1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright IBM Corp. 2007
5 *
6 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8 */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/of.h>
23 #include <asm/cputable.h>
24 #include <linux/uaccess.h>
25 #include <asm/kvm_ppc.h>
26 #include <asm/cputhreads.h>
27 #include <asm/irqflags.h>
28 #include <asm/iommu.h>
29 #include <asm/switch_to.h>
30 #include <asm/xive.h>
31 #ifdef CONFIG_PPC_PSERIES
32 #include <asm/hvcall.h>
33 #include <asm/plpar_wrappers.h>
34 #endif
35 #include <asm/ultravisor.h>
36 #include <asm/setup.h>
37
38 #include "timing.h"
39 #include "../mm/mmu_decl.h"
40
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48
49
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53 }
54
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)55 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56 {
57 return kvm_arch_vcpu_runnable(vcpu);
58 }
59
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)60 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61 {
62 return false;
63 }
64
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)65 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66 {
67 return 1;
68 }
69
70 /*
71 * Common checks before entering the guest world. Call with interrupts
72 * disabled.
73 *
74 * returns:
75 *
76 * == 1 if we're ready to go into guest state
77 * <= 0 if we need to go back to the host with return value
78 */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)79 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80 {
81 int r;
82
83 WARN_ON(irqs_disabled());
84 hard_irq_disable();
85
86 while (true) {
87 if (need_resched()) {
88 local_irq_enable();
89 cond_resched();
90 hard_irq_disable();
91 continue;
92 }
93
94 if (signal_pending(current)) {
95 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96 vcpu->run->exit_reason = KVM_EXIT_INTR;
97 r = -EINTR;
98 break;
99 }
100
101 vcpu->mode = IN_GUEST_MODE;
102
103 /*
104 * Reading vcpu->requests must happen after setting vcpu->mode,
105 * so we don't miss a request because the requester sees
106 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107 * before next entering the guest (and thus doesn't IPI).
108 * This also orders the write to mode from any reads
109 * to the page tables done while the VCPU is running.
110 * Please see the comment in kvm_flush_remote_tlbs.
111 */
112 smp_mb();
113
114 if (kvm_request_pending(vcpu)) {
115 /* Make sure we process requests preemptable */
116 local_irq_enable();
117 trace_kvm_check_requests(vcpu);
118 r = kvmppc_core_check_requests(vcpu);
119 hard_irq_disable();
120 if (r > 0)
121 continue;
122 break;
123 }
124
125 if (kvmppc_core_prepare_to_enter(vcpu)) {
126 /* interrupts got enabled in between, so we
127 are back at square 1 */
128 continue;
129 }
130
131 guest_enter_irqoff();
132 return 1;
133 }
134
135 /* return to host */
136 local_irq_enable();
137 return r;
138 }
139 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140
141 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)142 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143 {
144 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145 int i;
146
147 shared->sprg0 = swab64(shared->sprg0);
148 shared->sprg1 = swab64(shared->sprg1);
149 shared->sprg2 = swab64(shared->sprg2);
150 shared->sprg3 = swab64(shared->sprg3);
151 shared->srr0 = swab64(shared->srr0);
152 shared->srr1 = swab64(shared->srr1);
153 shared->dar = swab64(shared->dar);
154 shared->msr = swab64(shared->msr);
155 shared->dsisr = swab32(shared->dsisr);
156 shared->int_pending = swab32(shared->int_pending);
157 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158 shared->sr[i] = swab32(shared->sr[i]);
159 }
160 #endif
161
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)162 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163 {
164 int nr = kvmppc_get_gpr(vcpu, 11);
165 int r;
166 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170 unsigned long r2 = 0;
171
172 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173 /* 32 bit mode */
174 param1 &= 0xffffffff;
175 param2 &= 0xffffffff;
176 param3 &= 0xffffffff;
177 param4 &= 0xffffffff;
178 }
179
180 switch (nr) {
181 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182 {
183 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184 /* Book3S can be little endian, find it out here */
185 int shared_big_endian = true;
186 if (vcpu->arch.intr_msr & MSR_LE)
187 shared_big_endian = false;
188 if (shared_big_endian != vcpu->arch.shared_big_endian)
189 kvmppc_swab_shared(vcpu);
190 vcpu->arch.shared_big_endian = shared_big_endian;
191 #endif
192
193 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194 /*
195 * Older versions of the Linux magic page code had
196 * a bug where they would map their trampoline code
197 * NX. If that's the case, remove !PR NX capability.
198 */
199 vcpu->arch.disable_kernel_nx = true;
200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201 }
202
203 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205
206 #ifdef CONFIG_PPC_64K_PAGES
207 /*
208 * Make sure our 4k magic page is in the same window of a 64k
209 * page within the guest and within the host's page.
210 */
211 if ((vcpu->arch.magic_page_pa & 0xf000) !=
212 ((ulong)vcpu->arch.shared & 0xf000)) {
213 void *old_shared = vcpu->arch.shared;
214 ulong shared = (ulong)vcpu->arch.shared;
215 void *new_shared;
216
217 shared &= PAGE_MASK;
218 shared |= vcpu->arch.magic_page_pa & 0xf000;
219 new_shared = (void*)shared;
220 memcpy(new_shared, old_shared, 0x1000);
221 vcpu->arch.shared = new_shared;
222 }
223 #endif
224
225 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226
227 r = EV_SUCCESS;
228 break;
229 }
230 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231 r = EV_SUCCESS;
232 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234 #endif
235
236 /* Second return value is in r4 */
237 break;
238 case EV_HCALL_TOKEN(EV_IDLE):
239 r = EV_SUCCESS;
240 kvm_vcpu_halt(vcpu);
241 break;
242 default:
243 r = EV_UNIMPLEMENTED;
244 break;
245 }
246
247 kvmppc_set_gpr(vcpu, 4, r2);
248
249 return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
kvmppc_sanity_check(struct kvm_vcpu * vcpu)253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255 int r = false;
256
257 /* We have to know what CPU to virtualize */
258 if (!vcpu->arch.pvr)
259 goto out;
260
261 /* PAPR only works with book3s_64 */
262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 goto out;
264
265 /* HV KVM can only do PAPR mode for now */
266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270 if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 goto out;
272 #endif
273
274 r = true;
275
276 out:
277 vcpu->arch.sane = r;
278 return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
kvmppc_emulate_mmio(struct kvm_vcpu * vcpu)282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284 enum emulation_result er;
285 int r;
286
287 er = kvmppc_emulate_loadstore(vcpu);
288 switch (er) {
289 case EMULATE_DONE:
290 /* Future optimization: only reload non-volatiles if they were
291 * actually modified. */
292 r = RESUME_GUEST_NV;
293 break;
294 case EMULATE_AGAIN:
295 r = RESUME_GUEST;
296 break;
297 case EMULATE_DO_MMIO:
298 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299 /* We must reload nonvolatiles because "update" load/store
300 * instructions modify register state. */
301 /* Future optimization: only reload non-volatiles if they were
302 * actually modified. */
303 r = RESUME_HOST_NV;
304 break;
305 case EMULATE_FAIL:
306 {
307 ppc_inst_t last_inst;
308
309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
311 ppc_inst_val(last_inst));
312
313 /*
314 * Injecting a Data Storage here is a bit more
315 * accurate since the instruction that caused the
316 * access could still be a valid one.
317 */
318 if (!IS_ENABLED(CONFIG_BOOKE)) {
319 ulong dsisr = DSISR_BADACCESS;
320
321 if (vcpu->mmio_is_write)
322 dsisr |= DSISR_ISSTORE;
323
324 kvmppc_core_queue_data_storage(vcpu,
325 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
326 vcpu->arch.vaddr_accessed, dsisr);
327 } else {
328 /*
329 * BookE does not send a SIGBUS on a bad
330 * fault, so use a Program interrupt instead
331 * to avoid a fault loop.
