CAP_PPC_BOOKE_SREGS: 509 case KVM_CAP_PPC_BOOKE_WATCHDOG: 510 case KVM_CAP_PPC_EPR: 511 #else 512 case KVM_CAP_PPC_SEGSTATE: 513 case KVM_CAP_PPC_HIOR: 514 case KVM_CAP_PPC_PAPR: 515 #endif 516 case KVM_CAP_PPC_UNSET_IRQ: 517 case KVM_CAP_PPC_IRQ_LEVEL: 518 case KVM_CAP_ENABLE_CAP: 519 case KVM_CAP_ONE_REG: 520 case KVM_CAP_IOEVENTFD: 521 case KVM_CAP_DEVICE_CTRL: 522 case KVM_CAP_IMMEDIATE_EXIT: 523 r = 1; 524 break; 525 case KVM_CAP_PPC_PAIRED_SINGLES: 526 case KVM_CAP_PPC_OSI: 527 case KVM_CAP_PPC_GET_PVINFO: 528 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 529 case KVM_CAP_SW_TLB: 530 #endif 531 /* We support this only for PR */ 532 r = !hv_enabled; 533 break; 534 #ifdef CONFIG_KVM_MPIC 535 case KVM_CAP_IRQ_MPIC: 536 r = 1; 537 break; 538 #endif 539 540 #ifdef CONFIG_PPC_BOOK3S_64 541 case KVM_CAP_SPAPR_TCE: 542 case KVM_CAP_SPAPR_TCE_64: 543 r = 1; 544 break; 545 case KVM_CAP_SPAPR_TCE_VFIO: 546 r = !!cpu_has_feature(CPU_FTR_HVMODE); 547 break; 548 case KVM_CAP_PPC_RTAS: 549 case KVM_CAP_PPC_FIXUP_HCALL: 550 case KVM_CAP_PPC_ENABLE_HCALL: 551 #ifdef CONFIG_KVM_XICS 552 case KVM_CAP_IRQ_XICS: 553 #endif 554 case KVM_CAP_PPC_GET_CPU_CHAR: 555 r = 1; 556 break; 557 #ifdef CONFIG_KVM_XIVE 558 case KVM_CAP_PPC_IRQ_XIVE: 559 /* 560 * We need XIVE to be enabled on the platform (implies 561 * a POWER9 processor) and the PowerNV platform, as 562 * nested is not yet supported. 563 */ 564 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE); 565 break; 566 #endif 567 568 case KVM_CAP_PPC_ALLOC_HTAB: 569 r = hv_enabled; 570 break; 571 #endif /* CONFIG_PPC_BOOK3S_64 */ 572 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 573 case KVM_CAP_PPC_SMT: 574 r = 0; 575 if (kvm) { 576 if (kvm->arch.emul_smt_mode > 1) 577 r = kvm->arch.emul_smt_mode; 578 else 579 r = kvm->arch.smt_mode; 580 } else if (hv_enabled) { 581 if (cpu_has_feature(CPU_FTR_ARCH_300)) 582 r = 1; 583 else 584 r = threads_per_subcore; 585 } 586 break; 587 case KVM_CAP_PPC_SMT_POSSIBLE: 588 r = 1; 589 if (hv_enabled) { 590 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 591 r = ((threads_per_subcore << 1) - 1); 592 else 593 /* P9 can emulate dbells, so allow any mode */ 594 r = 8 | 4 | 2 | 1; 595 } 596 break; 597 case KVM_CAP_PPC_RMA: 598 r = 0; 599 break; 600 case KVM_CAP_PPC_HWRNG: 601 r = kvmppc_hwrng_present(); 602 break; 603 case KVM_CAP_PPC_MMU_RADIX: 604 r = !!(hv_enabled && radix_enabled()); 605 break; 606 case KVM_CAP_PPC_MMU_HASH_V3: 607 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) && 608 cpu_has_feature(CPU_FTR_HVMODE)); 609 break; 610 case KVM_CAP_PPC_NESTED_HV: 611 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 612 !kvmppc_hv_ops->enable_nested(NULL)); 613 break; 614 #endif 615 case KVM_CAP_SYNC_MMU: 616 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 617 r = hv_enabled; 618 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 619 r = 1; 620 #else 621 r = 0; 622 #endif 623 break; 624 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 625 case KVM_CAP_PPC_HTAB_FD: 626 r = hv_enabled; 627 break; 628 #endif 629 case KVM_CAP_NR_VCPUS: 630 /* 631 * Recommending a number of CPUs is somewhat arbitrary; we 632 * return the number of present CPUs for -HV (since a host 633 * will have secondary threads "offline"), and for other KVM 634 * implementations just count online CPUs. 635 */ 636 if (hv_enabled) 637 r = num_present_cpus(); 638 else 639 r = num_online_cpus(); 640 break; 641 case KVM_CAP_MAX_VCPUS: 642 r = KVM_MAX_VCPUS; 643 break; 644 case KVM_CAP_MAX_VCPU_ID: 645 r = KVM_MAX_VCPU_ID; 646 break; 647 #ifdef CONFIG_PPC_BOOK3S_64 648 case KVM_CAP_PPC_GET_SMMU_INFO: 649 r = 1; 650 break; 651 case KVM_CAP_SPAPR_MULTITCE: 652 r = 1; 653 break; 654 case KVM_CAP_SPAPR_RESIZE_HPT: 655 r = !!hv_enabled; 656 break; 657 #endif 658 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 659 case KVM_CAP_PPC_FWNMI: 660 r = hv_enabled; 661 break; 662 #endif 663 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 664 case KVM_CAP_PPC_HTM: 665 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 666 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 667 break; 668 #endif 669 default: 670 r = 0; 671 break; 672 } 673 return r; 674 675 } 676 677 long kvm_arch_dev_ioctl(struct file *filp, 678 unsigned int ioctl, unsigned long arg) 679 { 680 return -EINVAL; 681 } 682 683 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 684 struct kvm_memory_slot *dont) 685 { 686 kvmppc_core_free_memslot(kvm, free, dont); 687 } 688 689 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 690 unsigned long npages) 691 { 692 return kvmppc_core_create_memslot(kvm, slot, npages); 693 } 694 695 int kvm_arch_prepare_memory_region(struct kvm *kvm, 696 struct kvm_memory_slot *memslot, 697 const struct kvm_userspace_memory_region *mem, 698 enum kvm_mr_change change) 699 { 700 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 701 } 702 703 void kvm_arch_commit_memory_region(struct kvm *kvm, 704 const struct kvm_userspace_memory_region *mem, 705 const struct kvm_memory_slot *old, 706 const struct kvm_memory_slot *new, 707 enum kvm_mr_change change) 708 { 709 kvmppc_core_commit_memory_region(kvm, mem, old, new, change); 710 } 711 712 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 713 struct kvm_memory_slot *slot) 714 { 715 kvmppc_core_flush_memslot(kvm, slot); 716 } 717 718 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 719 { 720 struct kvm_vcpu *vcpu; 721 vcpu = kvmppc_core_vcpu_create(kvm, id); 722 if (!IS_ERR(vcpu)) { 723 vcpu->arch.wqp = &vcpu->wq; 724 kvmppc_create_vcpu_debugfs(vcpu, id); 725 } 726 return vcpu; 727 } 728 729 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 730 { 731 } 732 733 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 734 { 735 /* Make sure we're not using the vcpu anymore */ 736 hrtimer_cancel(&vcpu->arch.dec_timer); 737 738 kvmppc_remove_vcpu_debugfs(vcpu); 739 740 switch (vcpu->arch.irq_type) { 741 case KVMPPC_IRQ_MPIC: 742 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 743 break; 744 case KVMPPC_IRQ_XICS: 745 if (xics_on_xive()) 746 kvmppc_xive_cleanup_vcpu(vcpu); 747 else 748 kvmppc_xics_free_icp(vcpu); 749 break; 750 case KVMPPC_IRQ_XIVE: 751 kvmppc_xive_native_cleanup_vcpu(vcpu); 752 break; 753 } 754 755 kvmppc_core_vcpu_free(vcpu); 756 } 757 758 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 759 { 760 kvm_arch_vcpu_free(vcpu); 761 } 762 763 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 764 { 765 return