xref: /openbmc/linux/arch/powerpc/kvm/mpic.c (revision d2999e1b)
1 /*
2  * OpenPIC emulation
3  *
4  * Copyright (c) 2004 Jocelyn Mayer
5  *               2011 Alexander Graf
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/mutex.h>
28 #include <linux/kvm_host.h>
29 #include <linux/errno.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <asm/uaccess.h>
33 #include <asm/mpic.h>
34 #include <asm/kvm_para.h>
35 #include <asm/kvm_host.h>
36 #include <asm/kvm_ppc.h>
37 #include "iodev.h"
38 
39 #define MAX_CPU     32
40 #define MAX_SRC     256
41 #define MAX_TMR     4
42 #define MAX_IPI     4
43 #define MAX_MSI     8
44 #define MAX_IRQ     (MAX_SRC + MAX_IPI + MAX_TMR)
45 #define VID         0x03	/* MPIC version ID */
46 
47 /* OpenPIC capability flags */
48 #define OPENPIC_FLAG_IDR_CRIT     (1 << 0)
49 #define OPENPIC_FLAG_ILR          (2 << 0)
50 
51 /* OpenPIC address map */
52 #define OPENPIC_REG_SIZE             0x40000
53 #define OPENPIC_GLB_REG_START        0x0
54 #define OPENPIC_GLB_REG_SIZE         0x10F0
55 #define OPENPIC_TMR_REG_START        0x10F0
56 #define OPENPIC_TMR_REG_SIZE         0x220
57 #define OPENPIC_MSI_REG_START        0x1600
58 #define OPENPIC_MSI_REG_SIZE         0x200
59 #define OPENPIC_SUMMARY_REG_START    0x3800
60 #define OPENPIC_SUMMARY_REG_SIZE     0x800
61 #define OPENPIC_SRC_REG_START        0x10000
62 #define OPENPIC_SRC_REG_SIZE         (MAX_SRC * 0x20)
63 #define OPENPIC_CPU_REG_START        0x20000
64 #define OPENPIC_CPU_REG_SIZE         (0x100 + ((MAX_CPU - 1) * 0x1000))
65 
66 struct fsl_mpic_info {
67 	int max_ext;
68 };
69 
70 static struct fsl_mpic_info fsl_mpic_20 = {
71 	.max_ext = 12,
72 };
73 
74 static struct fsl_mpic_info fsl_mpic_42 = {
75 	.max_ext = 12,
76 };
77 
78 #define FRR_NIRQ_SHIFT    16
79 #define FRR_NCPU_SHIFT     8
80 #define FRR_VID_SHIFT      0
81 
82 #define VID_REVISION_1_2   2
83 #define VID_REVISION_1_3   3
84 
85 #define VIR_GENERIC      0x00000000	/* Generic Vendor ID */
86 
87 #define GCR_RESET        0x80000000
88 #define GCR_MODE_PASS    0x00000000
89 #define GCR_MODE_MIXED   0x20000000
90 #define GCR_MODE_PROXY   0x60000000
91 
92 #define TBCR_CI           0x80000000	/* count inhibit */
93 #define TCCR_TOG          0x80000000	/* toggles when decrement to zero */
94 
95 #define IDR_EP_SHIFT      31
96 #define IDR_EP_MASK       (1 << IDR_EP_SHIFT)
97 #define IDR_CI0_SHIFT     30
98 #define IDR_CI1_SHIFT     29
99 #define IDR_P1_SHIFT      1
100 #define IDR_P0_SHIFT      0
101 
102 #define ILR_INTTGT_MASK   0x000000ff
103 #define ILR_INTTGT_INT    0x00
104 #define ILR_INTTGT_CINT   0x01	/* critical */
105 #define ILR_INTTGT_MCP    0x02	/* machine check */
106 #define NUM_OUTPUTS       3
107 
108 #define MSIIR_OFFSET       0x140
109 #define MSIIR_SRS_SHIFT    29
110 #define MSIIR_SRS_MASK     (0x7 << MSIIR_SRS_SHIFT)
111 #define MSIIR_IBS_SHIFT    24
112 #define MSIIR_IBS_MASK     (0x1f << MSIIR_IBS_SHIFT)
113 
114 static int get_current_cpu(void)
115 {
116 #if defined(CONFIG_KVM) && defined(CONFIG_BOOKE)
117 	struct kvm_vcpu *vcpu = current->thread.kvm_vcpu;
118 	return vcpu ? vcpu->arch.irq_cpu_id : -1;
119 #else
120 	/* XXX */
121 	return -1;
122 #endif
123 }
124 
125 static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
126 				      u32 val, int idx);
127 static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
128 				     u32 *ptr, int idx);
129 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
130 				    uint32_t val);
131 
132 enum irq_type {
133 	IRQ_TYPE_NORMAL = 0,
134 	IRQ_TYPE_FSLINT,	/* FSL internal interrupt -- level only */
135 	IRQ_TYPE_FSLSPECIAL,	/* FSL timer/IPI interrupt, edge, no polarity */
136 };
137 
138 struct irq_queue {
139 	/* Round up to the nearest 64 IRQs so that the queue length
140 	 * won't change when moving between 32 and 64 bit hosts.
141 	 */
142 	unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)];
143 	int next;
144 	int priority;
145 };
146 
147 struct irq_source {
148 	uint32_t ivpr;		/* IRQ vector/priority register */
149 	uint32_t idr;		/* IRQ destination register */
150 	uint32_t destmask;	/* bitmap of CPU destinations */
151 	int last_cpu;
152 	int output;		/* IRQ level, e.g. ILR_INTTGT_INT */
153 	int pending;		/* TRUE if IRQ is pending */
154 	enum irq_type type;
155 	bool level:1;		/* level-triggered */
156 	bool nomask:1;	/* critical interrupts ignore mask on some FSL MPICs */
157 };
158 
159 #define IVPR_MASK_SHIFT       31
160 #define IVPR_MASK_MASK        (1 << IVPR_MASK_SHIFT)
161 #define IVPR_ACTIVITY_SHIFT   30
162 #define IVPR_ACTIVITY_MASK    (1 << IVPR_ACTIVITY_SHIFT)
163 #define IVPR_MODE_SHIFT       29
164 #define IVPR_MODE_MASK        (1 << IVPR_MODE_SHIFT)
165 #define IVPR_POLARITY_SHIFT   23
166 #define IVPR_POLARITY_MASK    (1 << IVPR_POLARITY_SHIFT)
167 #define IVPR_SENSE_SHIFT      22
168 #define IVPR_SENSE_MASK       (1 << IVPR_SENSE_SHIFT)
169 
170 #define IVPR_PRIORITY_MASK     (0xF << 16)
171 #define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16))
172 #define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask)
173 
174 /* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */
175 #define IDR_EP      0x80000000	/* external pin */
176 #define IDR_CI      0x40000000	/* critical interrupt */
177 
178 struct irq_dest {
179 	struct kvm_vcpu *vcpu;
180 
181 	int32_t ctpr;		/* CPU current task priority */
182 	struct irq_queue raised;
183 	struct irq_queue servicing;
184 
185 	/* Count of IRQ sources asserting on non-INT outputs */
186 	uint32_t outputs_active[NUM_OUTPUTS];
187 };
188 
189 #define MAX_MMIO_REGIONS 10
190 
191 struct openpic {
192 	struct kvm *kvm;
193 	struct kvm_device *dev;
194 	struct kvm_io_device mmio;
195 	const struct mem_reg *mmio_regions[MAX_MMIO_REGIONS];
196 	int num_mmio_regions;
197 
198 	gpa_t reg_base;
199 	spinlock_t lock;
200 
201 	/* Behavior control */
202 	struct fsl_mpic_info *fsl;
203 	uint32_t model;
204 	uint32_t flags;
205 	uint32_t nb_irqs;
206 	uint32_t vid;
207 	uint32_t vir;		/* Vendor identification register */
208 	uint32_t vector_mask;
209 	uint32_t tfrr_reset;
210 	uint32_t ivpr_reset;
211 	uint32_t idr_reset;
212 	uint32_t brr1;
213 	uint32_t mpic_mode_mask;
214 
215 	/* Global registers */
216 	uint32_t frr;		/* Feature reporting register */
217 	uint32_t gcr;		/* Global configuration register  */
218 	uint32_t pir;		/* Processor initialization register */
219 	uint32_t spve;		/* Spurious vector register */
