1 /* 2 * OpenPIC emulation 3 * 4 * Copyright (c) 2004 Jocelyn Mayer 5 * 2011 Alexander Graf 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/mutex.h> 28 #include <linux/kvm_host.h> 29 #include <linux/errno.h> 30 #include <linux/fs.h> 31 #include <linux/anon_inodes.h> 32 #include <asm/uaccess.h> 33 #include <asm/mpic.h> 34 #include <asm/kvm_para.h> 35 #include <asm/kvm_host.h> 36 #include <asm/kvm_ppc.h> 37 #include "iodev.h" 38 39 #define MAX_CPU 32 40 #define MAX_SRC 256 41 #define MAX_TMR 4 42 #define MAX_IPI 4 43 #define MAX_MSI 8 44 #define MAX_IRQ (MAX_SRC + MAX_IPI + MAX_TMR) 45 #define VID 0x03 /* MPIC version ID */ 46 47 /* OpenPIC capability flags */ 48 #define OPENPIC_FLAG_IDR_CRIT (1 << 0) 49 #define OPENPIC_FLAG_ILR (2 << 0) 50 51 /* OpenPIC address map */ 52 #define OPENPIC_REG_SIZE 0x40000 53 #define OPENPIC_GLB_REG_START 0x0 54 #define OPENPIC_GLB_REG_SIZE 0x10F0 55 #define OPENPIC_TMR_REG_START 0x10F0 56 #define OPENPIC_TMR_REG_SIZE 0x220 57 #define OPENPIC_MSI_REG_START 0x1600 58 #define OPENPIC_MSI_REG_SIZE 0x200 59 #define OPENPIC_SUMMARY_REG_START 0x3800 60 #define OPENPIC_SUMMARY_REG_SIZE 0x800 61 #define OPENPIC_SRC_REG_START 0x10000 62 #define OPENPIC_SRC_REG_SIZE (MAX_SRC * 0x20) 63 #define OPENPIC_CPU_REG_START 0x20000 64 #define OPENPIC_CPU_REG_SIZE (0x100 + ((MAX_CPU - 1) * 0x1000)) 65 66 struct fsl_mpic_info { 67 int max_ext; 68 }; 69 70 static struct fsl_mpic_info fsl_mpic_20 = { 71 .max_ext = 12, 72 }; 73 74 static struct fsl_mpic_info fsl_mpic_42 = { 75 .max_ext = 12, 76 }; 77 78 #define FRR_NIRQ_SHIFT 16 79 #define FRR_NCPU_SHIFT 8 80 #define FRR_VID_SHIFT 0 81 82 #define VID_REVISION_1_2 2 83 #define VID_REVISION_1_3 3 84 85 #define VIR_GENERIC 0x00000000 /* Generic Vendor ID */ 86 87 #define GCR_RESET 0x80000000 88 #define GCR_MODE_PASS 0x00000000 89 #define GCR_MODE_MIXED 0x20000000 90 #define GCR_MODE_PROXY 0x60000000 91 92 #define TBCR_CI 0x80000000 /* count inhibit */ 93 #define TCCR_TOG 0x80000000 /* toggles when decrement to zero */ 94 95 #define IDR_EP_SHIFT 31 96 #define IDR_EP_MASK (1 << IDR_EP_SHIFT) 97 #define IDR_CI0_SHIFT 30 98 #define IDR_CI1_SHIFT 29 99 #define IDR_P1_SHIFT 1 100 #define IDR_P0_SHIFT 0 101 102 #define ILR_INTTGT_MASK 0x000000ff 103 #define ILR_INTTGT_INT 0x00 104 #define ILR_INTTGT_CINT 0x01 /* critical */ 105 #define ILR_INTTGT_MCP 0x02 /* machine check */ 106 #define NUM_OUTPUTS 3 107 108 #define MSIIR_OFFSET 0x140 109 #define MSIIR_SRS_SHIFT 29 110 #define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT) 111 #define MSIIR_IBS_SHIFT 24 112 #define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT) 113 114 static int get_current_cpu(void) 115 { 116 #if defined(CONFIG_KVM) && defined(CONFIG_BOOKE) 117 struct kvm_vcpu *vcpu = current->thread.kvm_vcpu; 118 return vcpu ? vcpu->arch.irq_cpu_id : -1; 119 #else 120 /* XXX */ 121 return -1; 122 #endif 123 } 124 125 static int openpic_cpu_write_internal(void *opaque, gpa_t addr, 126 u32 val, int idx); 127 static int openpic_cpu_read_internal(void *opaque, gpa_t addr, 128 u32 *ptr, int idx); 129 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ, 130 uint32_t val); 131 132 enum irq_type { 133 IRQ_TYPE_NORMAL = 0, 134 IRQ_TYPE_FSLINT, /* FSL internal interrupt -- level only */ 135 IRQ_TYPE_FSLSPECIAL, /* FSL timer/IPI interrupt, edge, no polarity */ 136 }; 137 138 struct irq_queue { 139 /* Round up to the nearest 64 IRQs so that the queue length 140 * won't change when moving between 32 and 64 bit hosts. 141 */ 142 unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)]; 143 int next; 144 int priority; 145 }; 146 147 struct irq_source { 148 uint32_t ivpr; /* IRQ vector/priority register */ 149 uint32_t idr; /* IRQ destination register */ 150 uint32_t destmask; /* bitmap of CPU destinations */ 151 int last_cpu; 152 int output; /* IRQ level, e.g. ILR_INTTGT_INT */ 153 int pending; /* TRUE if IRQ is pending */ 154 enum irq_type type; 155 bool level:1; /* level-triggered */ 156 bool nomask:1; /* critical interrupts ignore mask on some FSL MPICs */ 157 }; 158 159 #define IVPR_MASK_SHIFT 31 160 #define IVPR_MASK_MASK (1 << IVPR_MASK_SHIFT) 161 #define IVPR_ACTIVITY_SHIFT 30 162 #define IVPR_ACTIVITY_MASK (1 << IVPR_ACTIVITY_SHIFT) 163 #define IVPR_MODE_SHIFT 29 164 #define IVPR_MODE_MASK (1 << IVPR_MODE_SHIFT) 165 #define IVPR_POLARITY_SHIFT 23 166 #define IVPR_POLARITY_MASK (1 << IVPR_POLARITY_SHIFT) 167 #define IVPR_SENSE_SHIFT 22 168 #define IVPR_SENSE_MASK (1 << IVPR_SENSE_SHIFT) 169 170 #define IVPR_PRIORITY_MASK (0xF << 16) 171 #define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16)) 172 #define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask) 173 174 /* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */ 175 #define IDR_EP 0x80000000 /* external pin */ 176 #define IDR_CI 0x40000000 /* critical interrupt */ 177 178 struct irq_dest { 179 struct kvm_vcpu *vcpu; 180 181 int32_t ctpr; /* CPU current task priority */ 182 struct irq_queue raised; 183 struct irq_queue servicing; 184 185 /* Count of IRQ sources asserting on non-INT outputs */ 186 uint32_t outputs_active[NUM_OUTPUTS]; 187 }; 188 189 #define MAX_MMIO_REGIONS 10 190 191 struct openpic { 192 struct kvm *kvm; 193 struct kvm_device *dev; 194 struct kvm_io_device mmio; 195 const struct mem_reg *mmio_regions[MAX_MMIO_REGIONS]; 196 int num_mmio_regions; 197 198 gpa_t reg_base; 199 spinlock_t lock; 200 201 /* Behavior control */ 202 struct fsl_mpic_info *fsl; 203 uint32_t model; 204 uint32_t flags; 205 uint32_t nb_irqs; 206 uint32_t vid; 207 uint32_t vir; /* Vendor identification register */ 208 uint32_t vector_mask; 209 uint32_t tfrr_reset; 210 uint32_t ivpr_reset; 211 uint32_t idr_reset; 212 uint32_t brr1; 213 uint32_t mpic_mode_mask; 214 215 /* Global registers */ 216 uint32_t frr; /* Feature reporting register */ 217 uint32_t gcr; /* Global configuration register */ 218 uint32_t pir; /* Processor initialization