xref: /openbmc/linux/arch/powerpc/kvm/powerpc.c (revision 045f77ba)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include <asm/switch_to.h>
40 #include <asm/xive.h>
41 #ifdef CONFIG_PPC_PSERIES
42 #include <asm/hvcall.h>
43 #include <asm/plpar_wrappers.h>
44 #endif
45 
46 #include "timing.h"
47 #include "irq.h"
48 #include "../mm/mmu_decl.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include "trace.h"
52 
53 struct kvmppc_ops *kvmppc_hv_ops;
54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
55 struct kvmppc_ops *kvmppc_pr_ops;
56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
57 
58 
59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
60 {
61 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 }
63 
64 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
65 {
66 	return false;
67 }
68 
69 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
70 {
71 	return 1;
72 }
73 
74 /*
75  * Common checks before entering the guest world.  Call with interrupts
76  * disabled.
77  *
78  * returns:
79  *
80  * == 1 if we're ready to go into guest state
81  * <= 0 if we need to go back to the host with return value
82  */
83 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
84 {
85 	int r;
86 
87 	WARN_ON(irqs_disabled());
88 	hard_irq_disable();
89 
90 	while (true) {
91 		if (need_resched()) {
92 			local_irq_enable();
93 			cond_resched();
94 			hard_irq_disable();
95 			continue;
96 		}
97 
98 		if (signal_pending(current)) {
99 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
100 			vcpu->run->exit_reason = KVM_EXIT_INTR;
101 			r = -EINTR;
102 			break;
103 		}
104 
105 		vcpu->mode = IN_GUEST_MODE;
106 
107 		/*
108 		 * Reading vcpu->requests must happen after setting vcpu->mode,
109 		 * so we don't miss a request because the requester sees
110 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
111 		 * before next entering the guest (and thus doesn't IPI).
112 		 * This also orders the write to mode from any reads
113 		 * to the page tables done while the VCPU is running.
114 		 * Please see the comment in kvm_flush_remote_tlbs.
115 		 */
116 		smp_mb();
117 
118 		if (kvm_request_pending(vcpu)) {
119 			/* Make sure we process requests preemptable */
120 			local_irq_enable();
121 			trace_kvm_check_requests(vcpu);
122 			r = kvmppc_core_check_requests(vcpu);
123 			hard_irq_disable();
124 			if (r > 0)
125 				continue;
126 			break;
127 		}
128 
129 		if (kvmppc_core_prepare_to_enter(vcpu)) {
130 			/* interrupts got enabled in between, so we
131 			   are back at square 1 */
132 			continue;
133 		}
134 
135 		guest_enter_irqoff();
136 		return 1;
137 	}
138 
139 	/* return to host */
140 	local_irq_enable();
141 	return r;
142 }
143 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144 
145 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
146 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
147 {
148 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
149 	int i;
150 
151 	shared->sprg0 = swab64(shared->sprg0);
152 	shared->sprg1 = swab64(shared->sprg1);
153 	shared->sprg2 = swab64(shared->sprg2);
154 	shared->sprg3 = swab64(shared->sprg3);
155 	shared->srr0 = swab64(shared->srr0);
156 	shared->srr1 = swab64(shared->srr1);
157 	shared->dar = swab64(shared->dar);
158 	shared->msr = swab64(shared->msr);
159 	shared->dsisr = swab32(shared->dsisr);
160 	shared->int_pending = swab32(shared->int_pending);
161 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
162 		shared->sr[i] = swab32(shared->sr[i]);
163 }
164 #endif
165 
166 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
167 {
168 	int nr = kvmppc_get_gpr(vcpu, 11);
169 	int r;
170 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
171 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
172 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
173 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
174 	unsigned long r2 = 0;
175 
176 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177 		/* 32 bit mode */
178 		param1 &= 0xffffffff;
179 		param2 &= 0xffffffff;
180 		param3 &= 0xffffffff;
181 		param4 &= 0xffffffff;
182 	}
183 
184 	switch (nr) {
185 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186 	{
187 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
188 		/* Book3S can be little endian, find it out here */
189 		int shared_big_endian = true;
190 		if (vcpu->arch.intr_msr & MSR_LE)
191 			shared_big_endian = false;
192 		if (shared_big_endian != vcpu->arch.shared_big_endian)
193 			kvmppc_swab_shared(vcpu);
194 		vcpu->arch.shared_big_endian = shared_big_endian;
195 #endif
196 
197 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
198 			/*
199 			 * Older versions of the Linux magic page code had
200 			 * a bug where they would map their trampoline code
201 			 * NX. If that's the case, remove !PR NX capability.
202 			 */
203 			vcpu->arch.disable_kernel_nx = true;
204 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
205 		}
206 
207 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
208 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209 
210 #ifdef CONFIG_PPC_64K_PAGES
211 		/*
212 		 * Make sure our 4k magic page is in the same window of a 64k
213 		 * page within the guest and within the host's page.
214 		 */
215 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
216 		    ((ulong)vcpu->arch.shared & 0xf000)) {
217 			void *old_shared = vcpu->arch.shared;
218 			ulong shared = (ulong)vcpu->arch.shared;
219 			void *new_shared;
220 
221 			shared &= PAGE_MASK;
222 			shared |= vcpu->arch.magic_page_pa & 0xf000;
223 			new_shared = (void*)shared;
224 			memcpy(new_shared, old_shared, 0x1000);
225 			vcpu->arch.shared = new_shared;
226 		}
227 #endif
228 
229 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230 
231 		r = EV_SUCCESS;
232 		break;
233 	}
234 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
235 		r = EV_SUCCESS;
236 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
238 #endif
239 
240 		/* Second return value is in r4 */
241 		break;
242 	case EV_HCALL_TOKEN(EV_IDLE):
243 		r = EV_SUCCESS;
244 		kvm_vcpu_block(vcpu);
245 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246 		break;
247 	default:
248 		r = EV_UNIMPLEMENTED;
249 		break;
250 	}
251 
252 	kvmppc_set_gpr(vcpu, 4, r2);
253 
254 	return r;
255 }
256 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257 
258 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
259 {
260 	int r = false;
261 
262 	/* We have to know what CPU to virtualize */
263 	if (!vcpu->arch.pvr)
264 		goto out;
265 
266 	/* PAPR only works with book3s_64 */
267 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
268 		goto out;
269 
270 	/* HV KVM can only do PAPR mode for now */
271 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272 		goto out;
273 
274 #ifdef CONFIG_KVM_BOOKE_HV
275 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
276 		goto out;
277 #endif
278 
279 	r = true;
280 
281 out:
282 	vcpu->arch.sane = r;
283 	return r ? 0 : -EINVAL;
284 }
285 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286 
287 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
288 {
289 	enum emulation_result er;
290 	int r;
291 
292 	er = kvmppc_emulate_loadstore(vcpu);
293 	switch (er) {
294 	case EMULATE_DONE:
295 		/* Future optimization: only reload non-volatiles if they were
296 		 * actually modified. */
297 		r = RESUME_GUEST_NV;
298 		break;
299 	case EMULATE_AGAIN:
300 		r = RESUME_GUEST;
301 		break;
302 	case EMULATE_DO_MMIO:
303 		run->exit_reason = KVM_EXIT_MMIO;
304 		/* We must reload nonvolatiles because "update" load/store
305 		 * instructions modify register state. */
306 		/* Future optimization: only reload non-volatiles if they were
307 		 * actually modified. */
308 		r = RESUME_HOST_NV;
309 		break;
310 	case EMULATE_FAIL:
311 	{