332 */
333 kvmppc_core_queue_program(vcpu, 0);
334 }
335
336 r = RESUME_GUEST;
337 break;
338 }
339 default:
340 WARN_ON(1);
341 r = RESUME_GUEST;
342 }
343
344 return r;
345 }
346 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
347
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)348 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349 bool data)
350 {
351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352 struct kvmppc_pte pte;
353 int r = -EINVAL;
354
355 vcpu->stat.st++;
356
357 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
358 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
359 size);
360
361 if ((!r) || (r == -EAGAIN))
362 return r;
363
364 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
365 XLATE_WRITE, &pte);
366 if (r < 0)
367 return r;
368
369 *eaddr = pte.raddr;
370
371 if (!pte.may_write)
372 return -EPERM;
373
374 /* Magic page override */
375 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
376 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
377 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
378 void *magic = vcpu->arch.shared;
379 magic += pte.eaddr & 0xfff;
380 memcpy(magic, ptr, size);
381 return EMULATE_DONE;
382 }
383
384 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
385 return EMULATE_DO_MMIO;
386
387 return EMULATE_DONE;
388 }
389 EXPORT_SYMBOL_GPL(kvmppc_st);
390
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)391 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
392 bool data)
393 {
394 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
395 struct kvmppc_pte pte;
396 int rc = -EINVAL;
397
398 vcpu->stat.ld++;
399
400 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
401 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
402 size);
403
404 if ((!rc) || (rc == -EAGAIN))
405 return rc;
406
407 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
408 XLATE_READ, &pte);
409 if (rc)
410 return rc;
411
412 *eaddr = pte.raddr;
413
414 if (!pte.may_read)
415 return -EPERM;
416
417 if (!data && !pte.may_execute)
418 return -ENOEXEC;
419
420 /* Magic page override */
421 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
422 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
423 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
424 void *magic = vcpu->arch.shared;
425 magic += pte.eaddr & 0xfff;
426 memcpy(ptr, magic, size);
427 return EMULATE_DONE;
428 }
429
430 kvm_vcpu_srcu_read_lock(vcpu);
431 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
432 kvm_vcpu_srcu_read_unlock(vcpu);
433 if (rc)
434 return EMULATE_DO_MMIO;
435
436 return EMULATE_DONE;
437 }
438 EXPORT_SYMBOL_GPL(kvmppc_ld);
439
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)440 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
441 {
442 struct kvmppc_ops *kvm_ops = NULL;
443 int r;
444
445 /*
446 * if we have both HV and PR enabled, default is HV
447 */
448 if (type == 0) {
449 if (kvmppc_hv_ops)
450 kvm_ops = kvmppc_hv_ops;
451 else
452 kvm_ops = kvmppc_pr_ops;
453 if (!kvm_ops)
454 goto err_out;
455 } else if (type == KVM_VM_PPC_HV) {
456 if (!kvmppc_hv_ops)
457 goto err_out;
458 kvm_ops = kvmppc_hv_ops;
459 } else if (type == KVM_VM_PPC_PR) {
460 if (!kvmppc_pr_ops)
461 goto err_out;
462 kvm_ops = kvmppc_pr_ops;
463 } else
464 goto err_out;
465
466 if (!try_module_get(kvm_ops->owner))
467 return -ENOENT;
468
469 kvm->arch.kvm_ops = kvm_ops;
470 r = kvmppc_core_init_vm(kvm);
471 if (r)
472 module_put(kvm_ops->owner);
473 return r;
474 err_out:
475 return -EINVAL;
476 }
477
kvm_arch_destroy_vm(struct kvm * kvm)478 void kvm_arch_destroy_vm(struct kvm *kvm)
479 {
480 #ifdef CONFIG_KVM_XICS
481 /*
482 * We call kick_all_cpus_sync() to ensure that all
483 * CPUs have executed any pending IPIs before we
484 * continue and free VCPUs structures below.
485 */
486 if (is_kvmppc_hv_enabled(kvm))
487 kick_all_cpus_sync();
488 #endif
489
490 kvm_destroy_vcpus(kvm);
491
492 mutex_lock(&kvm->lock);
493
494 kvmppc_core_destroy_vm(kvm);
495
496 mutex_unlock(&kvm->lock);
497
498 /* drop the module reference */
499 module_put(kvm->arch.kvm_ops->owner);
500 }
501
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)502 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
503 {
504 int r;
505 /* Assume we're using HV mode when the HV module is loaded */
506 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
507
508 if (kvm) {
509 /*
510 * Hooray - we know which VM type we're running on. Depend on
511 * that rather than the guess above.
512 */
513 hv_enabled = is_kvmppc_hv_enabled(kvm);
514 }
515
516 switch (ext) {
517 #ifdef CONFIG_BOOKE
518 case KVM_CAP_PPC_BOOKE_SREGS:
519 case KVM_CAP_PPC_BOOKE_WATCHDOG:
520 case KVM_CAP_PPC_EPR:
521 #else
522 case KVM_CAP_PPC_SEGSTATE:
523 case KVM_CAP_PPC_HIOR:
524 case KVM_CAP_PPC_PAPR:
525 #endif
526 case KVM_CAP_PPC_UNSET_IRQ:
527 case KVM_CAP_PPC_IRQ_LEVEL:
528 case KVM_CAP_ENABLE_CAP:
529 case KVM_CAP_ONE_REG:
530 case KVM_CAP_IOEVENTFD:
531 case KVM_CAP_DEVICE_CTRL:
532 case KVM_CAP_IMMEDIATE_EXIT:
533 case KVM_CAP_SET_GUEST_DEBUG:
534 r = 1;
535 break;
536 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
537 case KVM_CAP_PPC_PAIRED_SINGLES:
538 case KVM_CAP_PPC_OSI:
539 case KVM_CAP_PPC_GET_PVINFO:
540 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
541 case KVM_CAP_SW_TLB:
542 #endif
543 /* We support this only for PR */
544 r = !hv_enabled;
545 break;
546 #ifdef CONFIG_KVM_MPIC
547 case KVM_CAP_IRQ_MPIC:
548 r = 1;
549 break;
550 #endif
551
552 #ifdef CONFIG_PPC_BOOK3S_64
553 case KVM_CAP_SPAPR_TCE:
554 case KVM_CAP_SPAPR_TCE_64:
555 r = 1;
556 break;
557 case KVM_CAP_SPAPR_TCE_VFIO:
558 r = !!cpu_has_feature(CPU_FTR_HVMODE);
559 break;
560 case KVM_CAP_PPC_RTAS:
561 case KVM_CAP_PPC_FIXUP_HCALL:
562 case KVM_CAP_PPC_ENABLE_HCALL:
563 #ifdef CONFIG_KVM_XICS
564 case KVM_CAP_IRQ_XICS:
565 #endif
566 case KVM_CAP_PPC_GET_CPU_CHAR:
567 r = 1;
568 break;
569 #ifdef CONFIG_KVM_XIVE
570 case KVM_CAP_PPC_IRQ_XIVE:
571 /*
572 * We need XIVE to be enabled on the platform (implies
573 * a POWER9 processor) and the PowerNV platform, as
574 * nested is not yet supported.
575 */
576 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
577 kvmppc_xive_native_supported();
578 break;
579 #endif
580
581 #ifdef CONFIG_HAVE_KVM_IRQFD
582 case KVM_CAP_IRQFD_RESAMPLE:
583 r = !xive_enabled();
584 break;
585 #endif
586
587 case KVM_CAP_PPC_ALLOC_HTAB:
588 r = hv_enabled;
589 break;
590 #endif /* CONFIG_PPC_BOOK3S_64 */
591 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
592 case KVM_CAP_PPC_SMT:
593 r = 0;
594 if (kvm) {
595 if (kvm->arch.emul_smt_mode > 1)
596 r = kvm->arch.emul_smt_mode;
597 else
598 r = kvm->arch.smt_mode;
599 } else if (hv_enabled) {
600 if (cpu_has_feature(CPU_FTR_ARCH_300))
601 r = 1;
602 else
603 r = threads_per_subcore;
604 }
605 break;
606 case KVM_CAP_PPC_SMT_POSSIBLE:
607 r = 1;
608 if (hv_enabled) {
609 if (!cpu_has_feature(CPU_FTR_ARCH_300))
610 r = ((threads_per_subcore << 1) - 1);
611 else
612 /* P9 can emulate dbells, so allow any mode */
613 r = 8 | 4 | 2 | 1;
614 }
615 break;
616 case KVM_CAP_PPC_RMA:
617 r = 0;
618 break;
619 case KVM_CAP_PPC_HWRNG:
620 r = kvmppc_hwrng_present();
621 break;
622 case KVM_CAP_PPC_MMU_RADIX:
623 r = !!(hv_enabled && radix_enabled());
624 break;
625 case KVM_CAP_PPC_MMU_HASH_V3:
626 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
627 kvmppc_hv_ops->hash_v3_possible());
628 break;
629 case KVM_CAP_PPC_NESTED_HV:
630 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
631 !kvmppc_hv_ops->enable_nested(NULL));
632 break;
633 #endif
634 case KVM_CAP_SYNC_MMU:
635 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
636 r = hv_enabled;
637 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
638 r = 1;
639 #else
640 r = 0;
641 #endif
642 break;
643 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
644 case KVM_CAP_PPC_HTAB_FD:
645 r = hv_enabled;
646 break;
647 #endif
648 case KVM_CAP_NR_VCPUS:
649 /*
650 * Recommending a number of CPUs is somewhat arbitrary; we
651 * return the number of present CPUs for -HV (since a host
652 * will have secondary threads "offline"), and for other KVM
653 * implementations just count online CPUs.
