1 /* 2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved. 3 * 4 * Author: Yu Liu, yu.liu@freescale.com 5 * Scott Wood, scottwood@freescale.com 6 * Ashish Kalra, ashish.kalra@freescale.com 7 * Varun Sethi, varun.sethi@freescale.com 8 * Alexander Graf, agraf@suse.de 9 * 10 * Description: 11 * This file is based on arch/powerpc/kvm/44x_tlb.c, 12 * by Hollis Blanchard <hollisb@us.ibm.com>. 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License, version 2, as 16 * published by the Free Software Foundation. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/slab.h> 22 #include <linux/string.h> 23 #include <linux/kvm.h> 24 #include <linux/kvm_host.h> 25 #include <linux/highmem.h> 26 #include <linux/log2.h> 27 #include <linux/uaccess.h> 28 #include <linux/sched.h> 29 #include <linux/rwsem.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hugetlb.h> 32 #include <asm/kvm_ppc.h> 33 34 #include "e500.h" 35 #include "timing.h" 36 #include "e500_mmu_host.h" 37 38 #include "trace_booke.h" 39 40 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) 41 42 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; 43 44 static inline unsigned int tlb1_max_shadow_size(void) 45 { 46 /* reserve one entry for magic page */ 47 return host_tlb_params[1].entries - tlbcam_index - 1; 48 } 49 50 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) 51 { 52 /* Mask off reserved bits. */ 53 mas3 &= MAS3_ATTRIB_MASK; 54 55 #ifndef CONFIG_KVM_BOOKE_HV 56 if (!usermode) { 57 /* Guest is in supervisor mode, 58 * so we need to translate guest 59 * supervisor permissions into user permissions. */ 60 mas3 &= ~E500_TLB_USER_PERM_MASK; 61 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; 62 } 63 mas3 |= E500_TLB_SUPER_PERM_MASK; 64 #endif 65 return mas3; 66 } 67 68 /* 69 * writing shadow tlb entry to host TLB 70 */ 71 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, 72 uint32_t mas0) 73 { 74 unsigned long flags; 75 76 local_irq_save(flags); 77 mtspr(SPRN_MAS0, mas0); 78 mtspr(SPRN_MAS1, stlbe->mas1); 79 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); 80 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); 81 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); 82 #ifdef CONFIG_KVM_BOOKE_HV 83 mtspr(SPRN_MAS8, stlbe->mas8); 84 #endif 85 asm volatile("isync; tlbwe" : : : "memory"); 86 87 #ifdef CONFIG_KVM_BOOKE_HV 88 /* Must clear mas8 for other host tlbwe's */ 89 mtspr(SPRN_MAS8, 0); 90 isync(); 91 #endif 92 local_irq_restore(flags); 93 94 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1, 95 stlbe->mas2, stlbe->mas7_3); 96 } 97 98 /* 99 * Acquire a mas0 with victim hint, as if we just took a TLB miss. 100 * 101 * We don't care about the address we're searching for, other than that it's 102 * in the right set and is not present in the TLB. Using a zero PID and a 103 * userspace address means we don't have to set and then restore MAS5, or 104 * calculate a proper MAS6 value. 105 */ 106 static u32 get_host_mas0(unsigned long eaddr) 107 { 108 unsigned long flags; 109 u32 mas0; 110 111 local_irq_save(flags); 112 mtspr(SPRN_MAS6, 0); 113 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); 114 mas0 = mfspr(SPRN_MAS0); 115 local_irq_restore(flags); 116 117 return mas0; 118 } 119 120 /* sesel is for tlb1 only */ 121 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, 122 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) 123 { 124 u32 mas0; 125 126 if (tlbsel == 0) { 127 mas0 = get_host_mas0(stlbe->mas2); 128 __write_host_tlbe(stlbe, mas0); 129 } else { 130 __write_host_tlbe(stlbe, 131 MAS0_TLBSEL(1) | 132 MAS0_ESEL(to_htlb1_esel(sesel))); 133 } 134 } 135 136 /* sesel is for tlb1 only */ 137 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, 138 struct kvm_book3e_206_tlb_entry *gtlbe, 139 struct kvm_book3e_206_tlb_entry *stlbe, 140 int stlbsel, int sesel) 141 { 142 int stid; 143 144 preempt_disable(); 145 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe); 146 147 stlbe->mas1 |= MAS1_TID(stid); 148 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe); 149 preempt_enable(); 150 } 151 152 #ifdef CONFIG_KVM_E500V2 153 /* XXX should be a hook in the gva2hpa translation */ 154 void kvmppc_map_magic(struct kvm_vcpu *vcpu) 155 { 156 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 157 struct kvm_book3e_206_tlb_entry magic; 158 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; 159 unsigned int stid; 160 pfn_t pfn; 161 162 pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; 163 get_page(pfn_to_page(pfn)); 164 165 preempt_disable(); 166 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); 167 168 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | 169 MAS1_TSIZE(BOOK3E_PAGESZ_4K); 170 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; 171 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | 172 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; 173 magic.mas8 = 0; 174 175 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index)); 176 preempt_enable(); 177 } 178 #endif 179 180 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, 181 int esel) 182 { 183 struct kvm_book3e_206_tlb_entry *gtlbe = 184 get_entry(vcpu_e500, tlbsel, esel); 185 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref; 186 187 /* Don't bother with unmapped entries */ 188 if (!(ref->flags & E500_TLB_VALID)) { 189 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0), 190 "%s: flags %x\n", __func__, ref->flags); 191 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]); 192 } 193 194 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) { 195 u64 tmp = vcpu_e500->g2h_tlb1_map[esel]; 196 int hw_tlb_indx; 197 unsigned long flags; 198 199 local_irq_save(flags); 200 while (tmp) { 201 hw_tlb_indx = __ilog2_u64(tmp & -tmp); 202 mtspr(SPRN_MAS0, 203 MAS0_TLBSEL(1) | 204 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx))); 205 mtspr(SPRN_MAS1, 0); 206 asm volatile("tlbwe"); 207 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0; 208 tmp &= tmp - 1; 209 } 210 mb(); 211 vcpu_e500->g2h_tlb1_map[esel] = 0; 212 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID); 213 local_irq_restore(flags); 214 } 215 216 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) { 217 /* 218 * TLB1 entry is backed by 4k pages. This should happen 219 * rarely and is not worth optimizing. Invalidate everything. 220 */ 221 kvmppc_e500_tlbil_all(vcpu_e500); 222 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID); 223 } 224 225 /* 226 * If TLB entry is still valid then it's a TLB0 entry, and thus 227 * backed by at most one host tlbe per shadow pid 228 */ 229 if (ref->flags & E500_TLB_VALID) 230 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe); 231 232 /* Mark the TLB as not backed by the host anymore */ 233 ref->flags = 0; 234 } 235 236 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) 237 { 238 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); 239 } 240 241 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, 242 struct kvm_book3e_206_tlb_entry *gtlbe, 243 pfn_t pfn, unsigned int wimg) 244 { 245 ref->pfn = pfn; 246 ref->flags = E500_TLB_VALID; 247 248 /* Use guest supplied MAS2_G and MAS2_E */ 249 ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg; 250 251 /* Mark the page accessed */ 252 kvm_set_pfn_accessed(pfn); 253 254 if (tlbe_is_writable(gtlbe)) 255 kvm_set_pfn_dirty(pfn); 256 } 257 258 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) 259 { 260 if (ref->flags & E500_TLB_VALID) { 261 /* FIXME: don't log bogus pfn for TLB1 */ 262 trace_kvm_booke206_ref_release(ref->pfn, ref->flags); 263 ref->flags = 0; 264 } 265 } 266 267 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500) 268 { 269 if (vcpu_e500->g2h_tlb1_map) 270 memset(vcpu_e500->g2h_tlb1_map, 0, 271 sizeof(u64) * vcpu_e500->gtlb_params[1].entries); 272 if (vcpu_e500->h2g_tlb1_rmap) 273 memset(vcpu_e500->h2g_tlb1_rmap, 0, 274 sizeof(unsigned int) * host_tlb_params[1].entries); 275 } 276 