1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2010,2012 Freescale Semiconductor, Inc. All rights reserved. 4 * 5 * Author: Varun Sethi, <varun.sethi@freescale.com> 6 * 7 * Description: 8 * This file is derived from arch/powerpc/kvm/e500.c, 9 * by Yu Liu <yu.liu@freescale.com>. 10 */ 11 12 #include <linux/kvm_host.h> 13 #include <linux/slab.h> 14 #include <linux/err.h> 15 #include <linux/export.h> 16 #include <linux/miscdevice.h> 17 #include <linux/module.h> 18 19 #include <asm/reg.h> 20 #include <asm/cputable.h> 21 #include <asm/kvm_ppc.h> 22 #include <asm/dbell.h> 23 24 #include "booke.h" 25 #include "e500.h" 26 27 void kvmppc_set_pending_interrupt(struct kvm_vcpu *vcpu, enum int_class type) 28 { 29 enum ppc_dbell dbell_type; 30 unsigned long tag; 31 32 switch (type) { 33 case INT_CLASS_NONCRIT: 34 dbell_type = PPC_G_DBELL; 35 break; 36 case INT_CLASS_CRIT: 37 dbell_type = PPC_G_DBELL_CRIT; 38 break; 39 case INT_CLASS_MC: 40 dbell_type = PPC_G_DBELL_MC; 41 break; 42 default: 43 WARN_ONCE(1, "%s: unknown int type %d\n", __func__, type); 44 return; 45 } 46 47 preempt_disable(); 48 tag = PPC_DBELL_LPID(get_lpid(vcpu)) | vcpu->vcpu_id; 49 mb(); 50 ppc_msgsnd(dbell_type, 0, tag); 51 preempt_enable(); 52 } 53 54 /* gtlbe must not be mapped by more than one host tlb entry */ 55 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500, 56 struct kvm_book3e_206_tlb_entry *gtlbe) 57 { 58 unsigned int tid, ts; 59 gva_t eaddr; 60 u32 val; 61 unsigned long flags; 62 63 ts = get_tlb_ts(gtlbe); 64 tid = get_tlb_tid(gtlbe); 65 66 /* We search the host TLB to invalidate its shadow TLB entry */ 67 val = (tid << 16) | ts; 68 eaddr = get_tlb_eaddr(gtlbe); 69 70 local_irq_save(flags); 71 72 mtspr(SPRN_MAS6, val); 73 mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(&vcpu_e500->vcpu)); 74 75 asm volatile("tlbsx 0, %[eaddr]\n" : : [eaddr] "r" (eaddr)); 76 val = mfspr(SPRN_MAS1); 77 if (val & MAS1_VALID) { 78 mtspr(SPRN_MAS1, val & ~MAS1_VALID); 79 asm volatile("tlbwe"); 80 } 81 mtspr(SPRN_MAS5, 0); 82 /* NOTE: tlbsx also updates mas8, so clear it for host tlbwe */ 83 mtspr(SPRN_MAS8, 0); 84 isync(); 85 86 local_irq_restore(flags); 87 } 88 89 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500) 90 { 91 unsigned long flags; 92 93 local_irq_save(flags); 94 mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(&vcpu_e500->vcpu)); 95 asm volatile("tlbilxlpid"); 96 mtspr(SPRN_MAS5, 0); 97 local_irq_restore(flags); 98 } 99 100 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid) 101 { 102 vcpu->arch.pid = pid; 103 } 104 105 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr) 106 { 107 } 108 109 /* We use two lpids per VM */ 110 static DEFINE_PER_CPU(struct kvm_vcpu *[KVMPPC_NR_LPIDS], last_vcpu_of_lpid); 111 112 static void kvmppc_core_vcpu_load_e500mc(struct kvm_vcpu *vcpu, int cpu) 113 { 114 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 115 116 kvmppc_booke_vcpu_load(vcpu, cpu); 117 118 mtspr(SPRN_LPID, get_lpid(vcpu)); 119 mtspr(SPRN_EPCR, vcpu->arch.shadow_epcr); 120 mtspr(SPRN_GPIR, vcpu->vcpu_id); 121 