1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/sched/signal.h> 27 #include <linux/fs.h> 28 #include <linux/slab.h> 29 #include <linux/file.h> 30 #include <linux/module.h> 31 #include <linux/irqbypass.h> 32 #include <linux/kvm_irqfd.h> 33 #include <asm/cputable.h> 34 #include <linux/uaccess.h> 35 #include <asm/kvm_ppc.h> 36 #include <asm/cputhreads.h> 37 #include <asm/irqflags.h> 38 #include <asm/iommu.h> 39 #include <asm/switch_to.h> 40 #include <asm/xive.h> 41 #ifdef CONFIG_PPC_PSERIES 42 #include <asm/hvcall.h> 43 #include <asm/plpar_wrappers.h> 44 #endif 45 46 #include "timing.h" 47 #include "irq.h" 48 #include "../mm/mmu_decl.h" 49 50 #define CREATE_TRACE_POINTS 51 #include "trace.h" 52 53 struct kvmppc_ops *kvmppc_hv_ops; 54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 55 struct kvmppc_ops *kvmppc_pr_ops; 56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 57 58 59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 60 { 61 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 62 } 63 64 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 65 { 66 return false; 67 } 68 69 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 70 { 71 return 1; 72 } 73 74 /* 75 * Common checks before entering the guest world. Call with interrupts 76 * disabled. 77 * 78 * returns: 79 * 80 * == 1 if we're ready to go into guest state 81 * <= 0 if we need to go back to the host with return value 82 */ 83 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 84 { 85 int r; 86 87 WARN_ON(irqs_disabled()); 88 hard_irq_disable(); 89 90 while (true) { 91 if (need_resched()) { 92 local_irq_enable(); 93 cond_resched(); 94 hard_irq_disable(); 95 continue; 96 } 97 98 if (signal_pending(current)) { 99 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 100 vcpu->run->exit_reason = KVM_EXIT_INTR; 101 r = -EINTR; 102 break; 103 } 104 105 vcpu->mode = IN_GUEST_MODE; 106 107 /* 108 * Reading vcpu->requests must happen after setting vcpu->mode, 109 * so we don't miss a request because the requester sees 110 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 111 * before next entering the guest (and thus doesn't IPI). 112 * This also orders the write to mode from any reads 113 * to the page tables done while the VCPU is running. 114 * Please see the comment in kvm_flush_remote_tlbs. 115 */ 116 smp_mb(); 117 118 if (kvm_request_pending(vcpu)) { 119 /* Make sure we process requests preemptable */ 120 local_irq_enable(); 121 trace_kvm_check_requests(vcpu); 122 r = kvmppc_core_check_requests(vcpu); 123 hard_irq_disable(); 124 if (r > 0) 125 continue; 126 break; 127 } 128 129 if (kvmppc_core_prepare_to_enter(vcpu)) { 130 /* interrupts got enabled in between, so we 131 are back at square 1 */ 132 continue; 133 } 134 135 guest_enter_irqoff(); 136 return 1; 137 } 138 139 /* return to host */ 140 local_irq_enable(); 141 return r; 142 } 143 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 144 145 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 146 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 147 { 148 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 149 int i; 150 151 shared->sprg0 = swab64(shared->sprg0); 152 shared->sprg1 = swab64(shared->sprg1); 153 shared->sprg2 = swab64(shared->sprg2); 154 shared->sprg3 = swab64(shared->sprg3); 155 shared->srr0 = swab64(shared->srr0); 156 shared->srr1 = swab64(shared->srr1); 157 shared->dar = swab64(shared->dar); 158 shared->msr = swab64(shared->msr); 159 shared->dsisr = swab32(shared->dsisr); 160 shared->int_pending = swab32(shared->int_pending); 161 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 162 shared->sr[i] = swab32(shared->sr[i]); 163 } 164 #endif 165 166 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 167 { 168 int nr = kvmppc_get_gpr(vcpu, 11); 169 int r; 170 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 171 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 172 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 173 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 174 unsigned long r2 = 0; 175 176 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 177 /* 32 bit mode */ 178 param1 &= 0xffffffff; 179 param2 &= 0xffffffff; 180 param3 &= 0xffffffff; 181 param4 &= 0xffffffff; 182 } 183 184 switch (nr) { 185 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 186 { 187 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 188 /* Book3S can be little endian, find it out here */ 189 int shared_big_endian = true; 190 if (vcpu->arch.intr_msr & MSR_LE) 191 shared_big_endian = false; 192 if (shared_big_endian != vcpu->arch.shared_big_endian) 193 kvmppc_swab_shared(vcpu); 194 vcpu->arch.shared_big_endian = shared_big_endian; 195 #endif 196 197 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 198 /* 199 * Older versions of the Linux magic page code had 200 * a bug where they would map their trampoline code 201 * NX. If that's the case, remove !PR NX capability. 202 */ 203 vcpu->arch.disable_kernel_nx = true; 204 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 205 } 206 207 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 208 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 209 210 #ifdef CONFIG_PPC_64K_PAGES 211 /* 212 * Make sure our 4k magic page is in the same window of a 64k 213 * page within the guest and within the host's page. 214 */ 215 if ((vcpu->arch.magic_page_pa & 0xf000) != 216 ((ulong)vcpu->arch.shared & 0xf000)) { 217 void *old_shared = vcpu->arch.shared; 218 ulong shared = (ulong)vcpu->arch.shared; 219 void *new_shared; 220 221 shared &= PAGE_MASK; 222 shared |= vcpu->arch.magic_page_pa & 0xf000; 223 new_shared = (void*)shared; 224 memcpy(new_shared, old_shared, 0x1000); 225 vcpu->arch.shared = new_shared; 226 } 227 #endif 228 229 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 230 231 r = EV_SUCCESS; 232 break; 233 } 234 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 235 r = EV_SUCCESS; 236 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 237 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 238 #endif 239 240 /* Second return value is in r4 */ 241 break; 242 case EV_HCALL_TOKEN(EV_IDLE): 243 r = EV_SUCCESS; 244 kvm_vcpu_block(vcpu); 245 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 246 break; 247 default: 248 r = EV_UNIMPLEMENTED; 249 break; 250 } 251 252 kvmppc_set_gpr(vcpu, 4, r2); 253 254 return r; 255 } 256 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 257 258 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 259 { 260 int r = false; 261 262 /* We have to know what CPU to virtualize */ 263 if (!vcpu->arch.pvr) 264 goto out; 265 266 /* PAPR only works with book3s_64 */ 267 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 268 goto out; 269 270 /* HV KVM can only do PAPR mode for now */ 271 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 272 goto out; 273 274 #ifdef CONFIG_KVM_BOOKE_HV 275 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 276 goto out; 277 #endif 278 279 r = true; 280 281 out: 282 vcpu->arch.sane = r; 283 return r ? 