654 */
655 if (hv_enabled)
656 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
657 else
658 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
659 break;
660 case KVM_CAP_MAX_VCPUS:
661 r = KVM_MAX_VCPUS;
662 break;
663 case KVM_CAP_MAX_VCPU_ID:
664 r = KVM_MAX_VCPU_IDS;
665 break;
666 #ifdef CONFIG_PPC_BOOK3S_64
667 case KVM_CAP_PPC_GET_SMMU_INFO:
668 r = 1;
669 break;
670 case KVM_CAP_SPAPR_MULTITCE:
671 r = 1;
672 break;
673 case KVM_CAP_SPAPR_RESIZE_HPT:
674 r = !!hv_enabled;
675 break;
676 #endif
677 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
678 case KVM_CAP_PPC_FWNMI:
679 r = hv_enabled;
680 break;
681 #endif
682 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
683 case KVM_CAP_PPC_HTM:
684 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
685 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
686 break;
687 #endif
688 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
689 case KVM_CAP_PPC_SECURE_GUEST:
690 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
691 !kvmppc_hv_ops->enable_svm(NULL);
692 break;
693 case KVM_CAP_PPC_DAWR1:
694 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
695 !kvmppc_hv_ops->enable_dawr1(NULL));
696 break;
697 case KVM_CAP_PPC_RPT_INVALIDATE:
698 r = 1;
699 break;
700 #endif
701 case KVM_CAP_PPC_AIL_MODE_3:
702 r = 0;
703 /*
704 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
705 * The POWER9s can support it if the guest runs in hash mode,
706 * but QEMU doesn't necessarily query the capability in time.
707 */
708 if (hv_enabled) {
709 if (kvmhv_on_pseries()) {
710 if (pseries_reloc_on_exception())
711 r = 1;
712 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
713 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
714 r = 1;
715 }
716 }
717 break;
718 default:
719 r = 0;
720 break;
721 }
722 return r;
723
724 }
725
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)726 long kvm_arch_dev_ioctl(struct file *filp,
727 unsigned int ioctl, unsigned long arg)
728 {
729 return -EINVAL;
730 }
731
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)732 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
733 {
734 kvmppc_core_free_memslot(kvm, slot);
735 }
736
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)737 int kvm_arch_prepare_memory_region(struct kvm *kvm,
738 const struct kvm_memory_slot *old,
739 struct kvm_memory_slot *new,
740 enum kvm_mr_change change)
741 {
742 return kvmppc_core_prepare_memory_region(kvm, old, new, change);
743 }
744
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)745 void kvm_arch_commit_memory_region(struct kvm *kvm,
746 struct kvm_memory_slot *old,
747 const struct kvm_memory_slot *new,
748 enum kvm_mr_change change)
749 {
750 kvmppc_core_commit_memory_region(kvm, old, new, change);
751 }
752
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)753 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
754 struct kvm_memory_slot *slot)
755 {
756 kvmppc_core_flush_memslot(kvm, slot);
757 }
758
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)759 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
760 {
761 return 0;
762 }
763
kvmppc_decrementer_wakeup(struct hrtimer * timer)764 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
765 {
766 struct kvm_vcpu *vcpu;
767
768 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
769 kvmppc_decrementer_func(vcpu);
770
771 return HRTIMER_NORESTART;
772 }
773
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)774 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
775 {
776 int err;
777
778 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
779 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
780
781 #ifdef CONFIG_KVM_EXIT_TIMING
782 mutex_init(&vcpu->arch.exit_timing_lock);
783 #endif
784 err = kvmppc_subarch_vcpu_init(vcpu);
785 if (err)
786 return err;
787
788 err = kvmppc_core_vcpu_create(vcpu);
789 if (err)
790 goto out_vcpu_uninit;
791
792 rcuwait_init(&vcpu->arch.wait);
793 vcpu->arch.waitp = &vcpu->arch.wait;
794 return 0;
795
796 out_vcpu_uninit:
797 kvmppc_subarch_vcpu_uninit(vcpu);
798 return err;
799 }
800
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)801 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
802 {
803 }
804
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)805 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
806 {
807 /* Make sure we're not using the vcpu anymore */
808 hrtimer_cancel(&vcpu->arch.dec_timer);
809
810 switch (vcpu->arch.irq_type) {
811 case KVMPPC_IRQ_MPIC:
812 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
813 break;
814 case KVMPPC_IRQ_XICS:
815 if (xics_on_xive())
816 kvmppc_xive_cleanup_vcpu(vcpu);
817 else
818 kvmppc_xics_free_icp(vcpu);
819 break;
820 case KVMPPC_IRQ_XIVE:
821 kvmppc_xive_native_cleanup_vcpu(vcpu);
822 break;
823 }
824
825 kvmppc_core_vcpu_free(vcpu);
826
827 kvmppc_subarch_vcpu_uninit(vcpu);
828 }
829
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)830 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
831 {
832 return kvmppc_core_pending_dec(vcpu);
833 }
834
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)835 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
836 {
837 #ifdef CONFIG_BOOKE
838 /*
839 * vrsave (formerly usprg0) isn't used by Linux, but may
840 * be used by the guest.
841 *
842 * On non-booke this is associated with Altivec and
843 * is handled by code in book3s.c.
844 */
845 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
846 #endif
847 kvmppc_core_vcpu_load(vcpu, cpu);
848 }
849
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)850 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
851 {
852 kvmppc_core_vcpu_put(vcpu);
853 #ifdef CONFIG_BOOKE
854 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
855 #endif
856 }
857
858 /*
859 * irq_bypass_add_producer and irq_bypass_del_producer are only
860 * useful if the architecture supports PCI passthrough.
861 * irq_bypass_stop and irq_bypass_start are not needed and so
862 * kvm_ops are not defined for them.
863 */
kvm_arch_has_irq_bypass(void)864 bool kvm_arch_has_irq_bypass(void)
865 {
866 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
867 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
868 }
869
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)870 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
871 struct irq_bypass_producer *prod)
872 {
873 struct kvm_kernel_irqfd *irqfd =
874 container_of(cons, struct kvm_kernel_irqfd, consumer);
875 struct kvm *kvm = irqfd->kvm;
876
877 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
878 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
879
880 return 0;
881 }
882
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)883 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
884 struct irq_bypass_producer *prod)
885 {
886 struct kvm_kernel_irqfd *irqfd =
887 container_of(cons, struct kvm_kernel_irqfd, consumer);
888 struct kvm *kvm = irqfd->kvm;
889
890 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
891 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
892 }
893
894 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)895 static inline int kvmppc_get_vsr_dword_offset(int index)
896 {
897 int offset;
898
899 if ((index != 0) && (index != 1))
900 return -1;
901
902 #ifdef __BIG_ENDIAN
903 offset = index;
904 #else
905 offset = 1 - index;
906 #endif
907
908 return offset;
909 }
910
kvmppc_get_vsr_word_offset(int index)911 static inline int kvmppc_get_vsr_word_offset(int index)
912 {
913 int offset;
914
915 if ((index > 3) || (index < 0))
916 return -1;
917
918 #ifdef __BIG_ENDIAN
919 offset = index;
920 #else
921 offset = 3 - index;
922 #endif
923 return offset;
924 }
925
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)926 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
927 u64 gpr)
928 {
929 union kvmppc_one_reg val;
930 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
931 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
932
933 if (offset == -1)
934 return;
935
936 if (index >= 32) {
937 val.vval = VCPU_VSX_VR(vcpu, index - 32);
938 val.vsxval[offset] = gpr;
939 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
940 } else {
941 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
942 }
943 }
944
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)945 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
946 u64 gpr)
947 {
948 union kvmppc_one_reg val;
949 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
950
951 if (index >= 32) {
952 val.vval = VCPU_VSX_VR(vcpu, index - 32);
953 val.vsxval[0] = gpr;
954 val.vsxval[1] = gpr;
955 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
956 } else {
