1 /* 2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved. 3 * 4 * Author: Yu Liu, yu.liu@freescale.com 5 * Scott Wood, scottwood@freescale.com 6 * Ashish Kalra, ashish.kalra@freescale.com 7 * Varun Sethi, varun.sethi@freescale.com 8 * Alexander Graf, agraf@suse.de 9 * 10 * Description: 11 * This file is based on arch/powerpc/kvm/44x_tlb.c, 12 * by Hollis Blanchard <hollisb@us.ibm.com>. 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License, version 2, as 16 * published by the Free Software Foundation. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/slab.h> 22 #include <linux/string.h> 23 #include <linux/kvm.h> 24 #include <linux/kvm_host.h> 25 #include <linux/highmem.h> 26 #include <linux/log2.h> 27 #include <linux/uaccess.h> 28 #include <linux/sched.h> 29 #include <linux/rwsem.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hugetlb.h> 32 #include <asm/kvm_ppc.h> 33 34 #include "e500.h" 35 #include "timing.h" 36 #include "e500_mmu_host.h" 37 38 #include "trace_booke.h" 39 40 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) 41 42 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; 43 44 static inline unsigned int tlb1_max_shadow_size(void) 45 { 46 /* reserve one entry for magic page */ 47 return host_tlb_params[1].entries - tlbcam_index - 1; 48 } 49 50 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) 51 { 52 /* Mask off reserved bits. */ 53 mas3 &= MAS3_ATTRIB_MASK; 54 55 #ifndef CONFIG_KVM_BOOKE_HV 56 if (!usermode) { 57 /* Guest is in supervisor mode, 58 * so we need to translate guest 59 * supervisor permissions into user permissions. */ 60 mas3 &= ~E500_TLB_USER_PERM_MASK; 61 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; 62 } 63 mas3 |= E500_TLB_SUPER_PERM_MASK; 64 #endif 65 return mas3; 66 } 67 68 /* 69 * writing shadow tlb entry to host TLB 70 */ 71 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, 72 uint32_t mas0, 73 uint32_t lpid) 74 { 75 unsigned long flags; 76 77 local_irq_save(flags); 78 mtspr(SPRN_MAS0, mas0); 79 mtspr(SPRN_MAS1, stlbe->mas1); 80 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); 81 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); 82 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); 83 #ifdef CONFIG_KVM_BOOKE_HV 84 mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid)); 85 #endif 86 asm volatile("isync; tlbwe" : : : "memory"); 87 88 #ifdef CONFIG_KVM_BOOKE_HV 89 /* Must clear mas8 for other host tlbwe's */ 90 mtspr(SPRN_MAS8, 0); 91 isync(); 92 #endif 93 local_irq_restore(flags); 94 95 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1, 96 stlbe->mas2, stlbe->mas7_3); 97 } 98 99 /* 100 * Acquire a mas0 with victim hint, as if we just took a TLB miss. 101 * 102 * We don't care about the address we're searching for, other than that it's 103 * in the right set and is not present in the TLB. Using a zero PID and a 104 * userspace address means we don't have to set and then restore MAS5, or 105 * calculate a proper MAS6 value. 106 */ 107 static u32 get_host_mas0(unsigned long eaddr) 108 { 109 unsigned long flags; 110 u32 mas0; 111 u32 mas4; 112 113 local_irq_save(flags); 114 mtspr(SPRN_MAS6, 0); 115 mas4 = mfspr(SPRN_MAS4); 116 mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK); 117 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); 118 mas0 = mfspr(SPRN_MAS0); 119 mtspr(SPRN_MAS4, mas4); 120 local_irq_restore(flags); 121 122 return mas0; 123 } 124 125 /* sesel is for tlb1 only */ 126 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, 127 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) 128 { 129 u32 mas0; 130 131 if (tlbsel == 0) { 132 mas0 = get_host_mas0(stlbe->mas2); 133 __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid); 134 } else { 135 __write_host_tlbe(stlbe, 136 MAS0_TLBSEL(1) | 137 MAS0_ESEL(to_htlb1_esel(sesel)), 138 vcpu_e500->vcpu.kvm->arch.lpid); 139 } 140 } 141 142 /* sesel is for tlb1 only */ 143 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, 144 struct kvm_book3e_206_tlb_entry *gtlbe, 145 struct kvm_book3e_206_tlb_entry *stlbe, 146 int stlbsel, int sesel) 147 { 148 int stid; 149 150 preempt_disable(); 151 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe); 152 153 stlbe->mas1 |= MAS1_TID(stid); 154 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe); 155 preempt_enable(); 156 } 157 158 #ifdef CONFIG_KVM_E500V2 159 /* XXX should be a hook in the gva2hpa translation */ 160 void kvmppc_map_magic(struct kvm_vcpu *vcpu) 161 { 162 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 163 struct kvm_book3e_206_tlb_entry magic; 164 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; 165 unsigned int stid; 166 kvm_pfn_t pfn; 167 168 pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; 169 get_page(pfn_to_page(pfn)); 170 171 preempt_disable(); 172 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); 173 174 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | 175 MAS1_TSIZE(BOOK3E_PAGESZ_4K); 176 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; 177 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | 178 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; 179 magic.mas8 = 0; 180 181 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0); 182 preempt_enable(); 183 } 184 #endif 185 186 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, 187 int esel) 188 { 189 struct kvm_book3e_206_tlb_entry *gtlbe = 190 get_entry(vcpu_e500, tlbsel, esel); 191 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref; 192 193 /* Don't bother with unmapped entries */ 194 if (!(ref->flags & E500_TLB_VALID)) { 195 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0), 196 "%s: flags %x\n", __func__, ref->flags); 197 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]); 198 } 199 200 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) { 201 u64 tmp = vcpu_e500->g2h_tlb1_map[esel]; 202 int hw_tlb_indx; 203 unsigned long flags; 204 205 local_irq_save(flags); 206 while (tmp) { 207 hw_tlb_indx = __ilog2_u64(tmp & -tmp); 208 mtspr(SPRN_MAS0, 209 MAS0_TLBSEL(1) | 210 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx))); 211 mtspr(SPRN_MAS1, 0); 212 asm volatile("tlbwe"); 213 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0; 214 tmp &= tmp - 1; 215 } 216 mb(); 217 vcpu_e500->g2h_tlb1_map[esel] = 0; 218 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID); 219 local_irq_restore(flags); 220 } 221 222 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) { 223 /* 224 * TLB1 entry is backed by 4k pages. This should happen 225 * rarely and is not worth optimizing. Invalidate everything. 226 */ 227 kvmppc_e500_tlbil_all(vcpu_e500); 228 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID); 229 } 230 231 /* 232 * If TLB entry is still valid then it's a TLB0 entry, and thus 233 * backed by at most one host tlbe per shadow pid 234 */ 235 if (ref->flags & E500_TLB_VALID) 236 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe); 237 238 /* Mark the TLB as not backed by the host anymore */ 239 ref->flags = 0; 240 } 241 242 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) 243 { 244 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); 245 } 246 247 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, 248 struct kvm_book3e_206_tlb_entry *gtlbe, 249 kvm_pfn_t pfn, unsigned int wimg) 250 { 251 ref->pfn = pfn; 252 ref->flags = E500_TLB_VALID; 253 254 /* Use guest supplied MAS2_G and MAS2_E */ 255 ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg; 256 257 /* Mark the page accessed */ 258 kvm_set_pfn_accessed(pfn); 259 260 if (tlbe_is_writable(gtlbe)) 261 kvm_set_pfn_dirty(pfn); 262 } 263 264 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) 265 { 266 if (ref->flags & E500_TLB_VALID) { 267 /* FIXME: don't log bogus pfn for TLB1 */ 268 