220 	uint32_t tfrr;		/* Timer frequency reporting register */
221 	/* Source registers */
222 	struct irq_source src[MAX_IRQ];
223 	/* Local registers per output pin */
224 	struct irq_dest dst[MAX_CPU];
225 	uint32_t nb_cpus;
226 	/* Timer registers */
227 	struct {
228 		uint32_t tccr;	/* Global timer current count register */
229 		uint32_t tbcr;	/* Global timer base count register */
230 	} timers[MAX_TMR];
231 	/* Shared MSI registers */
232 	struct {
233 		uint32_t msir;	/* Shared Message Signaled Interrupt Register */
234 	} msi[MAX_MSI];
235 	uint32_t max_irq;
236 	uint32_t irq_ipi0;
237 	uint32_t irq_tim0;
238 	uint32_t irq_msi;
239 };
240 
241 
242 static void mpic_irq_raise(struct openpic *opp, struct irq_dest *dst,
243 			   int output)
244 {
245 	struct kvm_interrupt irq = {
246 		.irq = KVM_INTERRUPT_SET_LEVEL,
247 	};
248 
249 	if (!dst->vcpu) {
250 		pr_debug("%s: destination cpu %d does not exist\n",
251 			 __func__, (int)(dst - &opp->dst[0]));
252 		return;
253 	}
254 
255 	pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
256 		output);
257 
258 	if (output != ILR_INTTGT_INT)	/* TODO */
259 		return;
260 
261 	kvm_vcpu_ioctl_interrupt(dst->vcpu, &irq);
262 }
263 
264 static void mpic_irq_lower(struct openpic *opp, struct irq_dest *dst,
265 			   int output)
266 {
267 	if (!dst->vcpu) {
268 		pr_debug("%s: destination cpu %d does not exist\n",
269 			 __func__, (int)(dst - &opp->dst[0]));
270 		return;
271 	}
272 
273 	pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
274 		output);
275 
276 	if (output != ILR_INTTGT_INT)	/* TODO */
277 		return;
278 
279 	kvmppc_core_dequeue_external(dst->vcpu);
280 }
281 
282 static inline void IRQ_setbit(struct irq_queue *q, int n_IRQ)
283 {
284 	set_bit(n_IRQ, q->queue);
285 }
286 
287 static inline void IRQ_resetbit(struct irq_queue *q, int n_IRQ)
288 {
289 	clear_bit(n_IRQ, q->queue);
290 }
291 
292 static inline int IRQ_testbit(struct irq_queue *q, int n_IRQ)
293 {
294 	return test_bit(n_IRQ, q->queue);
295 }
296 
297 static void IRQ_check(struct openpic *opp, struct irq_queue *q)
298 {
299 	int irq = -1;
300 	int next = -1;
301 	int priority = -1;
302 
303 	for (;;) {
304 		irq = find_next_bit(q->queue, opp->max_irq, irq + 1);
305 		if (irq == opp->max_irq)
306 			break;
307 
308 		pr_debug("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n",
309 			irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority);
310 
311 		if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) {
312 			next = irq;
313 			priority = IVPR_PRIORITY(opp->src[irq].ivpr);
314 		}
315 	}
316 
317 	q->next = next;
318 	q->priority = priority;
319 }
320 
321 static int IRQ_get_next(struct openpic *opp, struct irq_queue *q)
322 {
323 	/* XXX: optimize */
324 	IRQ_check(opp, q);
325 
326 	return q->next;
327 }
328 
329 static void IRQ_local_pipe(struct openpic *opp, int n_CPU, int n_IRQ,
330 			   bool active, bool was_active)
331 {
332 	struct irq_dest *dst;
333 	struct irq_source *src;
334 	int priority;
335 
336 	dst = &opp->dst[n_CPU];
337 	src = &opp->src[n_IRQ];
338 
339 	pr_debug("%s: IRQ %d active %d was %d\n",
340 		__func__, n_IRQ, active, was_active);
341 
342 	if (src->output != ILR_INTTGT_INT) {
343 		pr_debug("%s: output %d irq %d active %d was %d count %d\n",
344 			__func__, src->output, n_IRQ, active, was_active,
345 			dst->outputs_active[src->output]);
346 
347 		/* On Freescale MPIC, critical interrupts ignore priority,
348 		 * IACK, EOI, etc.  Before MPIC v4.1 they also ignore
349 		 * masking.
350 		 */
351 		if (active) {
352 			if (!was_active &&
353 			    dst->outputs_active[src->output]++ == 0) {
354 				pr_debug("%s: Raise OpenPIC output %d cpu %d irq %d\n",
355 					__func__, src->output, n_CPU, n_IRQ);
356 				mpic_irq_raise(opp, dst, src->output);
357 			}
358 		} else {
359 			if (was_active &&
360 			    --dst->outputs_active[src->output] == 0) {
361 				pr_debug("%s: Lower OpenPIC output %d cpu %d irq %d\n",
362 					__func__, src->output, n_CPU, n_IRQ);
363 				mpic_irq_lower(opp, dst, src->output);
364 			}
365 		}
366 
367 		return;
368 	}
369 
370 	priority = IVPR_PRIORITY(src->ivpr);
371 
372 	/* Even if the interrupt doesn't have enough priority,
373 	 * it is still raised, in case ctpr is lowered later.
374 	 */
375 	if (active)
376 		IRQ_setbit(&dst->raised, n_IRQ);
377 	else
378 		IRQ_resetbit(&dst->raised, n_IRQ);
379 
380 	IRQ_check(opp, &dst->raised);
381 
382 	if (active && priority <= dst->ctpr) {
383 		pr_debug("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n",
384 			__func__, n_IRQ, priority, dst->ctpr, n_CPU);
385 		active = 0;
386 	}
387 
388 	if (active) {
389 		if (IRQ_get_next(opp, &dst->servicing) >= 0 &&
390 		    priority <= dst->servicing.priority) {
391 			pr_debug("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n",
392 				__func__, n_IRQ, dst->servicing.next, n_CPU);
393 		} else {
394 			pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n",
395 				__func__, n_CPU, n_IRQ, dst->raised.next);
396 			mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
397 		}
398 	} else {
399 		IRQ_get_next(opp, &dst->servicing);
400 		if (dst->raised.priority > dst->ctpr &&
401 		    dst->raised.priority > dst->servicing.priority) {
402 			pr_debug("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n",
403 				__func__, n_IRQ, dst->raised.next,
404 				dst->raised.priority, dst->ctpr,
405 				dst->servicing.priority, n_CPU);
406 			/* IRQ line stays asserted */
407 		} else {
408 			pr_debug("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n",
409 				__func__, n_IRQ, dst->ctpr,
410 				dst->servicing.priority, n_CPU);
411 			mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
412 		}
413 	}
414 }
415 
416 /* update pic state because registers for n_IRQ have changed value */
417 static void openpic_update_irq(struct openpic *opp, int n_IRQ)
418 {
419 	struct irq_source *src;
420 	bool active, was_active;
421 	int i;
422 
423 	src = &opp->src[n_IRQ];
424 	active = src->pending;
425 
426 	if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) {
427 		/* Interrupt source is disabled */
428 		pr_debug("%s: IRQ %d is disabled\n", __func__, n_IRQ);
429 		active = false;
430 	}
431 
432 	was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK);
433 
434 	/*
435 	 * We don't have a similar check for already-active because
436 	 * ctpr may have changed and we need to withdraw the interrupt.
