1 /* 2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved. 3 * 4 * Author: Yu Liu, yu.liu@freescale.com 5 * Scott Wood, scottwood@freescale.com 6 * Ashish Kalra, ashish.kalra@freescale.com 7 * Varun Sethi, varun.sethi@freescale.com 8 * Alexander Graf, agraf@suse.de 9 * 10 * Description: 11 * This file is based on arch/powerpc/kvm/44x_tlb.c, 12 * by Hollis Blanchard <hollisb@us.ibm.com>. 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License, version 2, as 16 * published by the Free Software Foundation. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/slab.h> 22 #include <linux/string.h> 23 #include <linux/kvm.h> 24 #include <linux/kvm_host.h> 25 #include <linux/highmem.h> 26 #include <linux/log2.h> 27 #include <linux/uaccess.h> 28 #include <linux/sched/mm.h> 29 #include <linux/rwsem.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hugetlb.h> 32 #include <asm/kvm_ppc.h> 33 #include <asm/pte-walk.h> 34 35 #include "e500.h" 36 #include "timing.h" 37 #include "e500_mmu_host.h" 38 39 #include "trace_booke.h" 40 41 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) 42 43 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; 44 45 static inline unsigned int tlb1_max_shadow_size(void) 46 { 47 /* reserve one entry for magic page */ 48 return host_tlb_params[1].entries - tlbcam_index - 1; 49 } 50 51 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) 52 { 53 /* Mask off reserved bits. */ 54 mas3 &= MAS3_ATTRIB_MASK; 55 56 #ifndef CONFIG_KVM_BOOKE_HV 57 if (!usermode) { 58 /* Guest is in supervisor mode, 59 * so we need to translate guest 60 * supervisor permissions into user permissions. */ 61 mas3 &= ~E500_TLB_USER_PERM_MASK; 62 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; 63 } 64 mas3 |= E500_TLB_SUPER_PERM_MASK; 65 #endif 66 return mas3; 67 } 68 69 /* 70 * writing shadow tlb entry to host TLB 71 */ 72 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, 73 uint32_t mas0, 74 uint32_t lpid) 75 { 76 unsigned long flags; 77 78 local_irq_save(flags); 79 mtspr(SPRN_MAS0, mas0); 80 mtspr(SPRN_MAS1, stlbe->mas1); 81 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); 82 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); 83 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); 84 #ifdef CONFIG_KVM_BOOKE_HV 85 mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid)); 86 #endif 87 asm volatile("isync; tlbwe" : : : "memory"); 88 89 #ifdef CONFIG_KVM_BOOKE_HV 90 /* Must clear mas8 for other host tlbwe's */ 91 mtspr(SPRN_MAS8, 0); 92 isync(); 93 #endif 94 local_irq_restore(flags); 95 96 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1, 97 stlbe->mas2, stlbe->mas7_3); 98 } 99 100 /* 101 * Acquire a mas0 with victim hint, as if we just took a TLB miss. 102 * 103 * We don't care about the address we're searching for, other than that it's 104 * in the right set and is not present in the TLB. Using a zero PID and a 105 * userspace address means we don't have to set and then restore MAS5, or 106 * calculate a proper MAS6 value. 107 */ 108 static u32 get_host_mas0(unsigned long eaddr) 109 { 110 unsigned long flags; 111 u32 mas0; 112 u32 mas4; 113 114 local_irq_save(flags); 115 mtspr(SPRN_MAS6, 0); 116 mas4 = mfspr(SPRN_MAS4); 117 mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK); 118 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); 119 mas0 = mfspr(SPRN_MAS0); 120 mtspr(SPRN_MAS4, mas4); 121 local_irq_restore(flags); 122 123 return mas0; 124 } 125 126 /* sesel is for tlb1 only */ 127 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, 128 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) 129 { 130 u32 mas0; 131 132 if (tlbsel == 0) { 133 mas0 = get_host_mas0(stlbe->mas2); 134 __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid); 135 } else { 136 __write_host_tlbe(stlbe, 137 MAS0_TLBSEL(1) | 138 MAS0_ESEL(to_htlb1_esel(sesel)), 139 vcpu_e500->vcpu.kvm->arch.lpid); 