957 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
958 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
959 }
960 }
961
kvmppc_set_vsr_word_dump(struct kvm_vcpu * vcpu,u32 gpr)962 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
963 u32 gpr)
964 {
965 union kvmppc_one_reg val;
966 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
967
968 if (index >= 32) {
969 val.vsx32val[0] = gpr;
970 val.vsx32val[1] = gpr;
971 val.vsx32val[2] = gpr;
972 val.vsx32val[3] = gpr;
973 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
974 } else {
975 val.vsx32val[0] = gpr;
976 val.vsx32val[1] = gpr;
977 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
978 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
979 }
980 }
981
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)982 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
983 u32 gpr32)
984 {
985 union kvmppc_one_reg val;
986 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
987 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
988 int dword_offset, word_offset;
989
990 if (offset == -1)
991 return;
992
993 if (index >= 32) {
994 val.vval = VCPU_VSX_VR(vcpu, index - 32);
995 val.vsx32val[offset] = gpr32;
996 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
997 } else {
998 dword_offset = offset / 2;
999 word_offset = offset % 2;
1000 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
1001 val.vsx32val[word_offset] = gpr32;
1002 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
1003 }
1004 }
1005 #endif /* CONFIG_VSX */
1006
1007 #ifdef CONFIG_ALTIVEC
kvmppc_get_vmx_offset_generic(struct kvm_vcpu * vcpu,int index,int element_size)1008 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
1009 int index, int element_size)
1010 {
1011 int offset;
1012 int elts = sizeof(vector128)/element_size;
1013
1014 if ((index < 0) || (index >= elts))
1015 return -1;
1016
1017 if (kvmppc_need_byteswap(vcpu))
1018 offset = elts - index - 1;
1019 else
1020 offset = index;
1021
1022 return offset;
1023 }
1024
kvmppc_get_vmx_dword_offset(struct kvm_vcpu * vcpu,int index)1025 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1026 int index)
1027 {
1028 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1029 }
1030
kvmppc_get_vmx_word_offset(struct kvm_vcpu * vcpu,int index)1031 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1032 int index)
1033 {
1034 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1035 }
1036
kvmppc_get_vmx_hword_offset(struct kvm_vcpu * vcpu,int index)1037 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1038 int index)
1039 {
1040 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1041 }
1042
kvmppc_get_vmx_byte_offset(struct kvm_vcpu * vcpu,int index)1043 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1044 int index)
1045 {
1046 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1047 }
1048
1049
kvmppc_set_vmx_dword(struct kvm_vcpu * vcpu,u64 gpr)1050 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1051 u64 gpr)
1052 {
1053 union kvmppc_one_reg val;
1054 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1055 vcpu->arch.mmio_vmx_offset);
1056 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1057
1058 if (offset == -1)
1059 return;
1060
1061 val.vval = VCPU_VSX_VR(vcpu, index);
1062 val.vsxval[offset] = gpr;
1063 VCPU_VSX_VR(vcpu, index) = val.vval;
1064 }
1065
kvmppc_set_vmx_word(struct kvm_vcpu * vcpu,u32 gpr32)1066 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1067 u32 gpr32)
1068 {
1069 union kvmppc_one_reg val;
1070 int offset = kvmppc_get_vmx_word_offset(vcpu,
1071 vcpu->arch.mmio_vmx_offset);
1072 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1073
1074 if (offset == -1)
1075 return;
1076
1077 val.vval = VCPU_VSX_VR(vcpu, index);
1078 val.vsx32val[offset] = gpr32;
1079 VCPU_VSX_VR(vcpu, index) = val.vval;
1080 }
1081
kvmppc_set_vmx_hword(struct kvm_vcpu * vcpu,u16 gpr16)1082 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1083 u16 gpr16)
1084 {
1085 union kvmppc_one_reg val;
1086 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1087 vcpu->arch.mmio_vmx_offset);
1088 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1089
1090 if (offset == -1)
1091 return;
1092
1093 val.vval = VCPU_VSX_VR(vcpu, index);
1094 val.vsx16val[offset] = gpr16;
1095 VCPU_VSX_VR(vcpu, index) = val.vval;
1096 }
1097
kvmppc_set_vmx_byte(struct kvm_vcpu * vcpu,u8 gpr8)1098 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1099 u8 gpr8)
1100 {
1101 union kvmppc_one_reg val;
1102 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1103 vcpu->arch.mmio_vmx_offset);
1104 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1105
1106 if (offset == -1)
1107 return;
1108
1109 val.vval = VCPU_VSX_VR(vcpu, index);
1110 val.vsx8val[offset] = gpr8;
1111 VCPU_VSX_VR(vcpu, index) = val.vval;
1112 }
1113 #endif /* CONFIG_ALTIVEC */
1114
1115 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)1116 static inline u64 sp_to_dp(u32 fprs)
1117 {
1118 u64 fprd;
1119
1120 preempt_disable();
1121 enable_kernel_fp();
1122 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1123 : "fr0");
1124 preempt_enable();
1125 return fprd;
1126 }
1127
dp_to_sp(u64 fprd)1128 static inline u32 dp_to_sp(u64 fprd)
1129 {
1130 u32 fprs;
1131
1132 preempt_disable();
1133 enable_kernel_fp();
1134 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1135 : "fr0");
1136 preempt_enable();
1137 return fprs;
1138 }
1139
1140 #else
1141 #define sp_to_dp(x) (x)
1142 #define dp_to_sp(x) (x)
1143 #endif /* CONFIG_PPC_FPU */
1144
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu)1145 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1146 {
1147 struct kvm_run *run = vcpu->run;
1148 u64 gpr;
1149
1150 if (run->mmio.len > sizeof(gpr))
1151 return;
1152
1153 if (!vcpu->arch.mmio_host_swabbed) {
1154 switch (run->mmio.len) {
1155 case 8: gpr = *(u64 *)run->mmio.data; break;
1156 case 4: gpr = *(u32 *)run->mmio.data; break;
1157 case 2: gpr = *(u16 *)run->mmio.data; break;
1158 case 1: gpr = *(u8 *)run->mmio.data; break;
1159 }
1160 } else {
1161 switch (run->mmio.len) {
1162 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1163 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1164 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1165 case 1: gpr = *(u8 *)run->mmio.data; break;
1166 }
1167 }
1168
1169 /* conversion between single and double precision */
1170 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1171 gpr = sp_to_dp(gpr);
1172
1173 if (vcpu->arch.mmio_sign_extend) {
1174 switch (run->mmio.len) {
1175 #ifdef CONFIG_PPC64
1176 case 4:
1177 gpr = (s64)(s32)gpr;
1178 break;
1179 #endif
1180 case 2:
1181 gpr = (s64)(s16)gpr;
1182 break;
1183 case 1:
1184 gpr = (s64)(s8)gpr;
1185 break;
1186 }
1187 }
1188
1189 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1190 case KVM_MMIO_REG_GPR:
1191 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1192 break;
1193 case KVM_MMIO_REG_FPR:
1194 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1195 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1196
1197 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1198 break;
1199 #ifdef CONFIG_PPC_BOOK3S
1200 case KVM_MMIO_REG_QPR:
1201 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1202 break;
1203 case KVM_MMIO_REG_FQPR:
1204 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1205 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1206 break;
1207 #endif
1208 #ifdef CONFIG_VSX
1209 case KVM_MMIO_REG_VSX:
1210 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1211 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1212
1213 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1214 kvmppc_set_vsr_dword(vcpu, gpr);
1215 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1216 kvmppc_set_vsr_word(vcpu, gpr);
1217 else if (vcpu->arch.mmio_copy_type ==
1218 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1219 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1220 else if (vcpu->arch.mmio_copy_type ==
1221 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1222 kvmppc_set_vsr_word_dump(vcpu, gpr);
1223 break;
1224 #endif
1225 #ifdef CONFIG_ALTIVEC
1226 case KVM_MMIO_REG_VMX:
1227 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1228 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1229
1230 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1231 kvmppc_set_vmx_dword(vcpu, gpr);
1232 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1233 kvmppc_set_vmx_word(vcpu, gpr);
1234 else if (vcpu->arch.mmio_copy_type ==
1235 KVMPPC_VMX_COPY_HWORD)
1236 kvmppc_set_vmx_hword(vcpu, gpr);
1237 else if (vcpu->arch.mmio_copy_type ==
1238 KVMPPC_VMX_COPY_BYTE)
1239 kvmppc_set_vmx_byte(vcpu, gpr);
1240 break;