437 	 */
438 	if (!active && !was_active) {
439 		pr_debug("%s: IRQ %d is already inactive\n", __func__, n_IRQ);
440 		return;
441 	}
442 
443 	if (active)
444 		src->ivpr |= IVPR_ACTIVITY_MASK;
445 	else
446 		src->ivpr &= ~IVPR_ACTIVITY_MASK;
447 
448 	if (src->destmask == 0) {
449 		/* No target */
450 		pr_debug("%s: IRQ %d has no target\n", __func__, n_IRQ);
451 		return;
452 	}
453 
454 	if (src->destmask == (1 << src->last_cpu)) {
455 		/* Only one CPU is allowed to receive this IRQ */
456 		IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active);
457 	} else if (!(src->ivpr & IVPR_MODE_MASK)) {
458 		/* Directed delivery mode */
459 		for (i = 0; i < opp->nb_cpus; i++) {
460 			if (src->destmask & (1 << i)) {
461 				IRQ_local_pipe(opp, i, n_IRQ, active,
462 					       was_active);
463 			}
464 		}
465 	} else {
466 		/* Distributed delivery mode */
467 		for (i = src->last_cpu + 1; i != src->last_cpu; i++) {
468 			if (i == opp->nb_cpus)
469 				i = 0;
470 
471 			if (src->destmask & (1 << i)) {
472 				IRQ_local_pipe(opp, i, n_IRQ, active,
473 					       was_active);
474 				src->last_cpu = i;
475 				break;
476 			}
477 		}
478 	}
479 }
480 
481 static void openpic_set_irq(void *opaque, int n_IRQ, int level)
482 {
483 	struct openpic *opp = opaque;
484 	struct irq_source *src;
485 
486 	if (n_IRQ >= MAX_IRQ) {
487 		WARN_ONCE(1, "%s: IRQ %d out of range\n", __func__, n_IRQ);
488 		return;
489 	}
490 
491 	src = &opp->src[n_IRQ];
492 	pr_debug("openpic: set irq %d = %d ivpr=0x%08x\n",
493 		n_IRQ, level, src->ivpr);
494 	if (src->level) {
495 		/* level-sensitive irq */
496 		src->pending = level;
497 		openpic_update_irq(opp, n_IRQ);
498 	} else {
499 		/* edge-sensitive irq */
500 		if (level) {
501 			src->pending = 1;
502 			openpic_update_irq(opp, n_IRQ);
503 		}
504 
505 		if (src->output != ILR_INTTGT_INT) {
506 			/* Edge-triggered interrupts shouldn't be used
507 			 * with non-INT delivery, but just in case,
508 			 * try to make it do something sane rather than
509 			 * cause an interrupt storm.  This is close to
510 			 * what you'd probably see happen in real hardware.
511 			 */
512 			src->pending = 0;
513 			openpic_update_irq(opp, n_IRQ);
514 		}
515 	}
516 }
517 
518 static void openpic_reset(struct openpic *opp)
519 {
520 	int i;
521 
522 	opp->gcr = GCR_RESET;
523 	/* Initialise controller registers */
524 	opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) |
525 	    (opp->vid << FRR_VID_SHIFT);
526 
527 	opp->pir = 0;
528 	opp->spve = -1 & opp->vector_mask;
529 	opp->tfrr = opp->tfrr_reset;
530 	/* Initialise IRQ sources */
531 	for (i = 0; i < opp->max_irq; i++) {
532 		opp->src[i].ivpr = opp->ivpr_reset;
533 
534 		switch (opp->src[i].type) {
535 		case IRQ_TYPE_NORMAL:
536 			opp->src[i].level =
537 			    !!(opp->ivpr_reset & IVPR_SENSE_MASK);
538 			break;
539 
540 		case IRQ_TYPE_FSLINT:
541 			opp->src[i].ivpr |= IVPR_POLARITY_MASK;
542 			break;
543 
544 		case IRQ_TYPE_FSLSPECIAL:
545 			break;
546 		}
547 
548 		write_IRQreg_idr(opp, i, opp->idr_reset);
549 	}
550 	/* Initialise IRQ destinations */
551 	for (i = 0; i < MAX_CPU; i++) {
552 		opp->dst[i].ctpr = 15;
553 		memset(&opp->dst[i].raised, 0, sizeof(struct irq_queue));
554 		opp->dst[i].raised.next = -1;
555 		memset(&opp->dst[i].servicing, 0, sizeof(struct irq_queue));
556 		opp->dst[i].servicing.next = -1;
557 	}
558 	/* Initialise timers */
559 	for (i = 0; i < MAX_TMR; i++) {
560 		opp->timers[i].tccr = 0;
561 		opp->timers[i].tbcr = TBCR_CI;
562 	}
563 	/* Go out of RESET state */
564 	opp->gcr = 0;
565 }
566 
567 static inline uint32_t read_IRQreg_idr(struct openpic *opp, int n_IRQ)
568 {
569 	return opp->src[n_IRQ].idr;
570 }
571 
572 static inline uint32_t read_IRQreg_ilr(struct openpic *opp, int n_IRQ)
573 {
574 	if (opp->flags & OPENPIC_FLAG_ILR)
575 		return opp->src[n_IRQ].output;
576 
577 	return 0xffffffff;
578 }
579 
580 static inline uint32_t read_IRQreg_ivpr(struct openpic *opp, int n_IRQ)
581 {
582 	return opp->src[n_IRQ].ivpr;
583 }
584 
585 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
586 				    uint32_t val)
587 {
588 	struct irq_source *src = &opp->src[n_IRQ];
589 	uint32_t normal_mask = (1UL << opp->nb_cpus) - 1;
590 	uint32_t crit_mask = 0;
591 	uint32_t mask = normal_mask;
592 	int crit_shift = IDR_EP_SHIFT - opp->nb_cpus;
593 	int i;
594 
595 	if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
596 		crit_mask = mask << crit_shift;
597 		mask |= crit_mask | IDR_EP;
598 	}
599 
600 	src->idr = val & mask;
601 	pr_debug("Set IDR %d to 0x%08x\n", n_IRQ, src->idr);
602 
603 	if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
604 		if (src->idr & crit_mask) {
605 			if (src->idr & normal_mask) {
606 				pr_debug("%s: IRQ configured for multiple output types, using critical\n",
607 					__func__);
608 			}
609 
610 			src->output = ILR_INTTGT_CINT;
611 			src->nomask = true;
612 			src->destmask = 0;
613 
614 			for (i = 0; i < opp->nb_cpus; i++) {
615 				int n_ci = IDR_CI0_SHIFT - i;
616 
617 				if (src->idr & (1UL << n_ci))
618 					src->destmask |= 1UL << i;
619 			}
620 		} else {
621 			src->output = ILR_INTTGT_INT;
622 			src->nomask = false;
623 			src->destmask = src->idr & normal_mask;
624 		}
625 	} else {
626 		src->destmask = src->idr;
627 	}
628 }
629 
630 static inline void write_IRQreg_ilr(struct openpic *opp, int n_IRQ,
631 				    uint32_t val)
632 {
633 	if (opp->flags & OPENPIC_FLAG_ILR) {
634 		struct irq_source *src = &opp->src[n_IRQ];
635 
636 		src->output = val & ILR_INTTGT_MASK;
637 		pr_debug("Set ILR %d to 0x%08x, output %d\n", n_IRQ, src->idr,
638 			src->output);
639 
640 		/* TODO: on MPIC v4.0 only, set nomask for non-INT */
641 	}
642 }
643 
644 static inline void write_IRQreg_ivpr(struct openpic *opp, int n_IRQ,
645 				     uint32_t val)
646 {
647 	uint32_t mask;
648 
649 	/* NOTE when implementing newer FSL MPIC models: starting with v4.0,
650 	 * the polarity bit is read-only on internal interrupts.
651 	 */
652 	mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK |
653 	    IVPR_POLARITY_MASK | opp->vector_mask;
654 
655 	/* ACTIVITY bit is read-only */
656 	opp->src[n_IRQ].ivpr =
657 	    (opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask);
658 
659 	/* For FSL internal interrupts, The sense bit is reserved and zero,
660 	 * and the interrupt is always level-triggered.  Timers and IPIs
661 	 * have no sense or polarity bits, and are edge-triggered.