trace_kvm_booke206_ref_release(ref->pfn, ref->flags); 269 ref->flags = 0; 270 } 271 } 272 273 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500) 274 { 275 if (vcpu_e500->g2h_tlb1_map) 276 memset(vcpu_e500->g2h_tlb1_map, 0, 277 sizeof(u64) * vcpu_e500->gtlb_params[1].entries); 278 if (vcpu_e500->h2g_tlb1_rmap) 279 memset(vcpu_e500->h2g_tlb1_rmap, 0, 280 sizeof(unsigned int) * host_tlb_params[1].entries); 281 } 282 283 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) 284 { 285 int tlbsel; 286 int i; 287 288 for (tlbsel = 0; tlbsel <= 1; tlbsel++) { 289 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { 290 struct tlbe_ref *ref = 291 &vcpu_e500->gtlb_priv[tlbsel][i].ref; 292 kvmppc_e500_ref_release(ref); 293 } 294 } 295 } 296 297 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu) 298 { 299 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 300 kvmppc_e500_tlbil_all(vcpu_e500); 301 clear_tlb_privs(vcpu_e500); 302 clear_tlb1_bitmap(vcpu_e500); 303 } 304 305 /* TID must be supplied by the caller */ 306 static void kvmppc_e500_setup_stlbe( 307 struct kvm_vcpu *vcpu, 308 struct kvm_book3e_206_tlb_entry *gtlbe, 309 int tsize, struct tlbe_ref *ref, u64 gvaddr, 310 struct kvm_book3e_206_tlb_entry *stlbe) 311 { 312 kvm_pfn_t pfn = ref->pfn; 313 u32 pr = vcpu->arch.shared->msr & MSR_PR; 314 315 BUG_ON(!(ref->flags & E500_TLB_VALID)); 316 317 /* Force IPROT=0 for all guest mappings. */ 318 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID; 319 stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR); 320 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) | 321 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr); 322 } 323 324 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, 325 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, 326 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, 327 struct tlbe_ref *ref) 328 { 329 struct kvm_memory_slot *slot; 330 unsigned long pfn = 0; /* silence GCC warning */ 331 unsigned long hva; 332 int pfnmap = 0; 333 int tsize = BOOK3E_PAGESZ_4K; 334 int ret = 0; 335 unsigned long mmu_seq; 336 struct kvm *kvm = vcpu_e500->vcpu.kvm; 337 unsigned long tsize_pages = 0; 338 pte_t *ptep; 339 unsigned int wimg = 0; 340 pgd_t *pgdir; 341 unsigned long flags; 342 343 /* used to check for invalidations in progress */ 344 mmu_seq = kvm->mmu_notifier_seq; 345 smp_rmb(); 346 347 /* 348 * Translate guest physical to true physical, acquiring 349 * a page reference if it is normal, non-reserved memory. 350 * 351 * gfn_to_memslot() must succeed because otherwise we wouldn't 352 * have gotten this far. Eventually we should just pass the slot 353 * pointer through from the first lookup. 354 */ 355 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); 356 hva = gfn_to_hva_memslot(slot, gfn); 357 358 if (tlbsel == 1) { 359 struct vm_area_struct *vma; 360 down_read(¤t->mm->mmap_sem); 361 362 vma = find_vma(current->mm, hva); 363 if (vma && hva >= vma->vm_start && 364 (vma->vm_flags & VM_PFNMAP)) { 365 /* 366 * This VMA is a physically contiguous region (e.g. 367 * /dev/mem) that bypasses normal Linux page 368 * management. Find the overlap between the 369 * vma and the memslot. 370 */ 371 372 unsigned long start, end; 373 unsigned long slot_start, slot_end; 374 375 pfnmap = 1; 376 377 start = vma->vm_pgoff; 378 end = start + 379 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT); 380 381 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); 382 383 slot_start = pfn - (gfn - slot->base_gfn); 384 slot_end = slot_start + slot->npages; 385 386 if (start < slot_start) 387 start = slot_start; 388 if (end > slot_end) 389 end = slot_end; 390 391 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> 392 MAS1_TSIZE_SHIFT; 393 394 /* 395 * e500 doesn't implement the lowest tsize bit, 396 * or 1K pages. 