1241 #endif
1242 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1243 case KVM_MMIO_REG_NESTED_GPR:
1244 if (kvmppc_need_byteswap(vcpu))
1245 gpr = swab64(gpr);
1246 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1247 sizeof(gpr));
1248 break;
1249 #endif
1250 default:
1251 BUG();
1252 }
1253 }
1254
__kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1255 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1256 unsigned int rt, unsigned int bytes,
1257 int is_default_endian, int sign_extend)
1258 {
1259 struct kvm_run *run = vcpu->run;
1260 int idx, ret;
1261 bool host_swabbed;
1262
1263 /* Pity C doesn't have a logical XOR operator */
1264 if (kvmppc_need_byteswap(vcpu)) {
1265 host_swabbed = is_default_endian;
1266 } else {
1267 host_swabbed = !is_default_endian;
1268 }
1269
1270 if (bytes > sizeof(run->mmio.data))
1271 return EMULATE_FAIL;
1272
1273 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1274 run->mmio.len = bytes;
1275 run->mmio.is_write = 0;
1276
1277 vcpu->arch.io_gpr = rt;
1278 vcpu->arch.mmio_host_swabbed = host_swabbed;
1279 vcpu->mmio_needed = 1;
1280 vcpu->mmio_is_write = 0;
1281 vcpu->arch.mmio_sign_extend = sign_extend;
1282
1283 idx = srcu_read_lock(&vcpu->kvm->srcu);
1284
1285 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1286 bytes, &run->mmio.data);
1287
1288 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1289
1290 if (!ret) {
1291 kvmppc_complete_mmio_load(vcpu);
1292 vcpu->mmio_needed = 0;
1293 return EMULATE_DONE;
1294 }
1295
1296 return EMULATE_DO_MMIO;
1297 }
1298
kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1299 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1300 unsigned int rt, unsigned int bytes,
1301 int is_default_endian)
1302 {
1303 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1304 }
1305 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1306
1307 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1308 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1309 unsigned int rt, unsigned int bytes,
1310 int is_default_endian)
1311 {
1312 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1313 }
1314
1315 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1316 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1317 unsigned int rt, unsigned int bytes,
1318 int is_default_endian, int mmio_sign_extend)
1319 {
1320 enum emulation_result emulated = EMULATE_DONE;
1321
1322 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1323 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1324 return EMULATE_FAIL;
1325
1326 while (vcpu->arch.mmio_vsx_copy_nums) {
1327 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1328 is_default_endian, mmio_sign_extend);
1329
1330 if (emulated != EMULATE_DONE)
1331 break;
1332
1333 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1334
1335 vcpu->arch.mmio_vsx_copy_nums--;
1336 vcpu->arch.mmio_vsx_offset++;
1337 }
1338 return emulated;
1339 }
1340 #endif /* CONFIG_VSX */
1341
kvmppc_handle_store(struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1342 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1343 u64 val, unsigned int bytes, int is_default_endian)
1344 {
1345 struct kvm_run *run = vcpu->run;
1346 void *data = run->mmio.data;
1347 int idx, ret;
1348 bool host_swabbed;
1349
1350 /* Pity C doesn't have a logical XOR operator */
1351 if (kvmppc_need_byteswap(vcpu)) {
1352 host_swabbed = is_default_endian;
1353 } else {
1354 host_swabbed = !is_default_endian;
1355 }
1356
1357 if (bytes > sizeof(run->mmio.data))
1358 return EMULATE_FAIL;
1359
1360 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1361 run->mmio.len = bytes;
1362 run->mmio.is_write = 1;
1363 vcpu->mmio_needed = 1;
1364 vcpu->mmio_is_write = 1;
1365
1366 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1367 val = dp_to_sp(val);
1368
1369 /* Store the value at the lowest bytes in 'data'. */
1370 if (!host_swabbed) {
1371 switch (bytes) {
1372 case 8: *(u64 *)data = val; break;
1373 case 4: *(u32 *)data = val; break;
1374 case 2: *(u16 *)data = val; break;
1375 case 1: *(u8 *)data = val; break;
1376 }
1377 } else {
1378 switch (bytes) {
1379 case 8: *(u64 *)data = swab64(val); break;
1380 case 4: *(u32 *)data = swab32(val); break;
1381 case 2: *(u16 *)data = swab16(val); break;
1382 case 1: *(u8 *)data = val; break;
1383 }
1384 }
1385
1386 idx = srcu_read_lock(&vcpu->kvm->srcu);
1387
1388 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1389 bytes, &run->mmio.data);
1390
1391 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1392
1393 if (!ret) {
1394 vcpu->mmio_needed = 0;
1395 return EMULATE_DONE;
1396 }
1397
1398 return EMULATE_DO_MMIO;
1399 }
1400 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1401
1402 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1403 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1404 {
1405 u32 dword_offset, word_offset;
1406 union kvmppc_one_reg reg;
1407 int vsx_offset = 0;
1408 int copy_type = vcpu->arch.mmio_copy_type;
1409 int result = 0;
1410
1411 switch (copy_type) {
1412 case KVMPPC_VSX_COPY_DWORD:
1413 vsx_offset =
1414 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1415
1416 if (vsx_offset == -1) {
1417 result = -1;
1418 break;
1419 }
1420
1421 if (rs < 32) {
1422 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1423 } else {
1424 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1425 *val = reg.vsxval[vsx_offset];
1426 }
1427 break;
1428
1429 case KVMPPC_VSX_COPY_WORD:
1430 vsx_offset =
1431 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1432
1433 if (vsx_offset == -1) {
1434 result = -1;
1435 break;
1436 }
1437
1438 if (rs < 32) {
1439 dword_offset = vsx_offset / 2;
1440 word_offset = vsx_offset % 2;
1441 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1442 *val = reg.vsx32val[word_offset];
1443 } else {
1444 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1445 *val = reg.vsx32val[vsx_offset];
1446 }
1447 break;
1448
1449 default:
1450 result = -1;
1451 break;
1452 }
1453
1454 return result;
1455 }
1456
kvmppc_handle_vsx_store(struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1457 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1458 int rs, unsigned int bytes, int is_default_endian)
1459 {
1460 u64 val;
1461 enum emulation_result emulated = EMULATE_DONE;
1462
1463 vcpu->arch.io_gpr = rs;
1464
1465 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1466 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1467 return EMULATE_FAIL;
1468
1469 while (vcpu->arch.mmio_vsx_copy_nums) {
1470 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1471 return EMULATE_FAIL;
1472
1473 emulated = kvmppc_handle_store(vcpu,
1474 val, bytes, is_default_endian);
1475
1476 if (emulated != EMULATE_DONE)
1477 break;
1478
1479 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1480
1481 vcpu->arch.mmio_vsx_copy_nums--;
1482 vcpu->arch.mmio_vsx_offset++;
1483 }
1484
1485 return emulated;
1486 }
1487
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu)1488 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1489 {
1490 struct kvm_run *run = vcpu->run;
1491 enum emulation_result emulated = EMULATE_FAIL;
1492 int r;
1493
1494 vcpu->arch.paddr_accessed += run->mmio.len;
1495
1496 if (!vcpu->mmio_is_write) {
1497 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1498 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1499 } else {
1500 emulated = kvmppc_handle_vsx_store(vcpu,
1501 vcpu->arch.io_gpr, run->mmio.len, 1);
1502 }
1503
1504 switch (emulated) {
1505 case EMULATE_DO_MMIO:
1506 run->exit_reason = KVM_EXIT_MMIO;
1507 r = RESUME_HOST;
1508 break;
1509 case EMULATE_FAIL:
1510 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1511 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1512 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1513 r = RESUME_HOST;
1514 break;
1515 default:
1516 r = RESUME_GUEST;
1517 break;
1518 }
1519 return r;
1520 }
1521 #endif /* CONFIG_VSX */
1522
1523 #ifdef CONFIG_ALTIVEC
kvmppc_handle_vmx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1524 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1525 unsigned int rt, unsigned int bytes, int is_default_endian)
1526 {
1527 enum emulation_result emulated = EMULATE_DONE;
1528
1529 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1530 return EMULATE_FAIL;
1531
1532 while (vcpu->arch.mmio_vmx_copy_nums) {
1533 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1534 is_default_endian, 0);
1535
1536 if (emulated != EMULATE_DONE)
1537 break;
1538
1539 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1540 vcpu->arch.mmio_vmx_copy_nums--;
1541 vcpu->arch.mmio_vmx_offset++;
1542 }
1543
1544 return emulated;
1545 }
1546