register */ 219 uint32_t spve; /* Spurious vector register */ 220 uint32_t tfrr; /* Timer frequency reporting register */ 221 /* Source registers */ 222 struct irq_source src[MAX_IRQ]; 223 /* Local registers per output pin */ 224 struct irq_dest dst[MAX_CPU]; 225 uint32_t nb_cpus; 226 /* Timer registers */ 227 struct { 228 uint32_t tccr; /* Global timer current count register */ 229 uint32_t tbcr; /* Global timer base count register */ 230 } timers[MAX_TMR]; 231 /* Shared MSI registers */ 232 struct { 233 uint32_t msir; /* Shared Message Signaled Interrupt Register */ 234 } msi[MAX_MSI]; 235 uint32_t max_irq; 236 uint32_t irq_ipi0; 237 uint32_t irq_tim0; 238 uint32_t irq_msi; 239 }; 240 241 242 static void mpic_irq_raise(struct openpic *opp, struct irq_dest *dst, 243 int output) 244 { 245 struct kvm_interrupt irq = { 246 .irq = KVM_INTERRUPT_SET_LEVEL, 247 }; 248 249 if (!dst->vcpu) { 250 pr_debug("%s: destination cpu %d does not exist\n", 251 __func__, (int)(dst - &opp->dst[0])); 252 return; 253 } 254 255 pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id, 256 output); 257 258 if (output != ILR_INTTGT_INT) /* TODO */ 259 return; 260 261 kvm_vcpu_ioctl_interrupt(dst->vcpu, &irq); 262 } 263 264 static void mpic_irq_lower(struct openpic *opp, struct irq_dest *dst, 265 int output) 266 { 267 if (!dst->vcpu) { 268 pr_debug("%s: destination cpu %d does not exist\n", 269 __func__, (int)(dst - &opp->dst[0])); 270 return; 271 } 272 273 pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id, 274 output); 275 276 if (output != ILR_INTTGT_INT) /* TODO */ 277 return; 278 279 kvmppc_core_dequeue_external(dst->vcpu); 280 } 281 282 static inline void IRQ_setbit(struct irq_queue *q, int n_IRQ) 283 { 284 set_bit(n_IRQ, q->queue); 285 } 286 287 static inline void IRQ_resetbit(struct irq_queue *q, int n_IRQ) 288 { 289 clear_bit(n_IRQ, q->queue); 290 } 291 292 static inline int IRQ_testbit(struct irq_queue *q, int n_IRQ) 293 { 294 return test_bit(n_IRQ, q->queue); 295 } 296 297 static void IRQ_check(struct openpic *opp, struct irq_queue *q) 298 { 299 int irq = -1; 300 int next = -1; 301 int priority = -1; 302 303 for (;;) { 304 irq = find_next_bit(q->queue, opp->max_irq, irq + 1); 305 if (irq == opp->max_irq) 306 break; 307 308 pr_debug("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n", 309 irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority); 310 311 if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) { 312 next = irq; 313 priority = IVPR_PRIORITY(opp->src[irq].ivpr); 314 } 315 } 316 317 q->next = next; 318 q->priority = priority; 319 } 320 321 static int IRQ_get_next(struct openpic *opp, struct irq_queue *q) 322 { 323 /* XXX: optimize */ 324 IRQ_check(opp, q); 325 326 return q->next; 327 } 328 329 static void IRQ_local_pipe(struct openpic *opp, int n_CPU, int n_IRQ, 330 bool active, bool was_active) 331 { 332 struct irq_dest *dst; 333 struct irq_source *src; 334 int priority; 335 336 dst = &opp->dst[n_CPU]; 337 src = &opp->src[n_IRQ]; 338 339 pr_debug("%s: IRQ %d active %d was %d\n", 340 __func__, n_IRQ, active, was_active); 341 342 if (src->output != ILR_INTTGT_INT) { 343 pr_debug("%s: output %d irq %d active %d was %d count %d\n", 344 __func__, src->output, n_IRQ, active, was_active, 345 dst->outputs_active[src->output]); 346 347 /* On Freescale MPIC, critical interrupts ignore priority, 348 * IACK, EOI, etc. Before MPIC v4.1 they also ignore 349 * masking. 350 */ 351 if (active) { 352 if (!was_active && 353 dst->outputs_active[src->output]++ == 0) { 354 pr_debug("%s: Raise OpenPIC output %d cpu %d irq %d\n", 355 __func__, src->output, n_CPU, n_IRQ); 356 mpic_irq_raise(opp, dst, src->output); 357 } 358 } else { 359 if (was_active && 360 --dst->outputs_active[src->output] == 0) { 361 pr_debug("%s: Lower OpenPIC output %d cpu %d irq %d\n", 362 __func__, src->output, n_CPU, n_IRQ); 363 mpic_irq_lower(opp, dst, src->output); 364 } 365 } 366 367 return; 368 } 369 370 priority = IVPR_PRIORITY(src->ivpr); 371 372 /* Even if the interrupt doesn't have enough priority, 373 * it is still raised, in case ctpr is lowered later. 374 */ 375 if (active) 376 IRQ_setbit(&dst->raised, n_IRQ); 377 else 378 IRQ_resetbit(&dst->raised, n_IRQ); 379 380 IRQ_check(opp, &dst->raised); 381 382 if (active && priority <= dst->ctpr) { 383 pr_debug("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n", 384 __func__, n_IRQ, priority, dst->ctpr, n_CPU); 385 active = 0; 386 } 387 388 if (active) { 389 if (IRQ_get_next(opp, &dst->servicing) >= 0 && 390 priority <= dst->servicing.priority) { 391 pr_debug("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n", 392 __func__, n_IRQ, dst->servicing.next, n_CPU); 393 } else { 394 pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n", 395 __func__, n_CPU, n_IRQ, dst->raised.next); 396 mpic_irq_raise(opp, dst, ILR_INTTGT_INT); 397 } 398 } else { 399 IRQ_get_next(opp, &dst->servicing); 400 if (dst->raised.priority > dst->ctpr && 401 dst->raised.priority > dst->servicing.priority) { 402 pr_debug("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n", 403 __func__, n_IRQ, dst->raised.next, 404 dst->raised.priority, dst->ctpr, 405 dst->servicing.priority, n_CPU); 406 /* IRQ line stays asserted */ 407 } else { 408 pr_debug("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n", 409 __func__, n_IRQ, dst->ctpr, 410 dst->servicing.priority, n_CPU); 411 mpic_irq_lower(opp, dst, ILR_INTTGT_INT); 412 } 413 } 414 } 415 416 /* update pic state because registers for n_IRQ have changed value */ 417 static void openpic_update_irq(struct openpic *opp, int n_IRQ) 418 { 419 struct irq_source *src; 420 bool active, was_active; 421 int i; 422 423 src = &opp->src[n_IRQ]; 424 active = src->pending; 425 426 if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) { 427 /* Interrupt source is disabled */ 428 pr_debug("%s: IRQ %d is disabled\n", __func__, n_IRQ); 429 active = false; 430 } 431 432 was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK); 433 434 /* 435 * We don't have a similar check for already-active because 436 * ctpr may have changed and we need to withdraw the interrupt. 