0 : -EINVAL; 284 } 285 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 286 287 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 288 { 289 enum emulation_result er; 290 int r; 291 292 er = kvmppc_emulate_loadstore(vcpu); 293 switch (er) { 294 case EMULATE_DONE: 295 /* Future optimization: only reload non-volatiles if they were 296 * actually modified. */ 297 r = RESUME_GUEST_NV; 298 break; 299 case EMULATE_AGAIN: 300 r = RESUME_GUEST; 301 break; 302 case EMULATE_DO_MMIO: 303 run->exit_reason = KVM_EXIT_MMIO; 304 /* We must reload nonvolatiles because "update" load/store 305 * instructions modify register state. */ 306 /* Future optimization: only reload non-volatiles if they were 307 * actually modified. */ 308 r = RESUME_HOST_NV; 309 break; 310 case EMULATE_FAIL: 311 { 312 u32 last_inst; 313 314 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 315 /* XXX Deliver Program interrupt to guest. */ 316 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 317 r = RESUME_HOST; 318 break; 319 } 320 default: 321 WARN_ON(1); 322 r = RESUME_GUEST; 323 } 324 325 return r; 326 } 327 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 328 329 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 330 bool data) 331 { 332 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 333 struct kvmppc_pte pte; 334 int r; 335 336 vcpu->stat.st++; 337 338 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 339 XLATE_WRITE, &pte); 340 if (r < 0) 341 return r; 342 343 *eaddr = pte.raddr; 344 345 if (!pte.may_write) 346 return -EPERM; 347 348 /* Magic page override */ 349 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 350 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 351 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 352 void *magic = vcpu->arch.shared; 353 magic += pte.eaddr & 0xfff; 354 memcpy(magic, ptr, size); 355 return EMULATE_DONE; 356 } 357 358 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 359 return EMULATE_DO_MMIO; 360 361 return EMULATE_DONE; 362 } 363 EXPORT_SYMBOL_GPL(kvmppc_st); 364 365 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 366 bool data) 367 { 368 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 369 struct kvmppc_pte pte; 370 int rc; 371 372 vcpu->stat.ld++; 373 374 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 375 XLATE_READ, &pte); 376 if (rc) 377 return rc; 378 379 *eaddr = pte.raddr; 380 381 if (!pte.may_read) 382 return -EPERM; 383 384 if (!data && !pte.may_execute) 385 return -ENOEXEC; 386 387 /* Magic page override */ 388 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 389 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 390 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 391 void *magic = vcpu->arch.shared; 392 magic += pte.eaddr & 0xfff; 393 memcpy(ptr, magic, size); 394 return EMULATE_DONE; 395 } 396 397 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 398 return EMULATE_DO_MMIO; 399 400 return EMULATE_DONE; 401 } 402 EXPORT_SYMBOL_GPL(kvmppc_ld); 403 404 int kvm_arch_hardware_enable(void) 405 { 406 return 0; 407 } 408 409 int kvm_arch_hardware_setup(void) 410 { 411 return 0; 412 } 413 414 void kvm_arch_check_processor_compat(void *rtn) 415 { 416 *(int *)rtn = kvmppc_core_check_processor_compat(); 417 } 418 419 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 420 { 421 struct kvmppc_ops *kvm_ops = NULL; 422 /* 423 * if we have both HV and PR enabled, default is HV 424 */ 425 if (type == 0) { 426 if (kvmppc_hv_ops) 427 kvm_ops = kvmppc_hv_ops; 428 else 429 kvm_ops = kvmppc_pr_ops; 430 if (!kvm_ops) 431 goto err_out; 432 } else if (type == KVM_VM_PPC_HV) { 433 if (!kvmppc_hv_ops) 434 goto err_out; 435 kvm_ops = kvmppc_hv_ops; 436 } else if (type == KVM_VM_PPC_PR) { 437 if (!kvmppc_pr_ops) 438 goto err_out; 439 kvm_ops = kvmppc_pr_ops; 440 } else 441 goto err_out; 442 443 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 444 return -ENOENT; 445 446 kvm->arch.kvm_ops = kvm_ops; 447 return kvmppc_core_init_vm(kvm); 448 err_out: 449 return -EINVAL; 450 } 451 452 bool kvm_arch_has_vcpu_debugfs(void) 453 { 454 return false; 455 } 456 457 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 458 { 459 return 0; 460 } 461 462 void kvm_arch_destroy_vm(struct kvm *kvm) 463 { 464 unsigned int i; 465 struct kvm_vcpu *vcpu; 466 467 #ifdef CONFIG_KVM_XICS 468 /* 469 * We call kick_all_cpus_sync() to ensure that all 470 * CPUs have executed any pending IPIs before we 471 * continue and free VCPUs structures below. 472 */ 473 if (is_kvmppc_hv_enabled(kvm)) 474 kick_all_cpus_sync(); 475 #endif 476 477 kvm_for_each_vcpu(i, vcpu, kvm) 478 kvm_arch_vcpu_free(vcpu); 479 480 mutex_lock(&kvm->lock); 481 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 482 kvm->vcpus[i] = NULL; 483 484 atomic_set(&kvm->online_vcpus, 0); 485 486 kvmppc_core_destroy_vm(kvm); 487 488 mutex_unlock(&kvm->lock); 489 490 /* drop the module reference */ 491 module_put(kvm->arch.kvm_ops->owner); 492 } 493 494 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 495 { 496 int r; 497 /* Assume we're using HV mode when the HV module is loaded */ 498 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 499 500 if (kvm) { 501 /* 502 * Hooray - we know which VM type we're running on. Depend on 503 * that rather than the guess above. 504 */ 505 hv_enabled = is_kvmppc_hv_enabled(kvm); 506 } 507 508 switch (ext) { 509 #ifdef CONFIG_BOOKE 510 case KVM_CAP_PPC_BOOKE_SREGS: 511 case KVM_CAP_PPC_BOOKE_WATCHDOG: 512 case KVM_CAP_PPC_EPR: 513 #else 514 case KVM_CAP_PPC_SEGSTATE: 515 case KVM_CAP_PPC_HIOR: 516 case KVM_CAP_PPC_PAPR: 517 #endif 518 case KVM_CAP_PPC_UNSET_IRQ: 519 case KVM_CAP_PPC_IRQ_LEVEL: 520 case KVM_CAP_ENABLE_CAP: 521 case KVM_CAP_ENABLE_CAP_VM: 522 case KVM_CAP_ONE_REG: 523 case KVM_CAP_IOEVENTFD: 524 case KVM_CAP_DEVICE_CTRL: 525 case KVM_CAP_IMMEDIATE_EXIT: 526 r = 1; 527 break; 528 case KVM_CAP_PPC_PAIRED_SINGLES: 529 case KVM_CAP_PPC_OSI: 530 case KVM_CAP_PPC_GET_PVINFO: 531 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 532 case KVM_CAP_SW_TLB: 533 #endif 534 /* We support this only for PR */ 535 r = !hv_enabled; 536 break; 537 #ifdef CONFIG_KVM_MPIC 538 case KVM_CAP_IRQ_MPIC: 539 r = 1; 540 break; 541 #endif 542 543 #ifdef CONFIG_PPC_BOOK3S_64 544 case KVM_CAP_SPAPR_TCE: 545 case KVM_CAP_SPAPR_TCE_64: 546 /* fallthrough */ 547 case KVM_CAP_SPAPR_TCE_VFIO: 548 case KVM_CAP_PPC_RTAS: 549 case KVM_CAP_PPC_FIXUP_HCALL: 550 case KVM_CAP_PPC_ENABLE_HCALL: 551 #ifdef CONFIG_KVM_XICS 552 case KVM_CAP_IRQ_XICS: 553 #endif 554 case KVM_CAP_PPC_GET_CPU_CHAR: 555 r = 1; 556 break; 557 558 case KVM_CAP_PPC_ALLOC_HTAB: 559 r = hv_enabled; 560 break; 561 #endif /* CONFIG_PPC_BOOK3S_64 */ 562 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 563 case KVM_CAP_PPC_SMT: 564 r = 0; 565 if (kvm) { 566 if (kvm->arch.emul_smt_mode > 1) 567 r = kvm->arch.emul_smt_mode; 568 else 569 r = kvm->arch.smt_mode; 570 } else if (hv_enabled) { 571 if (cpu_has_feature(CPU_FTR_ARCH_300)) 572 r = 1; 573 else 574 r = threads_per_subcore; 575 } 576 break; 577 case KVM_CAP_PPC_SMT_POSSIBLE: 578 r = 1; 579 if (hv_enabled) { 580 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 581 r = ((threads_per_subcore << 1) - 1); 582 else 583 /* P9 can emulate dbells, so allow any mode */ 584 r = 8 | 4 | 2 | 1; 585 } 586 break; 587 case KVM_CAP_PPC_RMA: 588 r = 0; 589 break; 590 case KVM_CAP_PPC_HWRNG: 591 r = kvmppc_hwrng_present(); 592 break; 593 case KVM_CAP_PPC_MMU_RADIX: 594 r = !!