140 } 141 } 142 143 /* sesel is for tlb1 only */ 144 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, 145 struct kvm_book3e_206_tlb_entry *gtlbe, 146 struct kvm_book3e_206_tlb_entry *stlbe, 147 int stlbsel, int sesel) 148 { 149 int stid; 150 151 preempt_disable(); 152 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe); 153 154 stlbe->mas1 |= MAS1_TID(stid); 155 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe); 156 preempt_enable(); 157 } 158 159 #ifdef CONFIG_KVM_E500V2 160 /* XXX should be a hook in the gva2hpa translation */ 161 void kvmppc_map_magic(struct kvm_vcpu *vcpu) 162 { 163 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 164 struct kvm_book3e_206_tlb_entry magic; 165 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; 166 unsigned int stid; 167 kvm_pfn_t pfn; 168 169 pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; 170 get_page(pfn_to_page(pfn)); 171 172 preempt_disable(); 173 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); 174 175 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | 176 MAS1_TSIZE(BOOK3E_PAGESZ_4K); 177 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; 178 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | 179 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; 180 magic.mas8 = 0; 181 182 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0); 183 preempt_enable(); 184 } 185 #endif 186 187 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, 188 int esel) 189 { 190 struct kvm_book3e_206_tlb_entry *gtlbe = 191 get_entry(vcpu_e500, tlbsel, esel); 192 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref; 193 194 /* Don't bother with unmapped entries */ 195 if (!(ref->flags & E500_TLB_VALID)) { 196 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0), 197 "%s: flags %x\n", __func__, ref->flags); 198 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]); 199 } 200 201 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) { 202 u64 tmp = vcpu_e500->g2h_tlb1_map[esel]; 203 int hw_tlb_indx; 204 unsigned long flags; 205 206 local_irq_save(flags); 207 while (tmp) { 208 hw_tlb_indx = __ilog2_u64(tmp & -tmp); 209 mtspr(SPRN_MAS0, 210 MAS0_TLBSEL(1) | 211 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx))); 212 mtspr(SPRN_MAS1, 0); 213 asm volatile("tlbwe"); 214 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0; 215 tmp &= tmp - 1; 216 } 217 mb(); 218 vcpu_e500->g2h_tlb1_map[esel] = 0; 219 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID); 220 local_irq_restore(flags); 221 } 222 223 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) { 224 /* 225 * TLB1 entry is backed by 4k pages. This should happen 226 * rarely and is not worth optimizing. Invalidate everything. 227 */ 228 kvmppc_e500_tlbil_all(vcpu_e500); 229 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID); 230 } 231 232 /* 233 * If TLB entry is still valid then it's a TLB0 entry, and thus 234 * backed by at most one host tlbe per shadow pid 235 */ 236 if (ref->flags & E500_TLB_VALID) 237 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe); 238 239 /* Mark the TLB as not backed by the host anymore */ 240 ref->flags = 0; 241 } 242 243 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) 244 { 245 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); 246 } 247 248 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, 249 struct kvm_book3e_206_tlb_entry *gtlbe, 250 kvm_pfn_t pfn, unsigned int wimg) 251 { 252 ref->pfn = pfn; 253 ref->flags = E500_TLB_VALID; 254 255 /* Use guest supplied MAS2_G and MAS2_E */ 256 ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg; 257 258 /* Mark the page accessed */ 259 kvm_set_pfn_accessed(pfn); 260 261 if (tlbe_is_writable(gtlbe)) 262 kvm_set_pfn_dirty(pfn); 263 } 264 265 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) 266 { 267 if (ref->flags & E500_TLB_VALID) { 268 /* FIXME: don't log bogus pfn for TLB1 */ 269 trace_kvm_booke206_ref_release(ref->pfn, ref->flags); 270 ref->flags = 0; 271 } 272 } 273 274 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500) 275 { 276 if (vcpu_e500->g2h_tlb1_map) 277 memset(vcpu_e500->g2h_tlb1_map, 0, 278 sizeof(u64) * vcpu_e500->gtlb_params[1].entries); 279 if (vcpu_e500->h2g_tlb1_rmap) 280 memset(vcpu_e500->h2g_tlb1_rmap, 0, 281 sizeof(unsigned int) * host_tlb_params[1].entries); 282 } 283 284 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) 285 { 286 int tlbsel; 287 int i; 288 289 for (tlbsel = 0; tlbsel <= 1; tlbsel++) { 290 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { 291 struct tlbe_ref *ref = 292 &vcpu_e500->gtlb_priv[tlbsel][i].ref; 293 kvmppc_e500_ref_release(ref); 294 } 295 } 296 } 297 298 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu) 299 { 300 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 301 kvmppc_e500_tlbil_all(vcpu_e500); 302 clear_tlb_privs(vcpu_e500); 303 clear_tlb1_bitmap(vcpu_e500); 304 } 305 306 /* TID must be supplied by the caller */ 307 static void kvmppc_e500_setup_stlbe( 308 struct kvm_vcpu *vcpu, 309 struct kvm_book3e_206_tlb_entry *gtlbe, 310 int tsize, struct tlbe_ref *ref, u64 gvaddr, 311 struct kvm_book3e_206_tlb_entry *stlbe) 312 { 313 kvm_pfn_t pfn = ref->pfn; 314 u32 pr = vcpu->arch.shared->msr & MSR_PR; 315 316 BUG_ON(!(ref->flags & E500_TLB_VALID)); 317 318 /* Force IPROT=0 for all guest mappings. */ 319 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID; 320 stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR); 321 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) | 322 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr); 323 } 324 325 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, 326 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, 327 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, 328 struct tlbe_ref *ref) 329 { 330 struct kvm_memory_slot *slot; 331 unsigned long pfn = 0; /* silence GCC warning */ 332 unsigned long hva; 333 int pfnmap = 0; 334 int tsize = BOOK3E_PAGESZ_4K; 335 int ret = 0; 336 unsigned long mmu_seq; 337 struct kvm *kvm = vcpu_e500->vcpu.kvm; 338 unsigned long tsize_pages = 0; 339 pte_t *ptep; 340 unsigned int wimg = 0; 341 pgd_t *pgdir; 342 unsigned long flags; 343 344 /* used to check for invalidations in progress */ 345 mmu_seq = kvm->mmu_notifier_seq; 346 smp_rmb(); 347 348 /* 349 * Translate guest physical to true physical, acquiring 350 * a page reference if it is normal, non-reserved memory. 351 * 352 * gfn_to_memslot() must succeed because otherwise we wouldn't 353 * have gotten this far. Eventually we should just pass the slot 354 * pointer through from the first lookup. 355 */ 356 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); 357 hva = gfn_to_hva_memslot(slot, gfn); 358 359 if (tlbsel == 1) { 360 struct vm_area_struct *vma; 361 down_read(¤t->mm->mmap_sem); 362 363 vma = find_vma(current->mm, hva); 364 if (vma && hva >= vma->vm_start && 365 (vma->vm_flags & VM_PFNMAP)) { 366 /* 367 * This VMA is a physically contiguous region (e.g. 368 * /dev/mem) that bypasses normal Linux page 369 * management. Find the overlap between the 370 * vma and the memslot. 371 */ 372 373 unsigned long start, end; 374 unsigned long slot_start, slot_end; 375 376 pfnmap = 1; 377 378 start = vma->vm_pgoff; 379 end = start + 380 vma_pages(vma); 381 382 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); 383 384 slot_start = pfn - (gfn - slot->base_gfn); 385 slot_end = slot_start + slot->npages; 386 387 if (start < slot_start) 388 start = slot_start; 389 if (end > slot_end) 390 end = slot_end; 391 392 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> 393 MAS1_TSIZE_SHIFT; 394 395 /* 396 * e500 doesn't implement the lowest tsize bit, 397 * or 1K pages. 