mtspr(SPRN_MSRP, vcpu->arch.shadow_msrp); 122 vcpu->arch.eplc = EPC_EGS | (get_lpid(vcpu) << EPC_ELPID_SHIFT); 123 vcpu->arch.epsc = vcpu->arch.eplc; 124 mtspr(SPRN_EPLC, vcpu->arch.eplc); 125 mtspr(SPRN_EPSC, vcpu->arch.epsc); 126 127 mtspr(SPRN_GIVPR, vcpu->arch.ivpr); 128 mtspr(SPRN_GIVOR2, vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE]); 129 mtspr(SPRN_GIVOR8, vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL]); 130 mtspr(SPRN_GSPRG0, (unsigned long)vcpu->arch.shared->sprg0); 131 mtspr(SPRN_GSPRG1, (unsigned long)vcpu->arch.shared->sprg1); 132 mtspr(SPRN_GSPRG2, (unsigned long)vcpu->arch.shared->sprg2); 133 mtspr(SPRN_GSPRG3, (unsigned long)vcpu->arch.shared->sprg3); 134 135 mtspr(SPRN_GSRR0, vcpu->arch.shared->srr0); 136 mtspr(SPRN_GSRR1, vcpu->arch.shared->srr1); 137 138 mtspr(SPRN_GEPR, vcpu->arch.epr); 139 mtspr(SPRN_GDEAR, vcpu->arch.shared->dar); 140 mtspr(SPRN_GESR, vcpu->arch.shared->esr); 141 142 if (vcpu->arch.oldpir != mfspr(SPRN_PIR) || 143 __this_cpu_read(last_vcpu_of_lpid[get_lpid(vcpu)]) != vcpu) { 144 kvmppc_e500_tlbil_all(vcpu_e500); 145 __this_cpu_write(last_vcpu_of_lpid[get_lpid(vcpu)], vcpu); 146 } 147 } 148 149 static void kvmppc_core_vcpu_put_e500mc(struct kvm_vcpu *vcpu) 150 { 151 vcpu->arch.eplc = mfspr(SPRN_EPLC); 152 vcpu->arch.epsc = mfspr(SPRN_EPSC); 153 154 vcpu->arch.shared->sprg0 = mfspr(SPRN_GSPRG0); 155 vcpu->arch.shared->sprg1 = mfspr(SPRN_GSPRG1); 156 vcpu->arch.shared->sprg2 = mfspr(SPRN_GSPRG2); 157 vcpu->arch.shared->sprg3 = mfspr(SPRN_GSPRG3); 158 159 vcpu->arch.shared->srr0 = mfspr(SPRN_GSRR0); 160 vcpu->arch.shared->srr1 = mfspr(SPRN_GSRR1); 161 162 vcpu->arch.epr = mfspr(SPRN_GEPR); 163 vcpu->arch.shared->dar = mfspr(SPRN_GDEAR); 164 vcpu->arch.shared->esr = mfspr(SPRN_GESR); 165 166 vcpu->arch.oldpir = mfspr(SPRN_PIR); 167 168 kvmppc_booke_vcpu_put(vcpu); 169 } 170 171 int kvmppc_core_check_processor_compat(void) 172 { 173 int r; 174 175 if (strcmp(cur_cpu_spec->cpu_name, "e500mc") == 0) 176 r = 0; 177 else if (strcmp(cur_cpu_spec->cpu_name, "e5500") == 0) 178 r = 0; 179 #ifdef CONFIG_ALTIVEC 180 /* 181 * Since guests have the privilege to enable AltiVec, we need AltiVec 182 * support in the host to save/restore their context. 183 * Don't use CPU_FTR_ALTIVEC to identify cores with AltiVec unit 184 * because it's cleared in the absence of CONFIG_ALTIVEC! 185 */ 186 else if (strcmp(cur_cpu_spec->cpu_name, "e6500") == 0) 187 r = 0; 188 #endif 189 else 190 r = -ENOTSUPP; 191 192 return r; 193 } 194 195 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu) 196 { 197 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 198 199 vcpu->arch.shadow_epcr = SPRN_EPCR_DSIGS | SPRN_EPCR_DGTMI | \ 200 SPRN_EPCR_DUVD; 201 #ifdef CONFIG_64BIT 202 vcpu->arch.shadow_epcr |= SPRN_EPCR_ICM; 203 #endif 204 vcpu->arch.shadow_msrp = MSRP_UCLEP | MSRP_PMMP; 205 206 vcpu->arch.pvr = mfspr(SPRN_PVR); 207 vcpu_e500->svr = mfspr(SPRN_SVR); 208 209 vcpu->arch.cpu_type = KVM_CPU_E500MC; 210 211 return 0; 212 } 213 214 static int kvmppc_core_get_sregs_e500mc(struct kvm_vcpu *vcpu, 215 struct kvm_sregs *sregs) 