662 	 */
663 	switch (opp->src[n_IRQ].type) {
664 	case IRQ_TYPE_NORMAL:
665 		opp->src[n_IRQ].level =
666 		    !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK);
667 		break;
668 
669 	case IRQ_TYPE_FSLINT:
670 		opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK;
671 		break;
672 
673 	case IRQ_TYPE_FSLSPECIAL:
674 		opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK);
675 		break;
676 	}
677 
678 	openpic_update_irq(opp, n_IRQ);
679 	pr_debug("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val,
680 		opp->src[n_IRQ].ivpr);
681 }
682 
683 static void openpic_gcr_write(struct openpic *opp, uint64_t val)
684 {
685 	if (val & GCR_RESET) {
686 		openpic_reset(opp);
687 		return;
688 	}
689 
690 	opp->gcr &= ~opp->mpic_mode_mask;
691 	opp->gcr |= val & opp->mpic_mode_mask;
692 }
693 
694 static int openpic_gbl_write(void *opaque, gpa_t addr, u32 val)
695 {
696 	struct openpic *opp = opaque;
697 	int err = 0;
698 
699 	pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
700 	if (addr & 0xF)
701 		return 0;
702 
703 	switch (addr) {
704 	case 0x00:	/* Block Revision Register1 (BRR1) is Readonly */
705 		break;
706 	case 0x40:
707 	case 0x50:
708 	case 0x60:
709 	case 0x70:
710 	case 0x80:
711 	case 0x90:
712 	case 0xA0:
713 	case 0xB0:
714 		err = openpic_cpu_write_internal(opp, addr, val,
715 						 get_current_cpu());
716 		break;
717 	case 0x1000:		/* FRR */
718 		break;
719 	case 0x1020:		/* GCR */
720 		openpic_gcr_write(opp, val);
721 		break;
722 	case 0x1080:		/* VIR */
723 		break;
724 	case 0x1090:		/* PIR */
725 		/*
726 		 * This register is used to reset a CPU core --
727 		 * let userspace handle it.
728 		 */
729 		err = -ENXIO;
730 		break;
731 	case 0x10A0:		/* IPI_IVPR */
732 	case 0x10B0:
733 	case 0x10C0:
734 	case 0x10D0: {
735 		int idx;
736 		idx = (addr - 0x10A0) >> 4;
737 		write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val);
738 		break;
739 	}
740 	case 0x10E0:		/* SPVE */
741 		opp->spve = val & opp->vector_mask;
742 		break;
743 	default:
744 		break;
745 	}
746 
747 	return err;
748 }
749 
750 static int openpic_gbl_read(void *opaque, gpa_t addr, u32 *ptr)
751 {
752 	struct openpic *opp = opaque;
753 	u32 retval;
754 	int err = 0;
755 
756 	pr_debug("%s: addr %#llx\n", __func__, addr);
757 	retval = 0xFFFFFFFF;
758 	if (addr & 0xF)
759 		goto out;
760 
761 	switch (addr) {
762 	case 0x1000:		/* FRR */
763 		retval = opp->frr;
764 		retval |= (opp->nb_cpus - 1) << FRR_NCPU_SHIFT;
765 		break;
766 	case 0x1020:		/* GCR */
767 		retval = opp->gcr;
768 		break;
769 	case 0x1080:		/* VIR */
770 		retval = opp->vir;
771 		break;
772 	case 0x1090:		/* PIR */
773 		retval = 0x00000000;
774 		break;
775 	case 0x00:		/* Block Revision Register1 (BRR1) */
776 		retval = opp->brr1;
777 		break;
778 	case 0x40:
779 	case 0x50:
780 	case 0x60:
781 	case 0x70:
782 	case 0x80:
783 	case 0x90:
784 	case 0xA0:
785 	case 0xB0:
786 		err = openpic_cpu_read_internal(opp, addr,
787 			&retval, get_current_cpu());
788 		break;
789 	case 0x10A0:		/* IPI_IVPR */
790 	case 0x10B0:
791 	case 0x10C0:
792 	case 0x10D0:
793 		{
794 			int idx;
795 			idx = (addr - 0x10A0) >> 4;
796 			retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx);
797 		}
798 		break;
799 	case 0x10E0:		/* SPVE */
800 		retval = opp->spve;
801 		break;
802 	default:
803 		break;
804 	}
805 
806 out:
807 	pr_debug("%s: => 0x%08x\n", __func__, retval);
808 	*ptr = retval;
809 	return err;
810 }
811 
812 static int openpic_tmr_write(void *opaque, gpa_t addr, u32 val)
813 {
814 	struct openpic *opp = opaque;
815 	int idx;
816 
817 	addr += 0x10f0;
818 
819 	pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
820 	if (addr & 0xF)
821 		return 0;
822 
823 	if (addr == 0x10f0) {
824 		/* TFRR */
825 		opp->tfrr = val;
826 		return 0;
827 	}
828 
829 	idx = (addr >> 6) & 0x3;
830 	addr = addr & 0x30;
831 
832 	switch (addr & 0x30) {
833 	case 0x00:		/* TCCR */
834 		break;
835 	case 0x10:		/* TBCR */
836 		if ((opp->timers[idx].tccr & TCCR_TOG) != 0 &&
837 		    (val & TBCR_CI) == 0 &&
838 		    (opp->timers[idx].tbcr & TBCR_CI) != 0)
839 			opp->timers[idx].tccr &= ~TCCR_TOG;
840 
841 		opp->timers[idx].tbcr = val;
842 		break;
843 	case 0x20:		/* TVPR */
844 		write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val);
845 		break;
846 	case 0x30:		/* TDR */
847 		write_IRQreg_idr(opp, opp->irq_tim0 + idx, val);
848 		break;
849 	}
850 
851 	return 0;
852 }
853 
854 static int openpic_tmr_read(void *opaque, gpa_t addr, u32 *ptr)
855 {
856 	struct openpic *opp = opaque;
857 	uint32_t retval = -1;
858 	int idx;
859 
860 	pr_debug("%s: addr %#llx\n", __func__, addr);
861 	if (addr & 0xF)
862 		goto out;
863 
864 	idx = (addr >> 6) & 0x3;
865 	if (addr == 0x0) {
866 		/* TFRR */
867 		retval = opp->tfrr;
868 		goto out;
869 	}
870 
871 	switch (addr & 0x30) {
872 	case 0x00:		/* TCCR */
873 		retval = opp->timers[idx].tccr;
874 		break;
875 	case 0x10:		/* TBCR */
876 		retval = opp->timers[idx].tbcr;
877 		break;
878 	case 0x20:		/* TIPV */
879 		retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx);
880 		break;
881 	case 0x30:		/* TIDE (TIDR) */
882 		retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx);
883 		break;
884 	}
885 
886 out:
887 	pr_debug("%s: => 0x%08x\n", __func__, retval);
888 	*ptr = retval;
889 	return 0;
890 }
891 
892 static int openpic_src_write(void *opaque, gpa_t addr, u32 val)
893 {
894 	struct openpic *opp = opaque;
895 	int idx;
896 
897 	pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
898 
899 	addr = addr & 0xffff;
900 	idx = addr >> 5;
901 
902 	switch (addr & 0x1f) {
903 	case 0x00:
904 		write_IRQreg_ivpr(opp, idx, val);
905 		break;
906 	case 0x10:
907 		write_IRQreg_idr(opp, idx, val);
908 		break;
909 	case 0x18:
910 		write_IRQreg_ilr(opp, idx, val);
911 		break;
912 	}
913 
914 	return 0;
915 }
916 
917 static int openpic_src_read(void *opaque, gpa_t addr, u32 *ptr)
918 {
919 	struct openpic *opp = opaque;
920 	uint32_t retval;
921 	int idx;
922 
923 	pr_debug("%s: addr %#llx\n", __func__, addr);
924 	retval = 0xFFFFFFFF;
925 
926 	addr = addr & 0xffff;
927 	idx = addr >> 5;
928 
929 	switch (addr & 0x1f) {
930 	case 0x00:
931 		retval = read_IRQreg_ivpr(opp, idx);
932 		break;
933 	case 0x10:
934 		retval = read_IRQreg_idr(opp, idx);