398 */ 399 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); 400 401 /* 402 * Now find the largest tsize (up to what the guest 403 * requested) that will cover gfn, stay within the 404 * range, and for which gfn and pfn are mutually 405 * aligned. 406 */ 407 408 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { 409 unsigned long gfn_start, gfn_end; 410 tsize_pages = 1UL << (tsize - 2); 411 412 gfn_start = gfn & ~(tsize_pages - 1); 413 gfn_end = gfn_start + tsize_pages; 414 415 if (gfn_start + pfn - gfn < start) 416 continue; 417 if (gfn_end + pfn - gfn > end) 418 continue; 419 if ((gfn & (tsize_pages - 1)) != 420 (pfn & (tsize_pages - 1))) 421 continue; 422 423 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); 424 pfn &= ~(tsize_pages - 1); 425 break; 426 } 427 } else if (vma && hva >= vma->vm_start && 428 (vma->vm_flags & VM_HUGETLB)) { 429 unsigned long psize = vma_kernel_pagesize(vma); 430 431 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> 432 MAS1_TSIZE_SHIFT; 433 434 /* 435 * Take the largest page size that satisfies both host 436 * and guest mapping 437 */ 438 tsize = min(__ilog2(psize) - 10, tsize); 439 440 /* 441 * e500 doesn't implement the lowest tsize bit, 442 * or 1K pages. 443 */ 444 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); 445 } 446 447 up_read(¤t->mm->mmap_sem); 448 } 449 450 if (likely(!pfnmap)) { 451 tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT); 452 pfn = gfn_to_pfn_memslot(slot, gfn); 453 if (is_error_noslot_pfn(pfn)) { 454 if (printk_ratelimit()) 455 pr_err("%s: real page not found for gfn %lx\n", 456 __func__, (long)gfn); 457 return -EINVAL; 458 } 459 460 /* Align guest and physical address to page map boundaries */ 461 pfn &= ~(tsize_pages - 1); 462 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); 463 } 464 465 spin_lock(&kvm->mmu_lock); 466 if (mmu_notifier_retry(kvm, mmu_seq)) { 467 ret = -EAGAIN; 468 goto out; 469 } 470 471 472 pgdir = vcpu_e500->vcpu.arch.pgdir; 473 /* 474 * We are just looking at the wimg bits, so we don't 475 * care much about the trans splitting bit. 476 * We are holding kvm->mmu_lock so a notifier invalidate 477 * can't run hence pfn won't change. 478 */ 479 local_irq_save(flags); 480 ptep = find_linux_pte(pgdir, hva, NULL, NULL); 481 if (ptep) { 482 pte_t pte = READ_ONCE(*ptep); 483 484 if (pte_present(pte)) { 485 wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) & 486 MAS2_WIMGE_MASK; 487 local_irq_restore(flags); 488 } else { 489 local_irq_restore(flags); 490 pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n", 491 __func__, (long)gfn, pfn); 492 ret = -EINVAL; 493 goto out; 494 } 495 } 496 kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg); 497 498 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize, 499 ref, gvaddr, stlbe); 500 501 /* Clear i-cache for new pages */ 502 kvmppc_mmu_flush_icache(pfn); 503 504 out: 505 spin_unlock(&kvm->mmu_lock); 506 507 /* Drop refcount on page, so that mmu notifiers can clear it */ 508 kvm_release_pfn_clean(pfn); 509 510 return ret; 511 } 512 513 /* XXX only map the one-one case, for now use TLB0 */ 514 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel, 515 struct kvm_book3e_206_tlb_entry *stlbe) 516 { 517 struct kvm_book3e_206_tlb_entry *gtlbe; 518 struct tlbe_ref *ref; 519 int stlbsel = 0; 520 int sesel = 0; 521 int r; 522 523 gtlbe = get_entry(vcpu_e500, 0, esel); 524 ref = &vcpu_e500->gtlb_priv[0][esel].ref; 525 526 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), 527 get_tlb_raddr(gtlbe) >> PAGE_SHIFT, 528 gtlbe, 0, stlbe, ref); 529 if (r) 530 return r; 531 532 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel); 533 534 return 0; 535 } 536 537 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500, 538 struct tlbe_ref *ref, 539 int esel) 540 { 541 unsigned int sesel = vcpu_e500->host_tlb1_nv++; 542 543 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) 544 vcpu_e500->host_tlb1_nv = 0; 545 546 if (vcpu_e500->h2g_tlb1_rmap[sesel]) { 547 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1; 548 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel); 549 } 550 551 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP; 552 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel; 553 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1; 554 WARN_ON(!