312 		u32 last_inst;
313 
314 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315 		/* XXX Deliver Program interrupt to guest. */
316 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317 		r = RESUME_HOST;
318 		break;
319 	}
320 	default:
321 		WARN_ON(1);
322 		r = RESUME_GUEST;
323 	}
324 
325 	return r;
326 }
327 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328 
329 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
330 	      bool data)
331 {
332 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333 	struct kvmppc_pte pte;
334 	int r;
335 
336 	vcpu->stat.st++;
337 
338 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
339 			 XLATE_WRITE, &pte);
340 	if (r < 0)
341 		return r;
342 
343 	*eaddr = pte.raddr;
344 
345 	if (!pte.may_write)
346 		return -EPERM;
347 
348 	/* Magic page override */
349 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
350 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
351 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
352 		void *magic = vcpu->arch.shared;
353 		magic += pte.eaddr & 0xfff;
354 		memcpy(magic, ptr, size);
355 		return EMULATE_DONE;
356 	}
357 
358 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
359 		return EMULATE_DO_MMIO;
360 
361 	return EMULATE_DONE;
362 }
363 EXPORT_SYMBOL_GPL(kvmppc_st);
364 
365 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
366 		      bool data)
367 {
368 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
369 	struct kvmppc_pte pte;
370 	int rc;
371 
372 	vcpu->stat.ld++;
373 
374 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
375 			  XLATE_READ, &pte);
376 	if (rc)
377 		return rc;
378 
379 	*eaddr = pte.raddr;
380 
381 	if (!pte.may_read)
382 		return -EPERM;
383 
384 	if (!data && !pte.may_execute)
385 		return -ENOEXEC;
386 
387 	/* Magic page override */
388 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
389 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
390 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
391 		void *magic = vcpu->arch.shared;
392 		magic += pte.eaddr & 0xfff;
393 		memcpy(ptr, magic, size);
394 		return EMULATE_DONE;
395 	}
396 
397 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
398 		return EMULATE_DO_MMIO;
399 
400 	return EMULATE_DONE;
401 }
402 EXPORT_SYMBOL_GPL(kvmppc_ld);
403 
404 int kvm_arch_hardware_enable(void)
405 {
406 	return 0;
407 }
408 
409 int kvm_arch_hardware_setup(void)
410 {
411 	return 0;
412 }
413 
414 void kvm_arch_check_processor_compat(void *rtn)
415 {
416 	*(int *)rtn = kvmppc_core_check_processor_compat();
417 }
418 
419 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
420 {
421 	struct kvmppc_ops *kvm_ops = NULL;
422 	/*
423 	 * if we have both HV and PR enabled, default is HV
424 	 */
425 	if (type == 0) {
426 		if (kvmppc_hv_ops)
427 			kvm_ops = kvmppc_hv_ops;
428 		else
429 			kvm_ops = kvmppc_pr_ops;
430 		if (!kvm_ops)
431 			goto err_out;
432 	} else	if (type == KVM_VM_PPC_HV) {
433 		if (!kvmppc_hv_ops)
434 			goto err_out;
435 		kvm_ops = kvmppc_hv_ops;
436 	} else if (type == KVM_VM_PPC_PR) {
437 		if (!kvmppc_pr_ops)
438 			goto err_out;
439 		kvm_ops = kvmppc_pr_ops;
440 	} else
441 		goto err_out;
442 
443 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
444 		return -ENOENT;
445 
446 	kvm->arch.kvm_ops = kvm_ops;
447 	return kvmppc_core_init_vm(kvm);
448 err_out:
449 	return -EINVAL;
450 }
451 
452 bool kvm_arch_has_vcpu_debugfs(void)
453 {
454 	return false;
455 }
456 
457 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
458 {
459 	return 0;
460 }
461 
462 void kvm_arch_destroy_vm(struct kvm *kvm)
463 {
464 	unsigned int i;
465 	struct kvm_vcpu *vcpu;
466 
467 #ifdef CONFIG_KVM_XICS
468 	/*
469 	 * We call kick_all_cpus_sync() to ensure that all
470 	 * CPUs have executed any pending IPIs before we
471 	 * continue and free VCPUs structures below.
472 	 */
473 	if (is_kvmppc_hv_enabled(kvm))
474 		kick_all_cpus_sync();
475 #endif
476 
477 	kvm_for_each_vcpu(i, vcpu, kvm)
478 		kvm_arch_vcpu_free(vcpu);
479 
480 	mutex_lock(&kvm->lock);
481 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
482 		kvm->vcpus[i] = NULL;
483 
484 	atomic_set(&kvm->online_vcpus, 0);
485 
486 	kvmppc_core_destroy_vm(kvm);
487 
488 	mutex_unlock(&kvm->lock);
489 
490 	/* drop the module reference */
491 	module_put(kvm->arch.kvm_ops->owner);
492 }
493 
494 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
495 {
496 	int r;
497 	/* Assume we're using HV mode when the HV module is loaded */
498 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
499 
500 	if (kvm) {
501 		/*
502 		 * Hooray - we know which VM type we're running on. Depend on
503 		 * that rather than the guess above.
504 		 */
505 		hv_enabled = is_kvmppc_hv_enabled(kvm);
506 	}
507 
508 	switch (ext) {
509 #ifdef CONFIG_BOOKE
510 	case KVM_CAP_PPC_BOOKE_SREGS:
511 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
512 	case KVM_CAP_PPC_EPR:
513 #else
514 	case KVM_CAP_PPC_SEGSTATE:
515 	case KVM_CAP_PPC_HIOR:
516 	case KVM_CAP_PPC_PAPR:
517 #endif
518 	case KVM_CAP_PPC_UNSET_IRQ:
519 	case KVM_CAP_PPC_IRQ_LEVEL:
520 	case KVM_CAP_ENABLE_CAP:
521 	case KVM_CAP_ENABLE_CAP_VM:
522 	case KVM_CAP_ONE_REG:
523 	case KVM_CAP_IOEVENTFD:
524 	case KVM_CAP_DEVICE_CTRL:
525 	case KVM_CAP_IMMEDIATE_EXIT:
526 		r = 1;
527 		break;
528 	case KVM_CAP_PPC_PAIRED_SINGLES:
529 	case KVM_CAP_PPC_OSI:
530 	case KVM_CAP_PPC_GET_PVINFO:
531 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
532 	case KVM_CAP_SW_TLB:
533 #endif
534 		/* We support this only for PR */
535 		r = !hv_enabled;
536 		break;
537 #ifdef CONFIG_KVM_MPIC
538 	case KVM_CAP_IRQ_MPIC:
539 		r = 1;
540 		break;
541 #endif
542 
543 #ifdef CONFIG_PPC_BOOK3S_64
544 	case KVM_CAP_SPAPR_TCE:
545 	case KVM_CAP_SPAPR_TCE_64:
546 		/* fallthrough */
547 	case KVM_CAP_SPAPR_TCE_VFIO:
548 	case KVM_CAP_PPC_RTAS:
549 	case KVM_CAP_PPC_FIXUP_HCALL:
550 	case KVM_CAP_PPC_ENABLE_HCALL:
551 #ifdef CONFIG_KVM_XICS
552 	case KVM_CAP_IRQ_XICS:
553 #endif
554 	case KVM_CAP_PPC_GET_CPU_CHAR:
555 		r = 1;
556 		break;
557 
558 	case KVM_CAP_PPC_ALLOC_HTAB:
559 		r = hv_enabled;
560 		break;
561 #endif /* CONFIG_PPC_BOOK3S_64 */
562 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
563 	case KVM_CAP_PPC_SMT:
564 		r = 0;
565 		if (kvm) {
566 			if (kvm->arch.emul_smt_mode > 1)
567 				r = kvm->arch.emul_smt_mode;
568 			else
569 				r = kvm->arch.smt_mode;
570 		} else if (hv_enabled) {
571 			if (cpu_has_feature(CPU_FTR_ARCH_300))
572 				r = 1;
573 			else
574 				r = threads_per_subcore;
575 		}
576 		break;
577 	case KVM_CAP_PPC_SMT_POSSIBLE:
578 		r = 1;
579 		if (hv_enabled) {
580 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
581 				r = ((threads_per_subcore << 1) - 1);
582 			else
583 				/* P9 can emulate dbells, so allow any mode */
584 				r = 8 | 4 | 2 | 1;
585 		}
586 		break;
587 	case KVM_CAP_PPC_RMA:
588 		r = 0;
589 		break;
590 	case KVM_CAP_PPC_HWRNG:
591 		r = kvmppc_hwrng_present();
592 		break;
593 	case KVM_CAP_PPC_MMU_RADIX:
594 		r = !!(hv_enabled && radix_enabled());
595 		break;
596 	case KVM_CAP_PPC_MMU_HASH_V3:
597 		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
598 		break;
599 #endif
600 	case KVM_CAP_SYNC_MMU:
601 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
602 		r = hv_enabled;
603 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 		r = 1;
605 #else
606 		r = 0;
607 #endif
608 		break;
609 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
610 	case KVM_CAP_PPC_HTAB_FD:
611 		r = hv_enabled;
612 		break;
613 #endif
614 	case KVM_CAP_NR_VCPUS:
615 		/*
616 		 * Recommending a number of CPUs is somewhat arbitrary; we
617 		 * return the number of present CPUs for -HV (since a host
618 		 * will have secondary threads "offline"), and for other KVM
619 		 * implementations just count online CPUs.