(hv_enabled && radix_enabled()); 595 break; 596 case KVM_CAP_PPC_MMU_HASH_V3: 597 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300)); 598 break; 599 #endif 600 case KVM_CAP_SYNC_MMU: 601 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 602 r = hv_enabled; 603 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 604 r = 1; 605 #else 606 r = 0; 607 #endif 608 break; 609 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 610 case KVM_CAP_PPC_HTAB_FD: 611 r = hv_enabled; 612 break; 613 #endif 614 case KVM_CAP_NR_VCPUS: 615 /* 616 * Recommending a number of CPUs is somewhat arbitrary; we 617 * return the number of present CPUs for -HV (since a host 618 * will have secondary threads "offline"), and for other KVM 619 * implementations just count online CPUs. 620 */ 621 if (hv_enabled) 622 r = num_present_cpus(); 623 else 624 r = num_online_cpus(); 625 break; 626 case KVM_CAP_NR_MEMSLOTS: 627 r = KVM_USER_MEM_SLOTS; 628 break; 629 case KVM_CAP_MAX_VCPUS: 630 r = KVM_MAX_VCPUS; 631 break; 632 #ifdef CONFIG_PPC_BOOK3S_64 633 case KVM_CAP_PPC_GET_SMMU_INFO: 634 r = 1; 635 break; 636 case KVM_CAP_SPAPR_MULTITCE: 637 r = 1; 638 break; 639 case KVM_CAP_SPAPR_RESIZE_HPT: 640 r = !!hv_enabled; 641 break; 642 #endif 643 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 644 case KVM_CAP_PPC_FWNMI: 645 r = hv_enabled; 646 break; 647 #endif 648 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 649 case KVM_CAP_PPC_HTM: 650 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 651 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 652 break; 653 #endif 654 default: 655 r = 0; 656 break; 657 } 658 return r; 659 660 } 661 662 long kvm_arch_dev_ioctl(struct file *filp, 663 unsigned int ioctl, unsigned long arg) 664 { 665 return -EINVAL; 666 } 667 668 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 669 struct kvm_memory_slot *dont) 670 { 671 kvmppc_core_free_memslot(kvm, free, dont); 672 } 673 674 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 675 unsigned long npages) 676 { 677 return kvmppc_core_create_memslot(kvm, slot, npages); 678 } 679 680 int kvm_arch_prepare_memory_region(struct kvm *kvm, 681 struct kvm_memory_slot *memslot, 682 const struct kvm_userspace_memory_region *mem, 683 enum kvm_mr_change change) 684 { 685 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 686 } 687 688 void kvm_arch_commit_memory_region(struct kvm *kvm, 689 const struct kvm_userspace_memory_region *mem, 690 const struct kvm_memory_slot *old, 691 const struct kvm_memory_slot *new, 692 enum kvm_mr_change change) 693 { 694 kvmppc_core_commit_memory_region(kvm, mem, old, new); 695 } 696 697 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 698 struct kvm_memory_slot *slot) 699 { 700 kvmppc_core_flush_memslot(kvm, slot); 701 } 702 703 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 704 { 705 struct kvm_vcpu *vcpu; 706 vcpu = kvmppc_core_vcpu_create(kvm, id); 707 if (!IS_ERR(vcpu)) { 708 vcpu->arch.wqp = &vcpu->wq; 709 kvmppc_create_vcpu_debugfs(vcpu, id); 710 } 711 return vcpu; 712 } 713 714 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 715 { 716 } 717 718 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 719 { 720 /* Make sure we're not using the vcpu anymore */ 721 hrtimer_cancel(&vcpu->arch.dec_timer); 722 723 kvmppc_remove_vcpu_debugfs(vcpu); 724 725 switch (vcpu->arch.irq_type) { 726 case KVMPPC_IRQ_MPIC: 727 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 728 break; 729 case KVMPPC_IRQ_XICS: 730 if (xive_enabled()) 731 kvmppc_xive_cleanup_vcpu(vcpu); 732 else 733 kvmppc_xics_free_icp(vcpu); 734 break; 735 } 736 737 kvmppc_core_vcpu_free(vcpu); 738 } 739 740 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 741 { 742 kvm_arch_vcpu_free(vcpu); 743 } 744 745 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 746 { 747 return kvmppc_core_pending_dec(vcpu); 748 } 749 750 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 751 { 752 struct kvm_vcpu *vcpu; 753 754 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 755 kvmppc_decrementer_func(vcpu); 756 757 return HRTIMER_NORESTART; 758 } 759 760 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 761 { 762 int ret; 763 764 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 765 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 766 vcpu->arch.dec_expires = get_tb(); 767 768 #ifdef CONFIG_KVM_EXIT_TIMING 769 mutex_init(&vcpu->arch.exit_timing_lock); 770 #endif 771 ret = kvmppc_subarch_vcpu_init(vcpu); 772 return ret; 773 } 774 775 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 776 { 777 kvmppc_mmu_destroy(vcpu); 778 kvmppc_subarch_vcpu_uninit(vcpu); 779 } 780 781 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 782 { 783 #ifdef CONFIG_BOOKE 784 /* 785 * vrsave (formerly usprg0) isn't used by Linux, but may 786 * be used by the guest. 787 * 788 * On non-booke this is associated with Altivec and 789 * is handled by code in book3s.c. 790 */ 791 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 792 #endif 793 kvmppc_core_vcpu_load(vcpu, cpu); 794 } 795 796 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 797 { 798 kvmppc_core_vcpu_put(vcpu); 799 #ifdef CONFIG_BOOKE 800 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 801 #endif 802 } 803 804 /* 805 * irq_bypass_add_producer and irq_bypass_del_producer are only 806 * useful if the architecture supports PCI passthrough. 807 * irq_bypass_stop and irq_bypass_start are not needed and so 808 * kvm_ops are not defined for them. 809 */ 810 bool kvm_arch_has_irq_bypass(void) 811 { 812 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 813 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 814 } 815 816 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 817 struct irq_bypass_producer *prod) 818 { 819 struct kvm_kernel_irqfd *irqfd = 820 container_of(cons, struct kvm_kernel_irqfd, consumer); 821 struct kvm *kvm = irqfd->kvm; 822 823 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 824 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 825 826 return 0; 827 } 828 829 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 830 struct irq_bypass_producer *prod) 831 { 832 struct kvm_kernel_irqfd *irqfd = 833 container_of(cons, struct kvm_kernel_irqfd, consumer); 834 struct kvm *kvm = irqfd->kvm; 835 836 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 837 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 838 } 839 840 #ifdef CONFIG_VSX 841 static inline int kvmppc_get_vsr_dword_offset(int index) 842 { 843 int offset; 844 845 if ((index != 0) && (index != 1)) 846 return -1; 847 848 #ifdef __BIG_ENDIAN 849 offset = index; 850 #else 851 offset = 1 - index; 852 #endif 853 854 return offset; 855 } 856 857 static inline int kvmppc_get_vsr_word_offset(int index) 858 { 859 int offset; 860 861 if ((index > 3) || (index < 0)) 862 return -1; 863 864 #ifdef __BIG_ENDIAN 865 offset = index; 866 #else 867 offset = 3 - index; 868 #endif 869 return offset; 870 } 871 872 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 873 u64 gpr) 874 { 875 union kvmppc_one_reg val; 876 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 877 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 878 879 if (offset == -1) 880 return; 881 882 if (index >= 32) { 883 val.vval = VCPU_VSX_VR(vcpu, index - 32); 884 val.vsxval[offset] = gpr; 885 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 886 } else { 887 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 888 } 889 } 890 891 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 892 u64 gpr) 893 { 894 union kvmppc_one_reg val; 895 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 896 897 if (index >= 32) { 898 val.vval = VCPU_VSX_VR(vcpu, index - 32); 899 val.vsxval[0] = gpr; 900 val.vsxval[1] = gpr; 901 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 902 } else { 903 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 904 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 905 } 906 } 907 908 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 909 u32 gpr) 910 { 911 union kvmppc_one_reg val; 912 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 913 914 if (index >= 32) { 915 val.vsx32val[0] = gpr; 916 val.vsx32val[1] = gpr; 917 val.vsx32val[2] = gpr; 918 val.vsx32val[3] = gpr; 919 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 920 } else { 921 val.vsx32val[0] = gpr; 922 val.vsx32val[1] = gpr; 923 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 924 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 925 } 926 } 927 928 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 929 u32 gpr32) 930 { 931 union kvmppc_one_reg val; 932 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 933 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 934 int dword_offset, word_offset; 935 936 if (offset == -1) 937 return; 938 939 if (index >= 32) { 940 val.vval = VCPU_VSX_VR(vcpu, index - 32); 941 val.vsx32val[offset] = gpr32; 942 