(ref->flags & E500_TLB_VALID)); 555 556 return sesel; 557 } 558 559 /* Caller must ensure that the specified guest TLB entry is safe to insert into 560 * the shadow TLB. */ 561 /* For both one-one and one-to-many */ 562 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, 563 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, 564 struct kvm_book3e_206_tlb_entry *stlbe, int esel) 565 { 566 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref; 567 int sesel; 568 int r; 569 570 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, 571 ref); 572 if (r) 573 return r; 574 575 /* Use TLB0 when we can only map a page with 4k */ 576 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) { 577 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0; 578 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0); 579 return 0; 580 } 581 582 /* Otherwise map into TLB1 */ 583 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel); 584 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel); 585 586 return 0; 587 } 588 589 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, 590 unsigned int index) 591 { 592 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 593 struct tlbe_priv *priv; 594 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; 595 int tlbsel = tlbsel_of(index); 596 int esel = esel_of(index); 597 598 gtlbe = get_entry(vcpu_e500, tlbsel, esel); 599 600 switch (tlbsel) { 601 case 0: 602 priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; 603 604 /* Triggers after clear_tlb_privs or on initial mapping */ 605 if (!(priv->ref.flags & E500_TLB_VALID)) { 606 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); 607 } else { 608 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K, 609 &priv->ref, eaddr, &stlbe); 610 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0); 611 } 612 break; 613 614 case 1: { 615 gfn_t gfn = gpaddr >> PAGE_SHIFT; 616 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe, 617 esel); 618 break; 619 } 620 621 default: 622 BUG(); 623 break; 624 } 625 } 626 627 #ifdef CONFIG_KVM_BOOKE_HV 628 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, 629 enum instruction_fetch_type type, u32 *instr) 630 { 631 gva_t geaddr; 632 hpa_t addr; 633 hfn_t pfn; 634 hva_t eaddr; 635 u32 mas1, mas2, mas3; 636 u64 mas7_mas3; 637 struct page *page; 638 unsigned int addr_space, psize_shift; 639 bool pr; 640 unsigned long flags; 641 642 /* Search TLB for guest pc to get the real address */ 643 geaddr = kvmppc_get_pc(vcpu); 644 645 addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG; 646 647 local_irq_save(flags); 648 mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space); 649 mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu)); 650 asm volatile("tlbsx 0, %[geaddr]\n" : : 651 [geaddr] "r" (geaddr)); 652 mtspr(SPRN_MAS5, 0); 653 mtspr(SPRN_MAS8, 0); 654 mas1 = mfspr(SPRN_MAS1); 655 mas2 = mfspr(SPRN_MAS2); 656 mas3 = mfspr(SPRN_MAS3); 657 #ifdef CONFIG_64BIT 658 mas7_mas3 = mfspr(SPRN_MAS7_MAS3); 659 #else 660 mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3; 661 #endif 662 local_irq_restore(flags); 663 664 /* 665 * If the TLB entry for guest pc was evicted, return to the guest. 666 * There are high chances to find a valid TLB entry next time. 667 */ 668 if (!(mas1 & MAS1_VALID)) 669 return EMULATE_AGAIN; 670 671 /* 672 * Another thread may rewrite the TLB entry in parallel, don't 673 * execute from the address if the execute permission is not set 674 */ 675 pr = vcpu->arch.shared->msr & MSR_PR; 676 if (unlikely((pr && !(mas3 & MAS3_UX)) || 677 (!pr && !