kvmppc_core_pending_dec(vcpu); 766 } 767 768 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 769 { 770 struct kvm_vcpu *vcpu; 771 772 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 773 kvmppc_decrementer_func(vcpu); 774 775 return HRTIMER_NORESTART; 776 } 777 778 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 779 { 780 int ret; 781 782 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 783 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 784 vcpu->arch.dec_expires = get_tb(); 785 786 #ifdef CONFIG_KVM_EXIT_TIMING 787 mutex_init(&vcpu->arch.exit_timing_lock); 788 #endif 789 ret = kvmppc_subarch_vcpu_init(vcpu); 790 return ret; 791 } 792 793 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 794 { 795 kvmppc_mmu_destroy(vcpu); 796 kvmppc_subarch_vcpu_uninit(vcpu); 797 } 798 799 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 800 { 801 #ifdef CONFIG_BOOKE 802 /* 803 * vrsave (formerly usprg0) isn't used by Linux, but may 804 * be used by the guest. 805 * 806 * On non-booke this is associated with Altivec and 807 * is handled by code in book3s.c. 808 */ 809 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 810 #endif 811 kvmppc_core_vcpu_load(vcpu, cpu); 812 } 813 814 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 815 { 816 kvmppc_core_vcpu_put(vcpu); 817 #ifdef CONFIG_BOOKE 818 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 819 #endif 820 } 821 822 /* 823 * irq_bypass_add_producer and irq_bypass_del_producer are only 824 * useful if the architecture supports PCI passthrough. 825 * irq_bypass_stop and irq_bypass_start are not needed and so 826 * kvm_ops are not defined for them. 827 */ 828 bool kvm_arch_has_irq_bypass(void) 829 { 830 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 831 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 832 } 833 834 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 835 struct irq_bypass_producer *prod) 836 { 837 struct kvm_kernel_irqfd *irqfd = 838 container_of(cons, struct kvm_kernel_irqfd, consumer); 839 struct kvm *kvm = irqfd->kvm; 840 841 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 842 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 843 844 return 0; 845 } 846 847 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 848 struct irq_bypass_producer *prod) 849 { 850 struct kvm_kernel_irqfd *irqfd = 851 container_of(cons, struct kvm_kernel_irqfd, consumer); 852 struct kvm *kvm = irqfd->kvm; 853 854 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 855 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 856 } 857 858 #ifdef CONFIG_VSX 859 static inline int kvmppc_get_vsr_dword_offset(int index) 860 { 861 int offset; 862 863 if ((index != 0) && (index != 1)) 864 return -1; 865 866 #ifdef __BIG_ENDIAN 867 offset = index; 868 #else 869 offset = 1 - index; 870 #endif 871 872 return offset; 873 } 874 875 static inline int kvmppc_get_vsr_word_offset(int index) 876 { 877 int offset; 878 879 if ((index > 3) || (index < 0)) 880 return -1; 881 882 #ifdef __BIG_ENDIAN 883 offset = index; 884 #else 885 offset = 3 - index; 886 #endif 887 return offset; 888 } 889 890 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 891 u64 gpr) 892 { 893 union kvmppc_one_reg val; 894 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 895 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 896 897 if (offset == -1) 898 return; 899 900 if (index >= 32) { 901 val.vval = VCPU_VSX_VR(vcpu, index - 32); 902 val.vsxval[offset] = gpr; 903 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 904 } else { 905 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 906 } 907 } 908 909 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 910 u64 gpr) 911 { 912 union kvmppc_one_reg val; 913 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 914 915 if (index >= 32) { 916 val.vval = VCPU_VSX_VR(vcpu, index - 32); 917 val.vsxval[0] = gpr; 918 val.vsxval[1] = gpr; 919 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 920 } else { 921 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 922 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 923 } 924 } 925 926 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 927 u32 gpr) 928 { 929 union kvmppc_one_reg val; 930 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 931 932 if (index >= 32) { 933 val.vsx32val[0] = gpr; 934 val.vsx32val[1] = gpr; 935 val.vsx32val[2] = gpr; 936 val.vsx32val[3] = gpr; 937 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 938 } else { 939 val.vsx32val[0] = gpr; 940 val.vsx32val[1] = gpr; 941 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 942 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 943 } 944 } 945 946 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 947 u32 gpr32) 948 { 949 union kvmppc_one_reg val; 950 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 951 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 952 int dword_offset, word_offset; 953 954 if (offset == -1) 955 return; 956 957 if (index >= 32) { 958 val.vval = VCPU_VSX_VR(vcpu, index - 32); 959 val.vsx32val[offset] = gpr32; 960 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 961 } else { 962 dword_offset = offset / 2; 963 word_offset = offset % 2; 964 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 965 val.vsx32val[word_offset] = gpr32; 966 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 967 } 968 } 969 #endif /* CONFIG_VSX */ 970 971 #ifdef CONFIG_ALTIVEC 972 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 973 int index, int element_size) 974 { 975 int offset; 976 int elts = sizeof(vector128)/element_size; 977 978 if ((index < 0) || (index >= elts)) 979 return -1; 980 981 if (kvmppc_need_byteswap(vcpu)) 982 offset = elts - index - 1; 983 else 984 offset = index; 985 986 return offset; 987 } 988 989 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 990 int index) 991 { 992 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 993 } 994 995 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 996 int index) 997 { 998 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 999 } 1000 1001 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1002 int index) 1003 { 1004 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1005 } 1006 1007 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1008 int index) 1009 { 1010 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1011 } 1012 1013 1014 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1015 u64 gpr) 1016 { 1017 union kvmppc_one_reg val; 