397 */ 398 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); 399 400 /* 401 * Now find the largest tsize (up to what the guest 402 * requested) that will cover gfn, stay within the 403 * range, and for which gfn and pfn are mutually 404 * aligned. 405 */ 406 407 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { 408 unsigned long gfn_start, gfn_end; 409 tsize_pages = 1UL << (tsize - 2); 410 411 gfn_start = gfn & ~(tsize_pages - 1); 412 gfn_end = gfn_start + tsize_pages; 413 414 if (gfn_start + pfn - gfn < start) 415 continue; 416 if (gfn_end + pfn - gfn > end) 417 continue; 418 if ((gfn & (tsize_pages - 1)) != 419 (pfn & (tsize_pages - 1))) 420 continue; 421 422 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); 423 pfn &= ~(tsize_pages - 1); 424 break; 425 } 426 } else if (vma && hva >= vma->vm_start && 427 (vma->vm_flags & VM_HUGETLB)) { 428 unsigned long psize = vma_kernel_pagesize(vma); 429 430 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> 431 MAS1_TSIZE_SHIFT; 432 433 /* 434 * Take the largest page size that satisfies both host 435 * and guest mapping 436 */ 437 tsize = min(__ilog2(psize) - 10, tsize); 438 439 /* 440 * e500 doesn't implement the lowest tsize bit, 441 * or 1K pages. 442 */ 443 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); 444 } 445 446 up_read(¤t->mm->mmap_sem); 447 } 448 449 if (likely(!pfnmap)) { 450 tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT); 451 pfn = gfn_to_pfn_memslot(slot, gfn); 452 if (is_error_noslot_pfn(pfn)) { 453 if (printk_ratelimit()) 454 pr_err("%s: real page not found for gfn %lx\n", 455 __func__, (long)gfn); 456 return -EINVAL; 457 } 458 459 /* Align guest and physical address to page map boundaries */ 460 pfn &= ~(tsize_pages - 1); 461 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); 462 } 463 464 spin_lock(&kvm->mmu_lock); 465 if (mmu_notifier_retry(kvm, mmu_seq)) { 466 ret = -EAGAIN; 467 goto out; 468 } 469 470 471 pgdir = vcpu_e500->vcpu.arch.pgdir; 472 /* 473 * We are just looking at the wimg bits, so we don't 474 * care much about the trans splitting bit. 475 * We are holding kvm->mmu_lock so a notifier invalidate 476 * can't run hence pfn won't change. 477 */ 478 local_irq_save(flags); 479 ptep = find_linux_pte_or_hugepte(pgdir, hva, NULL, NULL); 480 if (ptep) { 481 pte_t pte = READ_ONCE(*ptep); 482 483 if (pte_present(pte)) { 484 wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) & 485 MAS2_WIMGE_MASK; 486 local_irq_restore(flags); 487 } else { 488 local_irq_restore(flags); 489 pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n", 490 __func__, (long)gfn, pfn); 491 ret = -EINVAL; 492 goto out; 493 } 494 } 495 kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg); 496 497 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize, 498 ref, gvaddr, stlbe); 499 500 /* Clear i-cache for new pages */ 501 kvmppc_mmu_flush_icache(pfn); 502 503 out: 504 spin_unlock(&kvm->mmu_lock); 505 506 /* Drop refcount on page, so that mmu notifiers can clear it */ 507 kvm_release_pfn_clean(pfn); 508 509 return ret; 510 } 511 512 /* XXX only map the one-one case, for now use TLB0 */ 513 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel, 514 struct kvm_book3e_206_tlb_entry *stlbe) 515 { 516 struct kvm_book3e_206_tlb_entry *gtlbe; 517 struct tlbe_ref *ref; 518 int stlbsel = 0; 519 int sesel = 0; 520 int r; 521 522 gtlbe = get_entry(vcpu_e500, 0, esel); 523 ref = &vcpu_e500->gtlb_priv[0][esel].ref; 524 525 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), 526 get_tlb_raddr(gtlbe) >> PAGE_SHIFT, 527 gtlbe, 0, stlbe, ref); 528 if (r) 529 return r; 530 531 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel); 532 533 return 0; 534 } 535 536 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500, 537 struct tlbe_ref *ref, 538 int esel) 539 { 540 unsigned int sesel = vcpu_e500->host_tlb1_nv++; 541 542 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) 543 vcpu_e500->host_tlb1_nv = 0; 544 545 if (vcpu_e500->h2g_tlb1_rmap[sesel]) { 546 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1; 547 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel); 548 } 549 550 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP; 551 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel; 552 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1; 553 WARN_ON(!