620 		 */
621 		if (hv_enabled)
622 			r = num_present_cpus();
623 		else
624 			r = num_online_cpus();
625 		break;
626 	case KVM_CAP_NR_MEMSLOTS:
627 		r = KVM_USER_MEM_SLOTS;
628 		break;
629 	case KVM_CAP_MAX_VCPUS:
630 		r = KVM_MAX_VCPUS;
631 		break;
632 #ifdef CONFIG_PPC_BOOK3S_64
633 	case KVM_CAP_PPC_GET_SMMU_INFO:
634 		r = 1;
635 		break;
636 	case KVM_CAP_SPAPR_MULTITCE:
637 		r = 1;
638 		break;
639 	case KVM_CAP_SPAPR_RESIZE_HPT:
640 		r = !!hv_enabled;
641 		break;
642 #endif
643 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
644 	case KVM_CAP_PPC_FWNMI:
645 		r = hv_enabled;
646 		break;
647 #endif
648 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
649 	case KVM_CAP_PPC_HTM:
650 		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
651 		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
652 		break;
653 #endif
654 	default:
655 		r = 0;
656 		break;
657 	}
658 	return r;
659 
660 }
661 
662 long kvm_arch_dev_ioctl(struct file *filp,
663                         unsigned int ioctl, unsigned long arg)
664 {
665 	return -EINVAL;
666 }
667 
668 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
669 			   struct kvm_memory_slot *dont)
670 {
671 	kvmppc_core_free_memslot(kvm, free, dont);
672 }
673 
674 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
675 			    unsigned long npages)
676 {
677 	return kvmppc_core_create_memslot(kvm, slot, npages);
678 }
679 
680 int kvm_arch_prepare_memory_region(struct kvm *kvm,
681 				   struct kvm_memory_slot *memslot,
682 				   const struct kvm_userspace_memory_region *mem,
683 				   enum kvm_mr_change change)
684 {
685 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
686 }
687 
688 void kvm_arch_commit_memory_region(struct kvm *kvm,
689 				   const struct kvm_userspace_memory_region *mem,
690 				   const struct kvm_memory_slot *old,
691 				   const struct kvm_memory_slot *new,
692 				   enum kvm_mr_change change)
693 {
694 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
695 }
696 
697 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
698 				   struct kvm_memory_slot *slot)
699 {
700 	kvmppc_core_flush_memslot(kvm, slot);
701 }
702 
703 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
704 {
705 	struct kvm_vcpu *vcpu;
706 	vcpu = kvmppc_core_vcpu_create(kvm, id);
707 	if (!IS_ERR(vcpu)) {
708 		vcpu->arch.wqp = &vcpu->wq;
709 		kvmppc_create_vcpu_debugfs(vcpu, id);
710 	}
711 	return vcpu;
712 }
713 
714 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
715 {
716 }
717 
718 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
719 {
720 	/* Make sure we're not using the vcpu anymore */
721 	hrtimer_cancel(&vcpu->arch.dec_timer);
722 
723 	kvmppc_remove_vcpu_debugfs(vcpu);
724 
725 	switch (vcpu->arch.irq_type) {
726 	case KVMPPC_IRQ_MPIC:
727 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
728 		break;
729 	case KVMPPC_IRQ_XICS:
730 		if (xive_enabled())
731 			kvmppc_xive_cleanup_vcpu(vcpu);
732 		else
733 			kvmppc_xics_free_icp(vcpu);
734 		break;
735 	}
736 
737 	kvmppc_core_vcpu_free(vcpu);
738 }
739 
740 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
741 {
742 	kvm_arch_vcpu_free(vcpu);
743 }
744 
745 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
746 {
747 	return kvmppc_core_pending_dec(vcpu);
748 }
749 
750 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
751 {
752 	struct kvm_vcpu *vcpu;
753 
754 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
755 	kvmppc_decrementer_func(vcpu);
756 
757 	return HRTIMER_NORESTART;
758 }
759 
760 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
761 {
762 	int ret;
763 
764 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
765 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
766 	vcpu->arch.dec_expires = get_tb();
767 
768 #ifdef CONFIG_KVM_EXIT_TIMING
769 	mutex_init(&vcpu->arch.exit_timing_lock);
770 #endif
771 	ret = kvmppc_subarch_vcpu_init(vcpu);
772 	return ret;
773 }
774 
775 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
776 {
777 	kvmppc_mmu_destroy(vcpu);
778 	kvmppc_subarch_vcpu_uninit(vcpu);
779 }
780 
781 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
782 {
783 #ifdef CONFIG_BOOKE
784 	/*
785 	 * vrsave (formerly usprg0) isn't used by Linux, but may
786 	 * be used by the guest.
787 	 *
788 	 * On non-booke this is associated with Altivec and
789 	 * is handled by code in book3s.c.
790 	 */
791 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
792 #endif
793 	kvmppc_core_vcpu_load(vcpu, cpu);
794 }
795 
796 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
797 {
798 	kvmppc_core_vcpu_put(vcpu);
799 #ifdef CONFIG_BOOKE
800 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
801 #endif
802 }
803 
804 /*
805  * irq_bypass_add_producer and irq_bypass_del_producer are only
806  * useful if the architecture supports PCI passthrough.
807  * irq_bypass_stop and irq_bypass_start are not needed and so
808  * kvm_ops are not defined for them.
809  */
810 bool kvm_arch_has_irq_bypass(void)
811 {
812 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
813 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
814 }
815 
816 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
817 				     struct irq_bypass_producer *prod)
818 {
819 	struct kvm_kernel_irqfd *irqfd =
820 		container_of(cons, struct kvm_kernel_irqfd, consumer);
821 	struct kvm *kvm = irqfd->kvm;
822 
823 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
824 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
825 
826 	return 0;
827 }
828 
829 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
830 				      struct irq_bypass_producer *prod)
831 {
832 	struct kvm_kernel_irqfd *irqfd =
833 		container_of(cons, struct kvm_kernel_irqfd, consumer);
834 	struct kvm *kvm = irqfd->kvm;
835 
836 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
837 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
838 }
839 
840 #ifdef CONFIG_VSX
841 static inline int kvmppc_get_vsr_dword_offset(int index)
842 {
843 	int offset;
844 
845 	if ((index != 0) && (index != 1))
846 		return -1;
847 
848 #ifdef __BIG_ENDIAN
849 	offset =  index;
850 #else
851 	offset = 1 - index;
852 #endif
853 
854 	return offset;
855 }
856 
857 static inline int kvmppc_get_vsr_word_offset(int index)
858 {
859 	int offset;
860 
861 	if ((index > 3) || (index < 0))
862 		return -1;
863 
864 #ifdef __BIG_ENDIAN
865 	offset = index;
866 #else
867 	offset = 3 - index;
868 #endif
869 	return offset;
870 }
871 
872 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
873 	u64 gpr)
874 {
875 	union kvmppc_one_reg val;
876 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
877 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
878 
879 	if (offset == -1)
880 		return;
881 
882 	if (index >= 32) {
883 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
884 		val.vsxval[offset] = gpr;
885 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
886 	} else {
887 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
888 	}
889 }
890 
891 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
892 	u64 gpr)
893 {
894 	union kvmppc_one_reg val;
895 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
896 
897 	if (index >= 32) {
898 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
899 		val.vsxval[0] = gpr;
900 		val.vsxval[1] = gpr;
901 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
902 	} else {
903 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
904 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
905 	}
906 }
907 
908 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
909 	u32 gpr)
910 {
911 	union kvmppc_one_reg val;
912 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
913 
914 	if (index >= 32) {
915 		val.vsx32val[0] = gpr;
916 		val.vsx32val[1] = gpr;
917 		val.vsx32val[2] = gpr;
918 		val.vsx32val[3] = gpr;
919 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
920 	} else {
921 		val.vsx32val[0] = gpr;
922 		val.vsx32val[1] = gpr;
923 		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
924 		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
925 	}
926 }
927 
928 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
929 	u32 gpr32)
930 {
931 	union kvmppc_one_reg val;