437 */ 438 if (!active && !was_active) { 439 pr_debug("%s: IRQ %d is already inactive\n", __func__, n_IRQ); 440 return; 441 } 442 443 if (active) 444 src->ivpr |= IVPR_ACTIVITY_MASK; 445 else 446 src->ivpr &= ~IVPR_ACTIVITY_MASK; 447 448 if (src->destmask == 0) { 449 /* No target */ 450 pr_debug("%s: IRQ %d has no target\n", __func__, n_IRQ); 451 return; 452 } 453 454 if (src->destmask == (1 << src->last_cpu)) { 455 /* Only one CPU is allowed to receive this IRQ */ 456 IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active); 457 } else if (!(src->ivpr & IVPR_MODE_MASK)) { 458 /* Directed delivery mode */ 459 for (i = 0; i < opp->nb_cpus; i++) { 460 if (src->destmask & (1 << i)) { 461 IRQ_local_pipe(opp, i, n_IRQ, active, 462 was_active); 463 } 464 } 465 } else { 466 /* Distributed delivery mode */ 467 for (i = src->last_cpu + 1; i != src->last_cpu; i++) { 468 if (i == opp->nb_cpus) 469 i = 0; 470 471 if (src->destmask & (1 << i)) { 472 IRQ_local_pipe(opp, i, n_IRQ, active, 473 was_active); 474 src->last_cpu = i; 475 break; 476 } 477 } 478 } 479 } 480 481 static void openpic_set_irq(void *opaque, int n_IRQ, int level) 482 { 483 struct openpic *opp = opaque; 484 struct irq_source *src; 485 486 if (n_IRQ >= MAX_IRQ) { 487 WARN_ONCE(1, "%s: IRQ %d out of range\n", __func__, n_IRQ); 488 return; 489 } 490 491 src = &opp->src[n_IRQ]; 492 pr_debug("openpic: set irq %d = %d ivpr=0x%08x\n", 493 n_IRQ, level, src->ivpr); 494 if (src->level) { 495 /* level-sensitive irq */ 496 src->pending = level; 497 openpic_update_irq(opp, n_IRQ); 498 } else { 499 /* edge-sensitive irq */ 500 if (level) { 501 src->pending = 1; 502 openpic_update_irq(opp, n_IRQ); 503 } 504 505 if (src->output != ILR_INTTGT_INT) { 506 /* Edge-triggered interrupts shouldn't be used 507 * with non-INT delivery, but just in case, 508 * try to make it do something sane rather than 509 * cause an interrupt storm. This is close to 510 * what you'd probably see happen in real hardware. 511 */ 512 src->pending = 0; 513 openpic_update_irq(opp, n_IRQ); 514 } 515 } 516 } 517 518 static void openpic_reset(struct openpic *opp) 519 { 520 int i; 521 522 opp->gcr = GCR_RESET; 523 /* Initialise controller registers */ 524 opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) | 525 (opp->vid << FRR_VID_SHIFT); 526 527 opp->pir = 0; 528 opp->spve = -1 & opp->vector_mask; 529 opp->tfrr = opp->tfrr_reset; 530 /* Initialise IRQ sources */ 531 for (i = 0; i < opp->max_irq; i++) { 532 opp->src[i].ivpr = opp->ivpr_reset; 533 534 switch (opp->src[i].type) { 535 case IRQ_TYPE_NORMAL: 536 opp->src[i].level = 537 !!(opp->ivpr_reset & IVPR_SENSE_MASK); 538 break; 539 540 case IRQ_TYPE_FSLINT: 541 opp->src[i].ivpr |= IVPR_POLARITY_MASK; 542 break; 543 544 case IRQ_TYPE_FSLSPECIAL: 545 break; 546 } 547 548 write_IRQreg_idr(opp, i, opp->idr_reset); 549 } 550 /* Initialise IRQ destinations */ 551 for (i = 0; i < MAX_CPU; i++) { 552 opp->dst[i].ctpr = 15; 553 memset(&opp->dst[i].raised, 0, sizeof(struct irq_queue)); 554 opp->dst[i].raised.next = -1; 555 memset(&opp->dst[i].servicing, 0, sizeof(struct irq_queue)); 556 opp->dst[i].servicing.next = -1; 557 } 558 /* Initialise timers */ 559 for (i = 0; i < MAX_TMR; i++) { 560 opp->timers[i].tccr = 0; 561 opp->timers[i].tbcr = TBCR_CI; 562 } 563 /* Go out of RESET state */ 564 opp->gcr = 0; 565 } 566 567 static inline uint32_t read_IRQreg_idr(struct openpic *opp, int n_IRQ) 568 { 569 return opp->src[n_IRQ].idr; 570 } 571 572 static inline uint32_t read_IRQreg_ilr(struct openpic *opp, int n_IRQ) 573 { 574 if (opp->flags & OPENPIC_FLAG_ILR) 575 return opp->src[n_IRQ].output; 576 577 return 0xffffffff; 578 } 579 580 static inline uint32_t read_IRQreg_ivpr(struct openpic *opp, int n_IRQ) 581 { 582 return opp->src[n_IRQ].ivpr; 583 } 584 585 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ, 586 uint32_t val) 587 { 588 struct irq_source *src = &opp->src[n_IRQ]; 589 uint32_t normal_mask = (1UL << opp->nb_cpus) - 1; 590 uint32_t crit_mask = 0; 591 uint32_t mask = normal_mask; 592 int crit_shift = IDR_EP_SHIFT - opp->nb_cpus; 593 int i; 594 595 if (opp->flags & OPENPIC_FLAG_IDR_CRIT) { 596 crit_mask = mask << crit_shift; 597 mask |= crit_mask | IDR_EP; 598 } 599 600 src->idr = val & mask; 601 pr_debug("Set IDR %d to 0x%08x\n", n_IRQ, src->idr); 602 603 if (opp->flags & OPENPIC_FLAG_IDR_CRIT) { 604 if (src->idr & crit_mask) { 605 if (src->idr & normal_mask) { 606 pr_debug("%s: IRQ configured for multiple output types, using critical\n", 607 __func__); 608 } 609 610 src->output = ILR_INTTGT_CINT; 611 src->nomask = true; 612 src->destmask = 0; 613 614 for (i = 0; i < opp->nb_cpus; i++) { 615 int n_ci = IDR_CI0_SHIFT - i; 616 617 if (src->idr & (1UL << n_ci)) 618 src->destmask |= 1UL << i; 619 } 620 } else { 621 src->output = ILR_INTTGT_INT; 622 src->nomask = false; 623 src->destmask = src->idr & normal_mask; 624 } 625 } else { 626 src->destmask = src->idr; 627 } 628 } 629 630 static inline void write_IRQreg_ilr(struct openpic *opp, int n_IRQ, 631 uint32_t val) 632 { 633 if (opp->flags & OPENPIC_FLAG_ILR) { 634 struct irq_source *src = &opp->src[n_IRQ]; 635 636 src->output = val & ILR_INTTGT_MASK; 637 pr_debug("Set ILR %d to 0x%08x, output %d\n", n_IRQ, src->idr, 638 src->output); 639 640 /* TODO: on MPIC v4.0 only, set nomask for non-INT */ 641 } 642 } 643 644 static inline void write_IRQreg_ivpr(struct openpic *opp, int n_IRQ, 645 uint32_t val) 646 { 647 uint32_t mask; 648 649 /* NOTE when implementing newer FSL MPIC models: starting with v4.0, 650 * the polarity bit is read-only on internal interrupts. 