kvmppc_get_vmx_dword(struct kvm_vcpu * vcpu,int index,u64 * val)1547 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1548 {
1549 union kvmppc_one_reg reg;
1550 int vmx_offset = 0;
1551 int result = 0;
1552
1553 vmx_offset =
1554 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1555
1556 if (vmx_offset == -1)
1557 return -1;
1558
1559 reg.vval = VCPU_VSX_VR(vcpu, index);
1560 *val = reg.vsxval[vmx_offset];
1561
1562 return result;
1563 }
1564
kvmppc_get_vmx_word(struct kvm_vcpu * vcpu,int index,u64 * val)1565 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1566 {
1567 union kvmppc_one_reg reg;
1568 int vmx_offset = 0;
1569 int result = 0;
1570
1571 vmx_offset =
1572 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1573
1574 if (vmx_offset == -1)
1575 return -1;
1576
1577 reg.vval = VCPU_VSX_VR(vcpu, index);
1578 *val = reg.vsx32val[vmx_offset];
1579
1580 return result;
1581 }
1582
kvmppc_get_vmx_hword(struct kvm_vcpu * vcpu,int index,u64 * val)1583 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1584 {
1585 union kvmppc_one_reg reg;
1586 int vmx_offset = 0;
1587 int result = 0;
1588
1589 vmx_offset =
1590 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1591
1592 if (vmx_offset == -1)
1593 return -1;
1594
1595 reg.vval = VCPU_VSX_VR(vcpu, index);
1596 *val = reg.vsx16val[vmx_offset];
1597
1598 return result;
1599 }
1600
kvmppc_get_vmx_byte(struct kvm_vcpu * vcpu,int index,u64 * val)1601 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1602 {
1603 union kvmppc_one_reg reg;
1604 int vmx_offset = 0;
1605 int result = 0;
1606
1607 vmx_offset =
1608 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1609
1610 if (vmx_offset == -1)
1611 return -1;
1612
1613 reg.vval = VCPU_VSX_VR(vcpu, index);
1614 *val = reg.vsx8val[vmx_offset];
1615
1616 return result;
1617 }
1618
kvmppc_handle_vmx_store(struct kvm_vcpu * vcpu,unsigned int rs,unsigned int bytes,int is_default_endian)1619 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1620 unsigned int rs, unsigned int bytes, int is_default_endian)
1621 {
1622 u64 val = 0;
1623 unsigned int index = rs & KVM_MMIO_REG_MASK;
1624 enum emulation_result emulated = EMULATE_DONE;
1625
1626 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1627 return EMULATE_FAIL;
1628
1629 vcpu->arch.io_gpr = rs;
1630
1631 while (vcpu->arch.mmio_vmx_copy_nums) {
1632 switch (vcpu->arch.mmio_copy_type) {
1633 case KVMPPC_VMX_COPY_DWORD:
1634 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1635 return EMULATE_FAIL;
1636
1637 break;
1638 case KVMPPC_VMX_COPY_WORD:
1639 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1640 return EMULATE_FAIL;
1641 break;
1642 case KVMPPC_VMX_COPY_HWORD:
1643 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1644 return EMULATE_FAIL;
1645 break;
1646 case KVMPPC_VMX_COPY_BYTE:
1647 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1648 return EMULATE_FAIL;
1649 break;
1650 default:
1651 return EMULATE_FAIL;
1652 }
1653
1654 emulated = kvmppc_handle_store(vcpu, val, bytes,
1655 is_default_endian);
1656 if (emulated != EMULATE_DONE)
1657 break;
1658
1659 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1660 vcpu->arch.mmio_vmx_copy_nums--;
1661 vcpu->arch.mmio_vmx_offset++;
1662 }
1663
1664 return emulated;
1665 }
1666
kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu * vcpu)1667 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1668 {
1669 struct kvm_run *run = vcpu->run;
1670 enum emulation_result emulated = EMULATE_FAIL;
1671 int r;
1672
1673 vcpu->arch.paddr_accessed += run->mmio.len;
1674
1675 if (!vcpu->mmio_is_write) {
1676 emulated = kvmppc_handle_vmx_load(vcpu,
1677 vcpu->arch.io_gpr, run->mmio.len, 1);
1678 } else {
1679 emulated = kvmppc_handle_vmx_store(vcpu,
1680 vcpu->arch.io_gpr, run->mmio.len, 1);
1681 }
1682
1683 switch (emulated) {
1684 case EMULATE_DO_MMIO:
1685 run->exit_reason = KVM_EXIT_MMIO;
1686 r = RESUME_HOST;
1687 break;
1688 case EMULATE_FAIL:
1689 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1690 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1691 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1692 r = RESUME_HOST;
1693 break;
1694 default:
1695 r = RESUME_GUEST;
1696 break;
1697 }
1698 return r;
1699 }
1700 #endif /* CONFIG_ALTIVEC */
1701
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1702 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1703 {
1704 int r = 0;
1705 union kvmppc_one_reg val;
1706 int size;
1707
1708 size = one_reg_size(reg->id);
1709 if (size > sizeof(val))
1710 return -EINVAL;
1711
1712 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1713 if (r == -EINVAL) {
1714 r = 0;
1715 switch (reg->id) {
1716 #ifdef CONFIG_ALTIVEC
1717 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1718 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1719 r = -ENXIO;
1720 break;
1721 }
1722 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1723 break;
1724 case KVM_REG_PPC_VSCR:
1725 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1726 r = -ENXIO;
1727 break;
1728 }
1729 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1730 break;
1731 case KVM_REG_PPC_VRSAVE:
1732 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1733 break;
1734 #endif /* CONFIG_ALTIVEC */
1735 default:
1736 r = -EINVAL;
1737 break;
1738 }
1739 }
1740
1741 if (r)
1742 return r;
1743
1744 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1745 r = -EFAULT;
1746
1747 return r;
1748 }
1749
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1750 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1751 {
1752 int r;
1753 union kvmppc_one_reg val;
1754 int size;
1755
1756 size = one_reg_size(reg->id);
1757 if (size > sizeof(val))
1758 return -EINVAL;
1759
1760 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1761 return -EFAULT;
1762
1763 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1764 if (r == -EINVAL) {
1765 r = 0;
1766 switch (reg->id) {
1767 #ifdef CONFIG_ALTIVEC
1768 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1769 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1770 r = -ENXIO;
1771 break;
1772 }
1773 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1774 break;
1775 case KVM_REG_PPC_VSCR:
1776 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1777 r = -ENXIO;
1778 break;
1779 }
1780 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1781 break;
1782 case KVM_REG_PPC_VRSAVE:
1783 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1784 r = -ENXIO;
1785 break;
1786 }
1787 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1788 break;
1789 #endif /* CONFIG_ALTIVEC */
1790 default:
1791 r = -EINVAL;
1792 break;
1793 }
1794 }
1795
1796 return r;
1797 }
1798
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1799 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1800 {
1801 struct kvm_run *run = vcpu->run;
1802 int r;
1803
1804 vcpu_load(vcpu);
1805
1806 if (vcpu->mmio_needed) {
1807 vcpu->mmio_needed = 0;
1808 if (!vcpu->mmio_is_write)
1809 kvmppc_complete_mmio_load(vcpu);
1810 #ifdef CONFIG_VSX
1811 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1812 vcpu->arch.mmio_vsx_copy_nums--;
1813 vcpu->arch.mmio_vsx_offset++;
1814 }
1815
1816 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1817 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1818 if (r == RESUME_HOST) {
1819 vcpu->mmio_needed = 1;
1820 goto out;
1821 }
1822 }
1823 #endif
1824 #ifdef CONFIG_ALTIVEC
1825 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1826 vcpu->arch.mmio_vmx_copy_nums--;
1827 vcpu->arch.mmio_vmx_offset++;
1828 }
1829
1830 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1831 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1832 if (r == RESUME_HOST) {
1833 vcpu->mmio_needed = 1;
1834 goto out;
1835 }
1836 }
1837 #endif
1838 } else if (vcpu->arch.osi_needed) {
1839 u64 *gprs = run->osi.gprs;
1840 int i;
1841
1842 for (i = 0; i < 32; i++)
1843 kvmppc_set_gpr(vcpu, i, gprs[i]);
1844 vcpu->arch.osi_needed = 0;
1845 } else if (vcpu->arch.hcall_needed) {
1846 int i;
1847
1848 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1849 for (i = 0; i < 9; ++i)
1850 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1851 vcpu->arch.hcall_needed = 0;
1852 #ifdef CONFIG_BOOKE
1853 } else if (vcpu->arch.epr_needed) {
1854 kvmppc_set_epr(vcpu, run->epr.epr);
1855 vcpu->arch.epr_needed = 0;
1856 #endif
1857 }
1858
1859 kvm_sigset_activate(vcpu);
1860
1861 if (run->immediate_exit)
1862 r = -EINTR;
1863 else
1864 r = kvmppc_vcpu_run(vcpu);
1865
1866 kvm_sigset_deactivate(vcpu);
1867
1868 #ifdef CONFIG_ALTIVEC
1869 out:
1870 #endif
1871
1872 /*
1873 * We're already returning to userspace, don't pass the
1874 * RESUME_HOST flags along.