932 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
933 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
934 	int dword_offset, word_offset;
935 
936 	if (offset == -1)
937 		return;
938 
939 	if (index >= 32) {
940 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
941 		val.vsx32val[offset] = gpr32;
942 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
943 	} else {
944 		dword_offset = offset / 2;
945 		word_offset = offset % 2;
946 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
947 		val.vsx32val[word_offset] = gpr32;
948 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
949 	}
950 }
951 #endif /* CONFIG_VSX */
952 
953 #ifdef CONFIG_ALTIVEC
954 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
955 		int index, int element_size)
956 {
957 	int offset;
958 	int elts = sizeof(vector128)/element_size;
959 
960 	if ((index < 0) || (index >= elts))
961 		return -1;
962 
963 	if (kvmppc_need_byteswap(vcpu))
964 		offset = elts - index - 1;
965 	else
966 		offset = index;
967 
968 	return offset;
969 }
970 
971 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
972 		int index)
973 {
974 	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
975 }
976 
977 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
978 		int index)
979 {
980 	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
981 }
982 
983 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
984 		int index)
985 {
986 	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
987 }
988 
989 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
990 		int index)
991 {
992 	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
993 }
994 
995 
996 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
997 	u64 gpr)
998 {
999 	union kvmppc_one_reg val;
1000 	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1001 			vcpu->arch.mmio_vmx_offset);
1002 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1003 
1004 	if (offset == -1)
1005 		return;
1006 
1007 	val.vval = VCPU_VSX_VR(vcpu, index);
1008 	val.vsxval[offset] = gpr;
1009 	VCPU_VSX_VR(vcpu, index) = val.vval;
1010 }
1011 
1012 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1013 	u32 gpr32)
1014 {
1015 	union kvmppc_one_reg val;
1016 	int offset = kvmppc_get_vmx_word_offset(vcpu,
1017 			vcpu->arch.mmio_vmx_offset);
1018 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1019 
1020 	if (offset == -1)
1021 		return;
1022 
1023 	val.vval = VCPU_VSX_VR(vcpu, index);
1024 	val.vsx32val[offset] = gpr32;
1025 	VCPU_VSX_VR(vcpu, index) = val.vval;
1026 }
1027 
1028 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1029 	u16 gpr16)
1030 {
1031 	union kvmppc_one_reg val;
1032 	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1033 			vcpu->arch.mmio_vmx_offset);
1034 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1035 
1036 	if (offset == -1)
1037 		return;
1038 
1039 	val.vval = VCPU_VSX_VR(vcpu, index);
1040 	val.vsx16val[offset] = gpr16;
1041 	VCPU_VSX_VR(vcpu, index) = val.vval;
1042 }
1043 
1044 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1045 	u8 gpr8)
1046 {
1047 	union kvmppc_one_reg val;
1048 	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1049 			vcpu->arch.mmio_vmx_offset);
1050 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1051 
1052 	if (offset == -1)
1053 		return;
1054 
1055 	val.vval = VCPU_VSX_VR(vcpu, index);
1056 	val.vsx8val[offset] = gpr8;
1057 	VCPU_VSX_VR(vcpu, index) = val.vval;
1058 }
1059 #endif /* CONFIG_ALTIVEC */
1060 
1061 #ifdef CONFIG_PPC_FPU
1062 static inline u64 sp_to_dp(u32 fprs)
1063 {
1064 	u64 fprd;
1065 
1066 	preempt_disable();
1067 	enable_kernel_fp();
1068 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1069 	     : "fr0");
1070 	preempt_enable();
1071 	return fprd;
1072 }
1073 
1074 static inline u32 dp_to_sp(u64 fprd)
1075 {
1076 	u32 fprs;
1077 
1078 	preempt_disable();
1079 	enable_kernel_fp();
1080 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1081 	     : "fr0");
1082 	preempt_enable();
1083 	return fprs;
1084 }
1085 
1086 #else
1087 #define sp_to_dp(x)	(x)
1088 #define dp_to_sp(x)	(x)
1089 #endif /* CONFIG_PPC_FPU */
1090 
1091 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1092                                       struct kvm_run *run)
1093 {
1094 	u64 uninitialized_var(gpr);
1095 
1096 	if (run->mmio.len > sizeof(gpr)) {
1097 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1098 		return;
1099 	}
1100 
1101 	if (!vcpu->arch.mmio_host_swabbed) {
1102 		switch (run->mmio.len) {
1103 		case 8: gpr = *(u64 *)run->mmio.data; break;
1104 		case 4: gpr = *(u32 *)run->mmio.data; break;
1105 		case 2: gpr = *(u16 *)run->mmio.data; break;
1106 		case 1: gpr = *(u8 *)run->mmio.data; break;
1107 		}
1108 	} else {
1109 		switch (run->mmio.len) {
1110 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1111 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1112 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1113 		case 1: gpr = *(u8 *)run->mmio.data; break;
1114 		}
1115 	}
1116 
1117 	/* conversion between single and double precision */
1118 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1119 		gpr = sp_to_dp(gpr);
1120 
1121 	if (vcpu->arch.mmio_sign_extend) {
1122 		switch (run->mmio.len) {
1123 #ifdef CONFIG_PPC64
1124 		case 4:
1125 			gpr = (s64)(s32)gpr;
1126 			break;
1127 #endif
1128 		case 2:
1129 			gpr = (s64)(s16)gpr;
1130 			break;
1131 		case 1:
1132 			gpr = (s64)(s8)gpr;
1133 			break;
1134 		}
1135 	}
1136 
1137 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1138 	case KVM_MMIO_REG_GPR:
1139 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1140 		break;
1141 	case KVM_MMIO_REG_FPR:
1142 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1143 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1144 
1145 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1146 		break;
1147 #ifdef CONFIG_PPC_BOOK3S
1148 	case KVM_MMIO_REG_QPR:
1149 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1150 		break;
1151 	case KVM_MMIO_REG_FQPR:
1152 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1153 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1154 		break;
1155 #endif
1156 #ifdef CONFIG_VSX
1157 	case KVM_MMIO_REG_VSX:
1158 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1159 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1160 
1161 		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1162 			kvmppc_set_vsr_dword(vcpu, gpr);
1163 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1164 			kvmppc_set_vsr_word(vcpu, gpr);
1165 		else if (vcpu->arch.mmio_copy_type ==
1166 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1167 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1168 		else if (vcpu->arch.mmio_copy_type ==
1169 				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1170 			kvmppc_set_vsr_word_dump(vcpu, gpr);
1171 		break;
1172 #endif
1173 #ifdef CONFIG_ALTIVEC
1174 	case KVM_MMIO_REG_VMX:
1175 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1176 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1177 
1178 		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1179 			kvmppc_set_vmx_dword(vcpu, gpr);
1180 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1181 			kvmppc_set_vmx_word(vcpu, gpr);
1182 		else if (vcpu->arch.mmio_copy_type ==
1183 				KVMPPC_VMX_COPY_HWORD)
1184 			kvmppc_set_vmx_hword(vcpu, gpr);
1185 		else if (vcpu->arch.mmio_copy_type ==
1186 				KVMPPC_VMX_COPY_BYTE)
1187 			kvmppc_set_vmx_byte(vcpu, gpr);
1188 		break;
1189 #endif
1190 	default:
1191 		BUG();
1192 	}
1193 }
1194 
1195 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1196 				unsigned int rt, unsigned int bytes,
1197 				int is_default_endian, int sign_extend)
1198 {
1199 	int idx, ret;
1200 	bool host_swabbed;
1201 
1202 	/* Pity C doesn't have a logical XOR operator */
1203 	if (kvmppc_need_byteswap(vcpu)) {
1204 		host_swabbed = is_default_endian;
1205 	} else {
1206 		host_swabbed = !is_default_endian;
1207 	}
1208 
1209 	if (bytes > sizeof(run->mmio.data)) {
1210 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1211 		       run->mmio.len);
1212 	}
1213 
1214 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1215 	run->mmio.len = bytes;