651 */ 652 mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK | 653 IVPR_POLARITY_MASK | opp->vector_mask; 654 655 /* ACTIVITY bit is read-only */ 656 opp->src[n_IRQ].ivpr = 657 (opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask); 658 659 /* For FSL internal interrupts, The sense bit is reserved and zero, 660 * and the interrupt is always level-triggered. Timers and IPIs 661 * have no sense or polarity bits, and are edge-triggered. 662 */ 663 switch (opp->src[n_IRQ].type) { 664 case IRQ_TYPE_NORMAL: 665 opp->src[n_IRQ].level = 666 !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK); 667 break; 668 669 case IRQ_TYPE_FSLINT: 670 opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK; 671 break; 672 673 case IRQ_TYPE_FSLSPECIAL: 674 opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK); 675 break; 676 } 677 678 openpic_update_irq(opp, n_IRQ); 679 pr_debug("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val, 680 opp->src[n_IRQ].ivpr); 681 } 682 683 static void openpic_gcr_write(struct openpic *opp, uint64_t val) 684 { 685 if (val & GCR_RESET) { 686 openpic_reset(opp); 687 return; 688 } 689 690 opp->gcr &= ~opp->mpic_mode_mask; 691 opp->gcr |= val & opp->mpic_mode_mask; 692 } 693 694 static int openpic_gbl_write(void *opaque, gpa_t addr, u32 val) 695 { 696 struct openpic *opp = opaque; 697 int err = 0; 698 699 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val); 700 if (addr & 0xF) 701 return 0; 702 703 switch (addr) { 704 case 0x00: /* Block Revision Register1 (BRR1) is Readonly */ 705 break; 706 case 0x40: 707 case 0x50: 708 case 0x60: 709 case 0x70: 710 case 0x80: 711 case 0x90: 712 case 0xA0: 713 case 0xB0: 714 err = openpic_cpu_write_internal(opp, addr, val, 715 get_current_cpu()); 716 break; 717 case 0x1000: /* FRR */ 718 break; 719 case 0x1020: /* GCR */ 720 openpic_gcr_write(opp, val); 721 break; 722 case 0x1080: /* VIR */ 723 break; 724 case 0x1090: /* PIR */ 725 /* 726 * This register is used to reset a CPU core -- 727 * let userspace handle it. 728 */ 729 err = -ENXIO; 730 break; 731 case 0x10A0: /* IPI_IVPR */ 732 case 0x10B0: 733 case 0x10C0: 734 case 0x10D0: { 735 int idx; 736 idx = (addr - 0x10A0) >> 4; 737 write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val); 738 break; 739 } 740 case 0x10E0: /* SPVE */ 741 opp->spve = val & opp->vector_mask; 742 break; 743 default: 744 break; 745 } 746 747 return err; 748 } 749 750 static int openpic_gbl_read(void *opaque, gpa_t addr, u32 *ptr) 751 { 752 struct openpic *opp = opaque; 753 u32 retval; 754 int err = 0; 755 756 pr_debug("%s: addr %#llx\n", __func__, addr); 757 retval = 0xFFFFFFFF; 758 if (addr & 0xF) 759 goto out; 760 761 switch (addr) { 762 case 0x1000: /* FRR */ 763 retval = opp->frr; 764 retval |= (opp->nb_cpus - 1) << FRR_NCPU_SHIFT; 765 break; 766 case 0x1020: /* GCR */ 767 retval = opp->gcr; 768 break; 769 case 0x1080: /* VIR */ 770 retval = opp->vir; 771 break; 772 case 0x1090: /* PIR */ 773 retval = 0x00000000; 774 break; 775 case 0x00: /* Block Revision Register1 (BRR1) */ 776 retval = opp->brr1; 777 break; 778 case 0x40: 779 case 0x50: 780 case 0x60: 781 case 0x70: 782 case 0x80: 783 case 0x90: 784 case 0xA0: 785 case 0xB0: 786 err = openpic_cpu_read_internal(opp, addr, 787 &retval, get_current_cpu()); 788 break; 789 case 0x10A0: /* IPI_IVPR */ 790 case 0x10B0: 791 case 0x10C0: 792 case 0x10D0: 793 { 794 int idx; 795 idx = (addr - 0x10A0) >> 4; 796 retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx); 797 } 798 break; 799 case 0x10E0: /* SPVE */ 800 retval = opp->spve; 801 break; 802 default: 803 break; 804 } 805 806 out: 807 pr_debug("%s: => 0x%08x\n", __func__, retval); 808 *ptr = retval; 809 return err; 810 } 811 812 static int openpic_tmr_write(void *opaque, gpa_t addr, u32 val) 813 { 814 struct openpic *opp = opaque; 815 int idx; 816 817 addr += 0x10f0; 818 819 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val); 820 if (addr & 0xF) 821 return 0; 822 823 if (addr == 0x10f0) { 824 /* TFRR */ 825 opp->tfrr = val; 826 return 0; 827 } 828 829 idx = (addr >> 6) & 0x3; 830 addr = addr & 0x30; 831 832 switch (addr & 0x30) { 833 case 0x00: /* TCCR */ 834 break; 835 case 0x10: /* TBCR */ 836 if ((opp->timers[idx].tccr & TCCR_TOG) != 0 && 837 (val & TBCR_CI) == 0 && 838 (opp->timers[idx].tbcr & TBCR_CI) != 0) 839 opp->timers[idx].tccr &= ~TCCR_TOG; 840 841 opp->timers[idx].tbcr = val; 842 break; 843 case 0x20: /* TVPR */ 844 write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val); 845 break; 846 case 0x30: /* TDR */ 847 write_IRQreg_idr(opp, opp->irq_tim0 + idx, val); 848 break; 849 } 850 851 return 0; 852 } 853 854 static int openpic_tmr_read(void *opaque, gpa_t addr, u32 *ptr) 855 { 856 struct openpic *opp = opaque; 857 uint32_t retval = -1; 858 int idx; 859 860 pr_debug("%s: addr %#llx\n", __func__, addr); 861 if (addr & 0xF) 862 goto out; 863 864 idx = (addr >> 6) & 0x3; 865 if (addr == 0x0) { 866 /* TFRR */ 867 retval = opp->tfrr; 868 goto out; 869 } 870 871 switch (addr & 0x30) { 872 case 0x00: /* TCCR */ 873 retval = opp->timers[idx].tccr; 874 break; 875 case 0x10: /* TBCR */ 876 retval = opp->timers[idx].tbcr; 877 break; 878 case 0x20: /* TIPV */ 879 retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx); 880 break; 881 case 0x30: /* TIDE (TIDR) */ 882 retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx); 883 break; 884 } 885 886 out: 887 pr_debug("%s: => 0x%08x\n", __func__, retval); 888 *ptr = retval; 889 return 0; 890 } 891 892 static int openpic_src_write(void *opaque, gpa_t addr, u32 val) 893 { 894 struct openpic *opp = opaque; 895 int idx; 896 897 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val); 898 899 addr = addr & 0xffff; 900 idx = addr >> 5; 901 902 switch (addr & 0x1f) { 903 case 0x00: 904 write_IRQreg_ivpr(opp, idx, val); 905 break; 906 case 0x10: 907 write_IRQreg_idr(opp, idx, val); 908 break; 909 case 0x18: 910 write_IRQreg_ilr(opp, idx, val); 911 break; 912 } 913 914 return 0; 915 } 916 917 static int openpic_src_read(void *opaque, gpa_t addr, u32 *ptr) 918 { 919 struct openpic *opp = opaque; 920 uint32_t retval; 921 int idx; 922 923 pr_debug("%s: addr %#llx\n", __func__, addr); 924 retval = 0xFFFFFFFF; 925 926 addr = addr & 0xffff; 927 idx = addr >> 5; 928 929 switch (addr & 0x1f) { 930 case 0x00: 931 retval = read_IRQreg_ivpr(opp, idx); 932 break; 933 case 0x10: 934 retval = read_IRQreg_idr(opp, idx); 935 break; 936 case 0x18: 937 retval = read_IRQreg_ilr(opp, idx); 938 break; 939 } 940 941 pr_debug("%s: => 0x%08x\n", __func__, retval); 942 *ptr = retval; 943 return 0; 944 } 945 946 static int openpic_msi_write(void *opaque, gpa_t addr, u32 val) 947 { 948 struct openpic *opp = opaque; 949 int idx = opp->irq_msi; 950 int srs, ibs; 951 952 pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val); 953 if (addr & 0xF) 954 return 0; 955 956 switch (addr) { 957 case MSIIR_OFFSET: 958 srs = val >> MSIIR_SRS_SHIFT; 959 idx += srs; 960 ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT; 961 opp->msi[srs].msir |= 1 << ibs; 962 openpic_set_irq(opp, idx, 1); 963 break; 964 default: 965 /* most registers are read-only, thus ignored */ 966 break; 967 } 968 969 return 0; 970 } 971 972 static int openpic_msi_read(void *opaque, gpa_t addr, u32 *ptr) 973 { 974 struct openpic *opp = opaque; 975 uint32_t r = 0; 976 int i, srs; 977 978 pr_debug("%s: addr %#llx\n", __func__, addr); 979 if (addr & 0xF) 980 return -ENXIO; 981 982 srs = addr >> 4; 983 984 switch (addr) { 985 case 0x00: 986 case 0x10: 987 case 0x20: 988 case 0x30: 989 case 0x40: 990 case 0x50: 991 case 0x60: 992 case 0x70: /* MSIRs */ 993 r = opp->msi[srs].msir; 994 /* Clear on read */ 995 opp->msi[srs].msir = 0; 996 openpic_set_irq(opp, opp->irq_msi + srs, 0); 997 break; 998 case 0x120: /* MSISR */ 999 for (i = 0; i < MAX_MSI; i++) 1000 r |= (opp->msi[i].msir ? 1 : 0) << i; 1001 break; 1002 } 1003 1004 pr_debug("%s: => 0x%08x\n", __func__, r); 1005 *ptr = r; 1006 return 0; 1007 } 1008 1009 static int openpic_summary_read(void *opaque, gpa_t addr, u32 *ptr) 1010 { 1011 uint32_t r = 0; 1012 1013 pr_debug("%s: addr %#llx\n", __func__, addr); 1014 1015 /* TODO: EISR/EIMR */ 1016 1017 *ptr = r; 1018 return 0; 1019 } 1020 1021 static int openpic_summary_write(void *opaque, gpa_t addr, u32 val) 1022 { 1023 pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val); 1024 1025 /* TODO: EISR/EIMR */ 1026 return 0; 1027 } 1028 1029 static int openpic_cpu_write_internal(void *opaque, gpa_t addr, 1030 u32 val, int idx) 1031 { 1032 struct openpic *opp = opaque; 1033 struct irq_source *src; 1034 struct irq_dest *dst; 1035 int s_IRQ, n_IRQ; 1036 1037 pr_debug("%s: cpu %d addr %#llx <= 0x%08x\n", __func__, idx, 1038 addr, val); 1039 1040 if (idx < 0) 1041 return 0; 1042 1043 if (addr & 0xF) 1044 return 0; 1045 1046 dst = &opp->dst[idx]; 1047 addr &= 0xFF0; 1048 switch (addr) { 1049 case 0x40: /* IPIDR */ 1050 case 0x50: 1051 case 0x60: 1052 case 0x70: 1053 idx = (addr - 0x40) >> 4; 1054 /* we use IDE as mask which CPUs to deliver the IPI to still. */ 1055 opp->src[opp->irq_ipi0 + idx].destmask |= val; 1056 openpic_set_irq(opp, opp->irq_ipi0 + idx, 1); 1057 openpic_set_irq(opp, opp->irq_ipi0 + idx, 0); 1058 break; 1059 case 0x80: /* CTPR */ 1060 dst->ctpr = val & 0x0000000F; 1061 1062 pr_debug("%s: set CPU %d ctpr to %d, raised %d servicing %d\n", 1063 __func__, idx, dst->ctpr, dst->raised.priority, 1064 dst->servicing.priority); 1065 1066 if (dst->raised.priority <= dst->ctpr) { 1067 pr_debug("%s: Lower OpenPIC INT output cpu %d due to ctpr\n", 1068 __func__, idx); 1069 mpic_irq_lower(opp, dst, ILR_INTTGT_INT); 1070 } else if (dst->raised.priority > dst->servicing.priority) { 1071 pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d\n", 1072 __func__, idx, dst->raised.next); 1073 mpic_irq_raise(opp, dst, ILR_INTTGT_INT); 1074 } 1075 1076 break; 1077 case 0x90: /* WHOAMI */ 1078 /* Read-only register */ 1079 break; 1080 case 0xA0: /* IACK */ 1081 /* Read-only register */ 1082 break; 1083 case 0xB0: { /* EOI */ 1084 int notify_eoi; 1085 1086 pr_debug("EOI\n"); 1087 s_IRQ = IRQ_get_next(opp, &dst->servicing); 1088 1089 if (s_IRQ < 0) { 1090 pr_debug("%s: EOI with no interrupt in service\n", 1091 __func__); 1092 break; 1093 } 1094 1095 IRQ_resetbit(&dst->servicing, s_IRQ); 1096 /* Notify listeners that the IRQ is over */ 1097 notify_eoi = s_IRQ; 1098 /* Set up next servicing IRQ */ 1099 s_IRQ = IRQ_get_next(opp, &dst->servicing); 1100 /* Check queued interrupts. */ 1101 n_IRQ = IRQ_get_next(opp, &dst->raised); 1102 src = &opp->src[n_IRQ]; 1103 if (n_IRQ != -1 && 1104 (s_IRQ == -1 || 1105 IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) { 1106 pr_debug("Raise OpenPIC INT output cpu %d irq %d\n", 1107 idx, n_IRQ); 1108 mpic_irq_raise(opp, dst, ILR_INTTGT_INT); 1109 } 1110 1111 spin_unlock(&opp->lock); 1112 kvm_notify_acked_irq(opp->kvm, 0, notify_eoi); 1113 spin_lock(&opp->lock); 1114 1115 break; 1116 } 1117 default: 1118 break; 1119 } 1120 1121 return 0; 1122 } 1123 1124 static int openpic_cpu_write(void *opaque, gpa_t addr, u32 val) 1125 { 1126 struct openpic *opp = opaque; 1127 1128 return openpic_cpu_write_internal(opp, addr, val, 1129 (addr & 0x1f000) >> 12); 1130 } 1131 1132 static uint32_t openpic_iack(struct openpic *opp, struct irq_dest *dst, 1133 int cpu) 1134 { 1135 struct irq_source *src; 1136 int retval, irq; 1137 1138 pr_debug("Lower OpenPIC INT output\n"); 1139 mpic_irq_lower(opp, dst, ILR_INTTGT_INT); 1140 1141 irq = IRQ_get_next(opp, &dst->raised); 1142 pr_debug("IACK: irq=%d\n", irq); 1143 1144 if (irq == -1) 1145 /* No more interrupt pending */ 1146 return opp->spve; 1147 1148 src = &opp->src[irq]; 1149 if (!(src->ivpr & IVPR_ACTIVITY_MASK) || 1150 !