1018 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1019 vcpu->arch.mmio_vmx_offset); 1020 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1021 1022 if (offset == -1) 1023 return; 1024 1025 val.vval = VCPU_VSX_VR(vcpu, index); 1026 val.vsxval[offset] = gpr; 1027 VCPU_VSX_VR(vcpu, index) = val.vval; 1028 } 1029 1030 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1031 u32 gpr32) 1032 { 1033 union kvmppc_one_reg val; 1034 int offset = kvmppc_get_vmx_word_offset(vcpu, 1035 vcpu->arch.mmio_vmx_offset); 1036 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1037 1038 if (offset == -1) 1039 return; 1040 1041 val.vval = VCPU_VSX_VR(vcpu, index); 1042 val.vsx32val[offset] = gpr32; 1043 VCPU_VSX_VR(vcpu, index) = val.vval; 1044 } 1045 1046 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1047 u16 gpr16) 1048 { 1049 union kvmppc_one_reg val; 1050 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1051 vcpu->arch.mmio_vmx_offset); 1052 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1053 1054 if (offset == -1) 1055 return; 1056 1057 val.vval = VCPU_VSX_VR(vcpu, index); 1058 val.vsx16val[offset] = gpr16; 1059 VCPU_VSX_VR(vcpu, index) = val.vval; 1060 } 1061 1062 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1063 u8 gpr8) 1064 { 1065 union kvmppc_one_reg val; 1066 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1067 vcpu->arch.mmio_vmx_offset); 1068 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1069 1070 if (offset == -1) 1071 return; 1072 1073 val.vval = VCPU_VSX_VR(vcpu, index); 1074 val.vsx8val[offset] = gpr8; 1075 VCPU_VSX_VR(vcpu, index) = val.vval; 1076 } 1077 #endif /* CONFIG_ALTIVEC */ 1078 1079 #ifdef CONFIG_PPC_FPU 1080 static inline u64 sp_to_dp(u32 fprs) 1081 { 1082 u64 fprd; 1083 1084 preempt_disable(); 1085 enable_kernel_fp(); 1086 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 1087 : "fr0"); 1088 preempt_enable(); 1089 return fprd; 1090 } 1091 1092 static inline u32 dp_to_sp(u64 fprd) 1093 { 1094 u32 fprs; 1095 1096 preempt_disable(); 1097 enable_kernel_fp(); 1098 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 1099 : "fr0"); 1100 preempt_enable(); 1101 return fprs; 1102 } 1103 1104 #else 1105 #define sp_to_dp(x) (x) 1106 #define dp_to_sp(x) (x) 1107 #endif /* CONFIG_PPC_FPU */ 1108 1109 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 1110 struct kvm_run *run) 1111 { 1112 u64 uninitialized_var(gpr); 1113 1114 if (run->mmio.len > sizeof(gpr)) { 1115 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1116 return; 1117 } 1118 1119 if (!vcpu->arch.mmio_host_swabbed) { 1120 switch (run->mmio.len) { 1121 case 8: gpr = *(u64 *)run->mmio.data; break; 1122 case 4: gpr = *(u32 *)run->mmio.data; break; 1123 case 2: gpr = *(u16 *)run->mmio.data; break; 1124 case 1: gpr = *(u8 *)run->mmio.data; break; 1125 } 1126 } else { 1127 switch (run->mmio.len) { 1128 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1129 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1130 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1131 case 1: gpr = *(u8 *)run->mmio.data; break; 1132 } 1133 } 1134 1135 /* conversion between single and double precision */ 1136 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1137 gpr = sp_to_dp(gpr); 1138 1139 if (vcpu->arch.mmio_sign_extend) { 1140 switch (run->mmio.len) { 1141 #ifdef CONFIG_PPC64 1142 case 4: 1143 gpr = (s64)(s32)gpr; 1144 break; 1145 #endif 1146 case 2: 1147 gpr = (s64)(s16)gpr; 1148 break; 1149 case 1: 1150 gpr = (s64)(s8)gpr; 1151 break; 1152 } 1153 } 1154 1155 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1156 case KVM_MMIO_REG_GPR: 1157 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1158 break; 1159 case KVM_MMIO_REG_FPR: 1160 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1161 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1162 1163 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1164 break; 1165 #ifdef CONFIG_PPC_BOOK3S 1166 case KVM_MMIO_REG_QPR: 1167 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1168 break; 1169 case KVM_MMIO_REG_FQPR: 1170 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1171 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1172 break; 1173 #endif 1174 #ifdef CONFIG_VSX 1175 case KVM_MMIO_REG_VSX: 1176 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1177 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1178 1179 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1180 kvmppc_set_vsr_dword(vcpu, gpr); 1181 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1182 kvmppc_set_vsr_word(vcpu, gpr); 1183 else if (vcpu->arch.mmio_copy_type == 1184 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1185 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1186 else if (vcpu->arch.mmio_copy_type == 1187 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1188 kvmppc_set_vsr_word_dump(vcpu, gpr); 1189 break; 1190 #endif 1191 #ifdef CONFIG_ALTIVEC 1192 case KVM_MMIO_REG_VMX: 1193 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1194 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1195 1196 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1197 kvmppc_set_vmx_dword(vcpu, gpr); 1198 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1199 kvmppc_set_vmx_word(vcpu, gpr); 1200 else if (vcpu->arch.mmio_copy_type == 1201 KVMPPC_VMX_COPY_HWORD) 1202 kvmppc_set_vmx_hword(vcpu, gpr); 1203 else if (vcpu->arch.mmio_copy_type == 1204 KVMPPC_VMX_COPY_BYTE) 1205 kvmppc_set_vmx_byte(vcpu, gpr); 1206 break; 1207 #endif 1208 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1209 case KVM_MMIO_REG_NESTED_GPR: 1210 if (kvmppc_need_byteswap(vcpu)) 1211 gpr = swab64(gpr); 1212 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1213 sizeof(gpr)); 1214 break; 1215 #endif 1216 default: 1217 BUG(); 1218 } 1219 } 1220 1221 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1222 unsigned int rt, unsigned int bytes, 1223 int is_default_endian, int sign_extend) 1224 { 1225 int idx, ret; 1226 bool host_swabbed; 1227 1228 /* Pity C doesn't have a logical XOR operator */ 1229 if (kvmppc_need_byteswap(vcpu)) { 1230 host_swabbed = is_default_endian; 1231 } else { 1232 host_swabbed = !is_default_endian; 1233 } 1234 1235 if (bytes > sizeof(run->mmio.data)) { 1236 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1237 run->mmio.len); 1238 } 1239 1240 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1241 run->mmio.len = bytes; 1242 run->mmio.is_write = 0; 1243 1244 vcpu->arch.io_gpr = rt; 1245 