277 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) 278 { 279 int tlbsel; 280 int i; 281 282 for (tlbsel = 0; tlbsel <= 1; tlbsel++) { 283 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { 284 struct tlbe_ref *ref = 285 &vcpu_e500->gtlb_priv[tlbsel][i].ref; 286 kvmppc_e500_ref_release(ref); 287 } 288 } 289 } 290 291 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu) 292 { 293 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 294 kvmppc_e500_tlbil_all(vcpu_e500); 295 clear_tlb_privs(vcpu_e500); 296 clear_tlb1_bitmap(vcpu_e500); 297 } 298 299 /* TID must be supplied by the caller */ 300 static void kvmppc_e500_setup_stlbe( 301 struct kvm_vcpu *vcpu, 302 struct kvm_book3e_206_tlb_entry *gtlbe, 303 int tsize, struct tlbe_ref *ref, u64 gvaddr, 304 struct kvm_book3e_206_tlb_entry *stlbe) 305 { 306 pfn_t pfn = ref->pfn; 307 u32 pr = vcpu->arch.shared->msr & MSR_PR; 308 309 BUG_ON(!(ref->flags & E500_TLB_VALID)); 310 311 /* Force IPROT=0 for all guest mappings. */ 312 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID; 313 stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR); 314 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) | 315 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr); 316 317 #ifdef CONFIG_KVM_BOOKE_HV 318 stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid; 319 #endif 320 } 321 322 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, 323 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, 324 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, 325 struct tlbe_ref *ref) 326 { 327 struct kvm_memory_slot *slot; 328 unsigned long pfn = 0; /* silence GCC warning */ 329 unsigned long hva; 330 int pfnmap = 0; 331 int tsize = BOOK3E_PAGESZ_4K; 332 int ret = 0; 333 unsigned long mmu_seq; 334 struct kvm *kvm = vcpu_e500->vcpu.kvm; 335 unsigned long tsize_pages = 0; 336 pte_t *ptep; 337 unsigned int wimg = 0; 338 pgd_t *pgdir; 339 340 /* used to check for invalidations in progress */ 341 mmu_seq = kvm->mmu_notifier_seq; 342 smp_rmb(); 343 344 /* 345 * Translate guest physical to true physical, acquiring 346 * a page reference if it is normal, non-reserved memory. 347 * 348 * gfn_to_memslot() must succeed because otherwise we wouldn't 349 * have gotten this far. Eventually we should just pass the slot 350 * pointer through from the first lookup. 351 */ 352 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); 353 hva = gfn_to_hva_memslot(slot, gfn); 354 355 if (tlbsel == 1) { 356 struct vm_area_struct *vma; 357 down_read(¤t->mm->mmap_sem); 358 359 vma = find_vma(current->mm, hva); 360 if (vma && hva >= vma->vm_start && 361 (vma->vm_flags & VM_PFNMAP)) { 362 /* 363 * This VMA is a physically contiguous region (e.g. 364 * /dev/mem) that bypasses normal Linux page 365 * management. Find the overlap between the 366 * vma and the memslot. 367 */ 368 369 unsigned long start, end; 370 unsigned long slot_start, slot_end; 371 372 pfnmap = 1; 373 374 start = vma->vm_pgoff; 375 end = start + 376 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT); 377 378 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); 379 380 slot_start = pfn - (gfn - slot->base_gfn); 381 slot_end = slot_start + slot->npages; 382 383 if (start < slot_start) 384 start = slot_start; 385 if (end > slot_end) 386 end = slot_end; 387 388 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> 389 MAS1_TSIZE_SHIFT; 390 391 /* 392 * e500 doesn't implement the lowest tsize bit, 393 * or 1K pages. 394 */ 395 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); 396 397 /* 398 * Now find the largest tsize (up to what the guest 399 * requested) that will cover gfn, stay within the 400 * range, and for which gfn and pfn are mutually 401 * aligned. 