1216 	run->mmio.is_write = 0;
1217 
1218 	vcpu->arch.io_gpr = rt;
1219 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1220 	vcpu->mmio_needed = 1;
1221 	vcpu->mmio_is_write = 0;
1222 	vcpu->arch.mmio_sign_extend = sign_extend;
1223 
1224 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1225 
1226 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1227 			      bytes, &run->mmio.data);
1228 
1229 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1230 
1231 	if (!ret) {
1232 		kvmppc_complete_mmio_load(vcpu, run);
1233 		vcpu->mmio_needed = 0;
1234 		return EMULATE_DONE;
1235 	}
1236 
1237 	return EMULATE_DO_MMIO;
1238 }
1239 
1240 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1241 		       unsigned int rt, unsigned int bytes,
1242 		       int is_default_endian)
1243 {
1244 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1245 }
1246 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1247 
1248 /* Same as above, but sign extends */
1249 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1250 			unsigned int rt, unsigned int bytes,
1251 			int is_default_endian)
1252 {
1253 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1254 }
1255 
1256 #ifdef CONFIG_VSX
1257 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1258 			unsigned int rt, unsigned int bytes,
1259 			int is_default_endian, int mmio_sign_extend)
1260 {
1261 	enum emulation_result emulated = EMULATE_DONE;
1262 
1263 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1264 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1265 		return EMULATE_FAIL;
1266 
1267 	while (vcpu->arch.mmio_vsx_copy_nums) {
1268 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1269 			is_default_endian, mmio_sign_extend);
1270 
1271 		if (emulated != EMULATE_DONE)
1272 			break;
1273 
1274 		vcpu->arch.paddr_accessed += run->mmio.len;
1275 
1276 		vcpu->arch.mmio_vsx_copy_nums--;
1277 		vcpu->arch.mmio_vsx_offset++;
1278 	}
1279 	return emulated;
1280 }
1281 #endif /* CONFIG_VSX */
1282 
1283 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1284 			u64 val, unsigned int bytes, int is_default_endian)
1285 {
1286 	void *data = run->mmio.data;
1287 	int idx, ret;
1288 	bool host_swabbed;
1289 
1290 	/* Pity C doesn't have a logical XOR operator */
1291 	if (kvmppc_need_byteswap(vcpu)) {
1292 		host_swabbed = is_default_endian;
1293 	} else {
1294 		host_swabbed = !is_default_endian;
1295 	}
1296 
1297 	if (bytes > sizeof(run->mmio.data)) {
1298 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1299 		       run->mmio.len);
1300 	}
1301 
1302 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1303 	run->mmio.len = bytes;
1304 	run->mmio.is_write = 1;
1305 	vcpu->mmio_needed = 1;
1306 	vcpu->mmio_is_write = 1;
1307 
1308 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1309 		val = dp_to_sp(val);
1310 
1311 	/* Store the value at the lowest bytes in 'data'. */
1312 	if (!host_swabbed) {
1313 		switch (bytes) {
1314 		case 8: *(u64 *)data = val; break;
1315 		case 4: *(u32 *)data = val; break;
1316 		case 2: *(u16 *)data = val; break;
1317 		case 1: *(u8  *)data = val; break;
1318 		}
1319 	} else {
1320 		switch (bytes) {
1321 		case 8: *(u64 *)data = swab64(val); break;
1322 		case 4: *(u32 *)data = swab32(val); break;
1323 		case 2: *(u16 *)data = swab16(val); break;
1324 		case 1: *(u8  *)data = val; break;
1325 		}
1326 	}
1327 
1328 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1329 
1330 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1331 			       bytes, &run->mmio.data);
1332 
1333 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1334 
1335 	if (!ret) {
1336 		vcpu->mmio_needed = 0;
1337 		return EMULATE_DONE;
1338 	}
1339 
1340 	return EMULATE_DO_MMIO;
1341 }
1342 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1343 
1344 #ifdef CONFIG_VSX
1345 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1346 {
1347 	u32 dword_offset, word_offset;
1348 	union kvmppc_one_reg reg;
1349 	int vsx_offset = 0;
1350 	int copy_type = vcpu->arch.mmio_copy_type;
1351 	int result = 0;
1352 
1353 	switch (copy_type) {
1354 	case KVMPPC_VSX_COPY_DWORD:
1355 		vsx_offset =
1356 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1357 
1358 		if (vsx_offset == -1) {
1359 			result = -1;
1360 			break;
1361 		}
1362 
1363 		if (rs < 32) {
1364 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1365 		} else {
1366 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1367 			*val = reg.vsxval[vsx_offset];
1368 		}
1369 		break;
1370 
1371 	case KVMPPC_VSX_COPY_WORD:
1372 		vsx_offset =
1373 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1374 
1375 		if (vsx_offset == -1) {
1376 			result = -1;
1377 			break;
1378 		}
1379 
1380 		if (rs < 32) {
1381 			dword_offset = vsx_offset / 2;
1382 			word_offset = vsx_offset % 2;
1383 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1384 			*val = reg.vsx32val[word_offset];
1385 		} else {
1386 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1387 			*val = reg.vsx32val[vsx_offset];
1388 		}
1389 		break;
1390 
1391 	default:
1392 		result = -1;
1393 		break;
1394 	}
1395 
1396 	return result;
1397 }
1398 
1399 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1400 			int rs, unsigned int bytes, int is_default_endian)
1401 {
1402 	u64 val;
1403 	enum emulation_result emulated = EMULATE_DONE;
1404 
1405 	vcpu->arch.io_gpr = rs;
1406 
1407 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1408 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1409 		return EMULATE_FAIL;
1410 
1411 	while (vcpu->arch.mmio_vsx_copy_nums) {
1412 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1413 			return EMULATE_FAIL;
1414 
1415 		emulated = kvmppc_handle_store(run, vcpu,
1416 			 val, bytes, is_default_endian);
1417 
1418 		if (emulated != EMULATE_DONE)
1419 			break;
1420 
1421 		vcpu->arch.paddr_accessed += run->mmio.len;
1422 
1423 		vcpu->arch.mmio_vsx_copy_nums--;
1424 		vcpu->arch.mmio_vsx_offset++;
1425 	}
1426 
1427 	return emulated;
1428 }
1429 
1430 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1431 			struct kvm_run *run)
1432 {
1433 	enum emulation_result emulated = EMULATE_FAIL;
1434 	int r;
1435 
1436 	vcpu->arch.paddr_accessed += run->mmio.len;
1437 
1438 	if (!vcpu->mmio_is_write) {
1439 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1440 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1441 	} else {
1442 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1443 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1444 	}
1445 
1446 	switch (emulated) {
1447 	case EMULATE_DO_MMIO:
1448 		run->exit_reason = KVM_EXIT_MMIO;
1449 		r = RESUME_HOST;
1450 		break;
1451 	case EMULATE_FAIL:
1452 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1453 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1454 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1455 		r = RESUME_HOST;
1456 		break;
1457 	default:
1458 		r = RESUME_GUEST;
1459 		break;
1460 	}
1461 	return r;
1462 }
1463 #endif /* CONFIG_VSX */
1464 
1465 #ifdef CONFIG_ALTIVEC
1466 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1467 		unsigned int rt, unsigned int bytes, int is_default_endian)
1468 {
1469 	enum emulation_result emulated = EMULATE_DONE;
1470 
1471 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1472 		return EMULATE_FAIL;
1473 
1474 	while (vcpu->arch.mmio_vmx_copy_nums) {
1475 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1476 				is_default_endian, 0);
1477 
1478 		if (emulated != EMULATE_DONE)
1479 			break;
1480 
1481 		vcpu->arch.paddr_accessed += run->mmio.len;
1482 		vcpu->arch.mmio_vmx_copy_nums--;
1483 		vcpu->arch.mmio_vmx_offset++;
1484 	}
1485 
1486 	return emulated;
1487 }
1488 
1489 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1490 {
1491 	union kvmppc_one_reg reg;
1492 	int vmx_offset = 0;
1493 	int result = 0;
1494 
1495 	vmx_offset =
1496 		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1497 
1498 	if (vmx_offset == -1)
1499 		return -1;
1500 
1501 	reg.vval = VCPU_VSX_VR(vcpu, index);
1502 	*val = reg.vsxval[vmx_offset];
1503 
1504 	return result;
1505 }
1506 
1507 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1508 {