vcpu->arch.mmio_host_swabbed = host_swabbed; 1246 vcpu->mmio_needed = 1; 1247 vcpu->mmio_is_write = 0; 1248 vcpu->arch.mmio_sign_extend = sign_extend; 1249 1250 idx = srcu_read_lock(&vcpu->kvm->srcu); 1251 1252 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1253 bytes, &run->mmio.data); 1254 1255 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1256 1257 if (!ret) { 1258 kvmppc_complete_mmio_load(vcpu, run); 1259 vcpu->mmio_needed = 0; 1260 return EMULATE_DONE; 1261 } 1262 1263 return EMULATE_DO_MMIO; 1264 } 1265 1266 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1267 unsigned int rt, unsigned int bytes, 1268 int is_default_endian) 1269 { 1270 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 1271 } 1272 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1273 1274 /* Same as above, but sign extends */ 1275 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 1276 unsigned int rt, unsigned int bytes, 1277 int is_default_endian) 1278 { 1279 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 1280 } 1281 1282 #ifdef CONFIG_VSX 1283 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1284 unsigned int rt, unsigned int bytes, 1285 int is_default_endian, int mmio_sign_extend) 1286 { 1287 enum emulation_result emulated = EMULATE_DONE; 1288 1289 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1290 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1291 return EMULATE_FAIL; 1292 1293 while (vcpu->arch.mmio_vsx_copy_nums) { 1294 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1295 is_default_endian, mmio_sign_extend); 1296 1297 if (emulated != EMULATE_DONE) 1298 break; 1299 1300 vcpu->arch.paddr_accessed += run->mmio.len; 1301 1302 vcpu->arch.mmio_vsx_copy_nums--; 1303 vcpu->arch.mmio_vsx_offset++; 1304 } 1305 return emulated; 1306 } 1307 #endif /* CONFIG_VSX */ 1308 1309 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1310 u64 val, unsigned int bytes, int is_default_endian) 1311 { 1312 void *data = run->mmio.data; 1313 int idx, ret; 1314 bool host_swabbed; 1315 1316 /* Pity C doesn't have a logical XOR operator */ 1317 if (kvmppc_need_byteswap(vcpu)) { 1318 host_swabbed = is_default_endian; 1319 } else { 1320 host_swabbed = !is_default_endian; 1321 } 1322 1323 if (bytes > sizeof(run->mmio.data)) { 1324 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1325 run->mmio.len); 1326 } 1327 1328 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1329 run->mmio.len = bytes; 1330 run->mmio.is_write = 1; 1331 vcpu->mmio_needed = 1; 1332 vcpu->mmio_is_write = 1; 1333 1334 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1335 val = dp_to_sp(val); 1336 1337 /* Store the value at the lowest bytes in 'data'. */ 1338 if (!host_swabbed) { 1339 switch (bytes) { 1340 case 8: *(u64 *)data = val; break; 1341 case 4: *(u32 *)data = val; break; 1342 case 2: *(u16 *)data = val; break; 1343 case 1: *(u8 *)data = val; break; 1344 } 1345 } else { 1346 switch (bytes) { 1347 case 8: *(u64 *)data = swab64(val); break; 1348 case 4: *(u32 *)data = swab32(val); break; 1349 case 2: *(u16 *)data = swab16(val); break; 1350 case 1: *(u8 *)data = val; break; 1351 } 1352 } 1353 1354 idx = srcu_read_lock(&vcpu->kvm->srcu); 1355 1356 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1357 bytes, &run->mmio.data); 1358 1359 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1360 1361 if (!ret) { 1362 vcpu->mmio_needed = 0; 1363 return EMULATE_DONE; 1364 } 1365 1366 return EMULATE_DO_MMIO; 1367 } 1368 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1369 1370 #ifdef CONFIG_VSX 1371 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1372 { 1373 u32 dword_offset, word_offset; 1374 union kvmppc_one_reg reg; 1375 int vsx_offset = 0; 1376 int copy_type = vcpu->arch.mmio_copy_type; 1377 int result = 0; 1378 1379 switch (copy_type) { 1380 case KVMPPC_VSX_COPY_DWORD: 1381 vsx_offset = 1382 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1383 1384 if (vsx_offset == -1) { 1385 result = -1; 1386 break; 1387 } 1388 1389 if (rs < 32) { 1390 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1391 } else { 1392 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1393 *val = reg.vsxval[vsx_offset]; 1394 } 1395 break; 1396 1397 case KVMPPC_VSX_COPY_WORD: 1398 vsx_offset = 1399 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1400 1401 if (vsx_offset == -1) { 1402 result = -1; 1403 break; 1404 } 1405 1406 if (rs < 32) { 1407 dword_offset = vsx_offset / 2; 1408 word_offset = vsx_offset % 2; 1409 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1410 *val = reg.vsx32val[word_offset]; 1411 } else { 1412 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1413 *val = reg.vsx32val[vsx_offset]; 1414 } 1415 break; 1416 1417 default: 1418 result = -1; 1419 break; 1420 } 1421 1422 return result; 1423 } 1424 1425 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1426 int rs, unsigned int bytes, int is_default_endian) 1427 { 1428 u64 val; 1429 enum emulation_result emulated = EMULATE_DONE; 1430 1431 vcpu->arch.io_gpr = rs; 1432 1433 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1434 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1435 return EMULATE_FAIL; 1436 1437 while (vcpu->arch.mmio_vsx_copy_nums) { 1438 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1439 return EMULATE_FAIL; 1440 1441 emulated = kvmppc_handle_store(run, vcpu, 1442 val, bytes, is_default_endian); 1443 1444 if (emulated != EMULATE_DONE) 1445 break; 1446 1447 vcpu->arch.paddr_accessed += run->mmio.len; 1448 1449 vcpu->arch.mmio_vsx_copy_nums--; 1450 vcpu->arch.mmio_vsx_offset++; 1451 } 1452 1453 return emulated; 1454 } 1455 1456 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu, 1457 struct kvm_run *run) 1458 { 1459 enum emulation_result emulated = EMULATE_FAIL; 1460 int r; 1461 1462 vcpu->arch.paddr_accessed += run->mmio.len; 1463 1464 if (!vcpu->mmio_is_write) { 1465 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr, 1466 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1467 } else { 1468 emulated = kvmppc_handle_vsx_store(run, vcpu, 1469 vcpu->arch.io_gpr, run->mmio.len, 1); 1470 } 1471 1472 switch (emulated) { 1473 case EMULATE_DO_MMIO: 1474 run->exit_reason = KVM_EXIT_MMIO; 1475 r = RESUME_HOST; 1476 break; 1477 case EMULATE_FAIL: 1478 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1479 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1480 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1481 r = RESUME_HOST; 1482 break; 1483 default: 1484 r = RESUME_GUEST; 