216 { 217 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 218 219 sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_PM | 220 KVM_SREGS_E_PC; 221 sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL; 222 223 sregs->u.e.impl.fsl.features = 0; 224 sregs->u.e.impl.fsl.svr = vcpu_e500->svr; 225 sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0; 226 sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar; 227 228 kvmppc_get_sregs_e500_tlb(vcpu, sregs); 229 230 sregs->u.e.ivor_high[3] = 231 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR]; 232 sregs->u.e.ivor_high[4] = vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL]; 233 sregs->u.e.ivor_high[5] = vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL_CRIT]; 234 235 return kvmppc_get_sregs_ivor(vcpu, sregs); 236 } 237 238 static int kvmppc_core_set_sregs_e500mc(struct kvm_vcpu *vcpu, 239 struct kvm_sregs *sregs) 240 { 241 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 242 int ret; 243 244 if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { 245 vcpu_e500->svr = sregs->u.e.impl.fsl.svr; 246 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0; 247 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar; 248 } 249 250 ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs); 251 if (ret < 0) 252 return ret; 253 254 if (!(sregs->u.e.features & KVM_SREGS_E_IVOR)) 255 return 0; 256 257 if (sregs->u.e.features & KVM_SREGS_E_PM) { 258 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] = 259 sregs->u.e.ivor_high[3]; 260 } 261 262 if (sregs->u.e.features & KVM_SREGS_E_PC) { 263 vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL] = 264 sregs->u.e.ivor_high[4]; 265 vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL_CRIT] = 266 sregs->u.e.ivor_high[5]; 267 } 268 269 return kvmppc_set_sregs_ivor(vcpu, sregs); 270 } 271 272 static int kvmppc_get_one_reg_e500mc(struct kvm_vcpu *vcpu, u64 id, 273 union kvmppc_one_reg *val) 274 { 275 int r = 0; 276 277 switch (id) { 278 case KVM_REG_PPC_SPRG9: 279 *val = get_reg_val(id, vcpu->arch.sprg9); 280 break; 281 default: 282 r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val); 283 } 284 285 return r; 286 } 287 288 static int kvmppc_set_one_reg_e500mc(struct kvm_vcpu *vcpu, u64 id, 289 union kvmppc_one_reg *val) 290 { 291 int r = 0; 292 293 switch (id) { 294 case KVM_REG_PPC_SPRG9: 295 vcpu->arch.sprg9 = set_reg_val(id, *val); 296 break; 297 default: 298 r = kvmppc_set_one_reg_e500_tlb(vcpu, id, val); 299 } 300 301 return r; 302 } 303 304 static struct kvm_vcpu *kvmppc_core_vcpu_create_e500mc(struct kvm *kvm, 305 unsigned int id) 306 { 307 struct kvmppc_vcpu_e500 *vcpu_e500; 308 struct kvm_vcpu *vcpu; 309 int err; 310 311 vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 312 if (!vcpu_e500) { 313 err = -ENOMEM; 314 goto out; 315 } 316 vcpu = &vcpu_e500->vcpu; 317 318 /* Invalid PIR value -- this LPID dosn't have valid state on any cpu */ 319 vcpu->arch.oldpir = 0xffffffff; 320 321 err = kvm_vcpu_init(vcpu, kvm, id); 322 if (err) 323 goto free_vcpu; 324 325 err = kvmppc_e500_tlb_init(vcpu_e500); 