1509 	union kvmppc_one_reg reg;
1510 	int vmx_offset = 0;
1511 	int result = 0;
1512 
1513 	vmx_offset =
1514 		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1515 
1516 	if (vmx_offset == -1)
1517 		return -1;
1518 
1519 	reg.vval = VCPU_VSX_VR(vcpu, index);
1520 	*val = reg.vsx32val[vmx_offset];
1521 
1522 	return result;
1523 }
1524 
1525 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1526 {
1527 	union kvmppc_one_reg reg;
1528 	int vmx_offset = 0;
1529 	int result = 0;
1530 
1531 	vmx_offset =
1532 		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1533 
1534 	if (vmx_offset == -1)
1535 		return -1;
1536 
1537 	reg.vval = VCPU_VSX_VR(vcpu, index);
1538 	*val = reg.vsx16val[vmx_offset];
1539 
1540 	return result;
1541 }
1542 
1543 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1544 {
1545 	union kvmppc_one_reg reg;
1546 	int vmx_offset = 0;
1547 	int result = 0;
1548 
1549 	vmx_offset =
1550 		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1551 
1552 	if (vmx_offset == -1)
1553 		return -1;
1554 
1555 	reg.vval = VCPU_VSX_VR(vcpu, index);
1556 	*val = reg.vsx8val[vmx_offset];
1557 
1558 	return result;
1559 }
1560 
1561 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1562 		unsigned int rs, unsigned int bytes, int is_default_endian)
1563 {
1564 	u64 val = 0;
1565 	unsigned int index = rs & KVM_MMIO_REG_MASK;
1566 	enum emulation_result emulated = EMULATE_DONE;
1567 
1568 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1569 		return EMULATE_FAIL;
1570 
1571 	vcpu->arch.io_gpr = rs;
1572 
1573 	while (vcpu->arch.mmio_vmx_copy_nums) {
1574 		switch (vcpu->arch.mmio_copy_type) {
1575 		case KVMPPC_VMX_COPY_DWORD:
1576 			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1577 				return EMULATE_FAIL;
1578 
1579 			break;
1580 		case KVMPPC_VMX_COPY_WORD:
1581 			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1582 				return EMULATE_FAIL;
1583 			break;
1584 		case KVMPPC_VMX_COPY_HWORD:
1585 			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1586 				return EMULATE_FAIL;
1587 			break;
1588 		case KVMPPC_VMX_COPY_BYTE:
1589 			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1590 				return EMULATE_FAIL;
1591 			break;
1592 		default:
1593 			return EMULATE_FAIL;
1594 		}
1595 
1596 		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1597 				is_default_endian);
1598 		if (emulated != EMULATE_DONE)
1599 			break;
1600 
1601 		vcpu->arch.paddr_accessed += run->mmio.len;
1602 		vcpu->arch.mmio_vmx_copy_nums--;
1603 		vcpu->arch.mmio_vmx_offset++;
1604 	}
1605 
1606 	return emulated;
1607 }
1608 
1609 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1610 		struct kvm_run *run)
1611 {
1612 	enum emulation_result emulated = EMULATE_FAIL;
1613 	int r;
1614 
1615 	vcpu->arch.paddr_accessed += run->mmio.len;
1616 
1617 	if (!vcpu->mmio_is_write) {
1618 		emulated = kvmppc_handle_vmx_load(run, vcpu,
1619 				vcpu->arch.io_gpr, run->mmio.len, 1);
1620 	} else {
1621 		emulated = kvmppc_handle_vmx_store(run, vcpu,
1622 				vcpu->arch.io_gpr, run->mmio.len, 1);
1623 	}
1624 
1625 	switch (emulated) {
1626 	case EMULATE_DO_MMIO:
1627 		run->exit_reason = KVM_EXIT_MMIO;
1628 		r = RESUME_HOST;
1629 		break;
1630 	case EMULATE_FAIL:
1631 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1632 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1633 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1634 		r = RESUME_HOST;
1635 		break;
1636 	default:
1637 		r = RESUME_GUEST;
1638 		break;
1639 	}
1640 	return r;
1641 }
1642 #endif /* CONFIG_ALTIVEC */
1643 
1644 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1645 {
1646 	int r = 0;
1647 	union kvmppc_one_reg val;
1648 	int size;
1649 
1650 	size = one_reg_size(reg->id);
1651 	if (size > sizeof(val))
1652 		return -EINVAL;
1653 
1654 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1655 	if (r == -EINVAL) {
1656 		r = 0;
1657 		switch (reg->id) {
1658 #ifdef CONFIG_ALTIVEC
1659 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1660 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1661 				r = -ENXIO;
1662 				break;
1663 			}
1664 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1665 			break;
1666 		case KVM_REG_PPC_VSCR:
1667 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1668 				r = -ENXIO;
1669 				break;
1670 			}
1671 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1672 			break;
1673 		case KVM_REG_PPC_VRSAVE:
1674 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1675 			break;
1676 #endif /* CONFIG_ALTIVEC */
1677 		default:
1678 			r = -EINVAL;
1679 			break;
1680 		}
1681 	}
1682 
1683 	if (r)
1684 		return r;
1685 
1686 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1687 		r = -EFAULT;
1688 
1689 	return r;
1690 }
1691 
1692 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1693 {
1694 	int r;
1695 	union kvmppc_one_reg val;
1696 	int size;
1697 
1698 	size = one_reg_size(reg->id);
1699 	if (size > sizeof(val))
1700 		return -EINVAL;
1701 
1702 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1703 		return -EFAULT;
1704 
1705 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1706 	if (r == -EINVAL) {
1707 		r = 0;
1708 		switch (reg->id) {
1709 #ifdef CONFIG_ALTIVEC
1710 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1711 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1712 				r = -ENXIO;
1713 				break;
1714 			}
1715 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1716 			break;
1717 		case KVM_REG_PPC_VSCR:
1718 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1719 				r = -ENXIO;
1720 				break;
1721 			}
1722 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1723 			break;
1724 		case KVM_REG_PPC_VRSAVE:
1725 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1726 				r = -ENXIO;
1727 				break;
1728 			}
1729 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1730 			break;
1731 #endif /* CONFIG_ALTIVEC */
1732 		default:
1733 			r = -EINVAL;
1734 			break;
1735 		}
1736 	}
1737 
1738 	return r;
1739 }
1740 
1741 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1742 {
1743 	int r;
1744 
1745 	vcpu_load(vcpu);
1746 
1747 	if (vcpu->mmio_needed) {
1748 		vcpu->mmio_needed = 0;
1749 		if (!vcpu->mmio_is_write)
1750 			kvmppc_complete_mmio_load(vcpu, run);
1751 #ifdef CONFIG_VSX
1752 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1753 			vcpu->arch.mmio_vsx_copy_nums--;
1754 			vcpu->arch.mmio_vsx_offset++;
1755 		}
1756 
1757 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1758 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1759 			if (r == RESUME_HOST) {
1760 				vcpu->mmio_needed = 1;
1761 				goto out;
1762 			}
1763 		}
1764 #endif
1765 #ifdef CONFIG_ALTIVEC
1766 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1767 			vcpu->arch.mmio_vmx_copy_nums--;
1768 			vcpu->arch.mmio_vmx_offset++;
1769 		}
1770 
1771 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1772 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1773 			if (r == RESUME_HOST) {
1774 				vcpu->mmio_needed = 1;
1775 				goto out;
1776 			}
1777 		}
1778 #endif
1779 	} else if (vcpu->arch.osi_needed) {
1780 		u64 *gprs = run->osi.gprs;
1781 		int i;
1782 
1783 		for (i = 0; i < 32; i++)
1784 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1785 		vcpu->arch.osi_needed = 0;
1786 	} else if (vcpu->arch.hcall_needed) {
1787 		int i;
1788 
1789 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1790 		for (i = 0; i < 9; ++i)
1791 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1792 		vcpu->arch.hcall_needed = 0;
1793 #ifdef CONFIG_BOOKE
1794 	} else if (vcpu->arch.epr_needed) {
1795 		kvmppc_set_epr(vcpu, run->epr.epr);
1796 		vcpu->arch.epr_needed = 0;
1797 #endif
1798 	}
1799 
1800 	kvm_sigset_activate(vcpu);
1801 
1802 	if (run->immediate_exit)
1803 		r = -EINTR;
1804 	else
1805 		r = kvmppc_vcpu_run(run, vcpu);
1806 
1807 	kvm_sigset_deactivate(vcpu);
1808 
1809 #ifdef CONFIG_ALTIVEC
1810 out:
1811 #endif
1812 	vcpu_put(vcpu);
1813 	return r;
1814 }
1815 
1816 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1817 {
1818 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1819 		kvmppc_core_dequeue_external(vcpu);
1820 		return 0;
1821 	}
1822 