935 		break;
936 	case 0x18:
937 		retval = read_IRQreg_ilr(opp, idx);
938 		break;
939 	}
940 
941 	pr_debug("%s: => 0x%08x\n", __func__, retval);
942 	*ptr = retval;
943 	return 0;
944 }
945 
946 static int openpic_msi_write(void *opaque, gpa_t addr, u32 val)
947 {
948 	struct openpic *opp = opaque;
949 	int idx = opp->irq_msi;
950 	int srs, ibs;
951 
952 	pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
953 	if (addr & 0xF)
954 		return 0;
955 
956 	switch (addr) {
957 	case MSIIR_OFFSET:
958 		srs = val >> MSIIR_SRS_SHIFT;
959 		idx += srs;
960 		ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT;
961 		opp->msi[srs].msir |= 1 << ibs;
962 		openpic_set_irq(opp, idx, 1);
963 		break;
964 	default:
965 		/* most registers are read-only, thus ignored */
966 		break;
967 	}
968 
969 	return 0;
970 }
971 
972 static int openpic_msi_read(void *opaque, gpa_t addr, u32 *ptr)
973 {
974 	struct openpic *opp = opaque;
975 	uint32_t r = 0;
976 	int i, srs;
977 
978 	pr_debug("%s: addr %#llx\n", __func__, addr);
979 	if (addr & 0xF)
980 		return -ENXIO;
981 
982 	srs = addr >> 4;
983 
984 	switch (addr) {
985 	case 0x00:
986 	case 0x10:
987 	case 0x20:
988 	case 0x30:
989 	case 0x40:
990 	case 0x50:
991 	case 0x60:
992 	case 0x70:		/* MSIRs */
993 		r = opp->msi[srs].msir;
994 		/* Clear on read */
995 		opp->msi[srs].msir = 0;
996 		openpic_set_irq(opp, opp->irq_msi + srs, 0);
997 		break;
998 	case 0x120:		/* MSISR */
999 		for (i = 0; i < MAX_MSI; i++)
1000 			r |= (opp->msi[i].msir ? 1 : 0) << i;
1001 		break;
1002 	}
1003 
1004 	pr_debug("%s: => 0x%08x\n", __func__, r);
1005 	*ptr = r;
1006 	return 0;
1007 }
1008 
1009 static int openpic_summary_read(void *opaque, gpa_t addr, u32 *ptr)
1010 {
1011 	uint32_t r = 0;
1012 
1013 	pr_debug("%s: addr %#llx\n", __func__, addr);
1014 
1015 	/* TODO: EISR/EIMR */
1016 
1017 	*ptr = r;
1018 	return 0;
1019 }
1020 
1021 static int openpic_summary_write(void *opaque, gpa_t addr, u32 val)
1022 {
1023 	pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
1024 
1025 	/* TODO: EISR/EIMR */
1026 	return 0;
1027 }
1028 
1029 static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
1030 				      u32 val, int idx)
1031 {
1032 	struct openpic *opp = opaque;
1033 	struct irq_source *src;
1034 	struct irq_dest *dst;
1035 	int s_IRQ, n_IRQ;
1036 
1037 	pr_debug("%s: cpu %d addr %#llx <= 0x%08x\n", __func__, idx,
1038 		addr, val);
1039 
1040 	if (idx < 0)
1041 		return 0;
1042 
1043 	if (addr & 0xF)
1044 		return 0;
1045 
1046 	dst = &opp->dst[idx];
1047 	addr &= 0xFF0;
1048 	switch (addr) {
1049 	case 0x40:		/* IPIDR */
1050 	case 0x50:
1051 	case 0x60:
1052 	case 0x70:
1053 		idx = (addr - 0x40) >> 4;
1054 		/* we use IDE as mask which CPUs to deliver the IPI to still. */
1055 		opp->src[opp->irq_ipi0 + idx].destmask |= val;
1056 		openpic_set_irq(opp, opp->irq_ipi0 + idx, 1);
1057 		openpic_set_irq(opp, opp->irq_ipi0 + idx, 0);
1058 		break;
1059 	case 0x80:		/* CTPR */
1060 		dst->ctpr = val & 0x0000000F;
1061 
1062 		pr_debug("%s: set CPU %d ctpr to %d, raised %d servicing %d\n",
1063 			__func__, idx, dst->ctpr, dst->raised.priority,
1064 			dst->servicing.priority);
1065 
1066 		if (dst->raised.priority <= dst->ctpr) {
1067 			pr_debug("%s: Lower OpenPIC INT output cpu %d due to ctpr\n",
1068 				__func__, idx);
1069 			mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1070 		} else if (dst->raised.priority > dst->servicing.priority) {
1071 			pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d\n",
1072 				__func__, idx, dst->raised.next);
1073 			mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1074 		}
1075 
1076 		break;
1077 	case 0x90:		/* WHOAMI */
1078 		/* Read-only register */
1079 		break;
1080 	case 0xA0:		/* IACK */
1081 		/* Read-only register */
1082 		break;
1083 	case 0xB0: {		/* EOI */
1084 		int notify_eoi;
1085 
1086 		pr_debug("EOI\n");
1087 		s_IRQ = IRQ_get_next(opp, &dst->servicing);
1088 
1089 		if (s_IRQ < 0) {
1090 			pr_debug("%s: EOI with no interrupt in service\n",
1091 				__func__);
1092 			break;
1093 		}
1094 
1095 		IRQ_resetbit(&dst->servicing, s_IRQ);
1096 		/* Notify listeners that the IRQ is over */
1097 		notify_eoi = s_IRQ;
1098 		/* Set up next servicing IRQ */
1099 		s_IRQ = IRQ_get_next(opp, &dst->servicing);
1100 		/* Check queued interrupts. */
1101 		n_IRQ = IRQ_get_next(opp, &dst->raised);
1102 		src = &opp->src[n_IRQ];
1103 		if (n_IRQ != -1 &&
1104 		    (s_IRQ == -1 ||
1105 		     IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) {
1106 			pr_debug("Raise OpenPIC INT output cpu %d irq %d\n",
1107 				idx, n_IRQ);
1108 			mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1109 		}
1110 
1111 		spin_unlock(&opp->lock);
1112 		kvm_notify_acked_irq(opp->kvm, 0, notify_eoi);
1113 		spin_lock(&opp->lock);
1114 
1115 		break;
1116 	}
1117 	default:
1118 		break;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 static int openpic_cpu_write(void *opaque, gpa_t addr, u32 val)
1125 {
1126 	struct openpic *opp = opaque;
1127 
1128 	return openpic_cpu_write_internal(opp, addr, val,
1129 					 (addr & 0x1f000) >> 12);
1130 }
1131 
1132 static uint32_t openpic_iack(struct openpic *opp, struct irq_dest *dst,
1133 			     int cpu)
1134 {
1135 	struct irq_source *src;
1136 	int retval, irq;
1137 
1138 	pr_debug("Lower OpenPIC INT output\n");
1139 	mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1140 
1141 	irq = IRQ_get_next(opp, &dst->raised);
1142 	pr_debug("IACK: irq=%d\n", irq);
1143 
1144 	if (irq == -1)
1145 		/* No more interrupt pending */
1146 		return opp->spve;
1147 
1148 	src = &opp->src[irq];
1149 	if (!(src->ivpr & IVPR_ACTIVITY_MASK) ||
1150 	    !(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) {
1151 		pr_err("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n",
1152 			__func__, irq, dst->ctpr, src->ivpr);
1153 		openpic_update_irq(opp, irq);
1154 		retval = opp->spve;
1155 	} else {
1156 		/* IRQ enter servicing state */
1157 		IRQ_setbit(&dst->servicing, irq);
1158 		retval = IVPR_VECTOR(opp, src->ivpr);
1159 	}
1160 
1161 	if (!src->level) {
1162 		/* edge-sensitive IRQ */
1163 		src->ivpr &= ~IVPR_ACTIVITY_MASK;
1164 		src->pending = 0;
1165 		IRQ_resetbit(&dst->raised, irq);
1166 	}
1167 
1168 	if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) {