1875 */
1876 if (r > 0)
1877 r = 0;
1878
1879 vcpu_put(vcpu);
1880 return r;
1881 }
1882
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1883 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1884 {
1885 if (irq->irq == KVM_INTERRUPT_UNSET) {
1886 kvmppc_core_dequeue_external(vcpu);
1887 return 0;
1888 }
1889
1890 kvmppc_core_queue_external(vcpu, irq);
1891
1892 kvm_vcpu_kick(vcpu);
1893
1894 return 0;
1895 }
1896
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1897 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1898 struct kvm_enable_cap *cap)
1899 {
1900 int r;
1901
1902 if (cap->flags)
1903 return -EINVAL;
1904
1905 switch (cap->cap) {
1906 case KVM_CAP_PPC_OSI:
1907 r = 0;
1908 vcpu->arch.osi_enabled = true;
1909 break;
1910 case KVM_CAP_PPC_PAPR:
1911 r = 0;
1912 vcpu->arch.papr_enabled = true;
1913 break;
1914 case KVM_CAP_PPC_EPR:
1915 r = 0;
1916 if (cap->args[0])
1917 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1918 else
1919 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1920 break;
1921 #ifdef CONFIG_BOOKE
1922 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1923 r = 0;
1924 vcpu->arch.watchdog_enabled = true;
1925 break;
1926 #endif
1927 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1928 case KVM_CAP_SW_TLB: {
1929 struct kvm_config_tlb cfg;
1930 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1931
1932 r = -EFAULT;
1933 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1934 break;
1935
1936 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1937 break;
1938 }
1939 #endif
1940 #ifdef CONFIG_KVM_MPIC
1941 case KVM_CAP_IRQ_MPIC: {
1942 struct fd f;
1943 struct kvm_device *dev;
1944
1945 r = -EBADF;
1946 f = fdget(cap->args[0]);
1947 if (!f.file)
1948 break;
1949
1950 r = -EPERM;
1951 dev = kvm_device_from_filp(f.file);
1952 if (dev)
1953 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1954
1955 fdput(f);
1956 break;
1957 }
1958 #endif
1959 #ifdef CONFIG_KVM_XICS
1960 case KVM_CAP_IRQ_XICS: {
1961 struct fd f;
1962 struct kvm_device *dev;
1963
1964 r = -EBADF;
1965 f = fdget(cap->args[0]);
1966 if (!f.file)
1967 break;
1968
1969 r = -EPERM;
1970 dev = kvm_device_from_filp(f.file);
1971 if (dev) {
1972 if (xics_on_xive())
1973 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1974 else
1975 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1976 }
1977
1978 fdput(f);
1979 break;
1980 }
1981 #endif /* CONFIG_KVM_XICS */
1982 #ifdef CONFIG_KVM_XIVE
1983 case KVM_CAP_PPC_IRQ_XIVE: {
1984 struct fd f;
1985 struct kvm_device *dev;
1986
1987 r = -EBADF;
1988 f = fdget(cap->args[0]);
1989 if (!f.file)
1990 break;
1991
1992 r = -ENXIO;
1993 if (!xive_enabled()) {
1994 fdput(f);
1995 break;
1996 }
1997
1998 r = -EPERM;
1999 dev = kvm_device_from_filp(f.file);
2000 if (dev)
2001 r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
2002 cap->args[1]);
2003
2004 fdput(f);
2005 break;
2006 }
2007 #endif /* CONFIG_KVM_XIVE */
2008 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2009 case KVM_CAP_PPC_FWNMI:
2010 r = -EINVAL;
2011 if (!is_kvmppc_hv_enabled(vcpu->kvm))
2012 break;
2013 r = 0;
2014 vcpu->kvm->arch.fwnmi_enabled = true;
2015 break;
2016 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2017 default:
2018 r = -EINVAL;
2019 break;
2020 }
2021
2022 if (!r)
2023 r = kvmppc_sanity_check(vcpu);
2024
2025 return r;
2026 }
2027
kvm_arch_intc_initialized(struct kvm * kvm)2028 bool kvm_arch_intc_initialized(struct kvm *kvm)
2029 {
2030 #ifdef CONFIG_KVM_MPIC
2031 if (kvm->arch.mpic)
2032 return true;
2033 #endif
2034 #ifdef CONFIG_KVM_XICS
2035 if (kvm->arch.xics || kvm->arch.xive)
2036 return true;
2037 #endif
2038 return false;
2039 }
2040
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2041 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2042 struct kvm_mp_state *mp_state)
2043 {
2044 return -EINVAL;
2045 }
2046
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2047 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2048 struct kvm_mp_state *mp_state)
2049 {
2050 return -EINVAL;
2051 }
2052
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2053 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2054 unsigned int ioctl, unsigned long arg)
2055 {
2056 struct kvm_vcpu *vcpu = filp->private_data;
2057 void __user *argp = (void __user *)arg;
2058
2059 if (ioctl == KVM_INTERRUPT) {
2060 struct kvm_interrupt irq;
2061 if (copy_from_user(&irq, argp, sizeof(irq)))
2062 return -EFAULT;
2063 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2064 }
2065 return -ENOIOCTLCMD;
2066 }
2067
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2068 long kvm_arch_vcpu_ioctl(struct file *filp,
2069 unsigned int ioctl, unsigned long arg)
2070 {
2071 struct kvm_vcpu *vcpu = filp->private_data;
2072 void __user *argp = (void __user *)arg;
2073 long r;
2074
2075 switch (ioctl) {
2076 case KVM_ENABLE_CAP:
2077 {
2078 struct kvm_enable_cap cap;
2079 r = -EFAULT;
2080 if (copy_from_user(&cap, argp, sizeof(cap)))
2081 goto out;
2082 vcpu_load(vcpu);
2083 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2084 vcpu_put(vcpu);
2085 break;
2086 }
2087
2088 case KVM_SET_ONE_REG:
2089 case KVM_GET_ONE_REG:
2090 {
2091 struct kvm_one_reg reg;
2092 r = -EFAULT;
2093 if (copy_from_user(®, argp, sizeof(reg)))
2094 goto out;
2095 if (ioctl == KVM_SET_ONE_REG)
2096 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
2097 else
2098 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
2099 break;
2100 }
2101
2102 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2103 case KVM_DIRTY_TLB: {
2104 struct kvm_dirty_tlb dirty;
2105 r = -EFAULT;
2106 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2107 goto out;
2108 vcpu_load(vcpu);
2109 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2110 vcpu_put(vcpu);
2111 break;
2112 }
2113 #endif
2114 default:
2115 r = -EINVAL;
2116 }
2117
2118 out:
2119 return r;
2120 }
2121
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)2122 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2123 {
2124 return VM_FAULT_SIGBUS;
2125 }
2126
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)2127 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2128 {
2129 u32 inst_nop = 0x60000000;
2130 #ifdef CONFIG_KVM_BOOKE_HV
2131 u32 inst_sc1 = 0x44000022;
2132 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2133 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2134 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2135 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2136 #else
2137 u32 inst_lis = 0x3c000000;
2138 u32 inst_ori = 0x60000000;
2139 u32 inst_sc = 0x44000002;
2140 u32 inst_imm_mask = 0xffff;
2141
2142 /*
2143 * The hypercall to get into KVM from within guest context is as
2144 * follows:
2145 *
2146 * lis r0, r0, KVM_SC_MAGIC_R0@h
2147 * ori r0, KVM_SC_MAGIC_R0@l
2148 * sc
2149 * nop
2150 */
2151 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2152 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2153 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2154 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2155 #endif
2156
2157 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2158
2159 return 0;
2160 }
2161
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2162 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2163 {
2164 int ret = 0;
2165
2166 #ifdef CONFIG_KVM_MPIC
2167 ret = ret || (kvm->arch.mpic != NULL);
2168 #endif
2169 #ifdef CONFIG_KVM_XICS
2170 ret = ret || (kvm->arch.xics != NULL);
2171 ret = ret || (kvm->arch.xive != NULL);
2172 #endif
2173 smp_rmb();
2174 return ret;
2175 }
2176
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)2177 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2178 bool line_status)
2179 {
2180 if (!kvm_arch_irqchip_in_kernel(kvm))
2181 return -ENXIO;
2182
2183 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2184 irq_event->irq, irq_event->level,
2185 line_status);
2186 return 0;
2187 }
2188
2189
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)2190 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2191 struct kvm_enable_cap *cap)
2192 {
2193 int r;
2194
2195 if (cap->flags)
2196 return -EINVAL;
2197
2198 switch (cap->cap) {
2199 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2200 case KVM_CAP_PPC_ENABLE_HCALL: {
2201 unsigned long hcall = cap->args[0];
2202
2203 r = -EINVAL;
2204 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2205 cap->args[1] > 1)
2206 break;
2207 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2208 break;
2209 if (cap->args[1])
2210 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2211 else
2212 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2213 r = 0;
2214 break;
2215 }
2216 case KVM_CAP_PPC_SMT: {
2217 unsigned long mode = cap->args[0];
2218 unsigned long flags = cap->args[1];
2219
2220 r = -EINVAL;
2221 if (kvm->arch.kvm_ops->set_smt_mode)
2222 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2223 break;
2224 }
2225
2226 case KVM_CAP_PPC_NESTED_HV:
2227 r = -EINVAL;
2228 if (!is_kvmppc_hv_enabled(kvm) ||
2229 !kvm->arch.kvm_ops->enable_nested)
2230 break;
2231 r = kvm->arch.kvm_ops->enable_nested(kvm);
2232 break;
2233 #endif
2234 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2235 case KVM_CAP_PPC_SECURE_GUEST:
2236 r = -EINVAL;
2237 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2238 break;
2239 r = kvm->arch.kvm_ops->enable_svm(kvm);
2240 break;
2241 case KVM_CAP_PPC_DAWR1:
2242 r = -EINVAL;
2243 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2244 break;
2245 r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2246 break;
2247 #endif
2248 default:
2249 r = -EINVAL;
2250 break;
2251 }
2252
2253 return r;
2254 }
2255
2256 #ifdef CONFIG_PPC_BOOK3S_64
2257 /*
2258 * These functions check whether the underlying hardware is safe
2259 * against attacks based on observing the effects of speculatively
2260 * executed instructions, and whether it supplies instructions for
2261 * use in workarounds. The information comes from firmware, either
2262 * via the device tree on powernv platforms or from an hcall on
2263 * pseries platforms.