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 943 } else { 944 dword_offset = offset / 2; 945 word_offset = offset % 2; 946 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 947 val.vsx32val[word_offset] = gpr32; 948 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 949 } 950 } 951 #endif /* CONFIG_VSX */ 952 953 #ifdef CONFIG_ALTIVEC 954 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 955 int index, int element_size) 956 { 957 int offset; 958 int elts = sizeof(vector128)/element_size; 959 960 if ((index < 0) || (index >= elts)) 961 return -1; 962 963 if (kvmppc_need_byteswap(vcpu)) 964 offset = elts - index - 1; 965 else 966 offset = index; 967 968 return offset; 969 } 970 971 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 972 int index) 973 { 974 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 975 } 976 977 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 978 int index) 979 { 980 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 981 } 982 983 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 984 int index) 985 { 986 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 987 } 988 989 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 990 int index) 991 { 992 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 993 } 994 995 996 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 997 u64 gpr) 998 { 999 union kvmppc_one_reg val; 1000 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1001 vcpu->arch.mmio_vmx_offset); 1002 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1003 1004 if (offset == -1) 1005 return; 1006 1007 val.vval = VCPU_VSX_VR(vcpu, index); 1008 val.vsxval[offset] = gpr; 1009 VCPU_VSX_VR(vcpu, index) = val.vval; 1010 } 1011 1012 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1013 u32 gpr32) 1014 { 1015 union kvmppc_one_reg val; 1016 int offset = kvmppc_get_vmx_word_offset(vcpu, 1017 vcpu->arch.mmio_vmx_offset); 1018 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1019 1020 if (offset == -1) 1021 return; 1022 1023 val.vval = VCPU_VSX_VR(vcpu, index); 1024 val.vsx32val[offset] = gpr32; 1025 VCPU_VSX_VR(vcpu, index) = val.vval; 1026 } 1027 1028 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1029 u16 gpr16) 1030 { 1031 union kvmppc_one_reg val; 1032 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1033 vcpu->arch.mmio_vmx_offset); 1034 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1035 1036 if (offset == -1) 1037 return; 1038 1039 val.vval = VCPU_VSX_VR(vcpu, index); 1040 val.vsx16val[offset] = gpr16; 1041 VCPU_VSX_VR(vcpu, index) = val.vval; 1042 } 1043 1044 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1045 u8 gpr8) 1046 { 1047 union kvmppc_one_reg val; 1048 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1049 vcpu->arch.mmio_vmx_offset); 1050 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1051 1052 if (offset == -1) 1053 return; 1054 1055 val.vval = VCPU_VSX_VR(vcpu, index); 1056 val.vsx8val[offset] = gpr8; 1057 VCPU_VSX_VR(vcpu, index) = val.vval; 1058 } 1059 #endif /* CONFIG_ALTIVEC */ 1060 1061 #ifdef CONFIG_PPC_FPU 1062 static inline u64 sp_to_dp(u32 fprs) 1063 { 1064 u64 fprd; 1065 1066 preempt_disable(); 1067 enable_kernel_fp(); 1068 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 1069 : "fr0"); 1070 preempt_enable(); 1071 return fprd; 1072 } 1073 1074 static inline u32 dp_to_sp(u64 fprd) 1075 { 1076 u32 fprs; 1077 1078 preempt_disable(); 1079 enable_kernel_fp(); 1080 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 1081 : "fr0"); 1082 preempt_enable(); 1083 return fprs; 1084 } 1085 1086 #else 1087 #define sp_to_dp(x) (x) 1088 #define dp_to_sp(x) (x) 1089 #endif /* CONFIG_PPC_FPU */ 1090 1091 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 1092 struct kvm_run *run) 1093 { 1094 u64 uninitialized_var(gpr); 1095 1096 if (run->mmio.len > sizeof(gpr)) { 1097 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1098 return; 1099 } 1100 1101 if (!vcpu->arch.mmio_host_swabbed) { 1102 switch (run->mmio.len) { 1103 case 8: gpr = *(u64 *)run->mmio.data; break; 1104 case 4: gpr = *(u32 *)run->mmio.data; break; 1105 case 2: gpr = *(u16 *)run->mmio.data; break; 1106 case 1: gpr = *(u8 *)run->mmio.data; break; 1107 } 1108 } else { 1109 switch (run->mmio.len) { 1110 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1111 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1112 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1113 case 1: gpr = *(u8 *)run->mmio.data; break; 1114 } 1115 } 1116 1117 /* conversion between single and double precision */ 1118 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1119 gpr = sp_to_dp(gpr); 1120 1121 if (vcpu->arch.mmio_sign_extend) { 1122 switch (run->mmio.len) { 1123 #ifdef CONFIG_PPC64 1124 case 4: 1125 gpr = (s64)(s32)gpr; 1126 break; 1127 #endif 1128 case 2: 1129 gpr = (s64)(s16)gpr; 1130 break; 1131 case 1: 1132 gpr = (s64)(s8)gpr; 1133 break; 1134 } 1135 } 1136 1137 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1138 case KVM_MMIO_REG_GPR: 1139 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1140 break; 1141 case KVM_MMIO_REG_FPR: 1142 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1143 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1144 1145 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1146 break; 1147 #ifdef CONFIG_PPC_BOOK3S 1148 case KVM_MMIO_REG_QPR: 1149 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1150 break; 1151 case KVM_MMIO_REG_FQPR: 1152 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1153 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1154 break; 1155 #endif 1156 #ifdef CONFIG_VSX 1157 case KVM_MMIO_REG_VSX: 1158 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1159 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1160 1161 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1162 kvmppc_set_vsr_dword(vcpu, gpr); 1163 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1164 kvmppc_set_vsr_word(vcpu, gpr); 1165 else if (vcpu->arch.mmio_copy_type == 1166 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1167 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1168 else if (vcpu->arch.mmio_copy_type == 1169 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1170 kvmppc_set_vsr_word_dump(vcpu, gpr); 1171 break; 1172 #endif 1173 #ifdef CONFIG_ALTIVEC 1174 case KVM_MMIO_REG_VMX: 1175 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1176 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1177 1178 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1179 kvmppc_set_vmx_dword(vcpu, gpr); 1180 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1181 kvmppc_set_vmx_word(vcpu, gpr); 1182 else if (vcpu->arch.mmio_copy_type == 1183 KVMPPC_VMX_COPY_HWORD) 1184 kvmppc_set_vmx_hword(vcpu, gpr); 1185 else if (vcpu->arch.mmio_copy_type == 1186 KVMPPC_VMX_COPY_BYTE) 1187 kvmppc_set_vmx_byte(vcpu, gpr); 1188 break; 1189 #endif 1190 default: 1191 BUG(); 1192 } 1193 } 1194 1195 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1196 unsigned int rt, unsigned int bytes, 1197 int is_default_endian, int sign_extend) 1198 { 1199 int idx, ret; 1200 bool host_swabbed; 1201 1202 /* Pity C doesn't have a logical XOR operator */ 1203 if (kvmppc_need_byteswap(vcpu)) { 1204 host_swabbed = is_default_endian; 1205 } else { 1206 host_swabbed = !is_default_endian; 1207 } 1208 1209 if (bytes > sizeof(run->mmio.data)) { 1210 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1211 run->mmio.len); 1212 } 1213 1214 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1215 run->mmio.len = bytes; 1216 run->mmio.is_write = 0; 1217 1218 vcpu->arch.io_gpr = rt; 1219 vcpu->arch.mmio_host_swabbed = host_swabbed; 1220 vcpu->mmio_needed = 1; 1221 vcpu->mmio_is_write = 0; 1222 vcpu->arch.mmio_sign_extend = sign_extend; 1223 1224 idx = srcu_read_lock(&vcpu->kvm->srcu); 1225 1226 