1169 		src->destmask &= ~(1 << cpu);
1170 		if (src->destmask && !src->level) {
1171 			/* trigger on CPUs that didn't know about it yet */
1172 			openpic_set_irq(opp, irq, 1);
1173 			openpic_set_irq(opp, irq, 0);
1174 			/* if all CPUs knew about it, set active bit again */
1175 			src->ivpr |= IVPR_ACTIVITY_MASK;
1176 		}
1177 	}
1178 
1179 	return retval;
1180 }
1181 
1182 void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu)
1183 {
1184 	struct openpic *opp = vcpu->arch.mpic;
1185 	int cpu = vcpu->arch.irq_cpu_id;
1186 	unsigned long flags;
1187 
1188 	spin_lock_irqsave(&opp->lock, flags);
1189 
1190 	if ((opp->gcr & opp->mpic_mode_mask) == GCR_MODE_PROXY)
1191 		kvmppc_set_epr(vcpu, openpic_iack(opp, &opp->dst[cpu], cpu));
1192 
1193 	spin_unlock_irqrestore(&opp->lock, flags);
1194 }
1195 
1196 static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
1197 				     u32 *ptr, int idx)
1198 {
1199 	struct openpic *opp = opaque;
1200 	struct irq_dest *dst;
1201 	uint32_t retval;
1202 
1203 	pr_debug("%s: cpu %d addr %#llx\n", __func__, idx, addr);
1204 	retval = 0xFFFFFFFF;
1205 
1206 	if (idx < 0)
1207 		goto out;
1208 
1209 	if (addr & 0xF)
1210 		goto out;
1211 
1212 	dst = &opp->dst[idx];
1213 	addr &= 0xFF0;
1214 	switch (addr) {
1215 	case 0x80:		/* CTPR */
1216 		retval = dst->ctpr;
1217 		break;
1218 	case 0x90:		/* WHOAMI */
1219 		retval = idx;
1220 		break;
1221 	case 0xA0:		/* IACK */
1222 		retval = openpic_iack(opp, dst, idx);
1223 		break;
1224 	case 0xB0:		/* EOI */
1225 		retval = 0;
1226 		break;
1227 	default:
1228 		break;
1229 	}
1230 	pr_debug("%s: => 0x%08x\n", __func__, retval);
1231 
1232 out:
1233 	*ptr = retval;
1234 	return 0;
1235 }
1236 
1237 static int openpic_cpu_read(void *opaque, gpa_t addr, u32 *ptr)
1238 {
1239 	struct openpic *opp = opaque;
1240 
1241 	return openpic_cpu_read_internal(opp, addr, ptr,
1242 					 (addr & 0x1f000) >> 12);
1243 }
1244 
1245 struct mem_reg {
1246 	int (*read)(void *opaque, gpa_t addr, u32 *ptr);
1247 	int (*write)(void *opaque, gpa_t addr, u32 val);
1248 	gpa_t start_addr;
1249 	int size;
1250 };
1251 
1252 static const struct mem_reg openpic_gbl_mmio = {
1253 	.write = openpic_gbl_write,
1254 	.read = openpic_gbl_read,
1255 	.start_addr = OPENPIC_GLB_REG_START,
1256 	.size = OPENPIC_GLB_REG_SIZE,
1257 };
1258 
1259 static const struct mem_reg openpic_tmr_mmio = {
1260 	.write = openpic_tmr_write,
1261 	.read = openpic_tmr_read,
1262 	.start_addr = OPENPIC_TMR_REG_START,
1263 	.size = OPENPIC_TMR_REG_SIZE,
1264 };
1265 
1266 static const struct mem_reg openpic_cpu_mmio = {
1267 	.write = openpic_cpu_write,
1268 	.read = openpic_cpu_read,
1269 	.start_addr = OPENPIC_CPU_REG_START,
1270 	.size = OPENPIC_CPU_REG_SIZE,
1271 };
1272 
1273 static const struct mem_reg openpic_src_mmio = {
1274 	.write = openpic_src_write,
1275 	.read = openpic_src_read,
1276 	.start_addr = OPENPIC_SRC_REG_START,
1277 	.size = OPENPIC_SRC_REG_SIZE,
1278 };
1279 
1280 static const struct mem_reg openpic_msi_mmio = {
1281 	.read = openpic_msi_read,
1282 	.write = openpic_msi_write,
1283 	.start_addr = OPENPIC_MSI_REG_START,
1284 	.size = OPENPIC_MSI_REG_SIZE,
1285 };
1286 
1287 static const struct mem_reg openpic_summary_mmio = {
1288 	.read = openpic_summary_read,
1289 	.write = openpic_summary_write,
1290 	.start_addr = OPENPIC_SUMMARY_REG_START,
1291 	.size = OPENPIC_SUMMARY_REG_SIZE,
1292 };
1293 
1294 static void add_mmio_region(struct openpic *opp, const struct mem_reg *mr)
1295 {
1296 	if (opp->num_mmio_regions >= MAX_MMIO_REGIONS) {
1297 		WARN(1, "kvm mpic: too many mmio regions\n");
1298 		return;
1299 	}
1300 
1301 	opp->mmio_regions[opp->num_mmio_regions++] = mr;
1302 }
1303 
1304 static void fsl_common_init(struct openpic *opp)
1305 {
1306 	int i;
1307 	int virq = MAX_SRC;
1308 
1309 	add_mmio_region(opp, &openpic_msi_mmio);
1310 	add_mmio_region(opp, &openpic_summary_mmio);
1311 
1312 	opp->vid = VID_REVISION_1_2;
1313 	opp->vir = VIR_GENERIC;
1314 	opp->vector_mask = 0xFFFF;
1315 	opp->tfrr_reset = 0;
1316 	opp->ivpr_reset = IVPR_MASK_MASK;
1317 	opp->idr_reset = 1 << 0;
1318 	opp->max_irq = MAX_IRQ;
1319 
1320 	opp->irq_ipi0 = virq;
1321 	virq += MAX_IPI;
1322 	opp->irq_tim0 = virq;
1323 	virq += MAX_TMR;
1324 
1325 	BUG_ON(virq > MAX_IRQ);
1326 
1327 	opp->irq_msi = 224;
1328 
1329 	for (i = 0; i < opp->fsl->max_ext; i++)
1330 		opp->src[i].level = false;
1331 
1332 	/* Internal interrupts, including message and MSI */
1333 	for (i = 16; i < MAX_SRC; i++) {
1334 		opp->src[i].type = IRQ_TYPE_FSLINT;
1335 		opp->src[i].level = true;
1336 	}
1337 
1338 	/* timers and IPIs */
1339 	for (i = MAX_SRC; i < virq; i++) {
1340 		opp->src[i].type = IRQ_TYPE_FSLSPECIAL;
1341 		opp->src[i].level = false;
1342 	}
1343 }
1344 
1345 static int kvm_mpic_read_internal(struct openpic *opp, gpa_t addr, u32 *ptr)
1346 {
1347 	int i;
1348 
1349 	for (i = 0; i < opp->num_mmio_regions; i++) {
1350 		const struct mem_reg *mr = opp->mmio_regions[i];
1351 
1352 		if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1353 			continue;
1354 
1355 		return mr->read(opp, addr - mr->start_addr, ptr);
1356 	}
1357 
1358 	return -ENXIO;
1359 }
1360 
1361 static int kvm_mpic_write_internal(struct openpic *opp, gpa_t addr, u32 val)
1362 {
1363 	int i;
1364 
1365 	for (i = 0; i < opp->num_mmio_regions; i++) {
1366 		const struct mem_reg *mr = opp->mmio_regions[i];
1367 
1368 		if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1369 			continue;
1370 
1371 		return mr->write(opp, addr - mr->start_addr, val);
1372 	}
1373 
1374 	return -ENXIO;
1375 }
1376 
1377 static int kvm_mpic_read(struct kvm_io_device *this, gpa_t addr,
1378 			 int len, void *ptr)
1379 {
1380 	struct openpic *opp = container_of(this, struct openpic, mmio);
1381 	int ret;
1382 	union {
1383 		u32 val;
1384 		u8 bytes[4];
1385 	} u;
1386 
1387 	if (addr & (len - 1)) {
1388 		pr_debug("%s: bad alignment %llx/%d\n",
1389 			 __func__, addr, len);
1390 		return -EINVAL;
1391 	}
1392 
1393 	spin_lock_irq(&opp->lock);
1394 	ret = kvm_mpic_read_internal(opp, addr - opp->reg_base, &u.val);
1395 	spin_unlock_irq(&opp->lock);
1396 
1397 	/*
1398 	 * Technically only 32-bit accesses are allowed, but be nice to
1399 	 * people dumping registers a byte at a time -- it works in real
1400 	 * hardware (reads only, not writes).