402 */ 403 404 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { 405 unsigned long gfn_start, gfn_end; 406 tsize_pages = 1 << (tsize - 2); 407 408 gfn_start = gfn & ~(tsize_pages - 1); 409 gfn_end = gfn_start + tsize_pages; 410 411 if (gfn_start + pfn - gfn < start) 412 continue; 413 if (gfn_end + pfn - gfn > end) 414 continue; 415 if ((gfn & (tsize_pages - 1)) != 416 (pfn & (tsize_pages - 1))) 417 continue; 418 419 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); 420 pfn &= ~(tsize_pages - 1); 421 break; 422 } 423 } else if (vma && hva >= vma->vm_start && 424 (vma->vm_flags & VM_HUGETLB)) { 425 unsigned long psize = vma_kernel_pagesize(vma); 426 427 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> 428 MAS1_TSIZE_SHIFT; 429 430 /* 431 * Take the largest page size that satisfies both host 432 * and guest mapping 433 */ 434 tsize = min(__ilog2(psize) - 10, tsize); 435 436 /* 437 * e500 doesn't implement the lowest tsize bit, 438 * or 1K pages. 439 */ 440 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); 441 } 442 443 up_read(¤t->mm->mmap_sem); 444 } 445 446 if (likely(!pfnmap)) { 447 tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT); 448 pfn = gfn_to_pfn_memslot(slot, gfn); 449 if (is_error_noslot_pfn(pfn)) { 450 if (printk_ratelimit()) 451 pr_err("%s: real page not found for gfn %lx\n", 452 __func__, (long)gfn); 453 return -EINVAL; 454 } 455 456 /* Align guest and physical address to page map boundaries */ 457 pfn &= ~(tsize_pages - 1); 458 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); 459 } 460 461 spin_lock(&kvm->mmu_lock); 462 if (mmu_notifier_retry(kvm, mmu_seq)) { 463 ret = -EAGAIN; 464 goto out; 465 } 466 467 468 pgdir = vcpu_e500->vcpu.arch.pgdir; 469 ptep = lookup_linux_ptep(pgdir, hva, &tsize_pages); 470 if (pte_present(*ptep)) 471 wimg = (*ptep >> PTE_WIMGE_SHIFT) & MAS2_WIMGE_MASK; 472 else { 473 if (printk_ratelimit()) 474 pr_err("%s: pte not present: gfn %lx, pfn %lx\n", 475 __func__, (long)gfn, pfn); 476 return -EINVAL; 477 } 478 kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg); 479 480 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize, 481 ref, gvaddr, stlbe); 482 483 /* Clear i-cache for new pages */ 484 kvmppc_mmu_flush_icache(pfn); 485 486 out: 487 spin_unlock(&kvm->mmu_lock); 488 489 /* Drop refcount on page, so that mmu notifiers can clear it */ 490 kvm_release_pfn_clean(pfn); 491 492 return ret; 493 } 494 495 /* XXX only map the one-one case, for now use TLB0 */ 496 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel, 497 struct kvm_book3e_206_tlb_entry *stlbe) 498 { 499 struct kvm_book3e_206_tlb_entry *gtlbe; 500 struct tlbe_ref *ref; 501 int stlbsel = 0; 502 int sesel = 0; 503 int r; 504 505 gtlbe = get_entry(vcpu_e500, 0, esel); 506 ref = &vcpu_e500->gtlb_priv[0][esel].ref; 507 508 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), 509 get_tlb_raddr(gtlbe) >> PAGE_SHIFT, 510 gtlbe, 0, stlbe, ref); 511 if (r) 512 return r; 513 514 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel); 515 516 return 0; 517 } 518 519 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500, 520 struct tlbe_ref *ref, 521 int esel) 522 { 523 unsigned int sesel = vcpu_e500->host_tlb1_nv++; 524 525 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) 526 vcpu_e500->host_tlb1_nv = 0; 527 528 if (vcpu_e500->h2g_tlb1_rmap[sesel]) { 529 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1; 530 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel); 531 } 532 533 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP; 534 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel; 535 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1; 536 WARN_ON(!