(ref->flags & E500_TLB_VALID)); 554 555 return sesel; 556 } 557 558 /* Caller must ensure that the specified guest TLB entry is safe to insert into 559 * the shadow TLB. */ 560 /* For both one-one and one-to-many */ 561 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, 562 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, 563 struct kvm_book3e_206_tlb_entry *stlbe, int esel) 564 { 565 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref; 566 int sesel; 567 int r; 568 569 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, 570 ref); 571 if (r) 572 return r; 573 574 /* Use TLB0 when we can only map a page with 4k */ 575 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) { 576 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0; 577 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0); 578 return 0; 579 } 580 581 /* Otherwise map into TLB1 */ 582 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel); 583 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel); 584 585 return 0; 586 } 587 588 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, 589 unsigned int index) 590 { 591 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 592 struct tlbe_priv *priv; 593 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; 594 int tlbsel = tlbsel_of(index); 595 int esel = esel_of(index); 596 597 gtlbe = get_entry(vcpu_e500, tlbsel, esel); 598 599 switch (tlbsel) { 600 case 0: 601 priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; 602 603 /* Triggers after clear_tlb_privs or on initial mapping */ 604 if (!(priv->ref.flags & E500_TLB_VALID)) { 605 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); 606 } else { 607 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K, 608 &priv->ref, eaddr, &stlbe); 609 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0); 610 } 611 break; 612 613 case 1: { 614 gfn_t gfn = gpaddr >> PAGE_SHIFT; 615 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe, 616 esel); 617 break; 618 } 619 620 default: 621 BUG(); 622 break; 623 } 624 } 625 626 #ifdef CONFIG_KVM_BOOKE_HV 627 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type, 628 u32 *instr) 629 { 630 gva_t geaddr; 631 hpa_t addr; 632 hfn_t pfn; 633 hva_t eaddr; 634 u32 mas1, mas2, mas3; 635 u64 mas7_mas3; 636 struct page *page; 637 unsigned int addr_space, psize_shift; 638 bool pr; 639 unsigned long flags; 640 641 /* Search TLB for guest pc to get the real address */ 642 geaddr = kvmppc_get_pc(vcpu); 643 644 addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG; 645 646 local_irq_save(flags); 647 mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space); 648 mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu)); 649 asm volatile("tlbsx 0, %[geaddr]\n" : : 650 [geaddr] "r" (geaddr)); 651 mtspr(SPRN_MAS5, 0); 652 mtspr(SPRN_MAS8, 0); 653 mas1 = mfspr(SPRN_MAS1); 654 mas2 = mfspr(SPRN_MAS2); 655 mas3 = mfspr(SPRN_MAS3); 656 #ifdef CONFIG_64BIT 657 mas7_mas3 = mfspr(SPRN_MAS7_MAS3); 658 #else 659 mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3; 660 #endif 661 local_irq_restore(flags); 662 663 /* 664 * If the TLB entry for guest pc was evicted, return to the guest. 665 * There are high chances to find a valid TLB entry next time. 666 */ 667 if (!(mas1 & MAS1_VALID)) 668 return EMULATE_AGAIN; 669 670 /* 671 * Another thread may rewrite the TLB entry in parallel, don't 672 * execute from the address if the execute permission is not set 673 */ 674 pr = vcpu->arch.shared->msr & MSR_PR; 675 if (unlikely((pr && !