1823 	kvmppc_core_queue_external(vcpu, irq);
1824 
1825 	kvm_vcpu_kick(vcpu);
1826 
1827 	return 0;
1828 }
1829 
1830 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1831 				     struct kvm_enable_cap *cap)
1832 {
1833 	int r;
1834 
1835 	if (cap->flags)
1836 		return -EINVAL;
1837 
1838 	switch (cap->cap) {
1839 	case KVM_CAP_PPC_OSI:
1840 		r = 0;
1841 		vcpu->arch.osi_enabled = true;
1842 		break;
1843 	case KVM_CAP_PPC_PAPR:
1844 		r = 0;
1845 		vcpu->arch.papr_enabled = true;
1846 		break;
1847 	case KVM_CAP_PPC_EPR:
1848 		r = 0;
1849 		if (cap->args[0])
1850 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1851 		else
1852 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1853 		break;
1854 #ifdef CONFIG_BOOKE
1855 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1856 		r = 0;
1857 		vcpu->arch.watchdog_enabled = true;
1858 		break;
1859 #endif
1860 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1861 	case KVM_CAP_SW_TLB: {
1862 		struct kvm_config_tlb cfg;
1863 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1864 
1865 		r = -EFAULT;
1866 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1867 			break;
1868 
1869 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1870 		break;
1871 	}
1872 #endif
1873 #ifdef CONFIG_KVM_MPIC
1874 	case KVM_CAP_IRQ_MPIC: {
1875 		struct fd f;
1876 		struct kvm_device *dev;
1877 
1878 		r = -EBADF;
1879 		f = fdget(cap->args[0]);
1880 		if (!f.file)
1881 			break;
1882 
1883 		r = -EPERM;
1884 		dev = kvm_device_from_filp(f.file);
1885 		if (dev)
1886 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1887 
1888 		fdput(f);
1889 		break;
1890 	}
1891 #endif
1892 #ifdef CONFIG_KVM_XICS
1893 	case KVM_CAP_IRQ_XICS: {
1894 		struct fd f;
1895 		struct kvm_device *dev;
1896 
1897 		r = -EBADF;
1898 		f = fdget(cap->args[0]);
1899 		if (!f.file)
1900 			break;
1901 
1902 		r = -EPERM;
1903 		dev = kvm_device_from_filp(f.file);
1904 		if (dev) {
1905 			if (xive_enabled())
1906 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1907 			else
1908 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1909 		}
1910 
1911 		fdput(f);
1912 		break;
1913 	}
1914 #endif /* CONFIG_KVM_XICS */
1915 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1916 	case KVM_CAP_PPC_FWNMI:
1917 		r = -EINVAL;
1918 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1919 			break;
1920 		r = 0;
1921 		vcpu->kvm->arch.fwnmi_enabled = true;
1922 		break;
1923 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1924 	default:
1925 		r = -EINVAL;
1926 		break;
1927 	}
1928 
1929 	if (!r)
1930 		r = kvmppc_sanity_check(vcpu);
1931 
1932 	return r;
1933 }
1934 
1935 bool kvm_arch_intc_initialized(struct kvm *kvm)
1936 {
1937 #ifdef CONFIG_KVM_MPIC
1938 	if (kvm->arch.mpic)
1939 		return true;
1940 #endif
1941 #ifdef CONFIG_KVM_XICS
1942 	if (kvm->arch.xics || kvm->arch.xive)
1943 		return true;
1944 #endif
1945 	return false;
1946 }
1947 
1948 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1949                                     struct kvm_mp_state *mp_state)
1950 {
1951 	return -EINVAL;
1952 }
1953 
1954 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1955                                     struct kvm_mp_state *mp_state)
1956 {
1957 	return -EINVAL;
1958 }
1959 
1960 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1961 			       unsigned int ioctl, unsigned long arg)
1962 {
1963 	struct kvm_vcpu *vcpu = filp->private_data;
1964 	void __user *argp = (void __user *)arg;
1965 
1966 	if (ioctl == KVM_INTERRUPT) {
1967 		struct kvm_interrupt irq;
1968 		if (copy_from_user(&irq, argp, sizeof(irq)))
1969 			return -EFAULT;
1970 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1971 	}
1972 	return -ENOIOCTLCMD;
1973 }
1974 
1975 long kvm_arch_vcpu_ioctl(struct file *filp,
1976                          unsigned int ioctl, unsigned long arg)
1977 {
1978 	struct kvm_vcpu *vcpu = filp->private_data;
1979 	void __user *argp = (void __user *)arg;
1980 	long r;
1981 
1982 	switch (ioctl) {
1983 	case KVM_ENABLE_CAP:
1984 	{
1985 		struct kvm_enable_cap cap;
1986 		r = -EFAULT;
1987 		vcpu_load(vcpu);
1988 		if (copy_from_user(&cap, argp, sizeof(cap)))
1989 			goto out;
1990 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1991 		vcpu_put(vcpu);
1992 		break;
1993 	}
1994 
1995 	case KVM_SET_ONE_REG:
1996 	case KVM_GET_ONE_REG:
1997 	{
1998 		struct kvm_one_reg reg;
1999 		r = -EFAULT;
2000 		if (copy_from_user(&reg, argp, sizeof(reg)))
2001 			goto out;
2002 		if (ioctl == KVM_SET_ONE_REG)
2003 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2004 		else
2005 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2006 		break;
2007 	}
2008 
2009 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2010 	case KVM_DIRTY_TLB: {
2011 		struct kvm_dirty_tlb dirty;
2012 		r = -EFAULT;
2013 		vcpu_load(vcpu);
2014 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2015 			goto out;
2016 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2017 		vcpu_put(vcpu);
2018 		break;
2019 	}
2020 #endif
2021 	default:
2022 		r = -EINVAL;
2023 	}
2024 
2025 out:
2026 	return r;
2027 }
2028 
2029 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2030 {
2031 	return VM_FAULT_SIGBUS;
2032 }
2033 
2034 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2035 {
2036 	u32 inst_nop = 0x60000000;
2037 #ifdef CONFIG_KVM_BOOKE_HV
2038 	u32 inst_sc1 = 0x44000022;
2039 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2040 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2041 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2042 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2043 #else
2044 	u32 inst_lis = 0x3c000000;
2045 	u32 inst_ori = 0x60000000;
2046 	u32 inst_sc = 0x44000002;
2047 	u32 inst_imm_mask = 0xffff;
2048 
2049 	/*
2050 	 * The hypercall to get into KVM from within guest context is as
2051 	 * follows:
2052 	 *
2053 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2054 	 *    ori r0, KVM_SC_MAGIC_R0@l
2055 	 *    sc
2056 	 *    nop
2057 	 */
2058 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2059 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2060 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2061 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2062 #endif
2063 
2064 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2065 
2066 	return 0;
2067 }
2068 
2069 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2070 			  bool line_status)
2071 {
2072 	if (!irqchip_in_kernel(kvm))
2073 		return -ENXIO;
2074 
2075 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2076 					irq_event->irq, irq_event->level,
2077 					line_status);
2078 	return 0;
2079 }
2080 
2081 
2082 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2083 				   struct kvm_enable_cap *cap)
2084 {
2085 	int r;
2086 
2087 	if (cap->flags)
2088 		return -EINVAL;
2089 
2090 	switch (cap->cap) {
2091 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2092 	case KVM_CAP_PPC_ENABLE_HCALL: {
2093 		unsigned long hcall = cap->args[0];
2094 
2095 		r = -EINVAL;
2096 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2097 		    cap->args[1] > 1)
2098 			break;
2099 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2100 			break;
2101 		if (cap->args[1])
2102 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2103 		else
2104 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2105 		r = 0;
2106 		break;
2107 	}
2108 	case KVM_CAP_PPC_SMT: {
2109 		unsigned long mode = cap->args[0];
2110 		unsigned long flags = cap->args[1];
2111 
2112 		r = -EINVAL;
2113 		if (kvm->arch.kvm_ops->set_smt_mode)
2114 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2115 		break;
2116 	}
2117 #endif
2118 	default:
2119 		r = -EINVAL;
2120 		break;
2121 	}
2122 
2123 	return r;
2124 }
2125 
2126 #ifdef CONFIG_PPC_BOOK3S_64
2127 /*
2128  * These functions check whether the underlying hardware is safe
2129  * against attacks based on observing the effects of speculatively
2130  * executed instructions, and whether it supplies instructions for
2131  * use in workarounds.  The information comes from firmware, either
2132  * via the device tree on powernv platforms or from an hcall on
2133  * pseries platforms.