1401 	 */
1402 	if (len == 4) {
1403 		*(u32 *)ptr = u.val;
1404 		pr_debug("%s: addr %llx ret %d len 4 val %x\n",
1405 			 __func__, addr, ret, u.val);
1406 	} else if (len == 1) {
1407 		*(u8 *)ptr = u.bytes[addr & 3];
1408 		pr_debug("%s: addr %llx ret %d len 1 val %x\n",
1409 			 __func__, addr, ret, u.bytes[addr & 3]);
1410 	} else {
1411 		pr_debug("%s: bad length %d\n", __func__, len);
1412 		return -EINVAL;
1413 	}
1414 
1415 	return ret;
1416 }
1417 
1418 static int kvm_mpic_write(struct kvm_io_device *this, gpa_t addr,
1419 			  int len, const void *ptr)
1420 {
1421 	struct openpic *opp = container_of(this, struct openpic, mmio);
1422 	int ret;
1423 
1424 	if (len != 4) {
1425 		pr_debug("%s: bad length %d\n", __func__, len);
1426 		return -EOPNOTSUPP;
1427 	}
1428 	if (addr & 3) {
1429 		pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len);
1430 		return -EOPNOTSUPP;
1431 	}
1432 
1433 	spin_lock_irq(&opp->lock);
1434 	ret = kvm_mpic_write_internal(opp, addr - opp->reg_base,
1435 				      *(const u32 *)ptr);
1436 	spin_unlock_irq(&opp->lock);
1437 
1438 	pr_debug("%s: addr %llx ret %d val %x\n",
1439 		 __func__, addr, ret, *(const u32 *)ptr);
1440 
1441 	return ret;
1442 }
1443 
1444 static const struct kvm_io_device_ops mpic_mmio_ops = {
1445 	.read = kvm_mpic_read,
1446 	.write = kvm_mpic_write,
1447 };
1448 
1449 static void map_mmio(struct openpic *opp)
1450 {
1451 	kvm_iodevice_init(&opp->mmio, &mpic_mmio_ops);
1452 
1453 	kvm_io_bus_register_dev(opp->kvm, KVM_MMIO_BUS,
1454 				opp->reg_base, OPENPIC_REG_SIZE,
1455 				&opp->mmio);
1456 }
1457 
1458 static void unmap_mmio(struct openpic *opp)
1459 {
1460 	kvm_io_bus_unregister_dev(opp->kvm, KVM_MMIO_BUS, &opp->mmio);
1461 }
1462 
1463 static int set_base_addr(struct openpic *opp, struct kvm_device_attr *attr)
1464 {
1465 	u64 base;
1466 
1467 	if (copy_from_user(&base, (u64 __user *)(long)attr->addr, sizeof(u64)))
1468 		return -EFAULT;
1469 
1470 	if (base & 0x3ffff) {
1471 		pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx not aligned\n",
1472 			 __func__, base);
1473 		return -EINVAL;
1474 	}
1475 
1476 	if (base == opp->reg_base)
1477 		return 0;
1478 
1479 	mutex_lock(&opp->kvm->slots_lock);
1480 
1481 	unmap_mmio(opp);
1482 	opp->reg_base = base;
1483 
1484 	pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx\n",
1485 		 __func__, base);
1486 
1487 	if (base == 0)
1488 		goto out;
1489 
1490 	map_mmio(opp);
1491 
1492 out:
1493 	mutex_unlock(&opp->kvm->slots_lock);
1494 	return 0;
1495 }
1496 
1497 #define ATTR_SET		0
1498 #define ATTR_GET		1
1499 
1500 static int access_reg(struct openpic *opp, gpa_t addr, u32 *val, int type)
1501 {
1502 	int ret;
1503 
1504 	if (addr & 3)
1505 		return -ENXIO;
1506 
1507 	spin_lock_irq(&opp->lock);
1508 
1509 	if (type == ATTR_SET)
1510 		ret = kvm_mpic_write_internal(opp, addr, *val);
1511 	else
1512 		ret = kvm_mpic_read_internal(opp, addr, val);
1513 
1514 	spin_unlock_irq(&opp->lock);
1515 
1516 	pr_debug("%s: type %d addr %llx val %x\n", __func__, type, addr, *val);
1517 
1518 	return ret;
1519 }
1520 
1521 static int mpic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1522 {
1523 	struct openpic *opp = dev->private;
1524 	u32 attr32;
1525 
1526 	switch (attr->group) {
1527 	case KVM_DEV_MPIC_GRP_MISC:
1528 		switch (attr->attr) {
1529 		case KVM_DEV_MPIC_BASE_ADDR:
1530 			return set_base_addr(opp, attr);
1531 		}
1532 
1533 		break;
1534 
1535 	case KVM_DEV_MPIC_GRP_REGISTER:
1536 		if (get_user(attr32, (u32 __user *)(long)attr->addr))
1537 			return -EFAULT;
1538 
1539 		return access_reg(opp, attr->attr, &attr32, ATTR_SET);
1540 
1541 	case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1542 		if (attr->attr > MAX_SRC)
1543 			return -EINVAL;
1544 
1545 		if (get_user(attr32, (u32 __user *)(long)attr->addr))
1546 			return -EFAULT;
1547 
1548 		if (attr32 != 0 && attr32 != 1)
1549 			return -EINVAL;
1550 
1551 		spin_lock_irq(&opp->lock);
1552 		openpic_set_irq(opp, attr->attr, attr32);
1553 		spin_unlock_irq(&opp->lock);
1554 		return 0;
1555 	}
1556 
1557 	return -ENXIO;
1558 }
1559 
1560 static int mpic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1561 {
1562 	struct openpic *opp = dev->private;
1563 	u64 attr64;
1564 	u32 attr32;
1565 	int ret;
1566 
1567 	switch (attr->group) {
1568 	case KVM_DEV_MPIC_GRP_MISC:
1569 		switch (attr->attr) {
1570 		case KVM_DEV_MPIC_BASE_ADDR:
1571 			mutex_lock(&opp->kvm->slots_lock);
1572 			attr64 = opp->reg_base;
1573 			mutex_unlock(&opp->kvm->slots_lock);
1574 
1575 			if (copy_to_user((u64 __user *)(long)attr->addr,
1576 					 &attr64, sizeof(u64)))
1577 				return -EFAULT;
1578 
1579 			return 0;
1580 		}
1581 
1582 		break;
1583 
1584 	case KVM_DEV_MPIC_GRP_REGISTER:
1585 		ret = access_reg(opp, attr->attr, &attr32, ATTR_GET);
1586 		if (ret)
1587 			return ret;
1588 
1589 		if (put_user(attr32, (u32 __user *)(long)attr->addr))
1590 			return -EFAULT;
1591 
1592 		return 0;
1593 
1594 	case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1595 		if (attr->attr > MAX_SRC)
1596 			return -EINVAL;
1597 
1598 		spin_lock_irq(&opp->lock);
1599 		attr32 = opp->src[attr->attr].pending;
1600 		spin_unlock_irq(&opp->lock);
1601 
1602 		if (put_user(attr32, (u32 __user *)(long)attr->addr))
1603 			return -EFAULT;
1604 
1605 		return 0;
1606 	}
1607 
1608 	return -ENXIO;
1609 }
1610 
1611 static int mpic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1612 {
1613 	switch (attr->group) {
1614 	case KVM_DEV_MPIC_GRP_MISC:
1615 		switch (attr->attr) {
1616 		case KVM_DEV_MPIC_BASE_ADDR:
1617 			return 0;
1618 		}
1619 
1620 		break;
1621 
1622 	case KVM_DEV_MPIC_GRP_REGISTER:
1623 		return 0;
1624 
1625 	case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1626 		if (attr->attr > MAX_SRC)
1627 			break;
1628 
1629 		return 0;
1630 	}
1631 
1632 	return -ENXIO;
1633 }
1634 
1635 static void mpic_destroy(struct kvm_device *dev)
1636 {