(ref->flags & E500_TLB_VALID)); 537 538 return sesel; 539 } 540 541 /* Caller must ensure that the specified guest TLB entry is safe to insert into 542 * the shadow TLB. */ 543 /* For both one-one and one-to-many */ 544 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, 545 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, 546 struct kvm_book3e_206_tlb_entry *stlbe, int esel) 547 { 548 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref; 549 int sesel; 550 int r; 551 552 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, 553 ref); 554 if (r) 555 return r; 556 557 /* Use TLB0 when we can only map a page with 4k */ 558 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) { 559 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0; 560 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0); 561 return 0; 562 } 563 564 /* Otherwise map into TLB1 */ 565 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel); 566 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel); 567 568 return 0; 569 } 570 571 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, 572 unsigned int index) 573 { 574 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 575 struct tlbe_priv *priv; 576 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; 577 int tlbsel = tlbsel_of(index); 578 int esel = esel_of(index); 579 580 gtlbe = get_entry(vcpu_e500, tlbsel, esel); 581 582 switch (tlbsel) { 583 case 0: 584 priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; 585 586 /* Triggers after clear_tlb_privs or on initial mapping */ 587 if (!(priv->ref.flags & E500_TLB_VALID)) { 588 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); 589 } else { 590 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K, 591 &priv->ref, eaddr, &stlbe); 592 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0); 593 } 594 break; 595 596 case 1: { 597 gfn_t gfn = gpaddr >> PAGE_SHIFT; 598 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe, 599 esel); 600 break; 601 } 602 603 default: 604 BUG(); 605 break; 606 } 607 } 608 609 /************* MMU Notifiers *************/ 610 611 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) 612 { 613 trace_kvm_unmap_hva(hva); 614 615 /* 616 * Flush all shadow tlb entries everywhere. This is slow, but 617 * we are 100% sure that we catch the to be unmapped page 618 */ 619 kvm_flush_remote_tlbs(kvm); 620 621 return 0; 622 } 623 624 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 625 { 626 /* kvm_unmap_hva flushes everything anyways */ 627 kvm_unmap_hva(kvm, start); 628 629 return 0; 630 } 631 632 int kvm_age_hva(struct kvm *kvm, unsigned long hva) 633 { 634 /* XXX could be more clever ;) */ 635 return 0; 636 } 637 638 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 639 { 640 /* XXX could be more clever ;) */ 641 return 0; 642 } 643 644 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 645 { 646 /* The page will get remapped properly on its next fault */ 647 kvm_unmap_hva(kvm, hva); 648 } 649 650 /*****************************************/ 651 652 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500) 653 { 654 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; 655 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; 656 657 /* 658 * This should never happen on real e500 hardware, but is 659 * architecturally possible -- e.g. in some weird nested 660 * virtualization case. 661 */ 662 if (host_tlb_params[0].entries == 0 || 663 host_tlb_params[1].entries == 0) { 664 pr_err("%s: need to know host tlb size\n", __func__); 665 return -ENODEV; 666 } 667 668 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> 669 TLBnCFG_ASSOC_SHIFT; 670 host_tlb_params[1].ways = host_tlb_params[1].entries; 671 672 if (!is_power_of_2(host_tlb_params[0].entries) || 673 !is_power_of_2(host_tlb_params[0].ways) || 674 host_tlb_params[0].entries < host_tlb_params[0].ways || 675 host_tlb_params[0].ways == 0) { 676 pr_err("%s: bad tlb0 host config: %u entries %u ways\n", 677 __func__, host_tlb_params[0].entries, 678 host_tlb_params[0].ways); 679 return -ENODEV; 680 } 681 682 host_tlb_params[0].sets = 683 host_tlb_params[0].entries / host_tlb_params[0].ways; 684 host_tlb_params[1].sets = 1; 685 686 vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) * 687 host_tlb_params[1].entries, 688 GFP_KERNEL); 689 if (!vcpu_e500->h2g_tlb1_rmap) 690 return -EINVAL; 691 692 return 0; 693 } 694 695 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) 696 { 697 kfree(vcpu_e500->h2g_tlb1_rmap); 698 } 699