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1227 bytes, &run->mmio.data); 1228 1229 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1230 1231 if (!ret) { 1232 kvmppc_complete_mmio_load(vcpu, run); 1233 vcpu->mmio_needed = 0; 1234 return EMULATE_DONE; 1235 } 1236 1237 return EMULATE_DO_MMIO; 1238 } 1239 1240 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1241 unsigned int rt, unsigned int bytes, 1242 int is_default_endian) 1243 { 1244 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 1245 } 1246 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1247 1248 /* Same as above, but sign extends */ 1249 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 1250 unsigned int rt, unsigned int bytes, 1251 int is_default_endian) 1252 { 1253 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 1254 } 1255 1256 #ifdef CONFIG_VSX 1257 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1258 unsigned int rt, unsigned int bytes, 1259 int is_default_endian, int mmio_sign_extend) 1260 { 1261 enum emulation_result emulated = EMULATE_DONE; 1262 1263 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1264 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1265 return EMULATE_FAIL; 1266 1267 while (vcpu->arch.mmio_vsx_copy_nums) { 1268 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1269 is_default_endian, mmio_sign_extend); 1270 1271 if (emulated != EMULATE_DONE) 1272 break; 1273 1274 vcpu->arch.paddr_accessed += run->mmio.len; 1275 1276 vcpu->arch.mmio_vsx_copy_nums--; 1277 vcpu->arch.mmio_vsx_offset++; 1278 } 1279 return emulated; 1280 } 1281 #endif /* CONFIG_VSX */ 1282 1283 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1284 u64 val, unsigned int bytes, int is_default_endian) 1285 { 1286 void *data = run->mmio.data; 1287 int idx, ret; 1288 bool host_swabbed; 1289 1290 /* Pity C doesn't have a logical XOR operator */ 1291 if (kvmppc_need_byteswap(vcpu)) { 1292 host_swabbed = is_default_endian; 1293 } else { 1294 host_swabbed = !is_default_endian; 1295 } 1296 1297 if (bytes > sizeof(run->mmio.data)) { 1298 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1299 run->mmio.len); 1300 } 1301 1302 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1303 run->mmio.len = bytes; 1304 run->mmio.is_write = 1; 1305 vcpu->mmio_needed = 1; 1306 vcpu->mmio_is_write = 1; 1307 1308 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1309 val = dp_to_sp(val); 1310 1311 /* Store the value at the lowest bytes in 'data'. */ 1312 if (!host_swabbed) { 1313 switch (bytes) { 1314 case 8: *(u64 *)data = val; break; 1315 case 4: *(u32 *)data = val; break; 1316 case 2: *(u16 *)data = val; break; 1317 case 1: *(u8 *)data = val; break; 1318 } 1319 } else { 1320 switch (bytes) { 1321 case 8: *(u64 *)data = swab64(val); break; 1322 case 4: *(u32 *)data = swab32(val); break; 1323 case 2: *(u16 *)data = swab16(val); break; 1324 case 1: *(u8 *)data = val; break; 1325 } 1326 } 1327 1328 idx = srcu_read_lock(&vcpu->kvm->srcu); 1329 1330 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1331 bytes, &run->mmio.data); 1332 1333 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1334 1335 if (!ret) { 1336 vcpu->mmio_needed = 0; 1337 return EMULATE_DONE; 1338 } 1339 1340 return EMULATE_DO_MMIO; 1341 } 1342 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1343 1344 #ifdef CONFIG_VSX 1345 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1346 { 1347 u32 dword_offset, word_offset; 1348 union kvmppc_one_reg reg; 1349 int vsx_offset = 0; 1350 int copy_type = vcpu->arch.mmio_copy_type; 1351 int result = 0; 1352 1353 switch (copy_type) { 1354 case KVMPPC_VSX_COPY_DWORD: 1355 vsx_offset = 1356 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1357 1358 if (vsx_offset == -1) { 1359 result = -1; 1360 break; 1361 } 1362 1363 if (rs < 32) { 1364 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1365 } else { 1366 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1367 *val = reg.vsxval[vsx_offset]; 1368 } 1369 break; 1370 1371 case KVMPPC_VSX_COPY_WORD: 1372 vsx_offset = 1373 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1374 1375 if (vsx_offset == -1) { 1376 result = -1; 1377 break; 1378 } 1379 1380 if (rs < 32) { 1381 dword_offset = vsx_offset / 2; 1382 word_offset = vsx_offset % 2; 1383 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1384 *val = reg.vsx32val[word_offset]; 1385 } else { 1386 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1387 *val = reg.vsx32val[vsx_offset]; 1388 } 1389 break; 1390 1391 default: 1392 result = -1; 1393 break; 1394 } 1395 1396 return result; 1397 } 1398 1399 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1400 int rs, unsigned int bytes, int is_default_endian) 1401 { 1402 u64 val; 1403 enum emulation_result emulated = EMULATE_DONE; 1404 1405 vcpu->arch.io_gpr = rs; 1406 1407 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1408 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1409 return EMULATE_FAIL; 1410 1411 while (vcpu->arch.mmio_vsx_copy_nums) { 1412 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1413 return EMULATE_FAIL; 1414 1415 emulated = kvmppc_handle_store(run, vcpu, 1416 val, bytes, is_default_endian); 1417 1418 if (emulated != EMULATE_DONE) 1419 break; 1420 1421 vcpu->arch.paddr_accessed += run->mmio.len; 1422 1423 vcpu->arch.mmio_vsx_copy_nums--; 1424 vcpu->arch.mmio_vsx_offset++; 1425 } 1426 1427 return emulated; 1428 } 1429 1430 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu, 1431 struct kvm_run *run) 1432 { 1433 enum emulation_result emulated = EMULATE_FAIL; 1434 int r; 1435 1436 vcpu->arch.paddr_accessed += run->mmio.len; 1437 1438 if (!vcpu->mmio_is_write) { 1439 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr, 1440 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1441 } else { 1442 emulated = kvmppc_handle_vsx_store(run, vcpu, 1443 vcpu->arch.io_gpr, run->mmio.len, 1); 1444 } 1445 1446 switch (emulated) { 1447 case EMULATE_DO_MMIO: 1448 run->exit_reason = KVM_EXIT_MMIO; 1449 r = RESUME_HOST; 1450 break; 1451 case EMULATE_FAIL: 1452 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1453 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1454 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1455 r = RESUME_HOST; 1456 break; 1457 default: 1458 r = RESUME_GUEST; 1459 break; 1460 } 1461 return r; 1462 } 1463 #endif /* CONFIG_VSX */ 1464 1465 #ifdef CONFIG_ALTIVEC 1466 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1467 unsigned int rt, unsigned int bytes, int is_default_endian) 1468 { 1469 enum emulation_result emulated = EMULATE_DONE; 1470 1471 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1472 return EMULATE_FAIL; 1473 1474 while (vcpu->arch.mmio_vmx_copy_nums) { 1475 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1476 is_default_endian, 0); 1477 1478 if (emulated != EMULATE_DONE) 1479 break; 1480 1481 vcpu->arch.paddr_accessed += run->mmio.len; 1482 vcpu->arch.mmio_vmx_copy_nums--; 1483 vcpu->arch.mmio_vmx_offset++; 1484 } 1485 1486 return emulated; 1487 } 1488 1489 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1490 { 1491 union kvmppc_one_reg reg; 1492 int vmx_offset = 0; 1493 int result = 0; 1494 1495 vmx_offset = 1496 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1497 1498 if (vmx_offset == -1) 1499 return -1; 1500 1501 reg.vval = VCPU_VSX_VR(vcpu, index); 1502 *val = reg.vsxval[vmx_offset]; 1503 1504 return result; 1505 } 1506 1507 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1508 { 1509 union kvmppc_one_reg reg; 1510 int vmx_offset = 0; 1511 int result = 0; 1512 1513 vmx_offset = 1514 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1515 1516 if (vmx_offset == -1) 1517 return -1; 1518 1519 reg.vval = VCPU_VSX_VR(vcpu, index); 1520 *val = reg.vsx32val[vmx_offset]; 1521 1522 return result; 1523 } 1524 1525 