(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) { 1151 pr_err("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n", 1152 __func__, irq, dst->ctpr, src->ivpr); 1153 openpic_update_irq(opp, irq); 1154 retval = opp->spve; 1155 } else { 1156 /* IRQ enter servicing state */ 1157 IRQ_setbit(&dst->servicing, irq); 1158 retval = IVPR_VECTOR(opp, src->ivpr); 1159 } 1160 1161 if (!src->level) { 1162 /* edge-sensitive IRQ */ 1163 src->ivpr &= ~IVPR_ACTIVITY_MASK; 1164 src->pending = 0; 1165 IRQ_resetbit(&dst->raised, irq); 1166 } 1167 1168 if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) { 1169 src->destmask &= ~(1 << cpu); 1170 if (src->destmask && !src->level) { 1171 /* trigger on CPUs that didn't know about it yet */ 1172 openpic_set_irq(opp, irq, 1); 1173 openpic_set_irq(opp, irq, 0); 1174 /* if all CPUs knew about it, set active bit again */ 1175 src->ivpr |= IVPR_ACTIVITY_MASK; 1176 } 1177 } 1178 1179 return retval; 1180 } 1181 1182 void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu) 1183 { 1184 struct openpic *opp = vcpu->arch.mpic; 1185 int cpu = vcpu->arch.irq_cpu_id; 1186 unsigned long flags; 1187 1188 spin_lock_irqsave(&opp->lock, flags); 1189 1190 if ((opp->gcr & opp->mpic_mode_mask) == GCR_MODE_PROXY) 1191 kvmppc_set_epr(vcpu, openpic_iack(opp, &opp->dst[cpu], cpu)); 1192 1193 spin_unlock_irqrestore(&opp->lock, flags); 1194 } 1195 1196 static int openpic_cpu_read_internal(void *opaque, gpa_t addr, 1197 u32 *ptr, int idx) 1198 { 1199 struct openpic *opp = opaque; 1200 struct irq_dest *dst; 1201 uint32_t retval; 1202 1203 pr_debug("%s: cpu %d addr %#llx\n", __func__, idx, addr); 1204 retval = 0xFFFFFFFF; 1205 1206 if (idx < 0) 1207 goto out; 1208 1209 if (addr & 0xF) 1210 goto out; 1211 1212 dst = &opp->dst[idx]; 1213 addr &= 0xFF0; 1214 switch (addr) { 1215 case 0x80: /* CTPR */ 1216 retval = dst->ctpr; 1217 break; 1218 case 0x90: /* WHOAMI */ 1219 retval = idx; 1220 break; 1221 case 0xA0: /* IACK */ 1222 retval = openpic_iack(opp, dst, idx); 1223 break; 1224 case 0xB0: /* EOI */ 1225 retval = 0; 1226 break; 1227 default: 1228 break; 1229 } 1230 pr_debug("%s: => 0x%08x\n", __func__, retval); 1231 1232 out: 1233 *ptr = retval; 1234 return 0; 1235 } 1236 1237 static int openpic_cpu_read(void *opaque, gpa_t addr, u32 *ptr) 1238 { 1239 struct openpic *opp = opaque; 1240 1241 return openpic_cpu_read_internal(opp, addr, ptr, 1242 (addr & 0x1f000) >> 12); 1243 } 1244 1245 struct mem_reg { 1246 int (*read)(void *opaque, gpa_t addr, u32 *ptr); 1247 int (*write)(void *opaque, gpa_t addr, u32 val); 1248 gpa_t start_addr; 1249 int size; 1250 }; 1251 1252 static const struct mem_reg openpic_gbl_mmio = { 1253 .write = openpic_gbl_write, 1254 .read = openpic_gbl_read, 1255 .start_addr = OPENPIC_GLB_REG_START, 1256 .size = OPENPIC_GLB_REG_SIZE, 1257 }; 1258 1259 static const struct mem_reg openpic_tmr_mmio = { 1260 .write = openpic_tmr_write, 1261 .read = openpic_tmr_read, 1262 .start_addr = OPENPIC_TMR_REG_START, 1263 .size = OPENPIC_TMR_REG_SIZE, 1264 }; 1265 1266 static const struct mem_reg openpic_cpu_mmio = { 1267 .write = openpic_cpu_write, 1268 .read = openpic_cpu_read, 1269 .start_addr = OPENPIC_CPU_REG_START, 1270 .size = OPENPIC_CPU_REG_SIZE, 1271 }; 1272 1273 static const struct mem_reg openpic_src_mmio = { 1274 .write = openpic_src_write, 1275 .read = openpic_src_read, 1276 .start_addr = OPENPIC_SRC_REG_START, 1277 .size = OPENPIC_SRC_REG_SIZE, 1278 }; 1279 1280 static const struct mem_reg openpic_msi_mmio = { 1281 .read = openpic_msi_read, 1282 .write = openpic_msi_write, 1283 .start_addr = OPENPIC_MSI_REG_START, 1284 .size = OPENPIC_MSI_REG_SIZE, 1285 }; 1286 1287 static const struct mem_reg openpic_summary_mmio = { 1288 .read = openpic_summary_read, 1289 .write = openpic_summary_write, 1290 .start_addr = OPENPIC_SUMMARY_REG_START, 1291 .size = OPENPIC_SUMMARY_REG_SIZE, 1292 }; 1293 1294 static void add_mmio_region(struct openpic *opp, const struct mem_reg *mr) 1295 { 1296 if (opp->num_mmio_regions >= MAX_MMIO_REGIONS) { 1297 WARN(1, "kvm mpic: too many mmio regions\n"); 1298 return; 1299 } 1300 1301 opp->mmio_regions[opp->num_mmio_regions++] = mr; 1302 } 1303 1304 static void fsl_common_init(struct openpic *opp) 1305 { 1306 int i; 1307 int virq = MAX_SRC; 1308 1309 add_mmio_region(opp, &openpic_msi_mmio); 1310 add_mmio_region(opp, &openpic_summary_mmio); 1311 1312 opp->vid = VID_REVISION_1_2; 1313 opp->vir = VIR_GENERIC; 1314 opp->vector_mask = 0xFFFF; 1315 opp->tfrr_reset = 0; 1316 opp->ivpr_reset = IVPR_MASK_MASK; 1317 opp->idr_reset = 1 << 0; 1318 opp->max_irq = MAX_IRQ; 1319 1320 opp->irq_ipi0 = virq; 1321 virq += MAX_IPI; 1322 opp->irq_tim0 = virq; 1323 virq += MAX_TMR; 1324 1325 BUG_ON(virq > MAX_IRQ); 1326 1327 opp->irq_msi = 224; 1328 1329 for (i = 0; i < opp->fsl->max_ext; i++) 1330 opp->src[i].level = false; 1331 1332 /* Internal interrupts, including message and MSI */ 1333 for (i = 16; i < MAX_SRC; i++) { 1334 opp->src[i].type = IRQ_TYPE_FSLINT; 1335 opp->src[i].level = true; 1336 } 1337 1338 /* timers and IPIs */ 1339 for (i = MAX_SRC; i < virq; i++) { 1340 opp->src[i].type = IRQ_TYPE_FSLSPECIAL; 1341 opp->src[i].level = false; 1342 } 1343 } 1344 1345 static int kvm_mpic_read_internal(struct openpic *opp, gpa_t addr, u32 *ptr) 1346 { 1347 int i; 1348 1349 for (i = 0; i < opp->num_mmio_regions; i++) { 1350 const struct mem_reg *mr = opp->mmio_regions[i]; 1351 1352 if (mr->start_addr > addr || addr >= mr->start_addr + mr->size) 1353 continue; 1354 1355 return mr->read(opp, addr - mr->start_addr, ptr); 1356 } 1357 1358 return -ENXIO; 1359 } 1360 1361 static int kvm_mpic_write_internal(struct openpic *opp, gpa_t addr, u32 val) 1362 { 1363 int i; 1364 1365 for (i = 0; i < opp->num_mmio_regions; i++) { 1366 const struct mem_reg *mr = opp->mmio_regions[i]; 1367 1368 if (mr->start_addr > addr || addr >= mr->start_addr + mr->size) 1369 continue; 1370 1371 return mr->write(opp, addr - mr->start_addr, val); 1372 } 1373 1374 return -ENXIO; 1375 } 1376 1377 static int kvm_mpic_read(struct kvm_io_device *this, gpa_t addr, 1378 int len, void *ptr) 1379 { 1380 struct openpic *opp = container_of(this, struct openpic, mmio); 1381 int ret; 1382 union { 1383 u32 val; 1384 u8 bytes[4]; 1385 } u; 1386 1387 if (addr & (len - 1)) { 1388 pr_debug("%s: bad alignment %llx/%d\n", 1389 __func__, addr, len); 1390 return -EINVAL; 1391 } 1392 1393 spin_lock_irq(&opp->lock); 1394 ret = kvm_mpic_read_internal(opp, addr - opp->reg_base, &u.val); 1395 spin_unlock_irq(&opp->lock); 1396 1397 /* 1398 * Technically only 32-bit accesses are allowed, but be nice to 1399 * people dumping registers a byte at a time -- it works in real 1400 * hardware (reads only, not writes). 