2134  */
2135 #ifdef CONFIG_PPC_PSERIES
2136 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2137 {
2138 	struct h_cpu_char_result c;
2139 	unsigned long rc;
2140 
2141 	if (!machine_is(pseries))
2142 		return -ENOTTY;
2143 
2144 	rc = plpar_get_cpu_characteristics(&c);
2145 	if (rc == H_SUCCESS) {
2146 		cp->character = c.character;
2147 		cp->behaviour = c.behaviour;
2148 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2149 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2150 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2151 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2152 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2153 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2154 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2155 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2156 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2157 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2158 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2159 	}
2160 	return 0;
2161 }
2162 #else
2163 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2164 {
2165 	return -ENOTTY;
2166 }
2167 #endif
2168 
2169 static inline bool have_fw_feat(struct device_node *fw_features,
2170 				const char *state, const char *name)
2171 {
2172 	struct device_node *np;
2173 	bool r = false;
2174 
2175 	np = of_get_child_by_name(fw_features, name);
2176 	if (np) {
2177 		r = of_property_read_bool(np, state);
2178 		of_node_put(np);
2179 	}
2180 	return r;
2181 }
2182 
2183 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2184 {
2185 	struct device_node *np, *fw_features;
2186 	int r;
2187 
2188 	memset(cp, 0, sizeof(*cp));
2189 	r = pseries_get_cpu_char(cp);
2190 	if (r != -ENOTTY)
2191 		return r;
2192 
2193 	np = of_find_node_by_name(NULL, "ibm,opal");
2194 	if (np) {
2195 		fw_features = of_get_child_by_name(np, "fw-features");
2196 		of_node_put(np);
2197 		if (!fw_features)
2198 			return 0;
2199 		if (have_fw_feat(fw_features, "enabled",
2200 				 "inst-spec-barrier-ori31,31,0"))
2201 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2202 		if (have_fw_feat(fw_features, "enabled",
2203 				 "fw-bcctrl-serialized"))
2204 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2205 		if (have_fw_feat(fw_features, "enabled",
2206 				 "inst-l1d-flush-ori30,30,0"))
2207 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2208 		if (have_fw_feat(fw_features, "enabled",
2209 				 "inst-l1d-flush-trig2"))
2210 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2211 		if (have_fw_feat(fw_features, "enabled",
2212 				 "fw-l1d-thread-split"))
2213 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2214 		if (have_fw_feat(fw_features, "enabled",
2215 				 "fw-count-cache-disabled"))
2216 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2217 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2218 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2219 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2220 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2221 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2222 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2223 
2224 		if (have_fw_feat(fw_features, "enabled",
2225 				 "speculation-policy-favor-security"))
2226 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2227 		if (!have_fw_feat(fw_features, "disabled",
2228 				  "needs-l1d-flush-msr-pr-0-to-1"))
2229 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2230 		if (!have_fw_feat(fw_features, "disabled",
2231 				  "needs-spec-barrier-for-bound-checks"))
2232 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2233 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2234 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2235 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2236 
2237 		of_node_put(fw_features);
2238 	}
2239 
2240 	return 0;
2241 }
2242 #endif
2243 
2244 long kvm_arch_vm_ioctl(struct file *filp,
2245                        unsigned int ioctl, unsigned long arg)
2246 {
2247 	struct kvm *kvm __maybe_unused = filp->private_data;
2248 	void __user *argp = (void __user *)arg;
2249 	long r;
2250 
2251 	switch (ioctl) {
2252 	case KVM_PPC_GET_PVINFO: {
2253 		struct kvm_ppc_pvinfo pvinfo;
2254 		memset(&pvinfo, 0, sizeof(pvinfo));
2255 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2256 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2257 			r = -EFAULT;
2258 			goto out;
2259 		}
2260 
2261 		break;
2262 	}
2263 	case KVM_ENABLE_CAP:
2264 	{
2265 		struct kvm_enable_cap cap;
2266 		r = -EFAULT;
2267 		if (copy_from_user(&cap, argp, sizeof(cap)))
2268 			goto out;
2269 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2270 		break;
2271 	}
2272 #ifdef CONFIG_SPAPR_TCE_IOMMU
2273 	case KVM_CREATE_SPAPR_TCE_64: {
2274 		struct kvm_create_spapr_tce_64 create_tce_64;
2275 
2276 		r = -EFAULT;
2277 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2278 			goto out;
2279 		if (create_tce_64.flags) {
2280 			r = -EINVAL;
2281 			goto out;
2282 		}
2283 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2284 		goto out;
2285 	}
2286 	case KVM_CREATE_SPAPR_TCE: {
2287 		struct kvm_create_spapr_tce create_tce;
2288 		struct kvm_create_spapr_tce_64 create_tce_64;
2289 
2290 		r = -EFAULT;
2291 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2292 			goto out;
2293 
2294 		create_tce_64.liobn = create_tce.liobn;
2295 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2296 		create_tce_64.offset = 0;
2297 		create_tce_64.size = create_tce.window_size >>
2298 				IOMMU_PAGE_SHIFT_4K;
2299 		create_tce_64.flags = 0;
2300 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2301 		goto out;
2302 	}
2303 #endif
2304 #ifdef CONFIG_PPC_BOOK3S_64
2305 	case KVM_PPC_GET_SMMU_INFO: {
2306 		struct kvm_ppc_smmu_info info;
2307 		struct kvm *kvm = filp->private_data;
2308 
2309 		memset(&info, 0, sizeof(info));
2310 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2311 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2312 			r = -EFAULT;
2313 		break;
2314 	}
2315 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2316 		struct kvm *kvm = filp->private_data;
2317 
2318 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2319 		break;
2320 	}
2321 	case KVM_PPC_CONFIGURE_V3_MMU: {
2322 		struct kvm *kvm = filp->private_data;
2323 		struct kvm_ppc_mmuv3_cfg cfg;
2324 
2325 		r = -EINVAL;
2326 		if (!kvm->arch.kvm_ops->configure_mmu)
2327 			goto out;
2328 		r = -EFAULT;
2329 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2330 			goto out;
2331 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2332 		break;
2333 	}
2334 	case KVM_PPC_GET_RMMU_INFO: {
2335 		struct kvm *kvm = filp->private_data;
2336 		struct kvm_ppc_rmmu_info info;
2337 
2338 		r = -EINVAL;
2339 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2340 			goto out;
2341 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2342 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2343 			r = -EFAULT;
2344 		break;
2345 	}
2346 	case KVM_PPC_GET_CPU_CHAR: {
2347 		struct kvm_ppc_cpu_char cpuchar;
2348 
2349 		r = kvmppc_get_cpu_char(&cpuchar);
2350 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2351 			r = -EFAULT;
2352 		break;
2353 	}
2354 	default: {
2355 		struct kvm *kvm = filp->private_data;
2356 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2357 	}
2358 #else /* CONFIG_PPC_BOOK3S_64 */
2359 	default:
2360 		r = -ENOTTY;
2361 #endif
2362 	}
2363 out:
2364 	return r;
2365 }
2366 
2367 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2368 static unsigned long nr_lpids;
2369 
2370 long kvmppc_alloc_lpid(void)
2371 {
2372 	long lpid;
2373 
2374 	do {
2375 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2376 		if (lpid >= nr_lpids) {
2377 			pr_err("%s: No LPIDs free\n", __func__);
2378 			return -ENOMEM;
2379 		}
2380 	} while (test_and_set_bit(lpid, lpid_inuse));
2381 
2382 	return lpid;
2383 }
2384 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2385 
2386 void kvmppc_claim_lpid(long lpid)
2387 {
2388 	set_bit(lpid, lpid_inuse);
2389 }
2390 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2391 
2392 void kvmppc_free_lpid(long lpid)
2393 {
2394 	clear_bit(lpid, lpid_inuse);
2395 }
2396 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2397 
2398 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2399 {
2400 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2401 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2402 }
2403 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2404 
2405 int kvm_arch_init(void *opaque)
2406 {
2407 	return 0;
2408 }
2409 
2410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2411