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1526 { 1527 union kvmppc_one_reg reg; 1528 int vmx_offset = 0; 1529 int result = 0; 1530 1531 vmx_offset = 1532 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1533 1534 if (vmx_offset == -1) 1535 return -1; 1536 1537 reg.vval = VCPU_VSX_VR(vcpu, index); 1538 *val = reg.vsx16val[vmx_offset]; 1539 1540 return result; 1541 } 1542 1543 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1544 { 1545 union kvmppc_one_reg reg; 1546 int vmx_offset = 0; 1547 int result = 0; 1548 1549 vmx_offset = 1550 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1551 1552 if (vmx_offset == -1) 1553 return -1; 1554 1555 reg.vval = VCPU_VSX_VR(vcpu, index); 1556 *val = reg.vsx8val[vmx_offset]; 1557 1558 return result; 1559 } 1560 1561 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1562 unsigned int rs, unsigned int bytes, int is_default_endian) 1563 { 1564 u64 val = 0; 1565 unsigned int index = rs & KVM_MMIO_REG_MASK; 1566 enum emulation_result emulated = EMULATE_DONE; 1567 1568 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1569 return EMULATE_FAIL; 1570 1571 vcpu->arch.io_gpr = rs; 1572 1573 while (vcpu->arch.mmio_vmx_copy_nums) { 1574 switch (vcpu->arch.mmio_copy_type) { 1575 case KVMPPC_VMX_COPY_DWORD: 1576 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1577 return EMULATE_FAIL; 1578 1579 break; 1580 case KVMPPC_VMX_COPY_WORD: 1581 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1582 return EMULATE_FAIL; 1583 break; 1584 case KVMPPC_VMX_COPY_HWORD: 1585 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1586 return EMULATE_FAIL; 1587 break; 1588 case KVMPPC_VMX_COPY_BYTE: 1589 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1590 return EMULATE_FAIL; 1591 break; 1592 default: 1593 return EMULATE_FAIL; 1594 } 1595 1596 emulated = kvmppc_handle_store(run, vcpu, val, bytes, 1597 is_default_endian); 1598 if (emulated != EMULATE_DONE) 1599 break; 1600 1601 vcpu->arch.paddr_accessed += run->mmio.len; 1602 vcpu->arch.mmio_vmx_copy_nums--; 1603 vcpu->arch.mmio_vmx_offset++; 1604 } 1605 1606 return emulated; 1607 } 1608 1609 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu, 1610 struct kvm_run *run) 1611 { 1612 enum emulation_result emulated = EMULATE_FAIL; 1613 int r; 1614 1615 vcpu->arch.paddr_accessed += run->mmio.len; 1616 1617 if (!vcpu->mmio_is_write) { 1618 emulated = kvmppc_handle_vmx_load(run, vcpu, 1619 vcpu->arch.io_gpr, run->mmio.len, 1); 1620 } else { 1621 emulated = kvmppc_handle_vmx_store(run, vcpu, 1622 vcpu->arch.io_gpr, run->mmio.len, 1); 1623 } 1624 1625 switch (emulated) { 1626 case EMULATE_DO_MMIO: 1627 run->exit_reason = KVM_EXIT_MMIO; 1628 r = RESUME_HOST; 1629 break; 1630 case EMULATE_FAIL: 1631 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1632 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1633 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1634 r = RESUME_HOST; 1635 break; 1636 default: 1637 r = RESUME_GUEST; 1638 break; 1639 } 1640 return r; 1641 } 1642 #endif /* CONFIG_ALTIVEC */ 1643 1644 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1645 { 1646 int r = 0; 1647 union kvmppc_one_reg val; 1648 int size; 1649 1650 size = one_reg_size(reg->id); 1651 if (size > sizeof(val)) 1652 return -EINVAL; 1653 1654 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1655 if (r == -EINVAL) { 1656 r = 0; 1657 switch (reg->id) { 1658 #ifdef CONFIG_ALTIVEC 1659 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1660 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1661 r = -ENXIO; 1662 break; 1663 } 1664 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1665 break; 1666 case KVM_REG_PPC_VSCR: 1667 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1668 r = -ENXIO; 1669 break; 1670 } 1671 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1672 break; 1673 case KVM_REG_PPC_VRSAVE: 1674 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1675 break; 1676 #endif /* CONFIG_ALTIVEC */ 1677 default: 1678 r = -EINVAL; 1679 break; 1680 } 1681 } 1682 1683 if (r) 1684 return r; 1685 1686 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1687 r = -EFAULT; 1688 1689 return r; 1690 } 1691 1692 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1693 { 1694 int r; 1695 union kvmppc_one_reg val; 1696 int size; 1697 1698 size = one_reg_size(reg->id); 1699 if (size > sizeof(val)) 1700 return -EINVAL; 1701 1702 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1703 return -EFAULT; 1704 1705 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1706 if (r == -EINVAL) { 1707 r = 0; 1708 switch (reg->id) { 1709 #ifdef CONFIG_ALTIVEC 1710 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1711 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1712 r = -ENXIO; 1713 break; 1714 } 1715 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1716 break; 1717 case KVM_REG_PPC_VSCR: 1718 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1719 r = -ENXIO; 1720 break; 1721 } 1722 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1723 break; 1724 case KVM_REG_PPC_VRSAVE: 1725 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1726 r = -ENXIO; 1727 break; 1728 } 1729 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1730 break; 1731 #endif /* CONFIG_ALTIVEC */ 1732 default: 1733 r = -EINVAL; 1734 break; 1735 } 1736 } 1737 1738 return r; 1739 } 1740 1741 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1742 { 1743 int r; 1744 1745 vcpu_load(vcpu); 1746 1747 if (vcpu->mmio_needed) { 1748 vcpu->mmio_needed = 0; 1749 if (!vcpu->mmio_is_write) 1750 kvmppc_complete_mmio_load(vcpu, run); 1751 #ifdef CONFIG_VSX 1752 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1753 vcpu->arch.mmio_vsx_copy_nums--; 1754 vcpu->arch.mmio_vsx_offset++; 1755 } 1756 1757 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1758 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run); 1759 if (r == RESUME_HOST) { 1760 vcpu->mmio_needed = 1; 1761 goto out; 1762 } 1763 } 1764 #endif 1765 #ifdef CONFIG_ALTIVEC 1766 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1767 vcpu->arch.mmio_vmx_copy_nums--; 1768 vcpu->arch.mmio_vmx_offset++; 1769 } 1770 1771 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1772 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run); 1773 if (r == RESUME_HOST) { 1774 vcpu->mmio_needed = 1; 1775 goto out; 1776 } 1777 } 1778 #endif 1779 } else if (vcpu->arch.osi_needed) { 1780 u64 *gprs = run->osi.gprs; 1781 int i; 1782 1783 for (i = 0; i < 32; i++) 1784 kvmppc_set_gpr(vcpu, i, gprs[i]); 1785 vcpu->arch.osi_needed = 0; 1786 } else if (vcpu->arch.hcall_needed) { 1787 int i; 1788 1789 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1790 for (i = 0; i < 9; ++i) 1791 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1792 vcpu->arch.hcall_needed = 0; 1793 #ifdef CONFIG_BOOKE 1794 } else if (vcpu->arch.epr_needed) { 1795 kvmppc_set_epr(vcpu, run->epr.epr); 1796 vcpu->arch.epr_needed = 0; 1797 #endif 1798 } 1799 1800 kvm_sigset_activate(vcpu); 1801 1802 if (run->immediate_exit) 1803 r = -EINTR; 1804 else 1805 r = kvmppc_vcpu_run(run, vcpu); 1806 1807 kvm_sigset_deactivate(vcpu); 1808 1809 #ifdef CONFIG_ALTIVEC 1810 out: 1811 #endif 1812 vcpu_put(vcpu); 1813 return r; 1814 } 1815 1816 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1817 { 1818 if (irq->irq == KVM_INTERRUPT_UNSET) { 1819 kvmppc_core_dequeue_external(vcpu); 1820 return 0; 1821 } 1822 1823 kvmppc_core_queue_external(vcpu, irq); 1824 1825 kvm_vcpu_kick(vcpu); 1826 1827 return 0; 1828 } 1829 1830 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1831 struct kvm_enable_cap *cap) 1832 { 1833 int r; 1834 1835 if (cap->flags) 1836 return -EINVAL; 1837 1838 switch (cap->cap) { 1839 case KVM_CAP_PPC_OSI: 1840 r = 0; 1841 vcpu->arch.osi_enabled = true; 1842 break; 1843 case KVM_CAP_PPC_PAPR: 