1401 */ 1402 if (len == 4) { 1403 *(u32 *)ptr = u.val; 1404 pr_debug("%s: addr %llx ret %d len 4 val %x\n", 1405 __func__, addr, ret, u.val); 1406 } else if (len == 1) { 1407 *(u8 *)ptr = u.bytes[addr & 3]; 1408 pr_debug("%s: addr %llx ret %d len 1 val %x\n", 1409 __func__, addr, ret, u.bytes[addr & 3]); 1410 } else { 1411 pr_debug("%s: bad length %d\n", __func__, len); 1412 return -EINVAL; 1413 } 1414 1415 return ret; 1416 } 1417 1418 static int kvm_mpic_write(struct kvm_io_device *this, gpa_t addr, 1419 int len, const void *ptr) 1420 { 1421 struct openpic *opp = container_of(this, struct openpic, mmio); 1422 int ret; 1423 1424 if (len != 4) { 1425 pr_debug("%s: bad length %d\n", __func__, len); 1426 return -EOPNOTSUPP; 1427 } 1428 if (addr & 3) { 1429 pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len); 1430 return -EOPNOTSUPP; 1431 } 1432 1433 spin_lock_irq(&opp->lock); 1434 ret = kvm_mpic_write_internal(opp, addr - opp->reg_base, 1435 *(const u32 *)ptr); 1436 spin_unlock_irq(&opp->lock); 1437 1438 pr_debug("%s: addr %llx ret %d val %x\n", 1439 __func__, addr, ret, *(const u32 *)ptr); 1440 1441 return ret; 1442 } 1443 1444 static const struct kvm_io_device_ops mpic_mmio_ops = { 1445 .read = kvm_mpic_read, 1446 .write = kvm_mpic_write, 1447 }; 1448 1449 static void map_mmio(struct openpic *opp) 1450 { 1451 kvm_iodevice_init(&opp->mmio, &mpic_mmio_ops); 1452 1453 kvm_io_bus_register_dev(opp->kvm, KVM_MMIO_BUS, 1454 opp->reg_base, OPENPIC_REG_SIZE, 1455 &opp->mmio); 1456 } 1457 1458 static void unmap_mmio(struct openpic *opp) 1459 { 1460 kvm_io_bus_unregister_dev(opp->kvm, KVM_MMIO_BUS, &opp->mmio); 1461 } 1462 1463 static int set_base_addr(struct openpic *opp, struct kvm_device_attr *attr) 1464 { 1465 u64 base; 1466 1467 if (copy_from_user(&base, (u64 __user *)(long)attr->addr, sizeof(u64))) 1468 return -EFAULT; 1469 1470 if (base & 0x3ffff) { 1471 pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx not aligned\n", 1472 __func__, base); 1473 return -EINVAL; 1474 } 1475 1476 if (base == opp->reg_base) 1477 return 0; 1478 1479 mutex_lock(&opp->kvm->slots_lock); 1480 1481 unmap_mmio(opp); 1482 opp->reg_base = base; 1483 1484 pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx\n", 1485 __func__, base); 1486 1487 if (base == 0) 1488 goto out; 1489 1490 map_mmio(opp); 1491 1492 out: 1493 mutex_unlock(&opp->kvm->slots_lock); 1494 return 0; 1495 } 1496 1497 #define ATTR_SET 0 1498 #define ATTR_GET 1 1499 1500 static int access_reg(struct openpic *opp, gpa_t addr, u32 *val, int type) 1501 { 1502 int ret; 1503 1504 if (addr & 3) 1505 return -ENXIO; 1506 1507 spin_lock_irq(&opp->lock); 1508 1509 if (type == ATTR_SET) 1510 ret = kvm_mpic_write_internal(opp, addr, *val); 1511 else 1512 ret = kvm_mpic_read_internal(opp, addr, val); 1513 1514 spin_unlock_irq(&opp->lock); 1515 1516 pr_debug("%s: type %d addr %llx val %x\n", __func__, type, addr, *val); 1517 1518 return ret; 1519 } 1520 1521 static int mpic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1522 { 1523 struct openpic *opp = dev->private; 1524 u32 attr32; 1525 1526 switch (attr->group) { 1527 case KVM_DEV_MPIC_GRP_MISC: 1528 switch (attr->attr) { 1529 case KVM_DEV_MPIC_BASE_ADDR: 1530 return set_base_addr(opp, attr); 1531 } 1532 1533 break; 1534 1535 case KVM_DEV_MPIC_GRP_REGISTER: 1536 if (get_user(attr32, (u32 __user *)(long)attr->addr)) 1537 return -EFAULT; 1538 1539 return access_reg(opp, attr->attr, &attr32, ATTR_SET); 1540 1541 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE: 1542 if (attr->attr > MAX_SRC) 1543 return -EINVAL; 1544 1545 if (get_user(attr32, (u32 __user *)(long)attr->addr)) 1546 return -EFAULT; 1547 1548 if (attr32 != 0 && attr32 != 1) 1549 return -EINVAL; 1550 1551 spin_lock_irq(&opp->lock); 1552 openpic_set_irq(opp, attr->attr, attr32); 1553 spin_unlock_irq(&opp->lock); 1554 return 0; 1555 } 1556 1557 return -ENXIO; 1558 } 1559 1560 static int mpic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1561 { 1562 struct openpic *opp = dev->private; 1563 u64 attr64; 1564 u32 attr32; 1565 int ret; 1566 1567 switch (attr->group) { 1568 case KVM_DEV_MPIC_GRP_MISC: 1569 switch (attr->attr) { 1570 case KVM_DEV_MPIC_BASE_ADDR: 1571 mutex_lock(&opp->kvm->slots_lock); 1572 attr64 = opp->reg_base; 1573 mutex_unlock(&opp->kvm->slots_lock); 1574 1575 if (copy_to_user((u64 __user *)(long)attr->addr, 1576 &attr64, sizeof(u64))) 1577 return -EFAULT; 1578 1579 return 0; 1580 } 1581 1582 break; 1583 1584 case KVM_DEV_MPIC_GRP_REGISTER: 1585 ret = access_reg(opp, attr->attr, &attr32, ATTR_GET); 1586 if (ret) 1587 return ret; 1588 1589 if (put_user(attr32, (u32 __user *)(long)attr->addr)) 1590 return -EFAULT; 1591 1592 return 0; 1593 1594 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE: 1595 if (attr->attr > MAX_SRC) 1596 return -EINVAL; 1597 1598 spin_lock_irq(&opp->lock); 1599 attr32 = opp->src[attr->attr].pending; 1600 spin_unlock_irq(&opp->lock); 1601 1602 if (put_user(attr32, (u32 __user *)(long)attr->addr)) 1603 return -EFAULT; 1604 1605 return 0; 1606 } 1607 1608 return -ENXIO; 1609 } 1610 1611 static int mpic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 1612 { 1613 switch (attr->group) { 1614 case KVM_DEV_MPIC_GRP_MISC: 1615 switch (attr->attr) { 1616 case KVM_DEV_MPIC_BASE_ADDR: 1617 return 0; 1618 } 1619 1620 break; 1621 1622 case KVM_DEV_MPIC_GRP_REGISTER: 1623 return 0; 1624 1625 