326 if (err) 327 goto uninit_vcpu; 328 329 vcpu->arch.shared = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 330 if (!vcpu->arch.shared) { 331 err = -ENOMEM; 332 goto uninit_tlb; 333 } 334 335 return vcpu; 336 337 uninit_tlb: 338 kvmppc_e500_tlb_uninit(vcpu_e500); 339 uninit_vcpu: 340 kvm_vcpu_uninit(vcpu); 341 342 free_vcpu: 343 kmem_cache_free(kvm_vcpu_cache, vcpu_e500); 344 out: 345 return ERR_PTR(err); 346 } 347 348 static void kvmppc_core_vcpu_free_e500mc(struct kvm_vcpu *vcpu) 349 { 350 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 351 352 free_page((unsigned long)vcpu->arch.shared); 353 kvmppc_e500_tlb_uninit(vcpu_e500); 354 kvm_vcpu_uninit(vcpu); 355 kmem_cache_free(kvm_vcpu_cache, vcpu_e500); 356 } 357 358 static int kvmppc_core_init_vm_e500mc(struct kvm *kvm) 359 { 360 int lpid; 361 362 lpid = kvmppc_alloc_lpid(); 363 if (lpid < 0) 364 return lpid; 365 366 /* 367 * Use two lpids per VM on cores with two threads like e6500. Use 368 * even numbers to speedup vcpu lpid computation with consecutive lpids 369 * per VM. vm1 will use lpids 2 and 3, vm2 lpids 4 and 5, and so on. 370 */ 371 if (threads_per_core == 2) 372 lpid <<= 1; 373 374 kvm->arch.lpid = lpid; 375 return 0; 376 } 377 378 static void kvmppc_core_destroy_vm_e500mc(struct kvm *kvm) 379 { 380 int lpid = kvm->arch.lpid; 381 382 if (threads_per_core == 2) 383 lpid >>= 1; 384 385 kvmppc_free_lpid(lpid); 386 } 387 388 static struct kvmppc_ops kvm_ops_e500mc = { 389 .get_sregs = kvmppc_core_get_sregs_e500mc, 390 .set_sregs = kvmppc_core_set_sregs_e500mc, 391 .get_one_reg = kvmppc_get_one_reg_e500mc, 392 .set_one_reg = kvmppc_set_one_reg_e500mc, 393 .vcpu_load = kvmppc_core_vcpu_load_e500mc, 394 .vcpu_put = kvmppc_core_vcpu_put_e500mc, 395 .vcpu_create = kvmppc_core_vcpu_create_e500mc, 396 .vcpu_free = kvmppc_core_vcpu_free_e500mc, 397 .mmu_destroy = kvmppc_mmu_destroy_e500, 398 .init_vm = kvmppc_core_init_vm_e500mc, 399 .destroy_vm = kvmppc_core_destroy_vm_e500mc, 400 .emulate_op = kvmppc_core_emulate_op_e500, 401 .emulate_mtspr = kvmppc_core_emulate_mtspr_e500, 402 .emulate_mfspr = kvmppc_core_emulate_mfspr_e500, 403 }; 404 405 static int __init kvmppc_e500mc_init(void) 406 { 407 int r; 408 409 r = kvmppc_booke_init(); 410 if (r) 411 goto err_out; 412 413 /* 414 * Use two lpids per VM on dual threaded processors like e6500 415 * to workarround the lack of tlb write conditional instruction. 416 * Expose half the number of available hardware lpids to the lpid 417 * allocator. 418 */ 419 kvmppc_init_lpid(KVMPPC_NR_LPIDS/threads_per_core); 420 kvmppc_claim_lpid(0); /* host */ 421 422 r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE); 423 if (r) 424 goto err_out; 425 kvm_ops_e500mc.owner = THIS_MODULE; 426 kvmppc_pr_ops = &kvm_ops_e500mc; 427 428 err_out: 429 return r; 430 } 431 432 static void __exit kvmppc_e500mc_exit(void) 433 { 434 kvmppc_pr_ops = NULL; 435 kvmppc_booke_exit(); 436 } 437 438 module_init(kvmppc_e500mc_init); 439 module_exit(kvmppc_e500mc_exit); 440 MODULE_ALIAS_MISCDEV(KVM_MINOR); 441 MODULE_ALIAS("devname:kvm"); 442