1844 r = 0; 1845 vcpu->arch.papr_enabled = true; 1846 break; 1847 case KVM_CAP_PPC_EPR: 1848 r = 0; 1849 if (cap->args[0]) 1850 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1851 else 1852 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1853 break; 1854 #ifdef CONFIG_BOOKE 1855 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1856 r = 0; 1857 vcpu->arch.watchdog_enabled = true; 1858 break; 1859 #endif 1860 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1861 case KVM_CAP_SW_TLB: { 1862 struct kvm_config_tlb cfg; 1863 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1864 1865 r = -EFAULT; 1866 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1867 break; 1868 1869 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1870 break; 1871 } 1872 #endif 1873 #ifdef CONFIG_KVM_MPIC 1874 case KVM_CAP_IRQ_MPIC: { 1875 struct fd f; 1876 struct kvm_device *dev; 1877 1878 r = -EBADF; 1879 f = fdget(cap->args[0]); 1880 if (!f.file) 1881 break; 1882 1883 r = -EPERM; 1884 dev = kvm_device_from_filp(f.file); 1885 if (dev) 1886 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1887 1888 fdput(f); 1889 break; 1890 } 1891 #endif 1892 #ifdef CONFIG_KVM_XICS 1893 case KVM_CAP_IRQ_XICS: { 1894 struct fd f; 1895 struct kvm_device *dev; 1896 1897 r = -EBADF; 1898 f = fdget(cap->args[0]); 1899 if (!f.file) 1900 break; 1901 1902 r = -EPERM; 1903 dev = kvm_device_from_filp(f.file); 1904 if (dev) { 1905 if (xive_enabled()) 1906 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1907 else 1908 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1909 } 1910 1911 fdput(f); 1912 break; 1913 } 1914 #endif /* CONFIG_KVM_XICS */ 1915 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1916 case KVM_CAP_PPC_FWNMI: 1917 r = -EINVAL; 1918 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1919 break; 1920 r = 0; 1921 vcpu->kvm->arch.fwnmi_enabled = true; 1922 break; 1923 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1924 default: 1925 r = -EINVAL; 1926 break; 1927 } 1928 1929 if (!r) 1930 r = kvmppc_sanity_check(vcpu); 1931 1932 return r; 1933 } 1934 1935 bool kvm_arch_intc_initialized(struct kvm *kvm) 1936 { 1937 #ifdef CONFIG_KVM_MPIC 1938 if (kvm->arch.mpic) 1939 return true; 1940 #endif 1941 #ifdef CONFIG_KVM_XICS 1942 if (kvm->arch.xics || kvm->arch.xive) 1943 return true; 1944 #endif 1945 return false; 1946 } 1947 1948 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1949 struct kvm_mp_state *mp_state) 1950 { 1951 return -EINVAL; 1952 } 1953 1954 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1955 struct kvm_mp_state *mp_state) 1956 { 1957 return -EINVAL; 1958 } 1959 1960 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1961 unsigned int ioctl, unsigned long arg) 1962 { 1963 struct kvm_vcpu *vcpu = filp->private_data; 1964 void __user *argp = (void __user *)arg; 1965 1966 if (ioctl == KVM_INTERRUPT) { 1967 struct kvm_interrupt irq; 1968 if (copy_from_user(&irq, argp, sizeof(irq))) 1969 return -EFAULT; 1970 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 1971 } 1972 return -ENOIOCTLCMD; 1973 } 1974 1975 long kvm_arch_vcpu_ioctl(struct file *filp, 1976 unsigned int ioctl, unsigned long arg) 1977 { 1978 struct kvm_vcpu *vcpu = filp->private_data; 1979 void __user *argp = (void __user *)arg; 1980 long r; 1981 1982 switch (ioctl) { 1983 case KVM_ENABLE_CAP: 1984 { 1985 struct kvm_enable_cap cap; 1986 r = -EFAULT; 1987 vcpu_load(vcpu); 1988 if (copy_from_user(&cap, argp, sizeof(cap))) 1989 goto out; 1990 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 1991 vcpu_put(vcpu); 1992 break; 1993 } 1994 1995 case KVM_SET_ONE_REG: 1996 case KVM_GET_ONE_REG: 1997 { 1998 struct kvm_one_reg reg; 1999 r = -EFAULT; 2000 if (copy_from_user(®, argp, sizeof(reg))) 2001 goto out; 2002 if (ioctl == KVM_SET_ONE_REG) 2003 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2004 else 2005 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2006 break; 2007 } 2008 2009 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2010 case KVM_DIRTY_TLB: { 2011 struct kvm_dirty_tlb dirty; 2012 r = -EFAULT; 2013 vcpu_load(vcpu); 2014 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2015 goto out; 2016 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2017 vcpu_put(vcpu); 2018 break; 2019 } 2020 #endif 2021 default: 2022 r = -EINVAL; 2023 } 2024 2025 out: 2026 return r; 2027 } 2028 2029 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2030 { 2031 return VM_FAULT_SIGBUS; 2032 } 2033 2034 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2035 { 2036 u32 inst_nop = 0x60000000; 2037 #ifdef CONFIG_KVM_BOOKE_HV 2038 u32 inst_sc1 = 0x44000022; 2039 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2040 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2041 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2042 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2043 #else 2044 u32 inst_lis = 0x3c000000; 2045 u32 inst_ori = 0x60000000; 2046 u32 inst_sc = 0x44000002; 2047 u32 inst_imm_mask = 0xffff; 2048 2049 /* 2050 * The hypercall to get into KVM from within guest context is as 2051 * follows: 2052 * 2053 * lis r0, r0, KVM_SC_MAGIC_R0@h 2054 * ori r0, KVM_SC_MAGIC_R0@l 2055 * sc 2056 * nop 2057 */ 2058 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2059 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2060 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2061 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2062 #endif 2063 2064 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2065 2066 return 0; 2067 } 2068 2069 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2070 bool line_status) 2071 { 2072 if (!irqchip_in_kernel(kvm)) 2073 return -ENXIO; 2074 2075 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2076 irq_event->irq, irq_event->level, 2077 line_status); 2078 return 0; 2079 } 2080 2081 2082 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2083 struct kvm_enable_cap *cap) 2084 { 2085 int r; 2086 2087 if (cap->flags) 2088 return -EINVAL; 2089 2090 switch (cap->cap) { 2091 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2092 case KVM_CAP_PPC_ENABLE_HCALL: { 2093 unsigned long hcall = cap->args[0]; 2094 2095 r = -EINVAL; 2096 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2097 cap->args[1] > 1) 2098 break; 2099 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2100 break; 2101 if (cap->args[1]) 2102 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2103 else 2104 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2105 r = 0; 2106 break; 2107 } 2108 case KVM_CAP_PPC_SMT: { 2109 unsigned long mode = cap->args[0]; 2110 unsigned long flags = cap->args[1]; 2111 2112 r = -EINVAL; 2113 if (kvm->arch.kvm_ops->set_smt_mode) 2114 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2115 break; 2116 } 2117 #endif 2118 default: 2119 r = -EINVAL; 2120 break; 2121 } 2122 2123 return r; 2124 } 2125 2126 #ifdef CONFIG_PPC_BOOK3S_64 2127 /* 2128 * These functions check whether the underlying hardware is safe 2129 * against attacks based on observing the effects of speculatively 2130 * executed instructions, and whether it supplies instructions for 2131 * use in workarounds. The information comes from firmware, either 2132 * via the device tree on powernv platforms or from an hcall on 2133 * pseries platforms. 