1485 break; 1486 } 1487 return r; 1488 } 1489 #endif /* CONFIG_VSX */ 1490 1491 #ifdef CONFIG_ALTIVEC 1492 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1493 unsigned int rt, unsigned int bytes, int is_default_endian) 1494 { 1495 enum emulation_result emulated = EMULATE_DONE; 1496 1497 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1498 return EMULATE_FAIL; 1499 1500 while (vcpu->arch.mmio_vmx_copy_nums) { 1501 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1502 is_default_endian, 0); 1503 1504 if (emulated != EMULATE_DONE) 1505 break; 1506 1507 vcpu->arch.paddr_accessed += run->mmio.len; 1508 vcpu->arch.mmio_vmx_copy_nums--; 1509 vcpu->arch.mmio_vmx_offset++; 1510 } 1511 1512 return emulated; 1513 } 1514 1515 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1516 { 1517 union kvmppc_one_reg reg; 1518 int vmx_offset = 0; 1519 int result = 0; 1520 1521 vmx_offset = 1522 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1523 1524 if (vmx_offset == -1) 1525 return -1; 1526 1527 reg.vval = VCPU_VSX_VR(vcpu, index); 1528 *val = reg.vsxval[vmx_offset]; 1529 1530 return result; 1531 } 1532 1533 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1534 { 1535 union kvmppc_one_reg reg; 1536 int vmx_offset = 0; 1537 int result = 0; 1538 1539 vmx_offset = 1540 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1541 1542 if (vmx_offset == -1) 1543 return -1; 1544 1545 reg.vval = VCPU_VSX_VR(vcpu, index); 1546 *val = reg.vsx32val[vmx_offset]; 1547 1548 return result; 1549 } 1550 1551 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1552 { 1553 union kvmppc_one_reg reg; 1554 int vmx_offset = 0; 1555 int result = 0; 1556 1557 vmx_offset = 1558 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1559 1560 if (vmx_offset == -1) 1561 return -1; 1562 1563 reg.vval = VCPU_VSX_VR(vcpu, index); 1564 *val = reg.vsx16val[vmx_offset]; 1565 1566 return result; 1567 } 1568 1569 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1570 { 1571 union kvmppc_one_reg reg; 1572 int vmx_offset = 0; 1573 int result = 0; 1574 1575 vmx_offset = 1576 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1577 1578 if (vmx_offset == -1) 1579 return -1; 1580 1581 reg.vval = VCPU_VSX_VR(vcpu, index); 1582 *val = reg.vsx8val[vmx_offset]; 1583 1584 return result; 1585 } 1586 1587 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1588 unsigned int rs, unsigned int bytes, int is_default_endian) 1589 { 1590 u64 val = 0; 1591 unsigned int index = rs & KVM_MMIO_REG_MASK; 1592 enum emulation_result emulated = EMULATE_DONE; 1593 1594 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1595 return EMULATE_FAIL; 1596 1597 vcpu->arch.io_gpr = rs; 1598 1599 while (vcpu->arch.mmio_vmx_copy_nums) { 1600 switch (vcpu->arch.mmio_copy_type) { 1601 case KVMPPC_VMX_COPY_DWORD: 1602 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1603 return EMULATE_FAIL; 1604 1605 break; 1606 case KVMPPC_VMX_COPY_WORD: 1607 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1608 return EMULATE_FAIL; 1609 break; 1610 case KVMPPC_VMX_COPY_HWORD: 1611 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1612 return EMULATE_FAIL; 1613 break; 1614 case KVMPPC_VMX_COPY_BYTE: 1615 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1616 return EMULATE_FAIL; 1617 break; 1618 default: 1619 return EMULATE_FAIL; 1620 } 1621 1622 emulated = kvmppc_handle_store(run, vcpu, val, bytes, 1623 is_default_endian); 1624 if (emulated != EMULATE_DONE) 1625 break; 1626 1627 vcpu->arch.paddr_accessed += run->mmio.len; 1628 vcpu->arch.mmio_vmx_copy_nums--; 1629 vcpu->arch.mmio_vmx_offset++; 1630 } 1631 1632 return emulated; 1633 } 1634 1635 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu, 1636 struct kvm_run *run) 1637 { 1638 enum emulation_result emulated = EMULATE_FAIL; 1639 int r; 1640 1641 vcpu->arch.paddr_accessed += run->mmio.len; 1642 1643 if (!vcpu->mmio_is_write) { 1644 emulated = kvmppc_handle_vmx_load(run, vcpu, 1645 vcpu->arch.io_gpr, run->mmio.len, 1); 1646 } else { 1647 emulated = kvmppc_handle_vmx_store(run, vcpu, 1648 vcpu->arch.io_gpr, run->mmio.len, 1); 1649 } 1650 1651 switch (emulated) { 1652 case EMULATE_DO_MMIO: 1653 run->exit_reason = KVM_EXIT_MMIO; 1654 r = RESUME_HOST; 1655 break; 1656 case EMULATE_FAIL: 1657 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1658 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1659 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1660 r = RESUME_HOST; 1661 break; 1662 default: 1663 r = RESUME_GUEST; 1664 break; 1665 } 1666 return r; 1667 } 1668 #endif /* CONFIG_ALTIVEC */ 1669 1670 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1671 { 1672 int r = 0; 1673 union kvmppc_one_reg val; 1674 int size; 1675 1676 size = one_reg_size(reg->id); 1677 if (size > sizeof(val)) 1678 return -EINVAL; 1679 1680 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1681 if (r == -EINVAL) { 1682 r = 0; 1683 switch (reg->id) { 1684 #ifdef CONFIG_ALTIVEC 1685 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1686 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1687 r = -ENXIO; 1688 break; 1689 } 1690 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1691 break; 1692 case KVM_REG_PPC_VSCR: 1693 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1694 r = -ENXIO; 1695 break; 1696 } 1697 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1698 break; 1699 case KVM_REG_PPC_VRSAVE: 1700 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1701 break; 1702 #endif /* CONFIG_ALTIVEC */ 1703 default: 1704 r = -EINVAL; 1705 break; 1706 } 1707 } 1708 1709 if (r) 1710 return r; 1711 1712 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1713 r = -EFAULT; 1714 1715 return r; 1716 } 1717 1718 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1719 { 1720 int r; 1721 union kvmppc_one_reg val; 1722 int size; 1723 1724 size = one_reg_size(reg->id); 1725 if (size > sizeof(val)) 1726 return -EINVAL; 1727 1728 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1729 return -EFAULT; 1730 1731 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1732 if (r == -EINVAL) { 1733 r = 0; 1734 switch (reg->id) { 1735 #ifdef CONFIG_ALTIVEC 1736 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1737 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1738 r = -ENXIO; 1739 break; 1740 } 1741 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1742 break; 1743 case KVM_REG_PPC_VSCR: 1744 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1745 r = -ENXIO; 1746 break; 1747 } 1748 