(mas3 & MAS3_UX)) || 676 (!pr && !(mas3 & MAS3_SX)))) { 677 pr_err_ratelimited( 678 "%s: Instruction emulation from guest address %08lx without execute permission\n", 679 __func__, geaddr); 680 return EMULATE_AGAIN; 681 } 682 683 /* 684 * The real address will be mapped by a cacheable, memory coherent, 685 * write-back page. Check for mismatches when LRAT is used. 686 */ 687 if (has_feature(vcpu, VCPU_FTR_MMU_V2) && 688 unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) { 689 pr_err_ratelimited( 690 "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n", 691 __func__, geaddr); 692 return EMULATE_AGAIN; 693 } 694 695 /* Get pfn */ 696 psize_shift = MAS1_GET_TSIZE(mas1) + 10; 697 addr = (mas7_mas3 & (~0ULL << psize_shift)) | 698 (geaddr & ((1ULL << psize_shift) - 1ULL)); 699 pfn = addr >> PAGE_SHIFT; 700 701 /* Guard against emulation from devices area */ 702 if (unlikely(!page_is_ram(pfn))) { 703 pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n", 704 __func__, addr); 705 return EMULATE_AGAIN; 706 } 707 708 /* Map a page and get guest's instruction */ 709 page = pfn_to_page(pfn); 710 eaddr = (unsigned long)kmap_atomic(page); 711 *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK)); 712 kunmap_atomic((u32 *)eaddr); 713 714 return EMULATE_DONE; 715 } 716 #else 717 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type, 718 u32 *instr) 719 { 720 return EMULATE_AGAIN; 721 } 722 #endif 723 724 /************* MMU Notifiers *************/ 725 726 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) 727 { 728 trace_kvm_unmap_hva(hva); 729 730 /* 731 * Flush all shadow tlb entries everywhere. This is slow, but 732 * we are 100% sure that we catch the to be unmapped page 733 */ 734 kvm_flush_remote_tlbs(kvm); 735 736 return 0; 737 } 738 739 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 740 { 741 /* kvm_unmap_hva flushes everything anyways */ 742 kvm_unmap_hva(kvm, start); 743 744 return 0; 745 } 746 747 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 748 { 749 /* XXX could be more clever ;) */ 750 return 0; 751 } 752 753 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 754 { 755 /* XXX could be more clever ;) */ 756 return 0; 757 } 758 759 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 760 { 761 /* The page will get remapped properly on its next fault */ 762 kvm_unmap_hva(kvm, hva); 763 } 764 765 /*****************************************/ 766 767 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500) 768 { 769 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; 770 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; 771 772 /* 773 * This should never happen on real e500 hardware, but is 774 * architecturally possible -- e.g. in some weird nested 775 * virtualization case. 776 */ 777 if (host_tlb_params[0].entries == 0 || 778 host_tlb_params[1].entries == 0) { 779 pr_err("%s: need to know host tlb size\n", __func__); 780 return -ENODEV; 781 } 782 783 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> 784 TLBnCFG_ASSOC_SHIFT; 785 host_tlb_params[1].ways = host_tlb_params[1].entries; 786 787 if (!is_power_of_2(host_tlb_params[0].entries) || 788 !is_power_of_2(host_tlb_params[0].ways) || 789 host_tlb_params[0].entries < host_tlb_params[0].ways || 790 host_tlb_params[0].ways == 0) { 791 pr_err("%s: bad tlb0 host config: %u entries %u ways\n", 792 __func__, host_tlb_params[0].entries, 793 host_tlb_params[0].ways); 794 return -ENODEV; 795 } 796 797 host_tlb_params[0].sets = 798 host_tlb_params[0].entries / host_tlb_params[0].ways; 799 host_tlb_params[1].sets = 1; 800 801 vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) * 802 host_tlb_params[1].entries, 803 GFP_KERNEL); 804 if (!vcpu_e500->h2g_tlb1_rmap) 805 return -EINVAL; 806 807 return 0; 808 } 809 810 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) 811 { 812 kfree(vcpu_e500->h2g_tlb1_rmap); 813 } 814