1637 	struct openpic *opp = dev->private;
1638 
1639 	dev->kvm->arch.mpic = NULL;
1640 	kfree(opp);
1641 	kfree(dev);
1642 }
1643 
1644 static int mpic_set_default_irq_routing(struct openpic *opp)
1645 {
1646 	struct kvm_irq_routing_entry *routing;
1647 
1648 	/* Create a nop default map, so that dereferencing it still works */
1649 	routing = kzalloc((sizeof(*routing)), GFP_KERNEL);
1650 	if (!routing)
1651 		return -ENOMEM;
1652 
1653 	kvm_set_irq_routing(opp->kvm, routing, 0, 0);
1654 
1655 	kfree(routing);
1656 	return 0;
1657 }
1658 
1659 static int mpic_create(struct kvm_device *dev, u32 type)
1660 {
1661 	struct openpic *opp;
1662 	int ret;
1663 
1664 	/* We only support one MPIC at a time for now */
1665 	if (dev->kvm->arch.mpic)
1666 		return -EINVAL;
1667 
1668 	opp = kzalloc(sizeof(struct openpic), GFP_KERNEL);
1669 	if (!opp)
1670 		return -ENOMEM;
1671 
1672 	dev->private = opp;
1673 	opp->kvm = dev->kvm;
1674 	opp->dev = dev;
1675 	opp->model = type;
1676 	spin_lock_init(&opp->lock);
1677 
1678 	add_mmio_region(opp, &openpic_gbl_mmio);
1679 	add_mmio_region(opp, &openpic_tmr_mmio);
1680 	add_mmio_region(opp, &openpic_src_mmio);
1681 	add_mmio_region(opp, &openpic_cpu_mmio);
1682 
1683 	switch (opp->model) {
1684 	case KVM_DEV_TYPE_FSL_MPIC_20:
1685 		opp->fsl = &fsl_mpic_20;
1686 		opp->brr1 = 0x00400200;
1687 		opp->flags |= OPENPIC_FLAG_IDR_CRIT;
1688 		opp->nb_irqs = 80;
1689 		opp->mpic_mode_mask = GCR_MODE_MIXED;
1690 
1691 		fsl_common_init(opp);
1692 
1693 		break;
1694 
1695 	case KVM_DEV_TYPE_FSL_MPIC_42:
1696 		opp->fsl = &fsl_mpic_42;
1697 		opp->brr1 = 0x00400402;
1698 		opp->flags |= OPENPIC_FLAG_ILR;
1699 		opp->nb_irqs = 196;
1700 		opp->mpic_mode_mask = GCR_MODE_PROXY;
1701 
1702 		fsl_common_init(opp);
1703 
1704 		break;
1705 
1706 	default:
1707 		ret = -ENODEV;
1708 		goto err;
1709 	}
1710 
1711 	ret = mpic_set_default_irq_routing(opp);
1712 	if (ret)
1713 		goto err;
1714 
1715 	openpic_reset(opp);
1716 
1717 	smp_wmb();
1718 	dev->kvm->arch.mpic = opp;
1719 
1720 	return 0;
1721 
1722 err:
1723 	kfree(opp);
1724 	return ret;
1725 }
1726 
1727 struct kvm_device_ops kvm_mpic_ops = {
1728 	.name = "kvm-mpic",
1729 	.create = mpic_create,
1730 	.destroy = mpic_destroy,
1731 	.set_attr = mpic_set_attr,
1732 	.get_attr = mpic_get_attr,
1733 	.has_attr = mpic_has_attr,
1734 };
1735 
1736 int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu,
1737 			     u32 cpu)
1738 {
1739 	struct openpic *opp = dev->private;
1740 	int ret = 0;
1741 
1742 	if (dev->ops != &kvm_mpic_ops)
1743 		return -EPERM;
1744 	if (opp->kvm != vcpu->kvm)
1745 		return -EPERM;
1746 	if (cpu < 0 || cpu >= MAX_CPU)
1747 		return -EPERM;
1748 
1749 	spin_lock_irq(&opp->lock);
1750 
1751 	if (opp->dst[cpu].vcpu) {
1752 		ret = -EEXIST;
1753 		goto out;
1754 	}
1755 	if (vcpu->arch.irq_type) {
1756 		ret = -EBUSY;
1757 		goto out;
1758 	}
1759 
1760 	opp->dst[cpu].vcpu = vcpu;
1761 	opp->nb_cpus = max(opp->nb_cpus, cpu + 1);
1762 
1763 	vcpu->arch.mpic = opp;
1764 	vcpu->arch.irq_cpu_id = cpu;
1765 	vcpu->arch.irq_type = KVMPPC_IRQ_MPIC;
1766 
1767 	/* This might need to be changed if GCR gets extended */
1768 	if (opp->mpic_mode_mask == GCR_MODE_PROXY)
1769 		vcpu->arch.epr_flags |= KVMPPC_EPR_KERNEL;
1770 
1771 out:
1772 	spin_unlock_irq(&opp->lock);
1773 	return ret;
1774 }
1775 
1776 /*
1777  * This should only happen immediately before the mpic is destroyed,
1778  * so we shouldn't need to worry about anything still trying to
1779  * access the vcpu pointer.
1780  */
1781 void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu)
1782 {
1783 	BUG_ON(!opp->dst[vcpu->arch.irq_cpu_id].vcpu);
1784 
1785 	opp->dst[vcpu->arch.irq_cpu_id].vcpu = NULL;
1786 }
1787 
1788 /*
1789  * Return value:
1790  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1791  *  = 0   Interrupt was coalesced (previous irq is still pending)
1792  *  > 0   Number of CPUs interrupt was delivered to
1793  */
1794 static int mpic_set_irq(struct kvm_kernel_irq_routing_entry *e,
1795 			struct kvm *kvm, int irq_source_id, int level,
1796 			bool line_status)
1797 {
1798 	u32 irq = e->irqchip.pin;
1799 	struct openpic *opp = kvm->arch.mpic;
1800 	unsigned long flags;
1801 
1802 	spin_lock_irqsave(&opp->lock, flags);
1803 	openpic_set_irq(opp, irq, level);
1804 	spin_unlock_irqrestore(&opp->lock, flags);
1805 
1806 	/* All code paths we care about don't check for the return value */
1807 	return 0;
1808 }
1809 
1810 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
1811 		struct kvm *kvm, int irq_source_id, int level, bool line_status)
1812 {
1813 	struct openpic *opp = kvm->arch.mpic;
1814 	unsigned long flags;
1815 
1816 	spin_lock_irqsave(&opp->lock, flags);
1817 
1818 	/*
1819 	 * XXX We ignore the target address for now, as we only support
1820 	 *     a single MSI bank.
1821 	 */
1822 	openpic_msi_write(kvm->arch.mpic, MSIIR_OFFSET, e->msi.data);
1823 	spin_unlock_irqrestore(&opp->lock, flags);
1824 
1825 	/* All code paths we care about don't check for the return value */
1826 	return 0;
1827 }
1828 
1829 int kvm_set_routing_entry(struct kvm_irq_routing_table *rt,
1830 			  struct kvm_kernel_irq_routing_entry *e,
1831 			  const struct kvm_irq_routing_entry *ue)
1832 {
1833 	int r = -EINVAL;
1834 
1835 	switch (ue->type) {
1836 	case KVM_IRQ_ROUTING_IRQCHIP:
1837 		e->set = mpic_set_irq;
1838 		e->irqchip.irqchip = ue->u.irqchip.irqchip;
1839 		e->irqchip.pin = ue->u.irqchip.pin;
1840 		if (e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS)
1841 			goto out;
1842 		rt->chip[ue->u.irqchip.irqchip][e->irqchip.pin] = ue->gsi;
1843 		break;
1844 	case KVM_IRQ_ROUTING_MSI:
1845 		e->set = kvm_set_msi;
1846 		e->msi.address_lo = ue->u.msi.address_lo;
1847 		e->msi.address_hi = ue->u.msi.address_hi;
1848 		e->msi.data = ue->u.msi.data;
1849 		break;
1850 	default:
1851 		goto out;
1852 	}
1853 
1854 	r = 0;
1855 out:
1856 	return r;
1857 }
1858