2134 */ 2135 #ifdef CONFIG_PPC_PSERIES 2136 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2137 { 2138 struct h_cpu_char_result c; 2139 unsigned long rc; 2140 2141 if (!machine_is(pseries)) 2142 return -ENOTTY; 2143 2144 rc = plpar_get_cpu_characteristics(&c); 2145 if (rc == H_SUCCESS) { 2146 cp->character = c.character; 2147 cp->behaviour = c.behaviour; 2148 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2149 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2150 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2151 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2152 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2153 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2154 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2155 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2156 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2157 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2158 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2159 } 2160 return 0; 2161 } 2162 #else 2163 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2164 { 2165 return -ENOTTY; 2166 } 2167 #endif 2168 2169 static inline bool have_fw_feat(struct device_node *fw_features, 2170 const char *state, const char *name) 2171 { 2172 struct device_node *np; 2173 bool r = false; 2174 2175 np = of_get_child_by_name(fw_features, name); 2176 if (np) { 2177 r = of_property_read_bool(np, state); 2178 of_node_put(np); 2179 } 2180 return r; 2181 } 2182 2183 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2184 { 2185 struct device_node *np, *fw_features; 2186 int r; 2187 2188 memset(cp, 0, sizeof(*cp)); 2189 r = pseries_get_cpu_char(cp); 2190 if (r != -ENOTTY) 2191 return r; 2192 2193 np = of_find_node_by_name(NULL, "ibm,opal"); 2194 if (np) { 2195 fw_features = of_get_child_by_name(np, "fw-features"); 2196 of_node_put(np); 2197 if (!fw_features) 2198 return 0; 2199 if (have_fw_feat(fw_features, "enabled", 2200 "inst-spec-barrier-ori31,31,0")) 2201 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2202 if (have_fw_feat(fw_features, "enabled", 2203 "fw-bcctrl-serialized")) 2204 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2205 if (have_fw_feat(fw_features, "enabled", 2206 "inst-l1d-flush-ori30,30,0")) 2207 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2208 if (have_fw_feat(fw_features, "enabled", 2209 "inst-l1d-flush-trig2")) 2210 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2211 if (have_fw_feat(fw_features, "enabled", 2212 "fw-l1d-thread-split")) 2213 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2214 if (have_fw_feat(fw_features, "enabled", 2215 "fw-count-cache-disabled")) 2216 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2217 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2218 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2219 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2220 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2221 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2222 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2223 2224 if (have_fw_feat(fw_features, "enabled", 2225 "speculation-policy-favor-security")) 2226 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2227 if (!have_fw_feat(fw_features, "disabled", 2228 "needs-l1d-flush-msr-pr-0-to-1")) 2229 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2230 if (!have_fw_feat(fw_features, "disabled", 2231 "needs-spec-barrier-for-bound-checks")) 2232 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2233 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2234 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2235 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2236 2237 of_node_put(fw_features); 2238 } 2239 2240 return 0; 2241 } 2242 #endif 2243 2244 long kvm_arch_vm_ioctl(struct file *filp, 2245 unsigned int ioctl, unsigned long arg) 2246 { 2247 struct kvm *kvm __maybe_unused = filp->private_data; 2248 void __user *argp = (void __user *)arg; 2249 long r; 2250 2251 switch (ioctl) { 2252 case KVM_PPC_GET_PVINFO: { 2253 struct kvm_ppc_pvinfo pvinfo; 2254 memset(&pvinfo, 0, sizeof(pvinfo)); 2255 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2256 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2257 r = -EFAULT; 2258 goto out; 2259 } 2260 2261 break; 2262 } 2263 case KVM_ENABLE_CAP: 2264 { 2265 struct kvm_enable_cap cap; 2266 r = -EFAULT; 2267 if (copy_from_user(&cap, argp, sizeof(cap))) 2268 goto out; 2269 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 2270 break; 2271 } 2272 #ifdef CONFIG_SPAPR_TCE_IOMMU 2273 case KVM_CREATE_SPAPR_TCE_64: { 2274 struct kvm_create_spapr_tce_64 create_tce_64; 2275 2276 r = -EFAULT; 2277 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2278 goto out; 2279 if (create_tce_64.flags) { 2280 r = -EINVAL; 2281 goto out; 2282 } 2283 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2284 goto out; 2285 } 2286 case KVM_CREATE_SPAPR_TCE: { 2287 struct kvm_create_spapr_tce create_tce; 2288 struct kvm_create_spapr_tce_64 create_tce_64; 2289 2290 r = -EFAULT; 2291 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2292 goto out; 2293 2294 create_tce_64.liobn = create_tce.liobn; 2295 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2296 create_tce_64.offset = 0; 2297 create_tce_64.size = create_tce.window_size >> 2298 IOMMU_PAGE_SHIFT_4K; 2299 create_tce_64.flags = 0; 2300 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2301 goto out; 2302 } 2303 #endif 2304 #ifdef CONFIG_PPC_BOOK3S_64 2305 case KVM_PPC_GET_SMMU_INFO: { 2306 struct kvm_ppc_smmu_info info; 2307 struct kvm *kvm = filp->private_data; 2308 2309 memset(&info, 0, sizeof(info)); 2310 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2311 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2312 r = -EFAULT; 2313 break; 2314 } 2315 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2316 struct kvm *kvm = filp->private_data; 2317 2318 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2319 break; 2320 } 2321 case KVM_PPC_CONFIGURE_V3_MMU: { 2322 struct kvm *kvm = filp->private_data; 2323 struct kvm_ppc_mmuv3_cfg cfg; 2324 2325 r = -EINVAL; 2326 if (!kvm->arch.kvm_ops->configure_mmu) 2327 goto out; 2328 r = -EFAULT; 2329 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2330 goto out; 2331 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2332 break; 2333 } 2334 case KVM_PPC_GET_RMMU_INFO: { 2335 struct kvm *kvm = filp->private_data; 2336 struct kvm_ppc_rmmu_info info; 2337 2338 r = -EINVAL; 2339 if (!kvm->arch.kvm_ops->get_rmmu_info) 2340 goto out; 2341 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2342 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2343 r = -EFAULT; 2344 break; 2345 } 2346 case KVM_PPC_GET_CPU_CHAR: { 2347 struct kvm_ppc_cpu_char cpuchar; 2348 2349 r = kvmppc_get_cpu_char(&cpuchar); 2350 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2351 r = -EFAULT; 2352 break; 2353 } 2354 default: { 2355 struct kvm *kvm = filp->private_data; 2356 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2357 } 2358 #else /* CONFIG_PPC_BOOK3S_64 */ 2359 default: 2360 r = -ENOTTY; 2361 #endif 2362 } 2363 out: 2364 return r; 2365 } 2366 2367 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2368 static unsigned long nr_lpids; 2369 2370 long kvmppc_alloc_lpid(void) 2371 { 2372 long lpid; 2373 2374 do { 2375 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2376 if (lpid >= nr_lpids) { 2377 pr_err("%s: No LPIDs free\n", __func__); 2378 return -ENOMEM; 2379 } 2380 } while (test_and_set_bit(lpid, lpid_inuse)); 2381 2382 return lpid; 2383 } 2384 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2385 2386 void kvmppc_claim_lpid(long lpid) 2387 { 2388 set_bit(lpid, lpid_inuse); 2389 } 2390 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2391 2392 void kvmppc_free_lpid(long lpid) 2393 { 2394 clear_bit(lpid, lpid_inuse); 2395 } 2396 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2397 2398 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2399 { 2400 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2401 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2402 } 2403 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2404 2405 int kvm_arch_init(void *opaque) 2406 { 2407 return 0; 2408 } 2409 2410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2411