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1749 break; 1750 case KVM_REG_PPC_VRSAVE: 1751 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1752 r = -ENXIO; 1753 break; 1754 } 1755 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1756 break; 1757 #endif /* CONFIG_ALTIVEC */ 1758 default: 1759 r = -EINVAL; 1760 break; 1761 } 1762 } 1763 1764 return r; 1765 } 1766 1767 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1768 { 1769 int r; 1770 1771 vcpu_load(vcpu); 1772 1773 if (vcpu->mmio_needed) { 1774 vcpu->mmio_needed = 0; 1775 if (!vcpu->mmio_is_write) 1776 kvmppc_complete_mmio_load(vcpu, run); 1777 #ifdef CONFIG_VSX 1778 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1779 vcpu->arch.mmio_vsx_copy_nums--; 1780 vcpu->arch.mmio_vsx_offset++; 1781 } 1782 1783 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1784 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run); 1785 if (r == RESUME_HOST) { 1786 vcpu->mmio_needed = 1; 1787 goto out; 1788 } 1789 } 1790 #endif 1791 #ifdef CONFIG_ALTIVEC 1792 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1793 vcpu->arch.mmio_vmx_copy_nums--; 1794 vcpu->arch.mmio_vmx_offset++; 1795 } 1796 1797 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1798 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run); 1799 if (r == RESUME_HOST) { 1800 vcpu->mmio_needed = 1; 1801 goto out; 1802 } 1803 } 1804 #endif 1805 } else if (vcpu->arch.osi_needed) { 1806 u64 *gprs = run->osi.gprs; 1807 int i; 1808 1809 for (i = 0; i < 32; i++) 1810 kvmppc_set_gpr(vcpu, i, gprs[i]); 1811 vcpu->arch.osi_needed = 0; 1812 } else if (vcpu->arch.hcall_needed) { 1813 int i; 1814 1815 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1816 for (i = 0; i < 9; ++i) 1817 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1818 vcpu->arch.hcall_needed = 0; 1819 #ifdef CONFIG_BOOKE 1820 } else if (vcpu->arch.epr_needed) { 1821 kvmppc_set_epr(vcpu, run->epr.epr); 1822 vcpu->arch.epr_needed = 0; 1823 #endif 1824 } 1825 1826 kvm_sigset_activate(vcpu); 1827 1828 if (run->immediate_exit) 1829 r = -EINTR; 1830 else 1831 r = kvmppc_vcpu_run(run, vcpu); 1832 1833 kvm_sigset_deactivate(vcpu); 1834 1835 #ifdef CONFIG_ALTIVEC 1836 out: 1837 #endif 1838 vcpu_put(vcpu); 1839 return r; 1840 } 1841 1842 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1843 { 1844 if (irq->irq == KVM_INTERRUPT_UNSET) { 1845 kvmppc_core_dequeue_external(vcpu); 1846 return 0; 1847 } 1848 1849 kvmppc_core_queue_external(vcpu, irq); 1850 1851 kvm_vcpu_kick(vcpu); 1852 1853 return 0; 1854 } 1855 1856 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1857 struct kvm_enable_cap *cap) 1858 { 1859 int r; 1860 1861 if (cap->flags) 1862 return -EINVAL; 1863 1864 switch (cap->cap) { 1865 case KVM_CAP_PPC_OSI: 1866 r = 0; 1867 vcpu->arch.osi_enabled = true; 1868 break; 1869 case KVM_CAP_PPC_PAPR: 1870 r = 0; 1871 vcpu->arch.papr_enabled = true; 1872 break; 1873 case KVM_CAP_PPC_EPR: 1874 r = 0; 1875 if (cap->args[0]) 1876 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1877 else 1878 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1879 break; 1880 #ifdef CONFIG_BOOKE 1881 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1882 r = 0; 1883 vcpu->arch.watchdog_enabled = true; 1884 break; 1885 #endif 1886 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1887 case KVM_CAP_SW_TLB: { 1888 struct kvm_config_tlb cfg; 1889 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1890 1891 r = -EFAULT; 1892 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1893 break; 1894 1895 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1896 break; 1897 } 1898 #endif 1899 #ifdef CONFIG_KVM_MPIC 1900 case KVM_CAP_IRQ_MPIC: { 1901 struct fd f; 1902 struct kvm_device *dev; 1903 1904 r = -EBADF; 1905 f = fdget(cap->args[0]); 1906 if (!f.file) 1907 break; 1908 1909 r = -EPERM; 1910 dev = kvm_device_from_filp(f.file); 1911 if (dev) 1912 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1913 1914 fdput(f); 1915 break; 1916 } 1917 #endif 1918 #ifdef CONFIG_KVM_XICS 1919 case KVM_CAP_IRQ_XICS: { 1920 struct fd f; 1921 struct kvm_device *dev; 1922 1923 r = -EBADF; 1924 f = fdget(cap->args[0]); 1925 if (!f.file) 1926 break; 1927 1928 r = -EPERM; 1929 dev = kvm_device_from_filp(f.file); 1930 if (dev) { 1931 if (xics_on_xive()) 1932 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1933 else 1934 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1935 } 1936 1937 fdput(f); 1938 break; 1939 } 1940 #endif /* CONFIG_KVM_XICS */ 1941 #ifdef CONFIG_KVM_XIVE 1942 case KVM_CAP_PPC_IRQ_XIVE: { 1943 struct fd f; 1944 struct kvm_device *dev; 1945 1946 r = -EBADF; 1947 f = fdget(cap->args[0]); 1948 if (!f.file) 1949 break; 1950 1951 r = -ENXIO; 1952 if (!xive_enabled()) 1953 break; 1954 1955 r = -EPERM; 1956 dev = kvm_device_from_filp(f.file); 1957 if (dev) 1958 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1959 cap->args[1]); 1960 1961 fdput(f); 1962 break; 1963 } 1964 #endif /* CONFIG_KVM_XIVE */ 1965 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1966 case KVM_CAP_PPC_FWNMI: 1967 r = -EINVAL; 1968 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1969 break; 1970 r = 0; 1971 vcpu->kvm->arch.fwnmi_enabled = true; 1972 break; 1973 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1974 default: 1975 r = -EINVAL; 1976 break; 1977 } 1978 1979 if (!r) 1980 r = kvmppc_sanity_check(vcpu); 1981 1982 return r; 1983 } 1984 1985 bool kvm_arch_intc_initialized(struct kvm *kvm) 1986 { 1987 #ifdef CONFIG_KVM_MPIC 1988 if (kvm->arch.mpic) 1989 return true; 1990 #endif 1991 #ifdef CONFIG_KVM_XICS 1992 if (kvm->arch.xics || kvm->arch.xive) 1993 return true; 1994 #endif 1995 return false; 1996 } 1997 1998 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1999 struct kvm_mp_state *mp_state) 2000 { 2001 return -EINVAL; 2002 } 2003 2004 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2005 struct kvm_mp_state *mp_state) 2006 { 2007 return -EINVAL; 2008 } 2009 2010 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2011 unsigned int ioctl, unsigned long arg) 2012 { 2013 struct kvm_vcpu *vcpu = filp->private_data; 2014 void __user *argp = (void __user *)arg; 2015 2016 if (ioctl == KVM_INTERRUPT) { 2017 struct kvm_interrupt irq; 2018 if (copy_from_user(&irq, argp, sizeof(irq))) 2019 return -EFAULT; 2020 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2021 } 2022 return -ENOIOCTLCMD; 2023 } 2024 2025 long kvm_arch_vcpu_ioctl(struct file *filp, 2026 unsigned int ioctl, unsigned