(mas3 & MAS3_SX)))) { 678 pr_err_ratelimited( 679 "%s: Instruction emulation from guest address %08lx without execute permission\n", 680 __func__, geaddr); 681 return EMULATE_AGAIN; 682 } 683 684 /* 685 * The real address will be mapped by a cacheable, memory coherent, 686 * write-back page. Check for mismatches when LRAT is used. 687 */ 688 if (has_feature(vcpu, VCPU_FTR_MMU_V2) && 689 unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) { 690 pr_err_ratelimited( 691 "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n", 692 __func__, geaddr); 693 return EMULATE_AGAIN; 694 } 695 696 /* Get pfn */ 697 psize_shift = MAS1_GET_TSIZE(mas1) + 10; 698 addr = (mas7_mas3 & (~0ULL << psize_shift)) | 699 (geaddr & ((1ULL << psize_shift) - 1ULL)); 700 pfn = addr >> PAGE_SHIFT; 701 702 /* Guard against emulation from devices area */ 703 if (unlikely(!page_is_ram(pfn))) { 704 pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n", 705 __func__, addr); 706 return EMULATE_AGAIN; 707 } 708 709 /* Map a page and get guest's instruction */ 710 page = pfn_to_page(pfn); 711 eaddr = (unsigned long)kmap_atomic(page); 712 *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK)); 713 kunmap_atomic((u32 *)eaddr); 714 715 return EMULATE_DONE; 716 } 717 #else 718 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, 719 enum instruction_fetch_type type, u32 *instr) 720 { 721 return EMULATE_AGAIN; 722 } 723 #endif 724 725 /************* MMU Notifiers *************/ 726 727 static int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) 728 { 729 trace_kvm_unmap_hva(hva); 730 731 /* 732 * Flush all shadow tlb entries everywhere. This is slow, but 733 * we are 100% sure that we catch the to be unmapped page 734 */ 735 kvm_flush_remote_tlbs(kvm); 736 737 return 0; 738 } 739 740 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 741 { 742 /* kvm_unmap_hva flushes everything anyways */ 743 kvm_unmap_hva(kvm, start); 744 745 return 0; 746 } 747 748 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 749 { 750 /* XXX could be more clever ;) */ 751 return 0; 752 } 753 754 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 755 { 756 /* XXX could be more clever ;) */ 757 return 0; 758 } 759 760 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 761 { 762 /* The page will get remapped properly on its next fault */ 763 kvm_unmap_hva(kvm, hva); 764 } 765 766 /*****************************************/ 767 768 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500) 769 { 770 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; 771 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; 772 773 /* 774 * This should never happen on real e500 hardware, but is 775 * architecturally possible -- e.g. in some weird nested 776 * virtualization case. 777 */ 778 if (host_tlb_params[0].entries == 0 || 779 host_tlb_params[1].entries == 0) { 780 pr_err("%s: need to know host tlb size\n", __func__); 781 return -ENODEV; 782 } 783 784 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> 785 TLBnCFG_ASSOC_SHIFT; 786 host_tlb_params[1].ways = host_tlb_params[1].entries; 787 788 if (!is_power_of_2(host_tlb_params[0].entries) || 789 !is_power_of_2(host_tlb_params[0].ways) || 790 host_tlb_params[0].entries < host_tlb_params[0].ways || 791 host_tlb_params[0].ways == 0) { 792 pr_err("%s: bad tlb0 host config: %u entries %u ways\n", 793 __func__, host_tlb_params[0].entries, 794 host_tlb_params[0].ways); 795 return -ENODEV; 796 } 797 798 host_tlb_params[0].sets = 799 host_tlb_params[0].entries / host_tlb_params[0].ways; 800 host_tlb_params[1].sets = 1; 801 vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries, 802 sizeof(*vcpu_e500->h2g_tlb1_rmap), 803 GFP_KERNEL); 804 if (!vcpu_e500->h2g_tlb1_rmap) 805 return -EINVAL; 806 807 return 0; 808 } 809 810 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) 811 { 812 kfree(vcpu_e500->h2g_tlb1_rmap); 813 } 814