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE: 1626 if (attr->attr > MAX_SRC) 1627 break; 1628 1629 return 0; 1630 } 1631 1632 return -ENXIO; 1633 } 1634 1635 static void mpic_destroy(struct kvm_device *dev) 1636 { 1637 struct openpic *opp = dev->private; 1638 1639 dev->kvm->arch.mpic = NULL; 1640 kfree(opp); 1641 kfree(dev); 1642 } 1643 1644 static int mpic_set_default_irq_routing(struct openpic *opp) 1645 { 1646 struct kvm_irq_routing_entry *routing; 1647 1648 /* Create a nop default map, so that dereferencing it still works */ 1649 routing = kzalloc((sizeof(*routing)), GFP_KERNEL); 1650 if (!routing) 1651 return -ENOMEM; 1652 1653 kvm_set_irq_routing(opp->kvm, routing, 0, 0); 1654 1655 kfree(routing); 1656 return 0; 1657 } 1658 1659 static int mpic_create(struct kvm_device *dev, u32 type) 1660 { 1661 struct openpic *opp; 1662 int ret; 1663 1664 /* We only support one MPIC at a time for now */ 1665 if (dev->kvm->arch.mpic) 1666 return -EINVAL; 1667 1668 opp = kzalloc(sizeof(struct openpic), GFP_KERNEL); 1669 if (!opp) 1670 return -ENOMEM; 1671 1672 dev->private = opp; 1673 opp->kvm = dev->kvm; 1674 opp->dev = dev; 1675 opp->model = type; 1676 spin_lock_init(&opp->lock); 1677 1678 add_mmio_region(opp, &openpic_gbl_mmio); 1679 add_mmio_region(opp, &openpic_tmr_mmio); 1680 add_mmio_region(opp, &openpic_src_mmio); 1681 add_mmio_region(opp, &openpic_cpu_mmio); 1682 1683 switch (opp->model) { 1684 case KVM_DEV_TYPE_FSL_MPIC_20: 1685 opp->fsl = &fsl_mpic_20; 1686 opp->brr1 = 0x00400200; 1687 opp->flags |= OPENPIC_FLAG_IDR_CRIT; 1688 opp->nb_irqs = 80; 1689 opp->mpic_mode_mask = GCR_MODE_MIXED; 1690 1691 fsl_common_init(opp); 1692 1693 break; 1694 1695 case KVM_DEV_TYPE_FSL_MPIC_42: 1696 opp->fsl = &fsl_mpic_42; 1697 opp->brr1 = 0x00400402; 1698 opp->flags |= OPENPIC_FLAG_ILR; 1699 opp->nb_irqs = 196; 1700 opp->mpic_mode_mask = GCR_MODE_PROXY; 1701 1702 fsl_common_init(opp); 1703 1704 break; 1705 1706 default: 1707 ret = -ENODEV; 1708 goto err; 1709 } 1710 1711 ret = mpic_set_default_irq_routing(opp); 1712 if (ret) 1713 goto err; 1714 1715 openpic_reset(opp); 1716 1717 smp_wmb(); 1718 dev->kvm->arch.mpic = opp; 1719 1720 return 0; 1721 1722 err: 1723 kfree(opp); 1724 return ret; 1725 } 1726 1727 struct kvm_device_ops kvm_mpic_ops = { 1728 .name = "kvm-mpic", 1729 .create = mpic_create, 1730 .destroy = mpic_destroy, 1731 .set_attr = mpic_set_attr, 1732 .get_attr = mpic_get_attr, 1733 .has_attr = mpic_has_attr, 1734 }; 1735 1736 int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, 1737 u32 cpu) 1738 { 1739 struct openpic *opp = dev->private; 1740 int ret = 0; 1741 1742 if (dev->ops != &kvm_mpic_ops) 1743 return -EPERM; 1744 if (opp->kvm != vcpu->kvm) 1745 return -EPERM; 1746 if (cpu < 0 || cpu >= MAX_CPU) 1747 return -EPERM; 1748 1749 spin_lock_irq(&opp->lock); 1750 1751 if (opp->dst[cpu].vcpu) { 1752 ret = -EEXIST; 1753 goto out; 1754 } 1755 if (vcpu->arch.irq_type) { 1756 ret = -EBUSY; 1757 goto out; 1758 } 1759 1760 opp->dst[cpu].vcpu = vcpu; 1761 opp->nb_cpus = max(opp->nb_cpus, cpu + 1); 1762 1763 vcpu->arch.mpic = opp; 1764 vcpu->arch.irq_cpu_id = cpu; 1765 vcpu->arch.irq_type = KVMPPC_IRQ_MPIC; 1766 1767 /* This might need to be changed if GCR gets extended */ 1768 if (opp->mpic_mode_mask == GCR_MODE_PROXY) 1769 vcpu->arch.epr_flags |= KVMPPC_EPR_KERNEL; 1770 1771 out: 1772 spin_unlock_irq(&opp->lock); 1773 return ret; 1774 } 1775 1776 /* 1777 * This should only happen immediately before the mpic is destroyed, 1778 * so we shouldn't need to worry about anything still trying to 1779 * access the vcpu pointer. 1780 */ 1781 void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu) 1782 { 1783 BUG_ON(!opp->dst[vcpu->arch.irq_cpu_id].vcpu); 1784 1785 opp->dst[vcpu->arch.irq_cpu_id].vcpu = NULL; 1786 } 1787 1788 /* 1789 * Return value: 1790 * < 0 Interrupt was ignored (masked or not delivered for other reasons) 1791 * = 0 Interrupt was coalesced (previous irq is still pending) 1792 * > 0 Number of CPUs interrupt was delivered to 1793 */ 1794 static int mpic_set_irq(struct kvm_kernel_irq_routing_entry *e, 1795 struct kvm *kvm, int irq_source_id, int level, 1796 bool line_status) 1797 { 1798 u32 irq = e->irqchip.pin; 1799 struct openpic *opp = kvm->arch.mpic; 1800 unsigned long flags; 1801 1802 spin_lock_irqsave(&opp->lock, flags); 1803 openpic_set_irq(opp, irq, level); 1804 spin_unlock_irqrestore(&opp->lock, flags); 1805 1806 /* All code paths we care about don't check for the return value */ 1807 return 0; 1808 } 1809 1810 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, 1811 struct kvm *kvm, int irq_source_id, int level, bool line_status) 1812 { 1813 struct openpic *opp = kvm->arch.mpic; 1814 unsigned long flags; 1815 1816 spin_lock_irqsave(&opp->lock, flags); 1817 1818 /* 1819 * XXX We ignore the target address for now, as we only support 1820 * a single MSI bank. 1821 */ 1822 openpic_msi_write(kvm->arch.mpic, MSIIR_OFFSET, e->msi.data); 1823 spin_unlock_irqrestore(&opp->lock, flags); 1824 1825 /* All code paths we care about don't check for the return value */ 1826 return 0; 1827 } 1828 1829 int kvm_set_routing_entry(struct kvm_irq_routing_table *rt, 1830 struct kvm_kernel_irq_routing_entry *e, 1831 const struct kvm_irq_routing_entry *ue) 1832 { 1833 int r = -EINVAL; 1834 1835 switch (ue->type) { 1836 case KVM_IRQ_ROUTING_IRQCHIP: 1837 e->set = mpic_set_irq; 1838 e->irqchip.irqchip = ue->u.irqchip.irqchip; 1839 e->irqchip.pin = ue->u.irqchip.pin; 1840 if (e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS) 1841 goto out; 1842 rt->chip[ue->u.irqchip.irqchip][e->irqchip.pin] = ue->gsi; 1843 break; 1844 case KVM_IRQ_ROUTING_MSI: 1845 e->set = kvm_set_msi; 1846 e->msi.address_lo = ue->u.msi.address_lo; 1847 e->msi.address_hi = ue->u.msi.address_hi; 1848 e->msi.data = ue->u.msi.data; 1849 break; 1850 default: 1851 goto out; 1852 } 1853 1854 r = 0; 1855 out: 1856 return r; 1857 } 1858