long arg) 2027 { 2028 struct kvm_vcpu *vcpu = filp->private_data; 2029 void __user *argp = (void __user *)arg; 2030 long r; 2031 2032 switch (ioctl) { 2033 case KVM_ENABLE_CAP: 2034 { 2035 struct kvm_enable_cap cap; 2036 r = -EFAULT; 2037 vcpu_load(vcpu); 2038 if (copy_from_user(&cap, argp, sizeof(cap))) 2039 goto out; 2040 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2041 vcpu_put(vcpu); 2042 break; 2043 } 2044 2045 case KVM_SET_ONE_REG: 2046 case KVM_GET_ONE_REG: 2047 { 2048 struct kvm_one_reg reg; 2049 r = -EFAULT; 2050 if (copy_from_user(®, argp, sizeof(reg))) 2051 goto out; 2052 if (ioctl == KVM_SET_ONE_REG) 2053 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2054 else 2055 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2056 break; 2057 } 2058 2059 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2060 case KVM_DIRTY_TLB: { 2061 struct kvm_dirty_tlb dirty; 2062 r = -EFAULT; 2063 vcpu_load(vcpu); 2064 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2065 goto out; 2066 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2067 vcpu_put(vcpu); 2068 break; 2069 } 2070 #endif 2071 default: 2072 r = -EINVAL; 2073 } 2074 2075 out: 2076 return r; 2077 } 2078 2079 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2080 { 2081 return VM_FAULT_SIGBUS; 2082 } 2083 2084 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2085 { 2086 u32 inst_nop = 0x60000000; 2087 #ifdef CONFIG_KVM_BOOKE_HV 2088 u32 inst_sc1 = 0x44000022; 2089 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2090 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2091 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2092 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2093 #else 2094 u32 inst_lis = 0x3c000000; 2095 u32 inst_ori = 0x60000000; 2096 u32 inst_sc = 0x44000002; 2097 u32 inst_imm_mask = 0xffff; 2098 2099 /* 2100 * The hypercall to get into KVM from within guest context is as 2101 * follows: 2102 * 2103 * lis r0, r0, KVM_SC_MAGIC_R0@h 2104 * ori r0, KVM_SC_MAGIC_R0@l 2105 * sc 2106 * nop 2107 */ 2108 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2109 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2110 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2111 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2112 #endif 2113 2114 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2115 2116 return 0; 2117 } 2118 2119 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2120 bool line_status) 2121 { 2122 if (!irqchip_in_kernel(kvm)) 2123 return -ENXIO; 2124 2125 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2126 irq_event->irq, irq_event->level, 2127 line_status); 2128 return 0; 2129 } 2130 2131 2132 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2133 struct kvm_enable_cap *cap) 2134 { 2135 int r; 2136 2137 if (cap->flags) 2138 return -EINVAL; 2139 2140 switch (cap->cap) { 2141 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2142 case KVM_CAP_PPC_ENABLE_HCALL: { 2143 unsigned long hcall = cap->args[0]; 2144 2145 r = -EINVAL; 2146 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2147 cap->args[1] > 1) 2148 break; 2149 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2150 break; 2151 if (cap->args[1]) 2152 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2153 else 2154 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2155 r = 0; 2156 break; 2157 } 2158 case KVM_CAP_PPC_SMT: { 2159 unsigned long mode = cap->args[0]; 2160 unsigned long flags = cap->args[1]; 2161 2162 r = -EINVAL; 2163 if (kvm->arch.kvm_ops->set_smt_mode) 2164 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2165 break; 2166 } 2167 2168 case KVM_CAP_PPC_NESTED_HV: 2169 r = -EINVAL; 2170 if (!is_kvmppc_hv_enabled(kvm) || 2171 !kvm->arch.kvm_ops->enable_nested) 2172 break; 2173 r = kvm->arch.kvm_ops->enable_nested(kvm); 2174 break; 2175 #endif 2176 default: 2177 r = -EINVAL; 2178 break; 2179 } 2180 2181 return r; 2182 } 2183 2184 #ifdef CONFIG_PPC_BOOK3S_64 2185 /* 2186 * These functions check whether the underlying hardware is safe 2187 * against attacks based on observing the effects of speculatively 2188 * executed instructions, and whether it supplies instructions for 2189 * use in workarounds. The information comes from firmware, either 2190 * via the device tree on powernv platforms or from an hcall on 2191 * pseries platforms. 2192 */ 2193 #ifdef CONFIG_PPC_PSERIES 2194 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2195 { 2196 struct h_cpu_char_result c; 2197 unsigned long rc; 2198 2199 if (!machine_is(pseries)) 2200 return -ENOTTY; 2201 2202 rc = plpar_get_cpu_characteristics(&c); 2203 if (rc == H_SUCCESS) { 2204 cp->character = c.character; 2205 cp->behaviour = c.behaviour; 2206 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2207 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2208 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2209 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2210 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2211 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2212 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2213 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2214 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2215 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2216 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2217 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2218 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2219 } 2220 return 0; 2221 } 2222 #else 2223 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2224 { 2225 return -ENOTTY; 2226 } 2227 #endif 2228 2229 static inline bool have_fw_feat(struct device_node *fw_features, 2230 const char *state, const char *name) 2231 { 2232 struct device_node *np; 2233 bool r = false; 2234 2235 np = of_get_child_by_name(fw_features, name); 2236 if (np) { 2237 r = of_property_read_bool(np, state); 2238 of_node_put(np); 2239 } 2240 return r; 2241 } 2242 2243 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2244 { 2245 struct device_node *np, *fw_features; 2246 int r; 2247 2248 memset(cp, 0, sizeof(*cp)); 2249 r = pseries_get_cpu_char(cp); 2250 if (r != -ENOTTY) 2251 return r; 2252 2253 np = of_find_node_by_name(NULL, "ibm,opal"); 2254 if (np) { 2255 fw_features = of_get_child_by_name(np, "fw-features"); 2256 of_node_put(np); 2257 if (!fw_features) 2258 return 0; 2259 if (have_fw_feat(fw_features, "enabled", 2260 "inst-spec-barrier-ori31,31,0")) 2261 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2262 