2264 */
2265 #ifdef CONFIG_PPC_PSERIES
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2266 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2267 {
2268 struct h_cpu_char_result c;
2269 unsigned long rc;
2270
2271 if (!machine_is(pseries))
2272 return -ENOTTY;
2273
2274 rc = plpar_get_cpu_characteristics(&c);
2275 if (rc == H_SUCCESS) {
2276 cp->character = c.character;
2277 cp->behaviour = c.behaviour;
2278 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2279 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2280 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2281 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2282 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2283 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2284 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2285 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2286 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2287 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2288 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2289 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2290 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2291 }
2292 return 0;
2293 }
2294 #else
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2295 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2296 {
2297 return -ENOTTY;
2298 }
2299 #endif
2300
have_fw_feat(struct device_node * fw_features,const char * state,const char * name)2301 static inline bool have_fw_feat(struct device_node *fw_features,
2302 const char *state, const char *name)
2303 {
2304 struct device_node *np;
2305 bool r = false;
2306
2307 np = of_get_child_by_name(fw_features, name);
2308 if (np) {
2309 r = of_property_read_bool(np, state);
2310 of_node_put(np);
2311 }
2312 return r;
2313 }
2314
kvmppc_get_cpu_char(struct kvm_ppc_cpu_char * cp)2315 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2316 {
2317 struct device_node *np, *fw_features;
2318 int r;
2319
2320 memset(cp, 0, sizeof(*cp));
2321 r = pseries_get_cpu_char(cp);
2322 if (r != -ENOTTY)
2323 return r;
2324
2325 np = of_find_node_by_name(NULL, "ibm,opal");
2326 if (np) {
2327 fw_features = of_get_child_by_name(np, "fw-features");
2328 of_node_put(np);
2329 if (!fw_features)
2330 return 0;
2331 if (have_fw_feat(fw_features, "enabled",
2332 "inst-spec-barrier-ori31,31,0"))
2333 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2334 if (have_fw_feat(fw_features, "enabled",
2335 "fw-bcctrl-serialized"))
2336 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2337 if (have_fw_feat(fw_features, "enabled",
2338 "inst-l1d-flush-ori30,30,0"))
2339 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2340 if (have_fw_feat(fw_features, "enabled",
2341 "inst-l1d-flush-trig2"))
2342 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2343 if (have_fw_feat(fw_features, "enabled",
2344 "fw-l1d-thread-split"))
2345 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2346 if (have_fw_feat(fw_features, "enabled",
2347 "fw-count-cache-disabled"))
2348 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2349 if (have_fw_feat(fw_features, "enabled",
2350 "fw-count-cache-flush-bcctr2,0,0"))
2351 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2352 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2353 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2354 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2355 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2356 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2357 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2358 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2359
2360 if (have_fw_feat(fw_features, "enabled",
2361 "speculation-policy-favor-security"))
2362 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2363 if (!have_fw_feat(fw_features, "disabled",
2364 "needs-l1d-flush-msr-pr-0-to-1"))
2365 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2366 if (!have_fw_feat(fw_features, "disabled",
2367 "needs-spec-barrier-for-bound-checks"))
2368 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2369 if (have_fw_feat(fw_features, "enabled",
2370 "needs-count-cache-flush-on-context-switch"))
2371 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2372 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2373 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2374 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2375 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2376
2377 of_node_put(fw_features);
2378 }
2379
2380 return 0;
2381 }
2382 #endif
2383
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2384 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2385 {
2386 struct kvm *kvm __maybe_unused = filp->private_data;
2387 void __user *argp = (void __user *)arg;
2388 int r;
2389
2390 switch (ioctl) {
2391 case KVM_PPC_GET_PVINFO: {
2392 struct kvm_ppc_pvinfo pvinfo;
2393 memset(&pvinfo, 0, sizeof(pvinfo));
2394 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2395 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2396 r = -EFAULT;
2397 goto out;
2398 }
2399
2400 break;
2401 }
2402 #ifdef CONFIG_SPAPR_TCE_IOMMU
2403 case KVM_CREATE_SPAPR_TCE_64: {
2404 struct kvm_create_spapr_tce_64 create_tce_64;
2405
2406 r = -EFAULT;
2407 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2408 goto out;
2409 if (create_tce_64.flags) {
2410 r = -EINVAL;
2411 goto out;
2412 }
2413 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2414 goto out;
2415 }
2416 case KVM_CREATE_SPAPR_TCE: {
2417 struct kvm_create_spapr_tce create_tce;
2418 struct kvm_create_spapr_tce_64 create_tce_64;
2419
2420 r = -EFAULT;
2421 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2422 goto out;
2423
2424 create_tce_64.liobn = create_tce.liobn;
2425 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2426 create_tce_64.offset = 0;
2427 create_tce_64.size = create_tce.window_size >>
2428 IOMMU_PAGE_SHIFT_4K;
2429 create_tce_64.flags = 0;
2430 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2431 goto out;
2432 }
2433 #endif
2434 #ifdef CONFIG_PPC_BOOK3S_64
2435 case KVM_PPC_GET_SMMU_INFO: {
2436 struct kvm_ppc_smmu_info info;
2437 struct kvm *kvm = filp->private_data;
2438
2439 memset(&info, 0, sizeof(info));
2440 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2441 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2442 r = -EFAULT;
2443 break;
2444 }
2445 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2446 struct kvm *kvm = filp->private_data;
2447
2448 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2449 break;
2450 }
2451 case KVM_PPC_CONFIGURE_V3_MMU: {
2452 struct kvm *kvm = filp->private_data;
2453 struct kvm_ppc_mmuv3_cfg cfg;
2454
2455 r = -EINVAL;
2456 if (!kvm->arch.kvm_ops->configure_mmu)
2457 goto out;
2458 r = -EFAULT;
2459 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2460 goto out;
2461 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2462 break;
2463 }
2464 case KVM_PPC_GET_RMMU_INFO: {
2465 struct kvm *kvm = filp->private_data;
2466 struct kvm_ppc_rmmu_info info;
2467
2468 r = -EINVAL;
2469 if (!kvm->arch.kvm_ops->get_rmmu_info)
2470 goto out;
2471 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2472 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2473 r = -EFAULT;
2474 break;
2475 }
2476 case KVM_PPC_GET_CPU_CHAR: {
2477 struct kvm_ppc_cpu_char cpuchar;
2478
2479 r = kvmppc_get_cpu_char(&cpuchar);
2480 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2481 r = -EFAULT;
2482 break;
2483 }
2484 case KVM_PPC_SVM_OFF: {
2485 struct kvm *kvm = filp->private_data;
2486
2487 r = 0;
2488 if (!kvm->arch.kvm_ops->svm_off)
2489 goto out;
2490
2491 r = kvm->arch.kvm_ops->svm_off(kvm);
2492 break;
2493 }
2494 default: {
2495 struct kvm *kvm = filp->private_data;
2496 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2497 }
2498 #else /* CONFIG_PPC_BOOK3S_64 */
2499 default:
2500 r = -ENOTTY;
2501 #endif
2502 }
2503 out:
2504 return r;
2505 }
2506
2507 static DEFINE_IDA(lpid_inuse);
2508 static unsigned long nr_lpids;
2509
kvmppc_alloc_lpid(void)2510 long kvmppc_alloc_lpid(void)
2511 {
2512 int lpid;
2513
2514 /* The host LPID must always be 0 (allocation starts at 1) */
2515 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
2516 if (lpid < 0) {
2517 if (lpid == -ENOMEM)
2518 pr_err("%s: Out of memory\n", __func__);
2519 else
2520 pr_err("%s: No LPIDs free\n", __func__);
2521 return -ENOMEM;
2522 }
2523
2524 return lpid;
2525 }
2526 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2527
kvmppc_free_lpid(long lpid)2528 void kvmppc_free_lpid(long lpid)
2529 {
2530 ida_free(&lpid_inuse, lpid);
2531 }
2532 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2533
2534 /* nr_lpids_param includes the host LPID */
kvmppc_init_lpid(unsigned long nr_lpids_param)2535 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2536 {
2537 nr_lpids = nr_lpids_param;
2538 }
2539 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2540
2541 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2542
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2543 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2544 {
2545 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2546 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2547 }
2548
kvm_arch_create_vm_debugfs(struct kvm * kvm)2549 int kvm_arch_create_vm_debugfs(struct kvm *kvm)
2550 {
2551 if (kvm->arch.kvm_ops->create_vm_debugfs)
2552 kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2553 return 0;
2554 }
2555