if (have_fw_feat(fw_features, "enabled", 2263 "fw-bcctrl-serialized")) 2264 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2265 if (have_fw_feat(fw_features, "enabled", 2266 "inst-l1d-flush-ori30,30,0")) 2267 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2268 if (have_fw_feat(fw_features, "enabled", 2269 "inst-l1d-flush-trig2")) 2270 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2271 if (have_fw_feat(fw_features, "enabled", 2272 "fw-l1d-thread-split")) 2273 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2274 if (have_fw_feat(fw_features, "enabled", 2275 "fw-count-cache-disabled")) 2276 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2277 if (have_fw_feat(fw_features, "enabled", 2278 "fw-count-cache-flush-bcctr2,0,0")) 2279 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2280 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2281 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2282 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2283 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2284 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2285 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2286 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2287 2288 if (have_fw_feat(fw_features, "enabled", 2289 "speculation-policy-favor-security")) 2290 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2291 if (!have_fw_feat(fw_features, "disabled", 2292 "needs-l1d-flush-msr-pr-0-to-1")) 2293 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2294 if (!have_fw_feat(fw_features, "disabled", 2295 "needs-spec-barrier-for-bound-checks")) 2296 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2297 if (have_fw_feat(fw_features, "enabled", 2298 "needs-count-cache-flush-on-context-switch")) 2299 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2300 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2301 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2302 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2303 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2304 2305 of_node_put(fw_features); 2306 } 2307 2308 return 0; 2309 } 2310 #endif 2311 2312 long kvm_arch_vm_ioctl(struct file *filp, 2313 unsigned int ioctl, unsigned long arg) 2314 { 2315 struct kvm *kvm __maybe_unused = filp->private_data; 2316 void __user *argp = (void __user *)arg; 2317 long r; 2318 2319 switch (ioctl) { 2320 case KVM_PPC_GET_PVINFO: { 2321 struct kvm_ppc_pvinfo pvinfo; 2322 memset(&pvinfo, 0, sizeof(pvinfo)); 2323 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2324 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2325 r = -EFAULT; 2326 goto out; 2327 } 2328 2329 break; 2330 } 2331 #ifdef CONFIG_SPAPR_TCE_IOMMU 2332 case KVM_CREATE_SPAPR_TCE_64: { 2333 struct kvm_create_spapr_tce_64 create_tce_64; 2334 2335 r = -EFAULT; 2336 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2337 goto out; 2338 if (create_tce_64.flags) { 2339 r = -EINVAL; 2340 goto out; 2341 } 2342 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2343 goto out; 2344 } 2345 case KVM_CREATE_SPAPR_TCE: { 2346 struct kvm_create_spapr_tce create_tce; 2347 struct kvm_create_spapr_tce_64 create_tce_64; 2348 2349 r = -EFAULT; 2350 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2351 goto out; 2352 2353 create_tce_64.liobn = create_tce.liobn; 2354 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2355 create_tce_64.offset = 0; 2356 create_tce_64.size = create_tce.window_size >> 2357 IOMMU_PAGE_SHIFT_4K; 2358 create_tce_64.flags = 0; 2359 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2360 goto out; 2361 } 2362 #endif 2363 #ifdef CONFIG_PPC_BOOK3S_64 2364 case KVM_PPC_GET_SMMU_INFO: { 2365 struct kvm_ppc_smmu_info info; 2366 struct kvm *kvm = filp->private_data; 2367 2368 memset(&info, 0, sizeof(info)); 2369 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2370 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2371 r = -EFAULT; 2372 break; 2373 } 2374 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2375 struct kvm *kvm = filp->private_data; 2376 2377 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2378 break; 2379 } 2380 case KVM_PPC_CONFIGURE_V3_MMU: { 2381 struct kvm *kvm = filp->private_data; 2382 struct kvm_ppc_mmuv3_cfg cfg; 2383 2384 r = -EINVAL; 2385 if (!kvm->arch.kvm_ops->configure_mmu) 2386 goto out; 2387 r = -EFAULT; 2388 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2389 goto out; 2390 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2391 break; 2392 } 2393 case KVM_PPC_GET_RMMU_INFO: { 2394 struct kvm *kvm = filp->private_data; 2395 struct kvm_ppc_rmmu_info info; 2396 2397 r = -EINVAL; 2398 if (!kvm->arch.kvm_ops->get_rmmu_info) 2399 goto out; 2400 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2401 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2402 r = -EFAULT; 2403 break; 2404 } 2405 case KVM_PPC_GET_CPU_CHAR: { 2406 struct kvm_ppc_cpu_char cpuchar; 2407 2408 r = kvmppc_get_cpu_char(&cpuchar); 2409 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2410 r = -EFAULT; 2411 break; 2412 } 2413 default: { 2414 struct kvm *kvm = filp->private_data; 2415 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2416 } 2417 #else /* CONFIG_PPC_BOOK3S_64 */ 2418 default: 2419 r = -ENOTTY; 2420 #endif 2421 } 2422 out: 2423 return r; 2424 } 2425 2426 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2427 static unsigned long nr_lpids; 2428 2429 long kvmppc_alloc_lpid(void) 2430 { 2431 long lpid; 2432 2433 do { 2434 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2435 if (lpid >= nr_lpids) { 2436 pr_err("%s: No LPIDs free\n", __func__); 2437 return -ENOMEM; 2438 } 2439 } while (test_and_set_bit(lpid, lpid_inuse)); 2440 2441 return lpid; 2442 } 2443 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2444 2445 void kvmppc_claim_lpid(long lpid) 2446 { 2447 set_bit(lpid, lpid_inuse); 2448 } 2449 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2450 2451 void kvmppc_free_lpid(long lpid) 2452 { 2453 clear_bit(lpid, lpid_inuse); 2454 } 2455 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2456 2457 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2458 { 2459 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2460 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2461 } 2462 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2463 2464 int kvm_arch_init(void *opaque) 2465 { 2466 return 0; 2467 } 2468 2469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2470